TRPM5
Protein-coding gene in the species Homo sapiens From Wikipedia, the free encyclopedia
Transient receptor potential cation channel subfamily M member 5 (TRPM5), also known as long transient receptor potential channel 5 is a protein that in humans is encoded by the TRPM5 gene.[5][6]
TRPM5 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | TRPM5, LTRPC5, MTR1, transient receptor potential cation channel subfamily M member 5 | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 604600; MGI: 1861718; HomoloGene: 22818; GeneCards: TRPM5; OMA:TRPM5 - orthologs | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Function
TRPM5 is a calcium-activated non-selective cation channel that induces depolarization upon increases in intracellular calcium, it is a signal mediator in chemosensory cells. Channel activity is initiated by a rise in the intracellular calcium, and the channel permeates monovalent cations as K+ and Na+. TRPM5 is a key component of taste transduction in the gustatory system of bitter, sweet and umami tastes being activated by high levels of intracellular calcium. It has also been targeted as a possible contributor to fat taste signaling.[7][8] The calcium dependent opening of TRPM5 produces a depolarizing generator potential which leads to an action potential.[9]
TRPM5 is expressed in pancreatic β-cells[10] where it is involved in the signaling mechanism for insulin secretion. The potentiation of TRPM5 in the β-cells leads to increased insulin secretion and protects against the development of type 2 diabetes in mice.[11] Further expression of TRPM5 can be found in tuft cells,[12] solitary chemosensory cells and several other cell types in the body that have a sensory role.
Drugs modulating TRPM5
Summarize
Perspective
The role of TRPM5 in the pancreatic β-cell makes it a target for the development of novel antidiabetic therapies.[13]
Agonists
- Steviol glycosides, the sweet compounds in the leaves of the Stevia rebaudiana plant, potentiate the calcium-induced activity of TRPM5. In this way they stimulate the glucose-induced insulin secretion from the pancreatic β-cell.[11]
- Rutamarin, a phytochemical found in Ruta graveolens has been identified as an activator of several TRP channels, including TRPM5 and TRPV1 and inhibits the activity of TRPM8.[14]
Antagonists
Selective blocking agents of TRPM5 ion channels can be used to identify TRPM5 currents in primary cells. Most identified compounds show, however, a poor selectivity between TRPM4 and TRPM5 or other ion channels.
- TPPO or TriPhenylPhosphineOxide is the most selective blocker of TRPM5 however, its application suffers due to a poor solubility.[15]
- Ketoconazole is an antifungal drug that inhibits TRPM5 activity.[16]
- Flufenamic Acid is an NSAID drug that inhibits the activity of TRPM5 or TRPM4.[17]
- Clotrimazole is an antifungal drug and reduces the currents through TRPM5.[17]
- Nicotine inhibits the TRPM5 channel. Through the inhibition of TRPM5, the taste loss observed in people with a smoking habit can be explained.[18]
See also
References
Further reading
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.