[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Hyperchaos

From Wikipedia, the free encyclopedia

Hyperchaos

A hyperchaotic system is a dynamical system with a bounded attractor set, on which there are at least two positive Lyapunov exponents.[1]

Thumb
Folded-towel map attractor.

Since on an attractor, the sum of Lyapunov exponents is non-positive, there must be at least one negative Lyapunov exponent. If the system has continuous time, then along the trajectory, the Lyapunov exponent is zero, and so the minimal number of dimensions in which continuous-time hyperchaos can occur is 4.

Similarly, a discrete-time hyperchaos requires at least 3 dimensions.

Mathematical examples


The first two hyperchaotic systems were proposed in 1979.[2] One is a discrete-time system ("folded-towel map"):

Thumb
Folded-towel map attractor, animated.

Another is a continuous-time system:More examples are found in.[3]

Experimental examples

Only a few experimental hyperchaotic behaviors have been identified.

Examples include in an electronic circuit,[4] in a NMR laser,[5] in a semiconductor system,[6] and in a chemical system.[7]

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.