[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High continuity of forager ancestry in the Neolithic period of the eastern Maghreb

Abstract

Ancient DNA from the Mediterranean region has revealed long-range connections and population transformations associated with the spread of food-producing economies1,2,3,4,5,6. However, in contrast to Europe, genetic data from this key transition in northern Africa are limited, and have only been available from the far western Maghreb (Morocco)1,2,3. Here we present genome-wide data for nine individuals from the Later Stone Age through the Neolithic period from Algeria and Tunisia. The earliest individuals cluster with pre-Neolithic people of the western Maghreb (around 15,000–7,600 years before present (bp)), showing that this ‘Maghrebi’ ancestry profile had a substantial geographic and temporal extent. At least one individual from Djebba (Tunisia), dating to around 8,000 years bp, harboured ancestry from European hunter–gatherers, probably reflecting movement in the Early Holocene across the Strait of Sicily. Later Neolithic people from the eastern Maghreb retained largely local forager ancestry, together with smaller contributions from European farmers (by around 7,000 years bp) and Levantine groups (by around 6,800 years bp), and were thus far less impacted by external gene flow than were populations in other parts of the Neolithic Mediterranean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of the dataset.
Fig. 2: PCA results.
Fig. 3: Inferred ancestry proportions from qpAdm.
Fig. 4: ROH and IBD results.

Similar content being viewed by others

Data availability

The aligned sequences for the newly reported individuals are available through the European Nucleotide Archive under accession number PRJEB83667. Genotype data used in the analysis of the newly reported individuals are available through Dataverse (https://doi.org/10.7910/DVN/ILWB3K). The previously published data used in our analyses are available at the following: Allen Ancient DNA Resource (https://doi.org/10.7910/DVN/FFIDCW); western Maghreb ancient DNA data2, European Nucleotide Archive accession number PRJEB59008); 1000 Genomes haplotype reference panel (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/); human reference genome hg19 (https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.13/); mitochondrial reference genome RSRS (https://doi.org/10.1016/j.ajhg.2012.03.002); YFull YTree phylogeny (https://www.yfull.com/tree/); and ISOGG Y-chromosome SNPs (https://ybrowse.org/). Open-science principles require making all data used to support the conclusions of a study maximally available, and we support these principles here by making fully publicly available not only the digital copies of the molecules (the uploaded sequences), but also the molecular copies (the ancient DNA libraries themselves, which constitute molecular data storage). Those researchers who wish to carry out deeper sequencing of libraries published in this study should make a request to corresponding author D.R. We commit to granting reasonable requests as long as the libraries remain preserved in our laboratories, with no requirement that we be included as collaborators or co-authors on any resulting publications.

References

  1. Fregel, R. et al. Ancient genomes from North Africa evidence prehistoric migrations to the Maghreb from both the Levant and Europe. Proc. Natl Acad. Sci. USA 115, 6774–6779 (2018).

    Article  ADS  PubMed  PubMed Central  MATH  Google Scholar 

  2. Simões, L. G. et al. Northwest African Neolithic initiated by migrants from Iberia and Levant. Nature 618, 550–556 (2023).

    Article  ADS  PubMed  PubMed Central  MATH  Google Scholar 

  3. Van de Loosdrecht, M. et al. Pleistocene North African genomes link Near Eastern and sub-Saharan African human populations. Science 360, 548–552 (2018).

    Article  ADS  PubMed  Google Scholar 

  4. Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  5. Valdiosera, C. et al. Four millennia of Iberian biomolecular prehistory illustrate the impact of prehistoric migrations at the far end of Eurasia. Proc. Natl Acad. Sci. USA 115, 3428–3433 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  6. Yu, H. et al. Genomic and dietary discontinuities during the Mesolithic and Neolithic in Sicily. iScience 25, 104244 (2022).

    Article  ADS  PubMed  PubMed Central  MATH  Google Scholar 

  7. Henn, B. M. et al. Genomic ancestry of North Africans supports back-to-Africa migrations. PLoS Genet. 8, e1002397 (2012).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  8. Serra-Vidal, G. et al. Heterogeneity in Palaeolithic population continuity and Neolithic expansion in North Africa. Curr. Biol. 29, 3953–3959 (2019).

    Article  CAS  PubMed  MATH  Google Scholar 

  9. Mulazzani, S. et al. The emergence of the Neolithic in North Africa: a new model for the eastern Maghreb. Quat. Int. 410, 123–143 (2016).

    Article  MATH  Google Scholar 

  10. Zilhão, J. Radiocarbon evidence for maritime pioneer colonization at the origins of farming in west Mediterranean Europe. Proc. Natl Acad. Sci. USA 98, 14180–14185 (2001).

    Article  ADS  PubMed  PubMed Central  MATH  Google Scholar 

  11. Linstädter, J. et al. Neolithization process within the Alboran territory: models and possible African impact. Quat. Int. 274, 219–232 (2012).

    Article  Google Scholar 

  12. Borja, P. G. et al. Nuevas perspectivas sobre la neolitización en la Cueva de Nerja (Málaga-España): la cerámica de la Sala del Vestíbulo. Zephyrus LXVI, 109–132 (2010).

    Google Scholar 

  13. Broodbank, C. & Lucarini, G. The dynamics of Mediterranean Africa, ca. 9600–1000 BC: an interpretative synthesis of knowns and unknowns. J. Mediterr. Archaeol. 32, 195–267 (2019).

    Article  MATH  Google Scholar 

  14. Martínez-Sánchez, R. M. et al. The beginning of the Neolithic in northwestern Morocco. Quat. Int. 470, 485–496 (2018).

    Article  MATH  Google Scholar 

  15. Lubell, D., Sheppard, P. & Jackes, M. Continuity in the Epipaleolithic of northern Africa with emphasis on the Maghreb. Adv. World Archaeol. 3, 143–191 (1984).

    MATH  Google Scholar 

  16. Perrault, N. Contemporaneity of the Typical and Upper Capsian (northwest African Later Stone Age). Afr. Archaeol. Rev. https://doi.org/10.1007/s10437-024-09599-0 (2024).

  17. Barker, G. et al. The Cyrenaican Prehistory Project 2010: the fourth season of investigations of the Haua Fteah Cave and its landscape, and further results from the 2007–2009 fieldwork. Libyan Stud. 41, 63–88 (2010).

    Article  MATH  Google Scholar 

  18. Lucarini, G. in Neolithisation of Northeastern Africa, Vol. 16 (ed. Shirai, N.) 149–173 (Ex Oriente, 2013).

  19. Barich, B. E. Northwest Libya from the Early to Late Holocene: new data on environment and subsistence from the Jebel Gharbi. Quat. Int. 320, 15–27 (2014).

    Article  Google Scholar 

  20. Perrin, T. et al. Pressure knapping and the timing of innovation: new chrono-cultural data on prehistoric groups of the Early Holocene in the Maghreb, northwest Africa. Radiocarbon 62, e1–e51 (2020).

    Article  MATH  Google Scholar 

  21. Aouadi, N., Dridi, Y. & Ben Dhia, W. Holocene environment and subsistence patterns from Capsian and Neolithic sites in Tunisia. Quat. Int. 320, 3–14 (2014).

    Article  MATH  Google Scholar 

  22. Coppa, A. et al. Phenetic relationships between North African Iberomaurusian and Eurasian Late Pleistocene–ancient Holocene human groups. In Actes du Premier Colloque de Préhistoire Maghrébine (Centre National de Recherches Préhistoriques, Anthropologiques et Historiques, 2011).

  23. Kefi, R. et al. On the origin of Iberomaurusians: new data based on ancient mitochondrial DNA and phylogenetic analysis of Afalou and Taforalt populations. Mitochondrial DNA Part A 29, 147–157 (2018).

    Article  CAS  MATH  Google Scholar 

  24. Vaufrey, R. Préhistoire de l’Afrique, Vol. 1: Maghreb (Masson, 1955).

  25. Lucarini, G. et al. The MedAfriCarbon radiocarbon database and web application. Archaeological dynamics in Mediterranean Africa, ca. 9600–700 BC. J. Open Archaeol. Data 8, 1 (2020).

    Article  MATH  Google Scholar 

  26. Mulazzani, S. Le Capsien de Hergla (Tunisie). Culture, Environnement et Économie. Reports in African Archaeology, Vol. 4 (Africa Magna Verlag, 2013).

  27. Lubell, D., Feathers, J. & Schwenninger, J.-L. Post-Capsian occupation in the eastern Maghreb: implications of a revised chronological assessment for the adult burial at Aïn Misteheyia. J. Afr. Archaeol. 7, 175–189 (2009).

    Article  Google Scholar 

  28. Mallick, S. et al. The Simons genome diversity project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  29. Posth, C. et al. Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers. Nature 615, 117–126 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Olalde, I. et al. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature 507, 225–228 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  31. Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  32. González-Fortes, G. et al. Paleogenomic evidence for multi-generational mixing between Neolithic farmers and Mesolithic hunter-gatherers in the Lower Danube Basin. Curr. Biol. 27, 1801–1810 (2017).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  33. Olalde, I. et al. The genomic history of the Iberian Peninsula over the past 8000 years. Science 363, 1230–1234 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  34. Iain, M. et al. The genomic history of Southern Europe. Nature 555, 197–210 (2018).

    Article  ADS  MATH  Google Scholar 

  35. Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  36. Villalba-Mouco, V. et al. Survival of Late Pleistocene hunter-gatherer ancestry in the Iberian Peninsula. Curr. Biol. 29, 1169–1177 (2019).

    Article  PubMed  MATH  Google Scholar 

  37. Fernandes, D. M. et al. The spread of steppe and Iranian-related ancestry in the islands of the Western Mediterranean. Nat. Ecol. Evol. 4, 334–345 (2020).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  38. Marcus, J. H. et al. Genetic history from the Middle Neolithic to present on the Mediterranean island of Sardinia. Nat. Commun. 11, 939 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  39. Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  40. Lazaridis, I. et al. The genetic history of the Southern Arc: a bridge between West Asia and Europe. Science 377, eabm4247 (2022).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  41. Feldman, M. et al. Late Pleistocene human genome suggests a local origin for the first farmers of Central Anatolia. Nat. Commun. 10, 1218 (2019).

    Article  ADS  PubMed  PubMed Central  MATH  Google Scholar 

  42. Fan, S. et al. African evolutionary history inferred from whole genome sequence data of 44 indigenous African populations. Genome Biol. 20, 82 (2019).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  43. Cruciani, F. et al. Tracing past human male movements in northern/eastern Africa and Western Eurasia: new clues from Y-chromosomal haplogroups E-M78 and J-M12. Mol. Biol. Evol. 24, 1300–1311 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Olivieri, A. et al. The mtDNA legacy of the Levantine early Upper Palaeolithic in Africa. Science 314, 1767–1770 (2006).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  45. Secher, B. et al. The history of the North African mitochondrial DNA haplogroup U6 gene flow into the African, Eurasian and American continents. BMC Evol. Biol. 14, 109 (2014).

    Article  MATH  Google Scholar 

  46. Soares, P. et al. The expansion of mtDNA haplogroup L3 within and out of Africa. Mol. Biol. Evol. 29, 915–927 (2012).

    Article  CAS  PubMed  MATH  Google Scholar 

  47. Richards, M. B. et al. Phylogeography of mitochondrial DNA in Western Europe. Ann. Hum. Genet. 62, 241–260 (1998).

    Article  CAS  PubMed  MATH  Google Scholar 

  48. Loh, P.-R. et al. Inferring admixture histories of human populations using linkage disequilibrium. Genetics 193, 1233–1254 (2013).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  49. Chintalapati, M., Patterson, N. & Moorjani, P. The spatiotemporal patterns of major human admixture events during the European Holocene. eLife 11, e77625 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ringbauer, H., Novembre, J. & Steinrücken, M. Parental relatedness through time revealed by runs of homozygosity in ancient DNA. Nat. Commun. 12, 5425 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  51. Ringbauer, H. et al. Accurate detection of identity-by-descent segments in human ancient DNA. Nat. Genet. 56, 143–151 (2024).

    Article  CAS  PubMed  MATH  Google Scholar 

  52. Gautier, A. in From Lake to Sand: The Archaeology of Farafra Oasis, Western Desert, Egypt (eds Barich, B. E. et al.) 369–374 (All’Insegna del Giglio, 2014).

  53. Vermeersch, P. et al. Early and Middle Holocene human occupation of the Egyptian Eastern Desert: Sodmein Cave. Afr. Archaeol. Rev. 32, 465–503 (2015).

    Article  MATH  Google Scholar 

  54. Arambourg, C., Boule, M., Vallois, H. & Vernau, R. Les Grottes Paléolithiques de Beni-Segoual (Algérie). Archives de l’Institut de Paléontologie Humaine (Masson, 1934).

  55. Hachi, S. L’Ibéromaurusien, découverte des fouilles d’Afalou (Bédjaîa, Algérie). L’Anthropologie 100, 55–76 (1996).

    Google Scholar 

  56. Hachi, S. in Congrès El Mon Mediterrani després del Pleniglacial (18.000–12.000 BP) (eds Fullola, J. M. & Soler, N.) 77–92 (1997).

  57. Hachi, S. Les Cultures de l’Homme de Mechta-Afalou: Le Gisement d’Afalou Bou Rhummel, Massif des Babors, Algérie: Les Niveaux Supérieurs, 13.000–11.000 B.P. (Centre National de Recherches Préhistoriques, Anthropologiques et Historiques, 2003).

  58. Hachi, S. Du comportement symbolique des derniers chasseurs Mechta-Afalou d’Afrique du Nord. C.R. Palevol. 5, 429–440 (2006).

    Article  Google Scholar 

  59. Aoudia-Chouakri, L. Pratiques Funéraires Complexes: Réévaluation Archeo-anthropologique des Contextes Ibéromaurusiens et Capsiens. Paléolithique Supérieur et Epipaléolithique, Afrique du Nord-Ouest. PhD thesis, Bordeaux 1 Univ. (2013).

  60. Aoudia, L. Complex funerary practices: an archaeo-anthropological reassessment of Iberomaurusian and Capsian contexts (northwest Africa). In Proc. II Meeting of African Prehistory (eds Sahnouni, M. et al.) 81–113 (Centro Nacional de Investigación sobre la Evolución Humana, 2017).

  61. Zoughlami, J. Le Néolithique de la Dorsale Tunisienne. PhD thesis, Univ. de Toulouse–Le Mirail (1978).

  62. Zoughlami, J. Le Néolithique dans la Dorsale Tunisienne: Kef El Guéria et sa région (Centre de Publication universitaire, 2009).

  63. Zoughlami, J., Camps, G. & Harbi-Riahi, M. Atlas Préhistorique de Tunisie. 4. Souk el Arba (École française de Rome, 1989).

  64. Aouadi, N. Djebba–Rapport des Fouilles (Institut National du Patrimoine, 2018).

  65. Balout, L. Préhistoire de l’Afrique du Nord. Essai de Chronologie (Arts et Métiers graphiques, 1955).

  66. Belhouchet, L., Coppa A. & Mulazzani, S. Les Derniers Chasseurs-cueilleurs Holocènes et la Transition Néolithique en Tunisie. Rapport Préliminaire de la Deuxième Campagne de Fouilles – Doukanet el Khoutifa, 9 Septembre – 12 Octobre 2013 (2013).

  67. Roudesli-Chebbi, S. & Zoughlami, J. Les restes humains de Doukanet el Khoutifa. Africa 20, 75–97 (2004).

    Google Scholar 

  68. Zoughlami, J. in Le Capsien de Hergla (Tunisie): culture, environnement et économie Vol. 4 (ed. Mulazzani, S.) 57–68 (Africa Magna Verlag, 2013).

  69. Candilio, F., Munoz, O., Roudesli-Chebbi, S. & Mulazzani, S. I resti umani del sito Epipaleolitico SHM-1 (Hergla – Tunisia). Africa 64, 474–487 (2009).

  70. Munoz, O., Mulazzani, S., Roudesli-Chebbi, S. & Candilio, F. Pratiques funéraires et données biologiques pendant l’Holocène en Tunisie. Le cas de SHM-1 (Hergla, Tunisie orientale). In Actes du Colloque International de Préhistoire Maghrebine (ed. Centre National de Recherches Préhistoriques, Anthropologiques et Historiques, CNRPAH) 315–332 (CNRPAH, 2011).

  71. M’Timet, A. et al. Atlas Préhistorique de la Tunisie. 9. Sousse (École française de Rome, 1992).

  72. Rohland, N. et al. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447–2461 (2018).

    Article  CAS  PubMed  MATH  Google Scholar 

  73. Rohland, N. et al. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. B: Biol. Sci. 370, 20130624 (2015).

    Article  Google Scholar 

  74. Gansauge, M.-T. et al. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nature Protoc. 15, 2279–2300 (2020).

  75. Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA 110, 2223–2227 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  76. Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3–e3 (2012).

    Article  CAS  PubMed  MATH  Google Scholar 

  77. Behar, D. M. et al. A “Copernican” reassessment of the human mitochondrial DNA tree from its root. Am. J. Hum. Genet. 90, 675–684 (2012).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  78. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinform. 26, 589–595 (2010).

    Article  MATH  Google Scholar 

  79. Skoglund, P. et al. Accurate sex identification of ancient human remains using DNA shotgun sequencing. J. Archaeol. Sci. 40, 4477–4482 (2013).

    Article  CAS  MATH  Google Scholar 

  80. Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 44, W58–W63 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553–559 (2013).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  82. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinf. 15, 356 (2014).

    Article  MATH  Google Scholar 

  83. Lohse, J. C. et al. A precise chronology of Middle to Late Holocene bison exploitation in the far southern Great Plains. Index of Texas Archaeology 2014, 78 (2014).

    Google Scholar 

  84. Kennett, D. J. et al. Archaeogenomic evidence reveals prehistoric matrilineal dynasty. Nat. Commun. 8, 14115 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cherkinsky, A. et al. Status of the AMS facility at the University of Georgia. Nucl. Instrum. Methods Phys. Res., Sect. B 268, 867–870 (2010).

    Article  ADS  CAS  MATH  Google Scholar 

  86. Ramsey, C. B. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

    Article  CAS  MATH  Google Scholar 

  87. Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).

    Article  CAS  MATH  Google Scholar 

  88. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  89. Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  90. Harney, É. et al. Ancient DNA from Chalcolithic Israel reveals the role of population mixture in cultural transformation. Nat. Commun. 9, 3336 (2018).

    Article  ADS  PubMed  PubMed Central  MATH  Google Scholar 

  91. Narasimhan, V. M. et al. The genomic formation of South and Central Asia. Science 365, aat7487 (2019).

    Article  MATH  Google Scholar 

  92. Prendergast, M. E. et al. Ancient DNA reveals a multistep spread of the first herders into sub-Saharan Africa. Science 365, eaaw6275 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  93. Lipson, M. et al. Ancient West African foragers in the context of African population history. Nature 577, 665–670 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  94. Fernandes, D. M. et al. A genetic history of the pre-contact Caribbean. Nature 590, 103–110 (2021).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  95. Rubinacci, S. et al. Efficient phasing and imputation of low-coverage sequencing data using large reference panels. Nat. Genet. 53, 120–126 (2021).

    Article  CAS  PubMed  MATH  Google Scholar 

  96. Mallick, S. et al. The Allen Ancient DNA Resource (AADR) a curated compendium of ancient human genomes. Sci. Data 11, 182 (2024).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the current and former INP general directors, T. Baccouche and F. Mahfoudh, for their support; to S. Mulazzani for groundbreaking archaeological research in Tunisia that catalyzed this research; and to A. Marsilio for her key role in the excavation of DEK in 2022. We thank B. Barich and C. Broodbank for fruitful discussions that enriched this work. We acknowledge K. Callan, E. Curtis, A. M. Lawson, L. Qiu, J. N. Workman, F. Zalzala, R. Bernardos and A. Kearns for wet laboratory work and sample management, and M. Mah, A. Micco, G. Soos, Z. Zhang and I. Lazaridis for bioinformatics work. We thank A. Cervi for processing the DEK site plan image. The Northern Tunisia Archaeological Project received funding from the Italian Ministry of Foreign Affairs and International Cooperation, CNR and ISMEO. We are grateful for support from National Institutes of Health grant HG012287, from the Allen Discovery Center programme (a Paul G. Allen Frontiers Group advised programme of the Paul G. Allen Family Foundation), from John Templeton Foundation grant 61220, and from the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

A.C., R.P. and D.R. designed the study. O.C., S.M., N.R., R.P. and D.R. generated the ancient DNA data. G.L., N.A., L.A., L.B., A.-R.D., F.G., F.L.P, M. Lucci, H.d.L., A.N., A.C. and R.P. were responsible for archaeological and bioanthropological analysis. G.L., N.A., L.A., A.-R.D., F.G., F.L.P., N.M. and F.T. excavated the sites. M. Lipson and H.R. conducted the formal analysis. M. Lipson, H.R., G.L. and A.C. wrote the original manuscript. M. Lipson, G.L., A.C., R.P. and D.R. reviewed and edited the paper. G.L., S.M., N.R., A.C., R.P. and D.R. supervised the study. G.L., A.C., R.P. and D.R. were responsible for funding acquisition.

Corresponding authors

Correspondence to Mark Lipson, Giulio Lucarini, Alfredo Coppa, Ron Pinhasi or David Reich.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Rosa Fregel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 View of the Djebba Shelter.

Shown is an exterior view of the site of the excavations at Djebba (Tunisia).

Extended Data Fig. 2 Site plan from Doukanet el Khoutifa (DEK).

Shown is a diagram of the excavations from 2013, with the cemetery area indicated with a red rectangle.

Extended Data Fig. 3 Burial 2 from Hergla (SHM-1).

Shown is the skeleton of the individual sampled for ancient DNA in this study.

Extended Data Fig. 4 Comparative ROH results for the western Maghreb.

Left side, inferred runs of homozygosity (ROH) for ancient individuals from the western Maghreb; right side, expected distributions under different scenarios. Three individuals have signatures of likely parental relatedness: TAF010 and oub002 (first-cousin parents), and ktg005 (second-cousin parents).

Extended Data Table 1 Radiocarbon dates and uniparental markers for newly reported ancient individuals
Extended Data Table 2 Radiocarbon dating of the different levels of the Afalou Bou Rhummel shelter
Extended Data Table 3 Distribution and types of burials at the Afalou Bou Rhummel site

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipson, M., Ringbauer, H., Lucarini, G. et al. High continuity of forager ancestry in the Neolithic period of the eastern Maghreb. Nature (2025). https://doi.org/10.1038/s41586-025-08699-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41586-025-08699-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing