Hughes plane
From Wikipedia, the free encyclopedia
In mathematics, a Hughes plane is one of the non-Desarguesian projective planes found by Hughes (1957). There are examples of order p2n for every odd prime p and every positive integer n.
Construction
The construction of a Hughes plane is based on a nearfield N of order p2n for p an odd prime whose kernel K has order pn and coincides with the center of N.
Properties
A Hughes plane H:[1]
- is a non-Desarguesian projective plane of odd square prime power order of Lenz-Barlotti type I.1,
- has a Desarguesian Baer subplane H0,
- is a self-dual plane in which every orthogonal polarity of H0 can be extended to a polarity of H,
- every central collineation of H0 extends to a central collineation of H, and
- the full collineation group of H has two point orbits (one of which is H0), two line orbits, and four flag orbits.
The smallest Hughes Plane (order 9)
The Hughes plane of order 9 was actually found earlier by Veblen and Wedderburn in 1907.[2] A construction of this plane can be found in Room & Kirkpatrick (1971) where it is called the plane Ψ.
Notes
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.