[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Hermitian wavelet

Family of continuous wavelets From Wikipedia, the free encyclopedia

Hermitian wavelets are a family of discrete and continuous wavelets used in the constant and discrete Hermite wavelet transforms. The Hermitian wavelet is defined as the normalized derivative of a Gaussian distribution for each positive :[1]where denotes the probabilist's Hermite polynomial. Each normalization coefficient is given by The function is said to be an admissible Hermite wavelet if it satisfies the admissibility condition:[2]

where are the terms of the Hermite transform of .

In computer vision and image processing, Gaussian derivative operators of different orders are frequently used as a basis for expressing various types of visual operations; see scale space and N-jet.[3]

Examples

The first three derivatives of the Gaussian function with :are:and their norms .

Normalizing the derivatives yields three Hermitian wavelets:

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.