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Great progress has been made in predicting and explaining interstate
conbict. Improved data, theory, and methods all deserve credit. Yet
much remains to be done. First, whereas many variables (e.g., geo-
graphical proximity, relative power, alliances, political regime type,
economic interdependence) have important effects, even the most suc-
cessful multivariate analyses leave much of the variance in conbict be-
havior unaccounted for, due to inadequate data, speciacation, or the-
ory, or simply random variation. Consequently, questions arise about
the predictive power of such analyses. Can we identify, with enough ac-
curacy for policy purposes, those relationships very likely or very un-
likely to experience militarized disputes? Can we reduce the number of
false negatives and false positives? Second, interstate conbicts are com-
plex phenomena often displaying nonlinear and nonmonotonic pat-
terns of interaction. Those complexities are hard to model. Finally,
there are questions about whether causal or predictive relationships are
stable across time and space. One such question is whether democracy
reduced the risk of interstate conbict throughout the twentieth century
(Thompson and Tucker 1997; Maoz 1998; Russett and Oneal 2001) or
its effect was limited to the Cold War era (Gowa 1999) due to particu-
lar conditions like ideological rivalry, bipolarity, or nuclear weapons.
Some early COW analyses (e.g., Singer and Small 1968a) also empha-
sized nineteenth- and twentieth-century systemic differences. 

Recent innovations have employed neural network analysis, a
mathematical technique especially suitable to the interactive, nonlin-
ear, and contingent relations across the variables that may trigger mil-
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itarized interstate disputes (Schrodt 1991; Beck, King, and Zeng 2000).
As a descriptively predictive rather than overtly theoretical tool, neu-
ral network analysis does not require rigid a priori assumptions on the
mathematical nature of such complex relationships as do commonly
used multivariate statistical techniques (Garson 1991; Zeng 1999).
Moreover, it provides a clear answer to questions about predictive ac-
curacy, with measures of the percentage of correct predictions both for
dyads that actually experienced disputes and those that did not. And
it readily lends itself to analyses whereby one can inductively establish
a pattern of regularities in a data set for one time period (e.g., the Cold
War era) and then measure how accurately that empirically derived
pattern of regularities postdicts to disputes, and their correlates or
causes, in a data set for another period (e.g., the decades preceding the
Cold War). 

To assess the possibility of uncovering durable conbict dynamics
with a complex model we develop and test a neural network model of
Cold War interstate conbicts, then test its performance on data cover-
ing more than a century (1885–1992). Since predictive accuracy is a
major criterion by which models are assessed, our exercise can reveal
the extent to which the Cold War causal structure is representative of
earlier historical contexts. Thus the arst of our three goals for adding
to existing neural network analyses of international conbict is to dis-
cover whether the process at work in determining interstate conbicts
during the Cold War was a consequence of speciac systemic conditions,
such as East–West confrontation or U.S. hegemony, or whether some
complex regularities at the dyadic level were characterizing conbict out-
comes. We and, rather, that much the same regularities exist in the
pre–Cold War era. Using many data sets originating in the COW Proj-
ect, we can correctly predict 82 percent of militarized disputes and 72
percent of nondisputes in the Cold War era and nearly 65 percent of
disputes and nondisputes in the pre–Cold War decades, with economic
interdependence, democracy, and international organizations providing
strong input to the predictions in both periods.

Another extension of previous work is to further develop the meth-
ods of neural network analysis for international conbict. Schrodt’s
(1991) and Garson’s (1991) arst efforts to use this technique in political
science exposed two major drawbacks. One is that neural networks are
not efacient classiaers of rare events, because they are biased toward the
modal value (the most common value in the output). This can be a seri-
ous problem in large-N conbict analysis as militarized disputes are in-
deed rare events, with 95 percent of observations usually coded as zero.
In addition, it is hard to comprehend the causal model that the trained
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neural networks have internally constructed. To address the issue of rare
events’ prediction in neural models, we propose a sampling technique
called balanced training with cross-validation strategy. It makes use of
the advantages of selecting on the dependent variable, while avoiding se-
lection bias. 

Our third goal is to offer three measures as guides to interpreting the
relative inbuence of different variables on conbict. The different infor-
mation provided by each generates insights into the complex regulari-
ties discovered by the network. Since our analysis uses variables from
both realist and liberal theories, interpreting the network model also
provides a test for hypotheses from the two theoretical perspectives. 

The arst two sections of this chapter consider why a neural network
model is suitable for studying international conbict and then discuss the
model. Next we focus on the analytical issues of rare event prediction
in neural networks and use of the balanced training with cross-valida-
tion strategy as a solution for the rare event bias in neural networks.
The fourth section brieby discusses the data utilized, and the anal sec-
tions summarize the results. Much of the discussion of the method-
ological innovations must be technical. We nonetheless think these in-
novations are important, and that the results are substantively and
theoretically interesting.

WHY NEURAL NETWORKS IN CONFLICT ANALYSIS?

The COW Project has ranged over several levels of analysis. J. David
Singer (1961b) initially endorsed the systemic level as most promising
and expressed skepticism about the power of the nation-state level of
analysis—a position shared, ironically, by a very different kind of scholar
(Waltz 1979).  Subsequently, Small and Singer (1976) expressed doubt
about the value of a middle level of analysis between the systemic and
state levels; that is, on pairs of states, or dyads. Notably they questioned
the democratic peace hypothesis, a position Henderson too quickly en-
dorses in this volume.1 (Geller and Singer 1998, 85–96, might suggest
some subsequent mellowing on this point.) Nevertheless, Singer was cen-
trally involved in the origin and development of the militarized interna-
tional dispute data set, which has proven one of the great achievements
of the COW project. His early inbuence is evident in conceptualizing
(Leng and Singer 1977) MIDs as bilateral interactions and in a more re-
cent report on use (Jones, Bremer, and Singer 1996). Much of COW use
of MIDs in the early years was predominantly descriptive and inductive
in mapping characteristics of the international system and had an im-
plicit assumption that the important relationships would be more or less
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linear. Recently, however, other COW associates (Maoz and Abdolali
1989; Bremer 1992) have made major innovations in theoretically
driven use of MIDs at the dyadic level. This chapter extends that de-
velopment, working further in what is now called the Kantian peace
research program that extends the scope of dyadic inbuences from
democracy to economic interdependence and international organiza-
tions. In so doing it looks intently at the implications of using neural
network analysis to relax the assumption that key relationships are fun-
damentally linear.

In light of the dominance of statistical methods in conbict research,
we need to consider the beneats that can result when neural network
methodologies are applied to conbict data. Statistically trained political
scientists may ask, why neural networks? Wouldn’t simpler and more
established multivariate statistical techniques do better? Answers to
these questions can be articulated both from the methodological and
theoretical levels. 

First, neural networks can provide a powerful method to develop
nonlinear and interactive models of militarized disputes, redressing the
restrictive linear and axed effect assumptions that have dominated the
aeld.2 Recent development in the liberal peace literature seems to indi-
cate that the causal processes at work in interstate conbicts result from
complex interactions. In recognition of these complex dynamics, Russett
and Oneal (2001, 39) express doubt that individual causal relationships
can be considered well in isolation. Peace may result from multiple and
overlapping liberal behaviors, shaped by democracy and interdepend-
ence, which interact with the opportunities offered by the realist vari-
ables. A synthesis of Kantian and realist effects emphasizes an inter-
pretation of constraints on states’ willingness and ability to resort to
violence. Beck, King, and Zeng (2000) similarly interpret the realist
variables as creating a pre-scenario of low or high ex ante probability of
military conbict from which the inbuence of the liberal variables is
plucked. Or the effects of relative power on dispute outcomes—strong
between nondemocracies—may be much weaker when democracies set-
tle their disputes (Gelpi and Griesdorf 2001). Other studies assume that
a reciprocal relationship, or feedback loop, runs between democracy
and interdependence. Democratic institutions may indirectly increase
the weight of the economic constraints on militarized behavior by em-
powering economic interest groups in the state. Another link may run as
interdependence in turn increases the number of international political
constraints. High levels of dyadic trade often create a need for new in-
stitutions to manage and stabilize the existing commercial relations.
These new institutions add more restraints on militarized behavior. 
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This interactive and nonlinear perspective can be fully embraced by
neural network models. By superposing multiple nonlinear functions
and avoiding a priori constraints on the functional nature of the data
examined, multilayer networks can construct different causal structures
in the same model and combine them together in a systematic way. In-
deed, a wide variability of the inputs’ effect is allowed, while avoiding
the independence assumption of the random effect model (Beck, King,
and Zeng 2000, 25).

Second, neural networks do not require independent observations,
and thus they deal better with the suspected inbuences that militarized
events exercise on each other (Sarle 1994). As Beck, Katz, and Tucker
(1998) argue, the conbict history of a state can either positively or neg-
atively affect the state’s willingness to become involved in future con-
bict. To overcome this problem, they suggest that a control for the
number of years that have elapsed from the most recent occurrence of
a conbict should be used. However, that solution is problematic. While
solving the independence problem, the year correction opens new is-
sues. It rests on the assumption that the effect of the other explanatory
variables and time can be separated. This seems very unlikely for some
of the important variables in conbict analysis. For instance, liberal the-
ory expects interdependence to fall with the outbreak of a conbict, but
to rise over time after a conbict ends.

Finally, model formulation in neural networks is shaped not only 
by theoretical but also empirical considerations, making the neural
methodology a middle-range approach between deductive and inductive
model building. This characteristic of neural networks should not be re-
garded as a negative aspect. The increasing number of factors and re-
ciprocal interactions that may characterize the causal structure of inter-
national conbicts makes the development of fully speciaed theories more
difacult.3 As result, some aspects of the causal interaction may remain
undeaned. What is left unexplained by the theory can be “discovered”
by the neural networks themselves since their bexible methodology en-
ables them to learn from the empirical data. Without deemphasizing
model building based on arst principles, neural modeling can strengthen
theory building by supporting a constant interplay between theory and
data.

THE NEURAL NETWORK MODEL

Backpropagation multilayer networks implement a nonlinear mapping,
or a function approximation, from a set of n input, x1, x2, . . . , xn, to
a set of m outputs, y1, y2, . . . , ym. Although mapping is not new in
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quantitative studies, the way in which neural networks perform this
input-output transformation represents an important development for
mathematical models of complex input-output relations. In neural net-
works the complex relation between the inputs and outputs is modeled
using a superposition of multiple nonlinear functions, represented by
neurons. By increasing the number of functional transformations, the
model can approximate any hypothetical relations between the selected
explanatory and dependent variables. The key point is that the number
of nonlinear functions, or neurons, need grow only as the complexity
of the mapping itself grows (Hornik, Stinchcombe, and White 1990;
Hornik and Stinchcombe 1992). 

The major implication of using the bexible functional form provided
by the superposition method is that the network functions become non-
linear functions of the network adaptive parameters, the weights (wI).
Because of the complexity involved in the mathematical structure of the
network, the procedure for determining the value of the parameters be-
comes a problem in nonlinear optimization, which requires anding
efacient learning algorithms to reduce the network overall error func-
tion (Bishop 1996). Our network model utilizes the backpropagation
algorithm to calculate the weight values. The backpropagation process
is relatively simple in concept. The objective is to compare the actual
output calculated by the network with the target output, given in the
training set, each time the network is presented with a sample case.
This comparison produces an error value in the output layer that is cal-
culated as a function of the weights. Then the error is propagated back-
ward to the previous layer and used to adjust the weight values in each
nonlinear function in order to reduce the difference between the actual
output and the target output.4 Each time a new comparison is made,
the error is further reduced.5

Besides selecting the learning algorithm, another issue in neural net-
work modeling is how to determine the optimum network architecture.
This mainly involves deciding the number and type of functional trans-
formations needed. Selecting the appropriate network architecture is an
important part of model building. A higher number of functions (neu-
rons) will produce highly bexible networks, which may learn not only
the data structure but also the underlying noise in the data. Too few neu-
rons will produce networks that are unable to model complex relation-
ships. In addition to deciding the number and type of activation func-
tion for the network, other parameters need also to be selected. Because
of the number of parameters involved in the selection process, choosing
the appropriate network architecture is a multicriterion search problem.
To perform a global search through the space of possible combinations
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we adapt a genetic algorithm that uses a Darwinian model of evolution
(Holland 1992; Davis 1991). The genetic algorithm was used to calcu-
late the number of hidden layers and hidden neurons, best activation
functions, and values of the learning rate, 
, and momentum, �.6 The
training patterns were entered in a shufbed order, and the training was
repeated ten times to avoid bias.7 The genetic algorithm found that the
optimal conaguration is a multilayer neural network with one input
layer, one hidden layer, and one output layer. The input and hidden lay-
ers contain eight processing units each, with two in the output layer. The
hidden units utilize the tanh function, whereas the output units adopt
the logistic function.8 Finally, the networks perform better using a learn-
ing rate and momentum equal to 0.7. Figure 1 provides a schematic rep-
resentation of the optimal conaguration. The appendix presents the ge-
netic algorithm optimization process and its results. 

Neural Network Models for Rare Events: 
A Balanced Training Set with Cross-Validation

Interstate conbict data are often coded as binary dependent variables,
with zero as by far the most common value. This implies that a data set
of such events will be characterized by an unbalanced dependent vari-
able, with important consequences for the analysis and prediction of in-
terstate disputes with neural network models as with other multivari-
ate models. In such rare event domains the estimated event probability
may be so small as to make efacient event prediction very difacult
(King and Zeng 2000). Unbalanced data sets also affect the perform-
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ance of neural network models. The learning process that neurally
based models use to update their weight estimates is biased toward
commonly encountered (modal) values in the training sample (Garson
1998, 88). Consequently, practical strategies need to be developed, dur-
ing the training phase, to improve the neural networks’ prediction abil-
ity for rare events.

The neural network literature has given little attention to the rare
event problem. Few attempts have been made to address it, and the re-
sults have not been very successful. Schrodt’s (1991) experimental work
on conbict data utilizes a replication strategy to increase the number of
conbict cases in the training set. It does increase prediction in the train-
ing set, but at the cost of reducing the model’s ability to correctly clas-
sify new cases. What is missing is a correction strategy to reduce the
bias produced by intentionally selecting training cases on the depend-
ent variable.

To develop a practical procedure that increases accuracy in the neu-
ral network classiacation of rare events, we extend a strategy suggested
by King and Zeng (2000) for logistic regression models to the neural
network approach. This solution focuses on selecting data on the basis
of the dependent variable (endogenous stratiaed sampling) while at the
same time using a statistical correction (prior correction) for the logis-
tic estimates to avoid selection bias. In the neural network analysis, in-
stead of directly correcting the estimates, as Beck, King, and Zeng
(2000) suggest, the correction mechanism is provided indirectly by the
cross-validation set. However, both corrections rely on the same prin-
ciple, which is based on prior information about the incidence of the
rare event in the population, �. 

As with any form of data analysis, the meaningfulness of a neural
network prediction depends heavily on the extent to which the relevant
explanatory variables are selected and included among the network
input. If important explanatory variables are omitted, the neural net-
work models cannot produce meaningful predictions. Assuming that
the important explanatory variables for the classiacation have been se-
lected by the researcher and used as the network inputs, we can think
of two reasons for poor performance by neural network classiaers that
utilize unbalanced training sets: (1) the inadequate type of information
that the unbalanced training set provides and (2) the way in which the
learning algorithm, which is used during the backpropagation process,
minimizes the prediction error and changes the weight values.

Regarding the arst point, many political scientists (e.g., Maoz and
Russett 1993, 627) suggest that most of the nonconbict cases provide the
model with little information. The data on these dyads is often similar
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and repetitive, as many of the conditions allowing stability show little
variation. More information lies where the action (conbict) is, since dis-
putes are often preceded by changes in other patterns of international in-
teraction. Moreover, since researchers commonly believe that conditions
causing international conbicts are highly nonlinear and interactive, the
effect of the explanatory variables (the neural network’s inputs) may
vary widely over the observations. Whereas the effect of many explana-
tory variables may be undetectable for most dyads—the nonconbict
ones—it may be very substantial for the conbict cases.

Since the conbict observations display sensitive input-input and input-
output effects, this sensitivity becomes key to understanding and pre-
dicting the likelihood of conbicts in the international context. Feeding
the neural network with an unbalanced training set, heavily loaded with
nonconbict dyads, runs the risk of overemphasizing a single output pat-
tern (nonconbict). The network, in this case, is not exposed to all the
possible input-output effects stored in the databases. As a result, the in-
ternal model constructed by the neural network during the training will
be only partially representative of the much more complex “causal”
model embedded in the data and so will be unable to generalize (Garson
1998, 87).

Another important contributor to poor classiacation performance in
neural network models with unbalanced training sets derives from how
the backpropagation algorithm works. As explained earlier, backpropa-
gation is achieved in neural networks by an iterative process, as the net-
work repeatedly tries to learn the correct output for each training pat-
tern. During this learning phase, the weights are modiaed on the basis
of error signals generated from the output learned by the network. Thus
if the majority of the outputs used in the learning process belong to one
class (nonconbict), the error minimization process will concentrate over-
whelmingly on that class. The less frequent value of the output (dispute)
will account for only minor changes in the network’s weights. This neg-
ative process would be further strengthened by the fact that neural net-
works do not have a linear response to the input and are less sensitive
to outliers (Schrodt 1991, 372). Indeed, the nonlinear functions used by
the network to model the input-output relation have the effect of
“squeezing” the values of the data in the training set, especially at the
high and low ends of the data range, thus reducing the effect of outliers.
Consequently, incidences of dispute, which are the outliers in the con-
bict data, will not produce dramatic change in the network’s internal
model even if the input-output effect that they reproduce is quite large.9

Because few changes in the weight values are determined by the dispute
output, and because of the nonlinear impact of the dispute dyads on the
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neural network’s weights, the learning process in the backpropagation
algorithm will be biased toward the modal values of the training set. Un-
less care is taken to construct training sets with a more balanced repre-
sentation of the two output classes, the neural network models will be
less useful in predicting rare events. 

One obvious way to avoid an inadequate information bow to the
network and an error minimization process that is biased toward the
modal value is to adopt an endogenous stratiaed sampling for the train-
ing set, which is also known as choice-based or case-control design.10

This sampling strategy focuses on selection within the range of the de-
pendent variable. A predeaned number of observations, for which the
dependent variable is equal to one, is randomly selected. The same
number of cases is also randomly chosen from all the observations with
output equal to zero (the control), perfectly equalizing the two outputs
in the training set. A perfectly balanced training set alone does not,
however, provide the optimal solution. Selecting on the dependent vari-
able is widely recognized as a possible source of biased conclusions.11

A correction mechanism should be used, together with the balanced ap-
proach, so as to avoid biases that will produce the opposite effect of the
unbalanced training set. 

A way to integrate the equally important needs for a balanced train-
ing set and to correct against possible selection bias is to provide the net-
work with prior knowledge of the actual distribution of classes’ occur-
rence. This prior knowledge should be able to correct the weight
estimates produced by the balanced training set without affecting the
network’s ability to learn equally from both classes. Unfortunately, it is
hard to incorporate prior knowledge into neurally based classiaers
(Barnard and Botha 1993). In neural networks, information about input-
output relations is distributed across multiple weight values, making the
direct correction of the weight with a priori probabilities of class mem-
bership nearly impossible.12 Since it is so difacult to manipulate the
weight values directly, we need new types of correction mechanisms that
are both efacient and easy to apply. An alternative approach to incor-
porate prior knowledge is to use a cross-validation set reproducing the
frequency of the rare event in the population, �.13 This makes it possible
to “correct” the value of all the weights in the network in a distributed
way, while allowing the network to produce weight values that focus on
both classes. 

How does this cross-validation correction strategy work to intervene
on the weight values calculated by the training set? The function of
cross-validation is to stop the training when the prediction error in the
cross-validation set, MSE, reaches a predeaned local minimum.14 Thus,
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when a balanced training set is used together with an unbalanced cross-
validation set, a double divergent process on the error minimization
calculation occurs. On the one hand, the error minimization process in
the training will be shaped by both classes, since the training set is bal-
anced. The network’s search for the optimal weights would be executed
on the basis of a minimal error that takes into consideration the correct
prediction in both classes. On the other hand, an early stop in the train-
ing process is determined by the reduction of the error in the cross-val-
idation sample. Since the more dominant class in the sample is the non-
conbict class, training ends when the prediction in this class reaches its
minimum error. The goal is to select the combination of weights that
equally improves the prediction result on both classes but, at the same
time, can offer the best prediction on the more dominant class of the
population.15

By experimenting on the double levels of the error minimization
process (one level supervising the weight change and the other deter-
mining the end of the training) the balanced training set with cross-
validation correction strategy can solve some of the problems that rare
event prediction, speciacally conbict prediction, presents to neural
network models.16

VARIABLES AND ANALYSIS

The network inputs include MIDs as the dependent variable and eight
dyadic independent variables. Our theoretical perspective is that of the
Kantian research program, addressed to the system of directed and re-
ciprocal relations among democracy, economic interdependence, inter-
national organizations, and militarized conbict or the lack thereof, as
laid out in Russett and Oneal (2001). Consistent with the view that lib-
eral states carry on relations with each other differently from their
power-oriented relations with other states, the analysis includes ave
variables usually associated with realist analysis, and three Kantian vari-
ables. The realist variables include Allies, a binary measure coded 1 if
the members of a dyad are linked by any form of military alliance. Con-
tig is also binary, coded 1 if both states are geographically contiguous,
and Logdistance is an interval measure of the distance between the two
states’ capitals. Majorpow is a binary variable coded 1 if either or both
states in the dyad is a major power, and Logcaprat measures the dyadic
balance of power on an interval scale. The arst Kantian variable, DemL,
is a 21-point scale for the level of democracy in the less democratic state
in each dyad. DependL is a continuous variable measuring the level of
economic interdependence (dyadic trade as a portion of a state’s gross
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domestic product) of the less economically dependent state in the dyad.
IGO measures the number of international organizations in which the
two states share membership. Most of these measures (e.g., MIDs, al-
liances, contiguity, major power, capability, and IGOs) derive from con-
ceptualizations of the COW project and are measured by COW. We lag
all independent variables one year to make any inference of causation
temporally plausible.17

Our data set is the population of politically relevant dyads for the
pre–Cold War period (PCW), from 1885 to 1945, and the Cold War
and immediate post–Cold War period (CW), from 1946 to 1992, as de-
scribed extensively and used by Russett and Oneal (2001). For the arst
population, PCW, only the initial year of the two world wars, 1914 and
1939, is included in the data set. This restriction ensures that the analy-
sis is not unduly inbuenced by World Wars I and II and by the absence
of adequate trade data for the wartime and immediate postwar years. 

We chose the politically relevant population (contiguous dyads plus
all dyads containing a major power) because it sets a hard test for pre-
diction. Omitting all distant dyads composed of weak states means we
omit much of the inbuence that variables not very amenable to policy
intervention (distance and national power) would exert in the full data
set; by that omission we make our job harder by reducing the predic-
tive power of such variables, but also make it more interesting. By ap-
plying the training and cross-validation sampling technique we show
that a strong performance is achieved even when the analysis is re-
stricted to the politically relevant group. By focusing only on dyads that
either involve major powers or are contiguous, we test the discrimina-
tive power of the neural network on a difacult set of cases.18 The neu-
ral network system is fed with only highly informative data since every
dyad can be deemed to be at risk of incurring a dispute, yet it is harder
for the network to discriminate between the two classes (dyad-years
with disputes and those without disputes) because the politically rele-
vant group is more homogeneous (e.g., closer, more interdependent)
than the all-dyad data set. If the balanced training with cross-validation
correction strategy outperforms the other techniques with these data,
by providing models that can successfully generalize in different time
frames, it should also be successful for researchers who wish to con-
sider the entire population of dyads.19

The unit of analysis is the dyad-year. There are a total of 27,737 cases
in the Cold War population, with 26,845 nondispute dyad-years and
892 dispute dyad-years. The pre–Cold War population comprises
11,686 cases, with 11,271 nondispute dyads and 415 dispute dyads. The
dependent variable (Dispute), or network output, is 1 if a militarized
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interstate dispute (MID) was begun and 0 otherwise. Only dyads with
no dispute or with only the initial year of the militarized conbict are in-
cluded, since our concern is to predict the onset of a conbict rather than
its continuation. Other investigations (e.g., Bennett and Stam 2000b;
Russett and Oneal 2001) and substantial commonality between the in-
buences on dispute initiation and dispute continuation, but it is best not
to assume their similarity, so we limit ourselves to the former.

The CW data are used to generate three training sets (Balanced Train-
ing, Balanced-Replicated Training, and Unbalanced Training), ave cross-
validation sets (CV prior correction I, CV prior correction II, CV no cor-
rection III, CV no correction IV, and CV no correction V) and ave testing
sets (CW Test I, CW Test II, CW Test III, CW Test IV, and CW Test V)
according to the different training strategies and their relative sampling
rules. The size of these sets varies slightly for each training strategy, as
more or fewer dyads are needed to satisfy sampling requirements. An-
other testing set, PCW Test, comprises the complete population of the
pre–Cold War period. The training tests are used to at the model through
the backpropagation learning algorithm, the cross-validation tests deter-
mine the end of the training (atting) process, and the error matrices of
the testing sets measure the accuracy of each training strategy. Since one
objective is to determine whether the pattern discovered by the neural
networks for the Cold War period can also explain the pre–Cold War pe-
riod, only CW data are used in the training and cross-validation set,
while the PCW cases are used only as a testing set. The difference in ac-
curacy between the CW and PCW testing sets, achieved by the different
training strategies, gives us a measure of stability for the CW model. Sim-
ilar accuracy for the two periods means that the relationships at work
during the Cold War were already in place during the previous era.

The Balanced Training set contains a randomly predeaned equal num-
ber of conbict and nonconbict cases. In the Balanced-Replicated Train-
ing set we replicated the number of conbict cases of the Balanced Train-
ing set once and then randomly selected an equal number of nonconbict
cases to match the duplicated conbict observations.20 Finally, the Unbal-
anced Training set comprises an uneven number of conbict and noncon-
bict cases randomly sampled from the CW population. This last training
set is almost half of the entire CW population. By selecting such a large
training sample we can show empirically that, quite differently from
multivariate statistical techniques, in neural networks the rare event bias
does not decrease in large samples.21

For the cross-validation phase we generated two sets (CV prior cor-
rection I and CV prior correction II) reproducing the class frequency in
the CW population for use as prior correction for the two balanced
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training sets (Balanced Training and Balanced-Replicated Training). In
this case, the nonconbict class represents 97 percent of the population,
while the conbict class is only 3 percent. The remaining cross-validation
sets (CV no correction III, CV no correction IV, and CV no correction
V) provide no correction to the training since they equalize the two
classes. These balanced cross-validation sets can test the performance
of our correction strategy. 

The CW testing sets contain the remaining dyads after the training
and cross-validation sets were selected. There are no common cases in
the training set, cross-validation set, and testing set, which are used to-
gether for each training strategy. Table 1 shows all the totals. To evalu-
ate the performance of the three different training strategies, with and
without the cross-validation correction, we compute the kappa and con-
ditional kappa coefacients, Khat statistic and Khatk respectively (an esti-
mate of kappa). Kappa analysis, a discrete multivariate technique, offers
a comprehensive accuracy measurement for neural classiaers applied to
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TABLE 1. Summary of the Data Sets Used for the Neural
Network Simulations

Data Set C NC Total Cases

Balanced Training (Bal) 564 564 1,128
Balanced-Replicated Training (Rep) 1,128 1,128 2,256
Unbalanced Training (Unb) 382 10,712 11,094

CV prior correction I (used with the Balanced
Training) 10 312 322

CV prior correction II (used with the Balanced-
Replicated Training) 19 625 644

CV no correction III (used with the Unbalanced
Training) 92 2,682 2,774

CV no correction IV (used with the Balanced
Training) 161 161 322

CV no correction V (used with the Balanced-
Replicated Training) 322 322 644

CW Test I (used with the Balanced Training
with correction) 318 25,969 26,287

CW Test II (used with the Balanced Training
without correction) 167 26,120 26,287

CW Test III (used with the Balanced-Replicated
Training with correction) 309 25,092 25,401

CW Test IV (used with the Balanced-Replicated
Training without correction) 167 25,395 25,562

CW Test V (used with the Unbalanced Training) 418 13,451 13,869
PCW Test 415 11,271 11,686



rare event domains. While overall accuracy stresses the overall result of
the classiacation by focusing only on the main diagonal of the classiaer’s
error matrix, kappa analysis calculates how the accuracy is distributed
across the individual classes. By considering both individual class accu-
racy and overall accuracy, kappa analysis does not bias accuracy evalu-
ation toward the dominant class in the testing set as overall accuracy
does.22 Moreover, it is especially appropriate here because dispute data
are not continuous and normally distributed (Jensen 1996, 250). Once
the kappa and conditional kappa coefacient have been calculated, a
pairwise test Z statistic is used to determine whether the prediction re-
sults of an error matrix are signiacantly better than a random result, as
well as whether similar error matrices, which consist of identical classes
but are the product of different classiaers, are signiacantly different.23

RESULTS AND DISCUSSION

We initially discuss the results of the kappa analysis for all the training
strategies, with and without the cross-validation correction, on the CW
data set. We also show individual error matrices for each strategy to
further support the kappa results.24 Finally, we focus on the ability of
the Cold War models, selected from the best training strategy, to post-
dict the pre–Cold War dyads. By comparing the accuracy between the
CW and PCW testing sets, we test the hypothesis that the causal rela-
tionships triggering interstate conbicts have been stable over time. 

Table 2 summarizes the results of the kappa analysis for the Cold
War period, in the form of signiacance matrices.25 Those matrices show
all the Z values from comparing the kappa coefacients of the different
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TABLE 2. Signiecance Matrix for Comparing the Training Strategies Using
Kappa Analysis and the Cold War Testing Sets

CW CVBal Bal CVRep Rep Unb

KAPPA 0.045 0.022 �0.016 �0.009 0
VAR 0.000009 0.000004 0.000002 0.000001 0

CVBal 15
Bal 6.38 11
CVRep 18.39 15.51 �11.31
Rep 17.08 13.86 4.04 �9
Unb 15 11 11.31 9 0

Note: The table also presents the Kappa coefacient and the variance for each training strategy. Bold
Z values indicate a signiacant improvement in the performance of the training strategies at 95% con-
adence level (Z � 1.95). The bold values in the main diagonal indicate that the classiacation of the
training strategy is worse than a random one at 95% conadence level (Z � 1.95).



training strategies (off-diagonal elements) two at a time, as well as the
Z statistic that measures the signiacance of each individual classiaca-
tion (main diagonal elements). The tables also present the kappa co-
efacient and variance for each training strategy in the arst two rows. If
the Z value exceeds the critical value, Z�/2, then the classiacations are
signiacantly different, or, as with the Z values in the main diagonal, are
worse than a random one. A better performance is given by the train-
ing strategy with the higher kappa coefacient. 

The arst two rows following the kappa coefacient and variance row
show the result of the two balanced training techniques starting with the
balanced training using the cross-validation prior correction (CVBal)
and then the one without it (Bal). The balanced-replicated training
follows, again initially utilizing the cross-validation prior correction
(CVRep) and then without it (Rep). Finally, the result of the unbalanced
training is shown (Unb). We use the acronyms C (conbict) and NC (non-
conbict) in the conditional kappa matrices.

The importance of constructing a meaningful training set emerges
clearly from the table 2 results. Three classiacations, CVRep, Rep, and
Unb, are statistically insigniacant, since the Z values in the main di-
agonal are smaller than 1.95 (the critical value at p � .05), Z � �11.31,
Z � �9, and Z � 0, respectively (signiacant values are in boldface). Only
the two balanced training strategies (CVBal, Bal) are signiacantly better
than a random classiacation. This underlines three important factors.
First, balanced training is a key to produce robust classiacations in back-
propagation networks. Second, in backpropagation classiaers, rare event
bias remains signiacant in large unbalanced samples. Finally, replication
strategies are not efacient since they largely reduce the network’s gener-
alization ability. This is because the duplication of cases in the training
sets leads the network to learn too well the training cases, so atting data
noise rather than data structure. And table 2 stresses another important
result: CVBal performs statistically better than all the other training sets.
Indeed CVBal also achieves better accuracy than Bal (Z � 6.38). This is
empirical evidence that the cross-validation prior correction is effective in
signiacantly reducing selection bias in balanced samples. 

In table 3, the error matrix of the CVBal technique in the Cold War
analysis shows that this training strategy achieves the highest individual
class accuracy. It correctly predicts 82.4 percent of the militarized out-
comes and 72.2 percent of the nonmilitarized outcomes during the Cold
War period. Because it far less often fails to identify the politically costly
and dangerous dispute dyads as nondisputes while still providing a high
accuracy on the nondispute class, CVBal emerges as the best training
strategy to adopt with rare event data in international relations.26 Since
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these predictions are out-of-sample forecasting, they indicate that the in-
teractive model developed by the neural network and the balanced with
cross-validation correction strategy can extract much of the inbuences
embedded in conbict data. Consequently, we believe that neural net-
works together with the balanced training with cross-validation correc-
tion constitutes a viable and efacient method to improve model fore-
casting ability in conbict analysis, especially analyses of pooled annual
dyadic time-series data. 

Finally, we address a key theoretical and substantive question: Are
the patterns stable? The error matrices of CVBal for the PCW data set
in table 4 show that the CW model provides a high level of accuracy
for the pre–Cold War period too. As table 4 shows, postdiction of the
pre–Cold War dyads is similar to the Cold War result (64.8 and 65.5
percent accuracy for the PCW dispute dyads compared with 82.4 and
72.2 percent for the CW ones). However, these results are deceptive
since the PCW and CW testing sets are different in size. To prevent dif-
ferences in sample size from inbuencing the result, we performed kappa
and conditional kappa analysis together with a pairwise Z test statistic
on the CVBal result as a measure of normalized accuracy, thus making
the PCW and CW error matrices directly comparable.
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TABLE 4. Error Matrices of CVBal Strategy for
the Pre–Cold War Testing Set

PCW/Method CVBal

Output/Desired C NC

C 269 3888

NC 146 7383

Class Accuracy 64.81 65.50

Overall Accuracy 65.48

TABLE 3. Error Matrices of the Three Training Strategies with and without the 
Cross-Validation Prior Correction for the Cold War Testing Set

CW/Method CVBal Bal CVRep Rep Unb

Output/Desired C NC C NC C NC C NC C NC

C 262 7229 137 7778 73 18109 35 18172 0 0

NC 56 18740 30 18342 236 6983 132 7223 418 13451

Class Accuracy 82.39 72.16 82.03 70.22 23.62 27.83 20.96 28.44 0.00 100

Overall Accuracy 72.29 70.30 27.79 28.39 96.97



Table 5 summarizes the kappa and conditional kappa analysis re-
sults in the form of a signiacance matrix. Whereas the levels of accu-
racy for the two periods are similar, the overall performance of the CW
model is signiccantly better on the pre–Cold War dyads (Z � 2), with
the kappa coefacient for the PCW accuracy larger than for the CW
(0.056 	 0.045). This is mainly because the class accuracy for the con-
bict dyads in the pre–Cold War years is substantially better than in the
Cold War era (Z � 2.21) with the conditional kappa for the PCW being
larger than the CW (0.03 	 0.023). However, while the model does
substantially better in predicting disputes (avoiding false positives) in
the pre–Cold War period, it loses some predictive ability regarding non-
disputes (more false negatives). The accuracy for the CW nonconbict
class is signiacantly better than for the PCW one, though the difference
in performance is not as large as for the conbict dyads since, as men-
tioned before, PCW accuracy is better overall. In the case of the nondis-
pute class Z � 8.12, this time the conditional kappa for CW nondis-
putes exceeds the PCW coefacient (0.454 � 0.754). 

These andings lead to three important inferences. First, not only is
the pattern of dyadic inbuence discovered by the networks for the Cold
War disputes reasonably representative of the pre–Cold War context,
those inbuences enabling conbicts were even stronger in the earlier pe-
riod. Second, in relation to peace, the structure of inbuence was already
in place in the pre–Cold War years, although showing slightly less
strength. This slight difference in strength can be explained by the mat-
uration of democratic institutions and the transformation of the econ-
omy from national to global in the twentieth century. Most likely, these
two factors have increased the positive inbuence of democracy and eco-
nomic interdependence, which was already coming into place late in the
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TABLE 5. Signiecance Matrix for Comparing the CW and PCW Accuracy of the
CVBal Training Strategy Using Kappa and Conditional Kappa Analysis

CW/PCW CW PCW CW_(C) PCW_(C) CW_(NC) PCW_(NC)

KAPPA 0.045 0.056 0.023 0.03 0.754 0.454
VAR 0.000009 0.000027 0.000002 0.000008 0.000888 0.001287

CW 15
PCW 2 10.78
CW_(C) • • 14.67
PCW_(C) • • 2.21 10.83
CW_(NC) • • • • 25.29
PCW_(NC) • • • • 8.12 12.65

Note: The table also presents the Kappa coefficient and the variance for each training strategy. Bold Z values
indicate a significant improvement in the accuracy at 95% confidence level (Z � 1.95).



nineteenth century, in the subsequent years (Russett and Oneal 2001;
Sachs 1998). 

Finally, since the reduction in inbuence on peace does not match the
increase in inbuence on disputes, the overall pattern ats the pre–Cold
War years even better than it does the Cold War ones. As some differ-
ences do emerge in the strength of the effect, we next turn to the rela-
tive performance of individual predictor variables and whether they un-
derline stability or difference.

MODEL INTERPRETATION

We now interpret the causal model that the neural networks using the
balanced with correction strategy developed during the training. Al-
though valid indications about the causal structure can be offered by
the following analysis, our task is difacult and, at this stage, should be
regarded as tentative. Interpretation of the causal hypotheses repre-
sented by a trained neural network is a complex exercise for several
reasons. First, neural network models encode their knowledge across
hundreds or thousands of parameters (weights) in a distributed manner.
These parameters embed the relationships between the input variables
and the dependent output. The sheer number of parameters and their
distributed structure make the task of extracting the network knowl-
edge not an easy one. Second, the weight parameters of a multilayer
network usually represent nonlinear and nonmonotonic relationships
across the variables, making it difacult to understand both the relative
contributions of each single variable and their dependencies. Thus, to
extract a causal model developed by the trained network we utilize
three different approaches. By doing so we can interpret the network
model from single variable and dependency perspectives. We calculated
three measures of input inbuence: a relative evaluation of the general
inbuence of each input variable, the speciac inbuence of the individual
input variables on the network output, and the input relation factor of
each input.

General Inhuence of Inputs

The general inbuence measure, GI, provides an estimate of the relative
overall inbuence exerted by each input variable on the output. It relies
on the absolute value of the weight of the trained network. Inputs con-
nected to the hidden and output units by weights of large absolute mag-
nitude will have more relative inbuence than those inputs with smaller
magnitudes. Since GI focuses on single input variables in isolation
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without taking their dependencies into account, it should be regarded
as an approximate measurement. Following Howes and Crook (1999):

h n���wji � ��wjk�	vj�
j�1 k�0

GI(xi, net) � (1)h��vj�
j�0

with xi being the i input variable, net referring to the network architec-
ture, wji being the weight from the ith input node to the jth hidden
node, and vj giving the weight from the jth hidden node to the output
node.27 Because our network presents two output nodes, we compute
two separate GI values for each input node.

Table 6 reports the general inbuence results for the balanced with
cross-validation correction network. Economic interdependence and
democracy exert the greatest general inbuence on both the conbict and
nonconbict outcomes (DependL � 0.173 for dispute and 0.213 for
nondispute, DemL � 0.160 and 0.197, respectively). This supports the
liberal thesis that the state with the lower level of interdependence and
democracy in the dyad has the major impact on dyadic relationships.
Another Kantian variable, IGOs, also has a high general inbuence value
(0.154 for the conbict output and 0.188 for the nonconbict one), indi-
cating that international organizations can constrain interstate behavior.
Other variables that matter are Logdistance (0.142 for C and 0.174 for
NC), Allies (0.136 for C and 0.167 for NC), and Logcaprat (0.131 for
C and 0.161 for NC). Thus proximity, alliance, and power also play a
part in providing opportunities and incentives for interstate action.
Overall, the result supports theories arst of the democratic peace, then
the liberal peace of both democracy and economic interdependence, and
anally the Kantian peace of democracy, trade, and IGOs. However, three
realist variables, Logdistance, Allies, and Logcaprat, cannot be ignored.
The relationship of democracy and interdependence and interstate con-
bicts is to some extent mediated by both the dyadic balance of power
and geographical proximity. This supports Russett and Oneal’s (2001)
and Beck, King and Zeng’s (2000) syntheses of liberal and realist in-
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TABLE 6. General Infuence of the Network’s Input Variables

GI DemL Allies Contig Logdistance Logcaprat IGOs DependL Majorpower

C 0.160 0.136 0.066 0.142 0.131 0.154 0.173 0.038
NC 0.197 0.167 0.081 0.174 0.161 0.188 0.213 0.047



buences. For example, proximity is positively related to both trade and
the probability of disputes, so a failure to control for distance can read-
ily produce the erroneous impression that trade causes conbict. 

Specigc Inhuence of Inputs

The speciac inbuence of inputs, SI, measures the degree to which each
input variable contributes to the dependent output. Instead of relying
on the weight value, SI compares the output of the network with the
network’s new output produced by a modiaed form of the input pat-
tern. Using an approach similar to Saito and Nakano’s (1998), we iter-
atively increase the value of one input variable in the training set by a
small amount (initially 0.1 of a standard deviation from the mean, to
keep the increases comparable across variables, then 0.3, and anally
0.5), while keeping all the other inputs unchanged.28 Then we reinterro-
gate the network, record the difference in the output values as percent-
ages, and then present the overall result as the average. Those input vari-
ables producing a large percentage change on the dependent output
contribute signiacantly to the network’s prediction. The measurement
nevertheless should be regarded as an estimate, since the interdepend-
ence across variables means that no scheme of single ratings per input
can rebect all the subtleties of the full situation.

Table 7 shows the SI of the eight input variables for the conbict and
nonconbict outcome. In both cases, the input variables identiaed by the
GI as the most signiacant are still the ones having the greatest general
inbuence on the output. In addition, this time, DependL (SI � 23.77
and 25.65) and DemL (SI � 21.31 and 20.55) have the strongest SI
value, for both the conbict and nonconbict outcomes. This means that
small increases in values for the state with the lower economic depend-
ence or democratic score move the conbict output toward the noncon-
bict outcome and make the nonconbict value more evident. Again this
underlines that the degree of democracy and economic interdependence
in the less constrained state in the dyad has a strong inbuence on the
probability of conbict. Logdistance (15.55 and 15.50) and IGOs
(12.83 and 12.57) follow, both for conbict and nonconbict dyadic out-
comes. Greater geographical distance between states or a larger num-
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TABLE 7. Speciec Infuence of the Network’s Input Variables

SI DemL Allies Contig Logdistance Logcaprat IGOs DependL Majorpower

C 21.31 8.58 6.94 15.55 12.42 12.83 23.77 3.79
NC 20.55 8.46 6.84 15.50 11.21 12.57 25.65 3.70



ber of shared memberships in international organizations cuts the prob-
ability of conbict by nearly 16 percent and almost 13 percent, respec-
tively. Conversely, the nonconbict probability increases almost exactly
the same amount. Finally, another variable, Logcaprat, is also important
from the SI perspective (12.41 and 11.21). Increases in the dyadic power
ratio reduce the probability of conbict while increasing the chance of a
peaceful outcome.

The SI measurements once more stress the inbuence of increasing
economic interdependence and democracy on reducing the incidence of
interstate disputes. The results also show the importance of two key re-
alist variables: geographical proximity and power ratio. And as in the
case of GI, the SI values indicate the need to hypothesize complex
causal patterns of interaction across the variables deemed to trigger in-
terstate disputes.

Input Relation Factor

The input relation factor (RF) tries to uncover the dependencies across
the input variables. An input variable may have a low GI and SI but a
high RF. This means that input variable would not likely trigger the
outcome, but it is important in enabling the other explanatory variables
to do so. In other words, RF measures the degree to which an input
variable is necessary for producing the network output, although it
alone may not be sufccient to determine it. To calculate the RF of our
eight input variables we developed a heuristic procedure, switching off
one variable at a time in the Cold War and pre–Cold War testing sets
by replacing its values with zero. We then calculated the deterioration
in modeling performance by comparing the change in class accuracy be-
tween the test with all the active input variables and the ones with one
input variable switched off.29 Since the network learned the causal
structure taking in consideration all the relationships across all the vari-
ables, the deterioration in accuracy indicates the enabling power of the
switched-off input variable.

The RF values for the eight variables produced by the CW and PCW
tests in tables 8 and 9 identify the same variables as the main ones,
although the model deterioration for the PCW period is higher. This
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TABLE 8. Input Relation Factors for the Cold War Years

CW All DemL Allies Contig Logdistance Logcaprat IGOs DependL Majorpower

C 82.39 6.50 62.58 88.05 41.82 52.51 66.99 0 73.90
NC 72.16 94.66 80.88 54.56 86.42 86.81 75.66 100 75.84



shows that the interactive pattern in the two periods is similar, but with
stronger effects for several variables in the pre–Cold War period. The lib-
eral variables make the most difference on the conbict outcome. De-
pendL has the greatest RF (low RF values indicate high impact). When
this input variable is switched off, the model’s performance drops hugely,
from the original 82.4 percent and 64.8 percent for Cold War and
pre–Cold War years respectively, to 0 percent in both periods. DemL
follows with a very signiacant RF value for the conbict outcome (6.5
percent for the CW set and 4 percent for the PCW data). As previously
indicated, Logdistance (41.82 percent RF value for the Cold War dispute
cases and 25.54 percent for the pre–Cold War disputes) and Logcaprat
(52.51 percent for CW conbicts and 40.72 percent for the PCW con-
bicts) also have substantial enabling power. Finally, Allies (62.58 percent
for CW and 42.62 percent for PCW) and IGOs (62.58 percent for CW
and 43.61 percent for PCW) to a lesser degree inbuence the effect of the
other variables on disputes in both periods. In addition, for IGOs, the
model deterioration is higher in the PCW years. From these results, not
only do we reject the hypothesis that low democracy and shared partic-
ipation in international organizations had weaker dispute-enabling ef-
fects in the pre–Cold War era, we support the opposite hypothesis: that
they had even stronger effects earlier. Furthermore, low economic inter-
dependence appears to be the most important necessary condition for
conbict in both periods.

These results once again show the power of interdependence, democ-
racy, and distance. Since these variables have high values by each test—
GI, SI, and RF—they emerge as key variables. They affect war directly
and enhance other variables’ inbuence on dispute initiation. This sup-
ports Beck, King, and Zeng’s (2000) conclusion that the effect of the
input variables varies signiacantly across dyads as a consequence of
input-to-input interactions as well as a feedback loop between democ-
racy and economic interdependence (Papayoanou 1997; Burkhart and
Lewis-Beck 1994; Weede 1996; Przeworski and Limongi 1997). 

In predicting nondispute outcomes, the only input variable with a
signiacant RF, both for the CW and PCW test, is Contig (54.56 per-
cent for the Cold War data and 40.28 percent for the pre–Cold War
years).30 (Not surprisingly, contiguity was more important in the pre–
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TABLE 9. Input Relation Factors for the Pre–Cold War Years

PCW All DemL Allies Contig Logdistance Logcaprat IGOs DependL Majorpower

C 64.81 4.00 42.63 82.89 25.54 40.72 43.61 0 59.52
NC 66.50 98.00 80.97 40.28 90.83 80.37 78.54 100 62.89



Cold War years of less effective military technology to exert force at a
distance.) Contiguity makes DemL, DependL, IGOs, Logdistance, and
Logcaprat—the variables with signiacant GI or SI values—more im-
portant in reducing disputes. Again the close RF value for the Cold
War and pre–Cold War period stresses a stable structure of inbuence
over time at the interaction effect level. 

The difference between the predictions of disputes and nondisputes
means that the interaction between the explanatory variables is also
nonlinear. Although low levels of economic interdependence, democ-
racy, distance, power imbalance, and shared membership in interna-
tional organizations and alliances interact to create multiplicative ef-
fects that enhance the likelihood of a dispute, high levels of those
variables do not have the same multiplicative effect on peace. Low val-
ues produce strong interaction effects, while high values display more
of an additive relationship in which they complement each other more
than they interact with each other. If two states are geographically
close, low levels of interdependence and democracy, a relatively equal
balance of power, and low level of participation in international or-
ganizations and alliances interact with each other and with proximity
to substantially raise the risk that a dispute will occur. But for more dis-
tant states (not contiguous), each variable makes a substantial contri-
bution to keeping the peace even in the absence of much help from the
others.

Disputes can be quite effectively explained as deriving from low lev-
els of democracy and interdependence, geographical proximity, a rela-
tively equal balance of power, and low shared membership in interna-
tional organizations and alliances within the dyad. That is, “unhappy”
relationships stem from the lack of one or more of the constraints that
interdependence, democracy, distance, an imbalance of power, and in-
ternational organizations could provide. These are the conditions under
which the anarchic Hobbesian world of each against all identiaed by
the realists applies. By contrast, “happy” relationships are a mixture of
those dyads where one or more of the constraints do apply, and of those
states that are not contiguous and so lack the immediate set of oppor-
tunities and capabilities which contiguity provides as inducements to
disputes among states not otherwise constrained. For the former, “hap-
piness” derives more from the liberal attributes that suppress violent
conbict, whereas for the latter it derives more from their separation
(Kinsella and Russett 2002). 

The causal interpretation provided by the three measures of input
inbuence does not uncover the full model developed by the neural net-
work. However, it does offer interesting andings with which to reane
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theories on peace and war. Relationships across the variables do appear
to be nonlinear, contingent, and nonmonotonic. Also, the liberal vari-
ables—economic interdependence, democracy, and international organ-
izations—play important direct as well as indirect roles in producing
war and maintaining peace. Their inbuence is strengthened both by
some interaction between them and by their interactions with the real-
ist variables of geographical proximity, contiguity, balance of power,
and alliances. 

CONCLUSION

The interstate dispute model we developed, using backpropagation mul-
tilayer neural networks, a balanced training with cross-validation strat-
egy, and Cold War data, improves on the dispute prediction capability of
the initial pioneering efforts utilizing neural network methodologies.31

Our preferred model correctly categorizes 82.4 percent of the Cold War
dispute dyads and 64.8 percent of the pre–Cold War ones. For the
nondispute cases the accuracy is high: 72.2 percent for the Cold War
years and 65.5 percent for the pre–Cold War. But when we compare
these postdiction results using kappa and conditional kappa analysis—
which is necessary because of the different sizes between the pre–Cold
War and Cold War testing sets—we and that the overall accuracy of the
model for the pre–Cold War period is signiacantly better than for the
Cold War years. These results over both periods indicate an underlying
stability of the network structure, both overall and in the consistent
strong effect of economic interdependence, democracy, and to some ex-
tent international organizations, on the conbict outcome. Indeed, the
somewhat better accuracy on disputes for the pre–Cold War period un-
derlines that the pattern of interactions leading to conbict remains highly
representative across time and space, not one vulnerable to changes in
systemic or state-level characteristics. Although nonlinear and non-
monotonic relationships often characterize the interaction across the
variables, our andings indicate that this complex interaction was fully in
place during the pre–Cold War era.

In relation to peace (nondisputes), the results are different. Although
the Cold War model for nondisputes does well in the pre–Cold War pe-
riod, it has less predictive power. While interdependence, democracy,
distance, difference in power ratio, and shared participation in inter-
national organizations and alliances all were important variables for
maintaining peace in the previous period, their inbuence was slightly
weaker than in the Cold War context. 

The anal analysis, of dependencies across the eight input variables
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for the Cold War and pre–Cold War period, provides additional evi-
dence that the relationships producing interstate disputes are struc-
turally similar but stronger for the pre–Cold War context. Furthermore,
analysis of the peaceful interactions shows how similar the dependence
structure was in the two periods. While the variables display a slightly
weaker inbuence on peace in the pre–Cold War years, the interactive ef-
fect leading to peace is stable over time. Interdependence and democ-
racy consistently emerge as key variables, together with proximity,
power ratio, international organizations, alliances, and contiguity. All
this extends and deepens earlier indications (Russett and Oneal 2001)
that the same fundamental pattern of inbuences applied for more than
a century. In doing so it gives a stronger basis to believe that it will con-
tinue to apply in the twenty-arst century—under conditions when
democracy, interdependence, and international organizations are
deeper and more widespread than ever before.

Our analysis indicates, moreover, that the pattern of relationships af-
fecting disputes often is not linear, and that interactions are common.
For example, instead of exerting a constant effect, economic interde-
pendence and democracy may vary their inbuence as they are either en-
abled or not by interaction effects between themselves and with the re-
alist inbuences. Russett and Oneal (2001) suggested some of these
interactions, but they are more apparent with the new neural network
model used here. This analysis, however, only begins to understand
what those relationships may be. It represents a challenge to theorists
and methodologists to carry on the task of understanding the com-
plexity, even in terms of the limited number of variables employed here,
of the international system in which we try to live in security and peace.

APPENDIX

A genetic algorithm solves optimization problems by creating a popu-
lation or group of possible solutions to the problem at hand. In our case
this method starts when a large random population of network conagu-
rations is constructed following the number of input and output vari-
ables and the general neural structure required. Each conaguration is
then expressed as a string of values, a “chromosome,” in which each
value, a “gene,” represents a network parameter. Then each network in
the population is trained and a atness score assigned to it on the basis
of a atness function. The atness function may incorporate many crite-
ria in evaluating the network quality. Here, the accuracy of the net-
work, the complexity of the conaguration, and the ability to learn rap-
idly are of importance. Indeed, the genetic algorithm process aims to
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minimize the network’s training and cross-validation errors, complex-
ity, and learning time. Furthermore, each criterion is normalized and
weighted according to its importance. 

On the basis of the assigned atness score, the best network conagu-
rations are selected. These networks go through a process of genetic
manipulation, which involves crossover of genetic material (mating of
genes) and mutation (randomizing of genes). The crossover mechanism
allows us to recombine the attest network parameters while narrowing
down the genetic algorithm’s search space. Instead, mutation encour-
ages extension of the search space and is useful if the population has
converged on a local suboptimum solution.

The genetically modiaed network conagurations are then retrained,
their atness calculated and compared with previous values. If the re-
sulting networks offer higher atness scores than previous attempts, then
they are used as parents for the next generation. In this way, the genes,
which represent the network parameters of the attest networks, are
maintained during the evolution process. This sequence of training,
replication, crossover, and mutation continues either until a prespeci-
aed number of generations has been reached or until a desired atness
value has been achieved. 

Table 10 shows the anal result after twenty generations of optimi-
zation of the neural network conaguration. Only the top ten perform-
ing networks with their calculated atness values and genetic string are
shown. The combination of neural activation functions within the hid-
den and output layers is also illustrated, as well as the network’s learn-
ing rate and momentum. As can be seen from the table, the optimal
conaguration selected by the genetic algorithm is the one described pre-
viously in agure 1.

NOTES

Authors’ Note: We thank the Carnegie Corporation of New York, the Ford
Foundation, the National Science Foundation, the Weatherhead Initiative on
Military Conbict as a Public Health Problem, the Economic and Social Research
Council, and the Foreign and Commonwealth oface for anancial support, and
Richard Aldrich, Neal Beck, Scott Boorman, Evan Govender, Gary King, John
Oneal, Carlos Vieira, and Langche Zeng for helpful comments.  We gave an ear-
lier version of this chapter at the annual meeting of the Peace Science Society (In-
ternational), New Haven, October 2000. Our data, from Russett and Oneal
(2001), are at www.yale.edu/unsy/democ/democ1.htm. 

1. Henderson is provocative but mistaken. His major effort is to run many
additive and multiplicative combinations of regime scores to show the insigni-
acance of the democratic peace in the presence of political distance. But there
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are better ways to test this. The simplest is in Oneal and Russett (1997), which
is the source of Henderson’s data: Instead of combining the lower and higher
regime scores of a dyad in any way, just include each in the regression model.
This shows clearly that political distance does matter, in what we call the cats
and dogs effect—but there is also a democratic peace. Democratic dyads are
most peaceful, autocratic dyads less so, and mixed dyads least peaceful. Also
see Peceny and Beer (2002), who show that even when autocracies are divided
into dyads of similar types, democratic dyads still are more peaceful.

Alternatively, create an indicator that identiaes truly democratic pairs (both
states above �6), and one that gives political distance (DemH minus DemL).
Enter both. Both are signiacant. This test also shows that the effect of regimes
is best captured by truly democratic dyads (above �6) and truly autocratic
dyads (below �6). There—with coherent regimes—the democratic peace is
clearest. Neural networks analysis is well suited to and such unanticipated non-
linearities. 

2. Related concerns drove the debate over whether axed-effects models are
useful in analyses of disputes, with the consensus in the negative. See Green,
Kim, and Yoon (2001) with rebuttals by Beck and Katz (2001), Oneal and Rus-
sett (2001), and King (2001); also see Bennett and Stam (2000b). Neural net-
works analysis addresses some of the problems Green et al. identify.

3. As Weinberg (1975, 18–25) underlines in his conceptualization of scien-
tiac inquiry, social behavior belongs to the realm of organized complexity and,
as such, may be too complex for analytical treatment.

4. The weight change, 
W, at the time t for all the weights’ value in the net-
work is 


W(t) � 
�X � M
W(t�1) (2)

where 
 is a small positive constant called learning rate, usually between 0 and
1, � is the local error gradient for the neuron considered, X is the input of the
neuron, M is a constant called the momentum coefacient ranging between 0
and 1, and 
W(t�1) is the change in error in the weight value in the previous
time period, t � 1. Ripley (1994) describes the backpropagation algorithm.

5. However, the backpropagation algorithm is not guaranteed to and the
global minimum. The error surface that is the geometrical representation of the
error function is multidimensional, displaying not only a global minimum but
also multiple local minima. In its search for the optimal solution, the back-
propagation algorithm can easily get trapped in these local minima. To avoid
this, a momentum term, �, is added to the backpropagation formula. Another
strategy in avoiding local minima is to run the training process numerous times
starting from randomly selected initial values—that is, from different ordering
of the training data and/or different initial random weights (Garson 1998, 50–
54). Early stopping, which adopts a cross-validation set during the training,
may also reduce the danger of settling in a local minimum (Sarle 1995).

6. For genetic algorithms applied to neural network optimization see Miller,
Todd, and Hegde (1989), Yao (1999), and Blanco, Delgato, and Pegalajar (2000). 
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7. The order in which the training patterns are presented to the network
can also affect performance. If the data are grouped in the same manner, rather
than being randomly organized, the system may “remember” the last group
better than the previous ones, with the obvious consequence that the system’s
predictive result would be biased toward the information contained in this last
grouping. To avoid this problem, the neural analysis should be repeated multi-
ple times using differently ordered data and different initial weight values, both
randomly chosen. Moreover, in order to further reduce the possibility of local
mimima, the network training was repeated ten times, and the lowest accuracy
(training and cross-validation errors) was selected to be used in the atness func-
tion (Bengio 1996, 31). 

8. On the tanh function see Abramowitz and Stegun (1966, 83).
9. As mentioned before, because of the unusual character of dispute

events, the dispute dyads often contain information on large input-output
effects. 

10. The term choice-based sampling is used in econometrics, while case-
control design is more common in epidemiology. For further discussion see
Breslow (1996). 

11. As King and Zeng (2000, 7) stress, “Designs that select on Y [the de-
pendent variable] can be consistent and efacient but only with the appropriate
statistical correction.” This is because a sample selected on the values of the de-
pendent variable can increase the effect of the input on the output and the es-
timated probability of conbict events for all dyads (note that this bias is exactly
opposite to the one produced by an unbalanced training set).

12. Prior correction in conventional statistical classiaers involves estimating
the coefacients using the sample selected on the dependent variable and then
correcting the estimates with a priori probability of class membership. This a
priori probability takes into account the ratio of the classes in the population
and in the sample. For examples of a priori correction see King and Zeng
(2000, 5–6), McKay and Campbell (1982), and Strahler (1980).  

13. The importance of class size as a means to provide the network with
prior knowledge of class allocation in the population is discussed in the neural
network literature. On incorporating prior knowledge into neural network
classiaers see Foody (1995) and Foody, McCulloch, and Yates (1995). 

14. The MSE for the cross-validation set is

n
1

MSE �    �(tp � yp)
2 (3)

n
p�1

where tp is the target output of each cross-validation sample, yp is the actual
output calculated by the network, and n is the number of cases in the cross-val-
idation set.

15. In the literature, cross-validation has mainly been used to improve the
generalization ability of the network model. Instead of stopping the training pro-
cess when the MSE on the training set reaches the minimum, the MSE of 
the cross-validation set is used for early stopping. By doing this we avoid possible
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overatting of the data, which refers to the extent to which the network has gone
beyond learning the optimal pattern from the training data to also learning the
idiosyncratic noise particular to that speciac training set (Mosteller and Tukey
1977, 36–41). However, while performing this function, the cross-validation can
also be used to provide additional information to the network. Without moving
away from the traditional use of cross-validation, we suggest extending the cross-
validation method to encompass prior knowledge functionality. Consequently,
we use cross-validation both for early stopping during training and to provide the
network with prior knowledge on class distribution.

16. Some analytical solutions suggested in the literature directly correct the
probabilistic output produced by the neural network or, in the case of a net-
work with a logit output function, the constant term in the hidden neuron to
output layer (see King and Zeng 2000, 24). Though these efforts are valid and
theoretically well grounded, any estimation errors in the network parameters
could be aggravated by the analytical correction, making the anal corrected re-
sult less accurate than the uncorrected one. Thus the cross-validation correction
strategy we employ still provides, in this case, a better solution for producing
more accurate results. 

17. When attributing cause in reducing conbict we follow the theoretical
reasoning of Russett and Oneal (2001), supported by the lag. Oneal, Russett,
and Berbaum (2003) use distributed lag models to validate that reasoning more
persuasively, anding that trade and peace constitute a feedback loop of mutual
reinforcement, and that IGOs increase trade. Other known causal links (Rus-
sett and Oneal 2001, chap. 6) include from peace, democracy, and trade to
IGOs, and democracy to trade. Pevehouse (2002) reports a link from IGOs to
democratization. Kant saw such inbuences as creating what is now called a dy-
namic feedback system. 

18. This restriction may provide another theoretically relevant advantage.
By dropping the non-PRDs, characterized by great distance and weakness, we
eliminate many dyads for which such constraints on dispute initiation as democ-
racy and trade may have a lesser role to play in preventing disputes that are
highly unlikely to arise anyway. Of the relatively few disputes falling outside of
the politically relevant dyads, many are multistate disputes with small powers
being drawn into disputes between major powers (Lemke and Reed 2001b). Ex-
pected utility calculations seem less informative with nonrelevant dyads; see
Bennett and Stam (2000c).

19. Like logistic regression and many other multivariate models, network
analysis does not readily identify such historical dynamics as contagion, diffu-
sion, and imitation. 

20. We designed the replication strategy so as to increase the size of the
training set. The need to keep a balanced ratio of the two classes in the train-
ing set reduces the size of the training sets, since the number of conbict cases
that can be utilized is limited. To assess whether bigger balanced training sets
produce better results we replicate the conbict cases in the training set.

21. King and Zeng (2000, 17–19) show that in logit analysis the rare event
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bias becomes minimal in large samples, since increase in sample size improves
efaciency. In backpropagation networks the opposite seems to happen. The
larger the sample (so the larger the class unbalance) the less robust the network.
Indeed, large unbalanced training samples dramatically reduce the ability of the
network to discriminate between the modal and rare class, to the extent that no
conbict case is correctly predicted. Again, we believe this situation is caused by
the error minimization process adopted by the backpropagation algorithm.
With large samples, the weight parameters are mainly determined by the non-
conbict class, since the large difference between the two classes signiacantly in-
creases the proportion of changes in error in the weight value, 
w, calculated
on the basis of the nonconbict class. In conclusion, it appears that in back-
propagation neural networks a signiacant loss of efaciency is associated with
increase in class unbalance (rare event bias), which large samples imply. This
plays a bigger role in comparison to the parallel increase in efaciency that the
larger sample size provides. 

22. Schrodt (1991, 370), one of the arst political scientists to suggest an al-
ternative accuracy method to overall accuracy, stresses the inadequacy of over-
all accuracy as the measure for conbict prediction models. His solution is to use
an entropy ratio (ER), which is equal to model entropy (ME) divided by the de-
pendent variable entropy (DE).

23. Comprehensive reviews of the calculation involved in kappa analysis
and the test Z statistics can be found in Goodman and Kruskal (1963) and
Congalton and Green (1999, 43–57). 

24. Kappa analysis was implemented by the software FUNCPOW.C, au-
thored by Carlos Vieira of the School of Geography, University of Nottingham.
The software was developed in standard C language and on the Unix platform. 

25. The term signiccance matrix is relatively new. It has been adopted in the
remote sensing literature by researchers dealing with classiaers’ performance
(Vieira and Mather 1999). 

26. The difference in accuracy across training strategies becomes more evi-
dent when focusing on the other results. Unb cannot discriminate between the
dispute and the nondispute class. Indeed, the unbalanced training set correctly
predicts no dispute dyad, although it predicts 100 percent of nonconbict out-
comes. However, as stressed by Beck, King, and Zeng (2000, 29), “This is not
great success, of course, since the optimistic claim that conbict will never occur
is correct 96 percent [in our case 97 percent] of the time.” This result again
shows how rare-event bias can preserve and even increase its negative inbuence
in large heavily unbalanced samples. Also, the two balanced-replicated training
strategies, CVRep and Rep, do not offer high accuracy on either class. Their ac-
curate prediction on both dispute and nondispute dyads is less than 30 percent.

27. The denominator in (1) operates as a normalizing factor, which avoids
the negative effect of the network activation function squeezing the weight
value into a smaller range.

28. In order to increase variable comparability we also normalized the net-
work’s inputs so as to achieve means of zero for all input variables. 
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29. Here we can directly compare class accuracy since the testing sets have
the same size. 

30. Conditional kappa analysis and a pairwise test Z statistic were per-
formed between the model with all the active inputs and those with one input
switched off. The result indicates a signiacant deterioration, at least in one class
accuracy, when DependL, DemL, Logdistance, Logcaprat are switched off. 

31. Beck, King, and Zeng (2000, 29) say that their model, developed on the
1947–85 period, predicts 99.4 percent of the nondispute cases in 1986–89, but
only 16.7 percent of disputes.
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