[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global decoupling of functional and phylogenetic diversity in plant communities

Abstract

Plant communities are composed of species that differ both in functional traits and evolutionary histories. As species’ functional traits partly result from their individual evolutionary history, we expect the functional diversity of communities to increase with increasing phylogenetic diversity. This expectation has only been tested at local scales and generally for specific growth forms or specific habitat types, for example, grasslands. Here we compare standardized effect sizes for functional and phylogenetic diversity among 1,781,836 vegetation plots using the global sPlot database. In contrast to expectations, we find functional diversity and phylogenetic diversity to be only weakly and negatively correlated, implying a decoupling between these two facets of diversity. While phylogenetic diversity is higher in forests and reflects recent climatic conditions (1981 to 2010), functional diversity tends to reflect recent and past climatic conditions (21,000 years ago). The independent nature of functional and phylogenetic diversity makes it crucial to consider both aspects of diversity when analysing ecosystem functioning and prioritizing conservation efforts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual figure of the relationship between functional and phylogenetic diversity.
Fig. 2: The relationship of SES.FDQ and SES.PDQ.
Fig. 3: Relative influence of environmental variables on functional and phylogenetic diversity.
Fig. 4: Environmental predictors of SES.FDQ.
Fig. 5: Environmental predictors of SES.PDQ.
Fig. 6: Environmental predictors of the log ratio between the SES.FDQ and SES.PDQ.

Similar content being viewed by others

Data availability

All calculated biodiversity indices necessary to reproduce the results of this paper are available at https://doi.org/10.25829/idiv.3574-mpmk21 (ref. 95). The vegetation plot raw data for sPlotOpen are available at https://www.idiv.de/de/splot/splotopen.html. The vegetation plot raw data contained in the sPlot database are available upon request by submitting a project proposal to the sPlot Steering Committee. The proposals should follow the Governance and Data Property Rules of the sPlot Working Group available on the sPlot website (www.idiv.de/splot). Source data are provided with this paper.

Code availability

All R scripts used for this study can be found in our GitHub repository at https://github.com/georghaehn/Haehn-et-al-2024-FD-PD-coupling.

References

  1. O’Connor, B., Bojinski, S., Röösli, C. & Schaepman, M. E. Monitoring global changes in biodiversity and climate essential as ecological crisis intensifies. Ecol. Inform. 55, 101033 (2020).

  2. Anwar, M. R., Liu, D. L., Macadam, I. & Kelly, G. Adapting agriculture to climate change: a review. Theor. Appl. Climatol. 113, 225–245 (2013).

    Article  Google Scholar 

  3. Benevolenza, M. A. & DeRigne, L. The impact of climate change and natural disasters on vulnerable populations: a systematic review of literature. J. Hum. Behav. Soc. Environ. 29, 266–281 (2019).

    Article  Google Scholar 

  4. IPCC Climate Change 2023: Synthesis Report (eds Core Writing Team, Lee, H. & Romero, J.) (IPCC, 2023).

  5. Fahad, S. et al. Climate Change and Plants: Biodiversity, Growth and Interactions (CRC, 2021).

  6. Corlett, R. T. & Westcott, D. A. Will plant movements keep up with climate change? Trends Ecol. Evol. 28, 482–488 (2013).

    Article  PubMed  Google Scholar 

  7. Cavender-Bares, J., Kozak, K. H., Fine, P. V. A. & Kembel, S. W. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693–715 (2009).

    Article  PubMed  Google Scholar 

  8. Götzenberger, L. et al. Ecological assembly rules in plant communities—approaches, patterns and prospects. Biol. Rev. 87, 111–127 (2012).

    Article  PubMed  Google Scholar 

  9. Rieseberg, L. H., Wood, T. E. & Baack, E. J. The nature of plant species. Nature 440, 524–527 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Verdú, M. & Pausas, J. G. Fire drives phylogenetic clustering in Mediterranean Basin woody plant communities. J. Ecol. 95, 1316–1323 (2007).

    Article  Google Scholar 

  11. Ackerly, D. D., Schwilk, D. W. & Webb, C. O. Niche evolution and adaptive radiation: testing the order of trait divergence. Ecology 87, 50–61 (2006).

    Article  Google Scholar 

  12. Pillar, V. D., Duarte, L. d. S., Sosinski, E. E. & Joner, F. Discriminating trait-convergence and trait-divergence assembly patterns in ecological community gradients. J. Veg. Sci. 20, 334–348 (2009).

    Article  Google Scholar 

  13. Pillar, V. D., Sabatini, F. M., Jandt, U., Camiz, S. & Bruelheide, H. Revealing the functional traits linked to hidden environmental factors in community assembly. J. Veg. Sci. 32, e12976 (2021).

    Article  Google Scholar 

  14. Pillar, V. D. Trait divergence in plant community assembly is generated by environmental factor interactions. J. Veg. Sci. 35, e13259 (2024).

    Article  Google Scholar 

  15. Ackerly, D. Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. Proc. Natl Acad. Sci. USA 106, 19699–19706 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ávila-Lovera, E., Winter, K. & Goldsmith, G. R. Evidence for phylogenetic signal and correlated evolution in plant–water relation traits. New Phytol. 237, 392–407 (2023).

    Article  PubMed  Google Scholar 

  17. Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012).

    Article  Google Scholar 

  18. Molina-Venegas, R. & Rodríguez, M. Á. Revisiting phylogenetic signal; strong or negligible impacts of polytomies and branch length information? BMC Evol. Biol. 17, 53 (2017).

  19. Melzer, R., Wang, Y.-Q. & Theißen, G. The naked and the dead: the ABCs of gymnosperm reproduction and the origin of the angiosperm flower. Semin. Cell Dev. Biol. 21, 118–128 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Cavender-Bares, J., Ackerly, D. D., Baum, D. A. & Bazzaz, F. A. Phylogenetic overdispersion in Floridian oak communities. Am. Nat. 163, 823–843 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Cadotte, M., Albert, C. H. & Walker, S. C. The ecology of differences: assessing community assembly with trait and evolutionary distances. Ecol. Lett. 16, 1234–1244 (2013).

    Article  PubMed  Google Scholar 

  22. Srivastava, D. S., Cadotte, M. W., MacDonald, A. A. M., Marushia, R. G. & Mirotchnick, N. Phylogenetic diversity and the functioning of ecosystems. Ecol. Lett. 15, 637–648 (2012).

    Article  PubMed  Google Scholar 

  23. Webb, C. O. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am. Nat. 156, 145–155 (2000).

    Article  PubMed  Google Scholar 

  24. Flynn, D. F. B., Mirotchnick, N., Jain, M., Palmer, M. I. & Naeem, S. Functional and phylogenetic diversity as predictors of biodiversity—ecosystem–function relationships. Ecology 92, 1573–1581 (2011).

    Article  PubMed  Google Scholar 

  25. Tucker, C. M., Davies, T. J., Cadotte, M. W. & Pearse, W. D. On the relationship between phylogenetic diversity and trait diversity. Ecology 99, 1473–1479 (2018).

    Article  PubMed  Google Scholar 

  26. Večeřa, M. et al. Decoupled phylogenetic and functional diversity in European grasslands. Preslia 95, 413–445 (2023).

    Article  Google Scholar 

  27. Prinzing, A. et al. Less lineages—more trait variation: phylogenetically clustered plant communities are functionally more diverse. Ecol. Lett. 11, 809–819 (2008).

    Article  PubMed  Google Scholar 

  28. Kluge, J. & Kessler, M. Phylogenetic diversity, trait diversity and niches: species assembly of ferns along a tropical elevational gradient. J. Biogeogr. 38, 394–405 (2011).

    Article  Google Scholar 

  29. Bruelheide, H. et al. sPlot—a new tool for global vegetation analyses. J. Veg. Sci. 30, 161–186 (2019).

    Article  Google Scholar 

  30. Castagneyrol, B., Jactel, H., Vacher, C., Brockerhoff, E. G. & Koricheva, J. Effects of plant phylogenetic diversity on herbivory depend on herbivore specialization. J. Appl. Ecol. 51, 134–141 (2014).

    Article  Google Scholar 

  31. Qian, H., Hao, Z. & Zhang, J. Phylogenetic structure and phylogenetic diversity of angiosperm assemblages in forests along an elevational gradient in Changbaishan, China. J. Plant Ecol. 7, 154–165 (2014).

    Article  Google Scholar 

  32. Honorio Coronado, E. N. et al. Phylogenetic diversity of Amazonian tree communities. Divers. Distrib. 21, 1295–1307 (2015).

    Article  Google Scholar 

  33. Mastrogianni, A., Kallimanis, A. S., Chytrý, M. & Tsiripidis, I. Phylogenetic diversity patterns in forests of a putative refugial area in Greece: a community level analysis. For. Ecol. Manag. 446, 226–237 (2019).

    Article  Google Scholar 

  34. Klimeš, A., Šímová, I., Zizka, A., Antonelli, A. & Herben, T. The ecological drivers of growth form evolution in flowering plants. J. Ecol. 110, 1525–1536 (2022).

    Article  Google Scholar 

  35. Chai, Y. et al. Patterns of taxonomic, phylogenetic diversity during a long-term succession of forest on the Loess Plateau, China: insights into assembly process. Sci. Rep. 6, 27087 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    Article  PubMed  Google Scholar 

  37. Weigelt, A. et al. An integrated framework of plant form and function: the belowground perspective. New Phytol. 232, 42–59 (2021).

    Article  PubMed  Google Scholar 

  38. Carta, A., Peruzzi, L. & Ramírez-Barahona, S. A global phylogenetic regionalization of vascular plants reveals a deep split between Gondwanan and Laurasian biotas. New Phytol. 233, 1494–1504 (2022).

    Article  PubMed  Google Scholar 

  39. Sabatini, F. M. et al. sPlotOpen—an environmentally balanced, open-access, global dataset of vegetation plots. Glob. Ecol. Biogeogr. 30, 1740–1764 (2021).

    Article  Google Scholar 

  40. Reich, P. B. et al. The evolution of plant functional variation: traits, spectra, and strategies. Int. J. Plant Sci. 164, 143–164 (2003).

    Article  Google Scholar 

  41. Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13, 1085–1093 (2010).

    Article  PubMed  Google Scholar 

  42. Pigot, A. L. & Etienne, R. S. A new dynamic null model for phylogenetic community structure. Ecol. Lett. 18, 153–163 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Godoy, O., Kraft, N. J. B. & Levine, J. M. Phylogenetic relatedness and the determinants of competitive outcomes. Ecol. Lett. 17, 836–844 (2014).

    Article  PubMed  Google Scholar 

  44. Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. de Bello, F. et al. Handbook of Trait-Based Ecology: From Theory to R Tools (Cambridge Univ. Press, 2021).

  46. Owen, N. R., Gumbs, R., Gray, C. L. & Faith, D. P. Global conservation of phylogenetic diversity captures more than just functional diversity. Nat. Commun. 10, 859 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).

    Article  Google Scholar 

  48. Zuo, X. et al. Functional diversity response to geographic and experimental precipitation gradients varies with plant community type. Funct. Ecol. 35, 2119–2132 (2021).

    Article  CAS  Google Scholar 

  49. Massante, J. C. et al. Contrasting latitudinal patterns in phylogenetic diversity between woody and herbaceous communities. Sci. Rep. 9, 6443 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cai, H. et al. Geographical patterns in phylogenetic diversity of Chinese woody plants and its application for conservation planning. Divers. Distrib. 27, 179–194 (2021).

    Article  Google Scholar 

  51. Tietje, M. et al. Global hotspots of plant phylogenetic diversity. New Phytol. 240, 1636–1646 (2023).

    Article  PubMed  Google Scholar 

  52. Qian, H., Zhang, J. & Jiang, M. Global patterns of taxonomic and phylogenetic diversity of flowering plants: biodiversity hotspots and coldspots. Plant Divers. 45, 265–271 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  53. De Pauw, K. et al. Taxonomic, phylogenetic and functional diversity of understorey plants respond differently to environmental conditions in European forest edges. J. Ecol. 109, 2629–2648 (2021).

    Article  Google Scholar 

  54. Kambach, S. et al. Climate–trait relationships exhibit strong habitat specificity in plant communities across Europe. Nat. Commun. 14, 712 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pryer, K. M. et al. Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409, 618–622 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Rothfels, C. J. et al. The evolutionary history of ferns inferred from 25 low-copy nuclear genes. Am. J. Bot. 102, 1089–1107 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. De Frenne, P. et al. Forest microclimates and climate change: importance, drivers and future research agenda. Glob. Change Biol. 27, 2279–2297 (2021).

    Article  CAS  Google Scholar 

  58. Kovács, B., Tinya, F. & Ódor, P. Stand structural drivers of microclimate in mature temperate mixed forests. Agric. For. Meteorol. 234–235, 11–21 (2017).

    Article  Google Scholar 

  59. Swenson, N. Phylogenetic resolution and quantifying the phylogenetic diversity and dispersion of communities. PLoS ONE 4, e4390 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sessa, E. B. et al. Community assembly of the ferns of Florida. Am. J. Bot. 105, 549–564 (2018).

    Article  PubMed  Google Scholar 

  61. Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).

    Article  Google Scholar 

  62. Shan, H. et al. Gap filling in the plant kingdom: trait prediction using hierarchical probabilistic matrix factorization. Preprint at https://arxiv.org/abs/1206.6439 (2012).

  63. Fazayeli, F., Banerjee, A., Kattge, J., Schrodt, F. & Reich, P. B. Uncertainty quantified matrix completion using bayesian hierarchical matrix factorization. In 2014 13th International Conference on Machine Learning and Applications (eds Chen, X.-w. et al.) 312–317 (IEEE, 2014).

  64. Schrodt, F. et al. BHPMF—a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Glob. Ecol. Biogeogr. 24, 1510–1521 (2015).

    Article  Google Scholar 

  65. Rao, C. R. Diversity and dissimilarity coefficients: a unified approach. Theor. Popul. Biol. 21, 24–43 (1982).

    Article  Google Scholar 

  66. Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    Article  PubMed  Google Scholar 

  67. Laliberté, E., Legendre, P. & Shipley, B. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12 (2014).

  68. Walker, A. P., McCormack, M. L., Messier, J., Myers-Smith, I. H. & Wullschleger, S. D. Trait covariance: the functional warp of plant diversity? New Phytol. 216, 976–980 (2017).

    Article  PubMed  Google Scholar 

  69. Kembel, S. W. et al. picante: integrating phylogenies and ecology. R package version 1.8.2 (2020).

  70. Jin, Y. & Qian, H. V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359 (2019).

    Article  Google Scholar 

  71. Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).

    Article  PubMed  Google Scholar 

  72. Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).

    Article  Google Scholar 

  74. Revell, L. J. phytools: phylogenetic tools for comparative biology (and other things). R package version 2.1-1 (2023).

  75. Letten, A. D. & Cornwell, W. K. Trees, branches and (square) roots: why evolutionary relatedness is not linearly related to functional distance. Methods Ecol. Evol. 6, 439–444 (2015).

    Article  Google Scholar 

  76. de Bello, F., Carmona, C. P., Lepš, J., Szava-Kovats, R. & Pärtel, M. Functional diversity through the mean trait dissimilarity: resolving shortcomings with existing paradigms and algorithms. Oecologia 180, 933–940 (2016).

    Article  PubMed  Google Scholar 

  77. Petchey, O. L. & Gaston, K. J. Extinction and the loss of functional diversity. Proc. R. Soc. Lond. B 269, 1721–1727 (2002).

    Article  Google Scholar 

  78. Cadotte, M. W. et al. Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecol. Lett. 13, 96–105 (2010).

    Article  PubMed  Google Scholar 

  79. Gotelli, N. J. & McCabe, D. J. Species co-occurrence: a meta-analysis of J. M. Diamond’s assembly rules model. Ecology 83, 2091–2096 (2002).

    Article  Google Scholar 

  80. Schultz, J. The Ecozones of the World: The Ecological Division of the Geosphere (Springer Nature, 2005).

  81. Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Karger, D. N. et al. Data from: Climatologies at high resolution for the Earth’s land surface areas. Dryad https://doi.org/10.5061/DRYAD.KD1D4 (2018).

  83. Brown, S. C., Wigley, T. M. L., Otto-Bliesner, B. L. & Fordham, D. A. StableClim, continuous projections of climate stability from 21000 BP to 2100 CE at multiple spatial scales. Sci. Data 7, 335 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Renssen, H. & Isarin, R. F. B. The two major warming phases of the last deglaciation at 14.7 and 11.5 ka cal BP in Europe: climate reconstructions and AGCM experiments. Glob. Planet. Change 30, 117–153 (2001).

    Article  Google Scholar 

  85. Hijmans, R. J. Raster: Geographic data analysis and modeling. R package version 3.6-30 (2023).

  86. Wood, S. mgcv: Mixed GAM computation vehicle with automatic smoothness estimation. R package version 1.9-1 (2023).

  87. Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).

    Article  Google Scholar 

  88. Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004).

    Article  Google Scholar 

  89. Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2017).

  90. Wood, S. N. Thin-plate regression splines. J. R. Stat. Soc. B 65, 95–114 (2003).

    Article  Google Scholar 

  91. Wood, S. N., Pya, N. & Säfken, B. Smoothing parameter and model selection for general smooth models. J. Am. Stat. Assoc. 111, 1548–1563 (2016).

    Article  CAS  Google Scholar 

  92. Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: species distribution modeling. R package version 1.3-14 (2022).

  93. Arel-Bundock, V. marginaleffects: predictions, comparisons, slopes, marginal means, and hypothesis tests. R package version 0.18.0 (2023).

  94. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).

  95. Hähn, G. J. A., Damasceno, G., Sabatini, F. M. & Bruelheide, H. Global decoupling of functional and phylogenetic diversity in plant communities (version 1.0). iDiv https://doi.org/10.25829/idiv.3574-mpmk21 (2024).

Download references

Acknowledgements

We are thankful for the efforts of thousands of vegetation scientists sampling and digitalizing vegetation data and making them available in regional, national or international databases. We appreciate the support of the German Research Foundation for funding sPlot as one of the iDiv research platforms (DFG FZT 118, 202548816). The scientific results have (in part) been computed at the High-Performance Computing Cluster EVE, a joint effort of both the Helmholtz Centre for Environmental Research—UFZ (http://www.ufz.de/) and the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig (http://www.idiv-biodiversity.de/). We thank the administration and support staff of EVE who keep the system running and support us with our scientific computing needs: T. Schnicke, B. Langenberg, G. Schramm, T. Harzendorf, T. Strempel and L. Schurack from the UFZ and C. Krause from iDiv. We thank the iDiv Data & Code Unit for assistance with curation (done by L. Figueiredo) and archiving of the dataset. F.M.S. gratefully acknowledges financial support from the Rita Levi Montalcini (2019) programme, funded by the Italian Ministry of University and Research (MUR). J.-C.S. considers this work a contribution to Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), funded by Danish National Research Foundation (grant no. DNRF173) and his VILLUM Investigator project ‘Biodiversity Dynamics in a Changing World’, funded by VILLUM FONDEN (grant no. 16549). V.D.P. received support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil, grant no. 313315/2022-1). I.B. and J.A.C. were funded by the Basque Government (IT1487-22). A.D.B was supported by the Knut and Alice Wallenberg Foundation (WAF KAW 2019.0202) and the Swedish Foundation for Strategic Research (FFL21-0194). A.G.-d.-M. has been supported by National Forestry and Wildlife Service (SERFOR) of Peru (AUT-IFL-2023-017) and Fundación Universitaria San Pablo-CEU, grant nos. GNRI 2023 and GNRI 2024. A.Č., F.K. and U. Šilc were supported by the Slovenian Research and Innovation Agency (P1-0236).

Author information

Authors and Affiliations

Authors

Contributions

G.J.A.H., F.M.S. and H.B. conceived the idea. G.J.A.H. performed the analysis with substantial input from F.M.S., G.D. and H.B. G.J.A.H. drafted the first version of the paper with support by F.M.S., G.D., M. Sporbert and H.B. E.A.-D., I.A., M.B., E.B., I.B., A.D.B., G.B., Z.B.-D., J.A.C., A.Č., M.C., R.Ć., A.L.d.G, M.D.S., J. Dengler, J. Dolezal, M.A.E.-S., M.F., A.G.-d.-M., E.G., H.G., V.G., S.H., M.Z.H., B.H., J.H., U.J., F.J., A.J., J.K., M.K., L.K., H.K., F.K., J.L., J.E.M., L.M., A.N., J.N., A.P.-H., O.L.P., V.D.P., G.R.-T., E.R., B. Sandel, M. Schmidt, U.S., S.S., F.S., U.Š., B. Sparrow, M. Sporbert, Z.S., B. Strohbach, J.-C.S., C.Q.T., Z.T., A.C.V., C.V., D. Waller, D. Wana, H.-F.W., T.W. and G.Z. provided parts of the data. All co-authors edited the paper and provided suggestions on how to improve the analyses.

Corresponding author

Correspondence to Georg J. A. Hähn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Tables 1 and 2.

Reporting Summary

Peer Review File

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hähn, G.J.A., Damasceno, G., Alvarez-Davila, E. et al. Global decoupling of functional and phylogenetic diversity in plant communities. Nat Ecol Evol 9, 237–248 (2025). https://doi.org/10.1038/s41559-024-02589-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-024-02589-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing