Two-point tensor
From Wikipedia, the free encyclopedia
Two-point tensors, or double vectors, are tensor-like quantities which transform as Euclidean vectors with respect to each of their indices. They are used in continuum mechanics to transform between reference ("material") and present ("configuration") coordinates.[1] Examples include the deformation gradient and the first Piola–Kirchhoff stress tensor.
This article needs additional citations for verification. (December 2013) |
As with many applications of tensors, Einstein summation notation is frequently used. To clarify this notation, capital indices are often used to indicate reference coordinates and lowercase for present coordinates. Thus, a two-point tensor will have one capital and one lower-case index; for example, AjM.
Continuum mechanics
Summarize
Perspective
A conventional tensor can be viewed as a transformation of vectors in one coordinate system to other vectors in the same coordinate system. In contrast, a two-point tensor transforms vectors from one coordinate system to another. That is, a conventional tensor,
- ,
actively transforms a vector u to a vector v such that
where v and u are measured in the same space and their coordinates representation is with respect to the same basis (denoted by the "e").
In contrast, a two-point tensor, G will be written as
and will transform a vector, U, in E system to a vector, v, in the e system as
- .
The transformation law for two-point tensor
Summarize
Perspective
Suppose we have two coordinate systems one primed and another unprimed and a vectors' components transform between them as
- .
For tensors suppose we then have
- .
A tensor in the system . In another system, let the same tensor be given by
- .
We can say
- .
Then
is the routine tensor transformation. But a two-point tensor between these systems is just
which transforms as
- .
Simple example
Summarize
Perspective
The most mundane example of a two-point tensor is the transformation tensor, the Q in the above discussion. Note that
- .
Now, writing out in full,
and also
- .
This then requires Q to be of the form
- .
By definition of tensor product,
1 |
So we can write
Thus
Incorporating (1), we have
- .
See also
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.