Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Nature-based solutions can help cool the planet — if we act now
Analysis suggests that to limit global temperature rise, we must slash emissions and invest now to protect, manage and restore ecosystems and land for the future.
Cécile A. J. Girardin is science lead for the Oxford Biodiversity Network, University of Oxford, UK; and technical director of the Nature-based Solutions Initiative, Oxford, UK.
Myles Allen is professor of geosystem science, School of Geography and the Environment and Department of Physics, University of Oxford, UK; and director of Oxford Net Zero.
Simon L. Lewis is professor of global-change science in the Department of Geography, University College London, and the School of Geography, University of Leeds, UK.
Women in northern Mumbai, India, have planted mangrove saplings to protect the area against rising sea levels.Credit: Mahendra Parikh/Hindustan Times via Getty
Projects that manage, protect and restore ecosystems are widely viewed as win–win strategies for addressing two of this century’s biggest global challenges: climate change and biodiversity loss. Yet the potential contribution of such nature-based solutions to mitigating climate change remains controversial.
Decision-makers urgently need to know: what role do nature-based solutions have in the race to net-zero emissions and stop further global temperature increases?
Analyses of nature-based solutions often focus on how much carbon they can remove from the atmosphere. Here, we provide a new perspective by modelling how these solutions will affect global temperatures — a crucial metric as humanity attempts to limit global warming.
Our analysis shows that nature-based solutions can have a powerful role in reducing temperatures in the long term. Land-use changes will continue to act long past the point at which net-zero emissions are achieved and global temperatures peak (known as peak warming), and will have an important role in planetary cooling in the second half of this century. Before then, nature-based solutions can provide real but limited mitigation benefits. Crucially, the more ambitious the climate target, the shorter the time frame for such solutions to have an effect on peak warming.
In other words, nature-based solutions must be designed for longevity. This means paying closer attention to their long-term carbon-sink potential, as well as their impacts on biodiversity, equity and sustainable development goals. It also means continuing to limit global warming through other methods, from decarbonization to geological storage of carbon dioxide.
Our model reinforces the conclusion that an ambitious scaling-up of nature-based solutions needs to be implemented fast and thoughtfully — and not at the expense of other measures.
Win–wins
The world is currently likely to hit 3 °C of warming above pre-industrial levels by 2100 (although recent policy announcements from the United States and China could reduce this). The 2015 Paris climate agreement aims to limit the global temperature rise this century to well below 2 °C, and, ideally, to 1.5 °C. There is no date for either goal, beyond the “end of this century”. The metric that matters most is the peak temperature, with more-aggressive efforts required to stay below 1.5 °C of warming than for the 2 °C target.
It is impossible to achieve the needed reduction in peak warming solely through cuts to greenhouse gases, because emissions from certain sectors, such as agriculture and some heavy industry, cannot be driven to zero any time soon. For this reason, we also need to remove greenhouse gases from the atmosphere on an unprecedented scale1.
There are various options for doing this. For example, when biomass vegetation is burnt for energy, the emitted CO2 can be retained and stored underground. This process, known as bioenergy with carbon capture and storage (BECCS), requires vast areas of land — compromising food security and biodiversity — as well as time to develop on a large scale. Other options involve industrial machines that capture CO2 from the air; these are currently nascent, expensive technologies.
A subset of nature-based solutions can be used specifically to limit warming. These ‘natural climate solutions’ aim to reduce atmospheric greenhouse-gas concentrations in three ways. One is to avoid emissions by protecting ecosystems and thus reducing carbon release; this includes efforts to limit deforestation. Another is to restore ecosystems, such as wetlands, so that they sequester carbon. The third is to improve land management — for timber, crops and grazing — to reduce emissions of carbon, methane and nitrous oxide, as well as to sequester carbon (see ‘Three steps to natural cooling’).
Source: S. Jenkins et al. Geophys. Res. Lett.45, 2795–2804 (2018).
Decades of work provide strong evidence that nature-based solutions can deliver many local ecological and socio-economic benefits2. Restoring a forest next to a stream, for example, might reduce flooding, improve carbon storage and support fisheries. Growing recognition of such benefits means that interest in nature-based solutions is soaring: they can help people adapt to climate change, achieve sustainable development goals, protect biodiversity and mitigate climate change3.
Quantifying nature’s role
There is still debate around how much nature-based solutions can contribute to achieving net-zero targets by mid-century. This is because results have been estimated across a range of objectives, time frames and model assumptions4,5 (see Supplementary information; SI). Some researchers say that tree restoration is the most effective climate-change solution we have available6 (this in itself has been robustly contested); others argue that nature-based solutions won’t be nearly as fast or as effective as is often stated7.
Part of the reason for the impasse is this: many well-known papers discuss the annual carbon uptake possibilities of nature-based solutions; they do not discuss their cooling impact year on year. Because the Paris agreement is framed in terms of temperature, we argue that this gap is critical: researchers need to know how nature-based solutions will affect global temperature.
To model this, we consider an ambitious but realistic scenario — an update to previous estimates by one of our co-authors (B.W.G)4,8,9. This scenario considers only those projects for nature-based solutions that are constrained by many factors: they are cost-effective (costing less than US$100 per tonne of CO2 equivalent); ensure adequate global production of food and wood-based products; and involve sufficient biodiversity conservation. They also respect land tenure rights and don’t change the amount of sunlight reflected from Earth, or albedo (see SI). In our scenario, nature-based solutions that avoid emissions ramp up quickly — by 2025 — and absorb carbon while avoiding emissions at a rate of 10 gigatonnes of CO2 per year (Gt CO2 yr−1). This rises to 20 Gt CO2 yr−1 in the most ambitious scenario (peak warming of 1.5 °C by 2055), in which we assume a higher price of carbon. The 10-Gt value is cost-contained. But we also account for 30 years of higher-priced nature-based solutions in the 1.5 °C scenario (up to $200 per tonne of CO2 equivalent; see SI). For comparison, 10 Gt CO2 yr−1 is more than the emissions from the entire global transportation sector.
Instituto Terra, an initiative in Aimorés, Brazil, is restoring a devastated ecosystem.Credit: Christian Ender/Getty
Achieving 10 Gt CO2 yr−1 of mitigation in this way would involve stopping the destruction of ecosystems worldwide (including 270 million hectares of deforestation); restoring 678 million hectares of ecosystems (more than twice the size of India); and improving the management of around 2.5 billion hectares of land by mid-century4. This is ambitious, but it is important to note that the bulk of land required (85%) comes from improving management of existing lands for agriculture, grazing and production forest without displacing yields of food, wood-based products or fuel (see ‘Three steps to natural cooling’).
These estimates come with caveats (see SI). The role of nature-based solutions could be larger if one considers, for example, their impacts on other greenhouse gases besides CO2. This could represent an additional amount of roughly 1–3 Gt CO2 equivalent yr−1 of climate mitigation. Alternatively, the contribution of such solutions might be smaller in the long term, if the carbon drawdown from land-based interventions decreased over time. This could happen if these natural sinks became saturated or were affected by climate impacts such as forest fires. These caveats are not included in our estimates.
We then modelled how this level of nature-based solutions would affect global temperature up to 2100 (see ‘The long game’ and SI). We looked at illustrative pathways from the Intergovernmental Panel on Climate Change, in which peak warming is constrained to 1.5 °C or 2 °C, and ran these scenarios with the added contribution of nature-based solutions as described. These pathways include BECCS, but no nature-based solutions beyond some avoided deforestation.
Taking the temperature
Our analysis shows that implementing this level of nature-based solutions could reduce the peak warming by an additional 0.1 °C under a scenario consistent with a 1.5 °C rise by 2055; 0.3 °C under a scenario consistent with a 2 °C rise by 2085; and 0.3 °C under a 3 °C-by-2100 scenario (see ‘The long game’).
Adapted from Fig. SPM.1 of Ref. 1
The most significant contribution nature-based solutions can make to mitigating the peak temperature is in the 2 °C scenario. In a more ambitious 1.5 °C scenario, there isn’t enough time for nature-based solutions to have as great an impact on peak warming. In the 3 °C scenario, several issues constrain the impact of nature-based solutions, including the limited ability of ecosystems to absorb carbon in a warmer world.
Overall, the mitigation potential of nature-based solutions remains small compared to what can be achieved by decarbonizing the economy. Yet, assuming that decarbonization takes place, nature-based solutions can still suppress a chunk of the warming (see SI).
Crucially, nature-based solutions cool the planet long after the peak temperature is reached. In the 1.5 °C scenario, they take a total of 0.4 °C off warming by 2100 — four times their suppression to the 2055 peak temperature (see SI, Table S2).
Achieving these significant long-term benefits requires several things. Nature-based solutions of good quality must be scaled up rapidly — and not at the expense of other robust strategies. Long-term geological storage of CO2, for example, will need to be ramped up significantly in the next decade as technologies mature and prices fall. The long-term benefits of nature-based solutions also depend on warming being held in check. The increased frequency and intensity of impacts such as wildfires can undermine ecosystems and their capacity to store carbon or provide other benefits to society.
Ecosystems that are protected and carefully managed — such as intact peatlands and old-growth tropical rainforests — are very likely to continue to store carbon for thousands of years. These are also more resilient to climate extremes and pathogens.
The right metrics
Restoration of forest cover is widely considered the most viable near-term opportunity for carbon removal. Unfortunately, some of this enthusiasm has been used to promote plantation forestry — growing trees of a limited variety of ages and species (for example, in monoculture plantations) does not have the same carbon benefits as maintaining an intact forest ecosystem10.
Enjoying our latest content?
Login or create an account to continue
Access the most recent journalism from Nature's award-winning team
Explore the latest features & opinion covering groundbreaking research
Intergovernmental Panel on Climate Change. Summary for Policymakers. In Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (World Meteorological Organization, 2018).