[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

N-Hydroxyphthalimide

Chemical compound From Wikipedia, the free encyclopedia

N-Hydroxyphthalimide

N-Hydroxyphthalimide is the organic compound with the formula C6H4(CO)2NOH. A white or yellow solid, it is a derivative of phthalimide. The compound is as a catalyst in the synthesis of other organic compounds.[1][2] It is soluble in water and organic solvents such as acetic acid, ethyl acetate and acetonitrile.[3]

Quick Facts Names, Identifiers ...
N-Hydroxyphthalimide
Thumb
Names
Preferred IUPAC name
2-Hydroxy-1H-isoindole-1,3(2H)-dione
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.007.600
EC Number
  • 208-358-1
UNII
  • InChI=1S/C8H5NO3/c10-7-5-3-1-2-4-6(5)8(11)9(7)12/h1-4,12H
    Key: CFMZSMGAMPBRBE-UHFFFAOYSA-N
  • O=C2N(O)C(C1=CC=CC=C12)=O
Properties
C8H5NO3
Molar mass 163.132 g·mol−1
Appearance white to pale yellow crystalline solid
Density 1.64 g/mL
Melting point 233°C
Boiling point 370°C
water, polar organic solvents
Hazards
GHS labelling:
GHS07: Exclamation mark
Warning
H315, H319, H335
P261, P264, P271, P280, P302+P352, P304+P340, P305+P351+P338, P312, P321, P332+P313, P337+P313, P362, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Close

Occurrence and production

As described by Lassar Cohn in 1880, N-hydroxyphthalimide was produced from phthaloyl chloride and hydroxylamine hydrochloride in the presence of sodium carbonate.[4]

Thumb
Synthesis of N-hydroxyphthalimide from phthaloyl chloride using hydroxylamine hydrochloride

The product forms as a red sodium salt under basic conditions, while white N-hydroxyphthalimide precipitates in 55% yield as the solution is acidified. N-hydroxyphthalimide is also produced by reacting hydroxylamine hydrochloride with diethyl phthalate in the presence of sodium acetate,[5] or with phthalic anhydride in the presence of sodium carbonate with heating. In the last case, an overall yield of 76% is produced following purification by recrystallization.[6]

Microwave irradiation of phthalic anhydride and hydroxylamine hydrochloride in pyridine produces N-hydroxyphthalimide in 81% yield.[7] Even in the absence of a base, phthalic anhydride and hydroxylamine phosphate react to produce N-hydroxyphthalimide in 86% yield when heated to 130 °C.[8]

Thumb
Preparation of N-hydroxyphthalimide from phthalic anhydride

Properties

Summarize
Perspective

N-Hydroxyphthalimide exists in two polymorphs, colorless and yellow, In the colorless white form, the NOH group is rotated about 1.19° from the plane of the molecule, while in the yellow form it is much closer to planarity (0.06° rotation).[9]

The color of the synthesized N-hydroxyphthalimide is determined by the solvent used; the color transition from white to yellow is irreversible.[10] N-Hydroxyphthalimide forms strongly colored, mostly yellow or red salts with alkali and heavy metals, ammonia and amines.[11] Hydrolysis of N-hydroxyphthalimide by the addition of strong bases produces phthalic acid monohydroxamic acid by adding water across one of the carbonnitrogen bonds.[5] N-Hydroxyphthalimide ethers, on the other hand, are colorless and provide O-alkylhydroxylamines by alkaline hydrolysis or cleavage through hydrazine hydrate.

The "phthalylhydroxylamine" reported by Cohn was known to have a molecular formula of C
8
H
5
NO
3
, but the exact structure was not known.[4] Three possibilities were discussed and are shown in the Figure below: a mono-oxime of phthalic anhydride ("phthaloxime", I), an expanded ring with two heteroatoms, (2,3-benzoxazine-1,4-dione, II), and N-hydroxyphthalimide (III).[10][12] It was not until the 1950s that Cohn's product was definitely shown to be N-hydroxyphthalimide (III).[13]

Thumb
Three structural isomers of C
8
H
5
NO
3
considered as Cohn's "phthalylhydroxylamine"

Applications and reactions

Summarize
Perspective

Nefkens and Tesser developed a technique for generating active esters from N-hydroxyphthalimide[14] for use in peptide synthesis,[15] an approach later extended to using N-hydroxysuccinimide.[16] The ester linkage is formed between the N-hydroxyphthalimide and a carboxylic acid by elimination of water, the coupling achieved with N,N′-dicyclohexylcarbodiimide (DCC). For peptide synthesis, the N-terminus of the growing peptide is protected with tert-butyloxycarbonyl while its C-terminus (Z–NH–CH(R)–COOH) is coupled to N-hydroxyphthalimide. An ester of the next amino acid in the desired peptide sequence is shaken with activated ester, adding to the chain and displacing the N-hydroxyphthalimide. This reaction is quantitative and nearly instantaneous at 0 °C.[15][17] The resulting ester needs to be hydrolysed before the cycle can be repeated.

Thumb
Conversion of the C-terminus of a peptide to an active ester of N-hydroxyphthalimide

The N-hydroxyphthalimide can be removed by shaking with sodium bicarbonate,[15] but the N-hydroxysuccinimide approach shows greater reactivity and convenience, and is generally preferred.[16][17]

Esters of N-hydroxyphthalimide and activated sulfonic acids such as trifluoromethanesulfonic anhydride or p-toluenesulfonyl chloride are used as so-called photoacids, which split off protons during UV irradiation.

Thumb
UV reaction with NHPI triflate

The protons generated serve for the targeted local degradation of acid-sensitive photoresists.[18]

N-Hydroxyphthalimide can be converted with vinyl acetate in the presence of palladium(II)acetate to the N-vinyloxyphthalimide, which is quantitatively hydrogenated to N-ethoxyphthalimide and subsequently O-ethylhydroxylamine.[19]

Thumb
Synthesis of O-alkoxyamines via N-hydroxyphthalimides

A variety of functional groups can be oxidized with the aminoxyl radical (phthalimide-N-oxyl, PINO)[20] formed by the abstraction of a hydrogen atom from N-hydroxyphthalimide under gentle conditions (similar to TEMPO):[1]

Thumb
Formation of the PINO radical

Using molecular oxygen alkanes can be oxidized to form alcohols, secondary alcohols to ketones, acetals to esters and alkenes to epoxides.[21][22][23] Amides can be converted into carbonyl compounds with N-hydroxyphthalimide and cobalt(II)salts under mild conditions.[24]

Thumb
Oxidation of amides with N-hydroxyphthalimide

Efficient oxidation reactions of precursors of important basic chemicals are of particular technical interest. For example, ε-caprolactam can be prepared using NHPI from the so-called KA oil ("ketone-alcohol" oil, a mixture of cyclohexanol and cyclohexanone) which is obtained during the oxidation of cyclohexane. The reaction proceeds via cyclohexanol hydroperoxide, which reacts with ammonia to give peroxydicyclohexylamine followed by a rearrangement in the presence of catalytic amounts of lithium chloride.[22][25]

Thumb
Oxidation of KA oil to caprolactam

The use of N-hydroxyphthalimide as a catalyst in the oxidation of KA oil avoids the formation of the undesirable by-product ammonium sulfate which is produced by the conventional ε-caprolactam synthesis (Beckmann rearrangement of cyclohexanone oxime with sulfuric acid).

Alkanes are converted into nitroalkanes in the presence of nitrogen dioxide.[26]

Thumb
Nitrogenation/oxidation of cyclohexane by means of NHPI

Cyclohexane is converted at 70 °C with nitrogen dioxide/air into a mixture of nitrocyclohexane (70%), cyclohexyl nitrate (7%) and cyclohexanol (5%).

N-hydroxyphthalimide serves as an oxidizing agent in photographic developers[27] and as charge control agents in toners[28] have been described in the patent literature.

Phthalimido-N-oxyl (PINO)

The radical derived by removal of a hydrogen atom from N-hydroxyphthalimide is called N-phthalimido-N-oxyl, acronym being PINO. It is a powerful H-atom abstracting agent.[1] The bond dissociation energy of NHPI (i.e., PINO–H) is 88–90 kcal/mol (370–380 kJ/mol), depending on the solvent.[29]

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.