Abstract
Knowledge of the rate and pattern of new mutation is critical to the understanding of human disease and evolution. We used extensive autozygosity in a genealogically well-defined population of Hutterites to estimate the human sequence mutation rate over multiple generations. We sequenced whole genomes from 5 parent-offspring trios and identified 44 segments of autozygosity. Using the number of meioses separating each pair of autozygous alleles and the 72 validated heterozygous single-nucleotide variants (SNVs) from 512 Mb of autozygous DNA, we obtained an SNV mutation rate of 1.20 × 10−8 (95% confidence interval 0.89–1.43 × 10−8) mutations per base pair per generation. The mutation rate for bases within CpG dinucleotides (9.72 × 10−8) was 9.5-fold that of non-CpG bases, and there was strong evidence (P = 2.67 × 10−4) for a paternal bias in the origin of new mutations (85% paternal). We observed a non-uniform distribution of heterozygous SNVs (both newly identified and known) in the autozygous segments (P = 0.001), which is suggestive of mutational hotspots or sites of long-range gene conversion.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
£139.00 per year
only £11.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Haldane, J.B.S. The rate of spontaneous muation of a human gene. J. Genet. 31, 317–326 (1935).
Kondrashov, A.S. Direct estimates of human per nucleotide mutation rates at 20 loci causing Mendelian diseases. Hum. Mutat. 21, 12–27 (2003).
Drake, J.W., Charlesworth, B., Charlesworth, D. & Crow, J.F. Rates of spontaneous mutation. Genetics 148, 1667–1686 (1998).
Lynch, M. Rate, molecular spectrum, and consequences of human mutation. Proc. Natl. Acad. Sci. USA 107, 961–968 (2010).
Conrad, D.F. et al. Variation in genome-wide mutation rates within and between human families. Nat. Genet. 43, 712–714 (2011).
Roach, J.C. et al. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 328, 636–639 (2010).
Nachman, M.W. & Crowell, S.L. Estimate of the mutation rate per nucleotide in humans. Genetics 156, 297–304 (2000).
Chong, J.X. et al. A common spinal muscular atrophy deletion mutation is present on a single founder haplotype in the US Hutterites. Eur. J. Hum. Genet. 19, 1045–1051 (2011).
Cusanovich, D.A. et al. The combination of a genome-wide association study of lymphocyte count and analysis of gene expression data reveals novel asthma candidate genes. Hum. Mol. Genet. 21, 2111–2123 (2012).
Abney, M., Ober, C. & McPeek, M.S. Quantitative-trait homozygosity and association mapping and empirical genomewide significance in large, complex pedigrees: fasting serum-insulin level in the Hutterites. Am. J. Hum. Genet. 70, 920–934 (2002).
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
The 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).
Han, L. & Abney, M. Identity by descent estimation with dense genome-wide genotype data. Genet. Epidemiol. 35, 557–567 (2011).
Yang, Y. et al. Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans. Am. J. Hum. Genet. 80, 1037–1054 (2007).
Haldane, J.B. The mutation rate of the gene for haemophilia, and its segregation ratios in males and females. Ann. Eugen. 13, 262–271 (1947).
O'Roak, B.J. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246–250 (2012).
Fledel-Alon, A. et al. Broad-scale recombination patterns underlying proper disjunction in humans. PLoS Genet. 5, e1000658 (2009).
Kong, A. et al. Rate of de novo mutations and the importance of father's age to disease risk. Nature 488, 471–475 (2012).
Khalak, H.G. et al. Autozygome maps dispensable DNA and reveals potential selective bias against nullizygosity. Genet. Med. 14, 515–519 (2012).
Awadalla, P. et al. Direct measure of the de novo mutation rate in autism and schizophrenia cohorts. Am. J. Hum. Genet. 87, 316–324 (2010).
Sun, J.X. et al. A direct characterization of human mutation based on microsatellites. Nat. Genet. 44, 1161–1165 (2012).
Chen, J.M., Cooper, D.N., Chuzhanova, N., Ferec, C. & Patrinos, G.P. Gene conversion: mechanisms, evolution and human disease. Nat. Rev. Genet. 8, 762–775 (2007).
Schrider, D.R., Hourmozdi, J.N. & Hahn, M.W. Pervasive multinucleotide mutational events in eukaryotes. Curr. Biol. 21, 1051–1054 (2011).
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
DePristo, M.A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
Porreca, G.J. et al. Multiplex amplification of large sets of human exons. Nat. Methods 4, 931–936 (2007).
Turner, E.H., Lee, C., Ng, S.B., Nickerson, D.A. & Shendure, J. Massively parallel exon capture and library-free resequencing across 16 genomes. Nat. Methods 6, 315–316 (2009).
Acknowledgements
We are grateful to M. Przeworski for thoughtful comments on the manuscript. We thank C. Lee, B. Paeper, J. Smith and M. Rieder for assistance with sequence data generation and J. Huddleston for technical advice. We are grateful to T. Brown for assistance with manuscript preparation. C.D.C. was supported by a US National Institutes of Health (NIH) Ruth L. Kirschstein National Research Service Award (NRSA; F32HG006070). P.H.S. is supported by a Howard Hughes Medical Institute International Student Research Fellowship. This work was supported by an American Asthma Foundation Senior Investigator Award to E.E.E., by US NIH grants R01 HD21244 and R01 HL085197 to C.O. and by US NIH grant R01 HG002899 to M.A. E.E.E. is an Investigator of the Howard Hughes Medical Institute.
Author information
Authors and Affiliations
Contributions
C.D.C., J.X.C., C.O. and E.E.E. designed the study. C.D.C. performed the genome sequencing analysis, molecular inversion probe (MIP)-targeted resequencing analysis and mutation rate calculations. J.X.C. performed analyses to determine the ancestry of the autozygous segments. M.M. performed and analyzed validation experiments, including Sanger sequencing, microarray hybridization and MIP capture. A.K. and P.H.S. performed read-depth copy-number analysis. B.L.D. identified and analyzed the clusters of heterozygous SNVs in the autozygous segments. L.H. and M.A. performed autozygosity analysis with SNP microarray data. L.V. and B.J.O. created the sequencing libraries. B.J.O. designed the MIP oligonucleotides. L.V., along with M.M., performed MIP capture. E.E.E., C.O., M.A. and J.S. supervised the project. C.D.C. and E.E.E. wrote the manuscript with input and approval from all coauthors.
Corresponding author
Ethics declarations
Competing interests
E.E.E. is on the scientific advisory boards for Pacific Biosciences, SynapDx and DNAnexus.
Supplementary information
Supplementary Text and Figures
Supplementary Tables 1–4 and 6, Supplementary Figures 1–5 and Supplementary Note (PDF 2790 kb)
Supplementary Table 5
Summary of Sanger sequencing validations performed (XLSX 29 kb)
Supplementary Table 7
Summary of putative de novo mutations and validation (XLSX 59 kb)
Rights and permissions
About this article
Cite this article
Campbell, C., Chong, J., Malig, M. et al. Estimating the human mutation rate using autozygosity in a founder population. Nat Genet 44, 1277–1281 (2012). https://doi.org/10.1038/ng.2418
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ng.2418