[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Coulomb

SI derived unit of electric charge From Wikipedia, the free encyclopedia

Coulomb

The coulomb (symbol: C) is the unit of electric charge in the International System of Units (SI).[1] [2] It is defined to be equal to the electric charge delivered by a 1 ampere current in 1 second. It is used to define the elementary charge e.[2][1]

Quick Facts General information, Unit system ...
Coulomb
Thumb
Diagram showing 1 coulomb (electric charge at 1 ampere per 1 second) and the equivalent number of electrons
General information
Unit systemSI
Unit ofelectric charge
SymbolC
Named afterCharles-Augustin de Coulomb
Conversions
1 C in ...... is equal to ...
   SI base units   As
   CGS units    2997924580 statC
   Atomic units   6.241509×1018 e
Close

Definition

The SI defines the coulomb as "the quantity of electricity carried in 1 second by a current of 1 ampere". Then the value of the elementary charge e is defined to be 1.602176634×10−19 C.[3] Since the coulomb is the reciprocal of the elementary charge, it is approximately 6241509074460762607.776 e and is thus not an integer multiple of the elementary charge.

The coulomb was previously defined in terms of the force between two wires. The coulomb was originally defined, using the latter definition of the ampere, as 1 A × 1 s.[4] The 2019 redefinition of the ampere and other SI base units fixed the numerical value of the elementary charge when expressed in coulombs and therefore fixed the value of the coulomb when expressed as a multiple of the fundamental charge.

SI prefixes

Like other SI units, the coulomb can be modified by adding a prefix that multiplies it by a power of 10.

More information Submultiples, Multiples ...
SI multiples of coulomb (C)
Submultiples Multiples
Value SI symbol Name Value SI symbol Name
10−1 C dC decicoulomb 101 C daC decacoulomb
10−2 C cC centicoulomb 102 C hC hectocoulomb
10−3 C mC millicoulomb 103 C kC kilocoulomb
10−6 C μC microcoulomb 106 C MC megacoulomb
10−9 C nC nanocoulomb 109 C GC gigacoulomb
10−12 C pC picocoulomb 1012 C TC teracoulomb
10−15 C fC femtocoulomb 1015 C PC petacoulomb
10−18 C aC attocoulomb 1018 C EC exacoulomb
10−21 C zC zeptocoulomb 1021 C ZC zettacoulomb
10−24 C yC yoctocoulomb 1024 C YC yottacoulomb
10−27 C rC rontocoulomb 1027 C RC ronnacoulomb
10−30 C qC quectocoulomb 1030 C QC quettacoulomb
Common multiples are in bold face.
Close

Conversions

In everyday terms

  • The charges in static electricity from rubbing materials together are typically a few microcoulombs.[6]
  • The amount of charge that travels through a lightning bolt is typically around 15 C, although for large bolts this can be up to 350 C.[7]
  • The amount of charge that travels through a typical alkaline AA battery from being fully charged to discharged is about 5 kC = 5000 C 1400 mA⋅h.[8]
  • A typical smartphone battery can hold 10800 C  3000 mA⋅h.

Name and history

Summarize
Perspective
Thumb
Charles-Augustin de Coulomb

The coulomb is named after Charles-Augustin de Coulomb. As with every SI unit named after a person, its symbol starts with an upper case letter (C), but when written in full, it follows the rules for capitalisation of a common noun; i.e., coulomb becomes capitalised at the beginning of a sentence and in titles but is otherwise in lower case.[9]

By 1878, the British Association for the Advancement of Science had defined the volt, ohm, and farad, but not the coulomb.[10] In 1881, the International Electrical Congress, now the International Electrotechnical Commission (IEC), approved the volt as the unit for electromotive force, the ampere as the unit for electric current, and the coulomb as the unit of electric charge.[11] At that time, the volt was defined as the potential difference [i.e., what is nowadays called the "voltage (difference)"] across a conductor when a current of one ampere dissipates one watt of power. The coulomb (later "absolute coulomb" or "abcoulomb" for disambiguation) was part of the EMU system of units. The "international coulomb" based on laboratory specifications for its measurement was introduced by the IEC in 1908. The entire set of "reproducible units" was abandoned in 1948 and the "international coulomb" became the modern coulomb.[12]

See also

Notes and references

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.