From 50c1d55a34ae01049c3a0f8d549c55203bf88da7 Mon Sep 17 00:00:00 2001 From: ZouJiu1 <1069679911@qq.com> Date: Tue, 8 Aug 2023 16:16:45 +0800 Subject: [PATCH 01/11] if one anchor is asigned to multi label, then should choose the max iou truth label --- include/darknet.h | 15 +++++- src/yolo_layer.c | 130 +++++++++++++++++++++++++--------------------- 2 files changed, 86 insertions(+), 59 deletions(-) diff --git a/include/darknet.h b/include/darknet.h index 2517d3fbd05..018f6893183 100644 --- a/include/darknet.h +++ b/include/darknet.h @@ -101,7 +101,6 @@ typedef struct tree { int *group_offset; } tree; - // activations.h typedef enum { LOGISTIC, RELU, RELU6, RELIE, LINEAR, RAMP, TANH, PLSE, REVLEAKY, LEAKY, ELU, LOGGY, STAIR, HARDTAN, LHTAN, SELU, GELU, SWISH, MISH, HARD_MISH, NORM_CHAN, NORM_CHAN_SOFTMAX, NORM_CHAN_SOFTMAX_MAXVAL @@ -912,6 +911,20 @@ typedef struct detection{ int track_id; } detection; +// multi_label_one_anchor_choose_maxiou +typedef struct mloam { + box truth; + int use_or_not; + float best_iou; + int x; + int y; + int class_id; + int track_id; + int best_n; + int mask_n; + int t; +} mloam; + // network.c -batch inference typedef struct det_num_pair { int num; diff --git a/src/yolo_layer.c b/src/yolo_layer.c index 0eae2fc8feb..4864328e06e 100644 --- a/src/yolo_layer.c +++ b/src/yolo_layer.c @@ -4,6 +4,7 @@ #include "box.h" #include "dark_cuda.h" #include "utils.h" +#include "darknet.h" #include #include @@ -384,6 +385,7 @@ typedef struct train_yolo_args { float tot_iou_loss; int count; int class_count; + mloam* mloam_ptr; } train_yolo_args; void *process_batch(void* ptr) @@ -505,6 +507,8 @@ void *process_batch(void* ptr) } } } + mloam* mloam_ptr = args->mloam_ptr; // multi_label_one_anchor_choose_maxiou + int number = 0; for (t = 0; t < l.max_boxes; ++t) { box truth = float_to_box_stride(state.truth + t * l.truth_size + b * l.truths, 1); if (!truth.x) break; // continue; @@ -539,19 +543,79 @@ void *process_batch(void* ptr) if (mask_n >= 0) { int class_id = state.truth[t * l.truth_size + b * l.truths + 4]; if (l.map) class_id = l.map[class_id]; + if(number==0) { + mloam choose = {truth, 1, best_iou, i, j, class_id, 1, best_n, mask_n, t}; + mloam_ptr[number++] = choose; + } + for(int mi = 0; mi < number; mi++) { + mloam mp = mloam_ptr[mi]; + if(mp.mask_n == mask_n && mp.use_or_not > 0 && mp.best_iou < best_iou) { + mloam choose = {truth, 1, best_iou, i, j, class_id, 1, best_n, mask_n, t}; + mloam_ptr[number++] = choose; + mp.use_or_not = -6; + break; + } + } + } + // iou_thresh + for (n = 0; n < l.total; ++n) { + int mask_n = int_index(l.mask, n, l.n); + if (mask_n >= 0 && n != best_n && l.iou_thresh < 1.0f) { + box pred = { 0 }; + pred.w = l.biases[2 * n] / state.net.w; + pred.h = l.biases[2 * n + 1] / state.net.h; + float iou = box_iou_kind(pred, truth_shift, l.iou_thresh_kind); // IOU, GIOU, MSE, DIOU, CIOU + // iou, n + + if (iou > l.iou_thresh) { + int class_id = state.truth[t * l.truth_size + b * l.truths + 4]; + if (l.map) class_id = l.map[class_id]; + if(number==0) { + mloam choose = {truth, 1, best_iou, i, j, class_id, 1, best_n, mask_n, t}; + mloam_ptr[number++] = choose; + } + for(int mi = 0; mi < number; mi++) { + mloam mp = mloam_ptr[mi]; + if(mp.mask_n == mask_n && mp.use_or_not > 0 && mp.best_iou < iou) { + mloam choose = {truth, 1, iou, i, j, class_id, -1, n, mask_n, t}; + mloam_ptr[number++] = choose; + mp.use_or_not = -6; + break; + } + } + } + } + } + } + for(int ni = 0; ni < number; ni++) { + mloam mp = mloam_ptr[ni]; + box truth = mp.truth; + int use_or_not = mp.use_or_not; + float best_iou = mp.best_iou; + int i = mp.x; + int j = mp.y; + int class_id = mp.class_id; + int track_id = mp.track_id; + int best_n = mp.best_n; + int mask_n = mp.mask_n; + int t = mp.t; + if (use_or_not > 0) { + int class_id = state.truth[t * l.truth_size + b * l.truths + 4]; + if (l.map) class_id = l.map[class_id]; int box_index = entry_index(l, b, mask_n * l.w * l.h + j * l.w + i, 0); const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f; ious all_ious = delta_yolo_box(truth, l.output, l.biases, best_n, box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2 - truth.w * truth.h), l.w * l.h, l.iou_normalizer * class_multiplier, l.iou_loss, 1, l.max_delta, state.net.rewritten_bbox, l.new_coords); (*state.net.total_bbox)++; - const int truth_in_index = t * l.truth_size + b * l.truths + 5; - const int track_id = state.truth[truth_in_index]; - const int truth_out_index = b * l.n * l.w * l.h + mask_n * l.w * l.h + j * l.w + i; - l.labels[truth_out_index] = track_id; - l.class_ids[truth_out_index] = class_id; - //printf(" track_id = %d, t = %d, b = %d, truth_in_index = %d, truth_out_index = %d \n", track_id, t, b, truth_in_index, truth_out_index); - + if(track_id > 0) { + const int truth_in_index = t * l.truth_size + b * l.truths + 5; + const int track_id = state.truth[truth_in_index]; + const int truth_out_index = b * l.n * l.w * l.h + mask_n * l.w * l.h + j * l.w + i; + l.labels[truth_out_index] = track_id; + l.class_ids[truth_out_index] = class_id; + //printf(" track_id = %d, t = %d, b = %d, truth_in_index = %d, truth_out_index = %d \n", track_id, t, b, truth_in_index, truth_out_index); + } // range is 0 <= 1 args->tot_iou += all_ious.iou; args->tot_iou_loss += 1 - all_ious.iou; @@ -584,57 +648,6 @@ void *process_batch(void* ptr) if (all_ious.iou > .5) recall += 1; if (all_ious.iou > .75) recall75 += 1; } - - // iou_thresh - for (n = 0; n < l.total; ++n) { - int mask_n = int_index(l.mask, n, l.n); - if (mask_n >= 0 && n != best_n && l.iou_thresh < 1.0f) { - box pred = { 0 }; - pred.w = l.biases[2 * n] / state.net.w; - pred.h = l.biases[2 * n + 1] / state.net.h; - float iou = box_iou_kind(pred, truth_shift, l.iou_thresh_kind); // IOU, GIOU, MSE, DIOU, CIOU - // iou, n - - if (iou > l.iou_thresh) { - int class_id = state.truth[t * l.truth_size + b * l.truths + 4]; - if (l.map) class_id = l.map[class_id]; - - int box_index = entry_index(l, b, mask_n * l.w * l.h + j * l.w + i, 0); - const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f; - ious all_ious = delta_yolo_box(truth, l.output, l.biases, n, box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2 - truth.w * truth.h), l.w * l.h, l.iou_normalizer * class_multiplier, l.iou_loss, 1, l.max_delta, state.net.rewritten_bbox, l.new_coords); - (*state.net.total_bbox)++; - - // range is 0 <= 1 - args->tot_iou += all_ious.iou; - args->tot_iou_loss += 1 - all_ious.iou; - // range is -1 <= giou <= 1 - tot_giou += all_ious.giou; - args->tot_giou_loss += 1 - all_ious.giou; - - tot_diou += all_ious.diou; - tot_diou_loss += 1 - all_ious.diou; - - tot_ciou += all_ious.ciou; - tot_ciou_loss += 1 - all_ious.ciou; - - int obj_index = entry_index(l, b, mask_n * l.w * l.h + j * l.w + i, 4); - avg_obj += l.output[obj_index]; - if (l.objectness_smooth) { - float delta_obj = class_multiplier * l.obj_normalizer * (1 - l.output[obj_index]); - if (l.delta[obj_index] == 0) l.delta[obj_index] = delta_obj; - } - else l.delta[obj_index] = class_multiplier * l.obj_normalizer * (1 - l.output[obj_index]); - - int class_index = entry_index(l, b, mask_n * l.w * l.h + j * l.w + i, 4 + 1); - delta_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w * l.h, &avg_cat, l.focal_loss, l.label_smooth_eps, l.classes_multipliers, l.cls_normalizer); - - ++(args->count); - ++(args->class_count); - if (all_ious.iou > .5) recall += 1; - if (all_ious.iou > .75) recall75 += 1; - } - } - } } if (l.iou_thresh < 1.0f) { @@ -726,6 +739,7 @@ void forward_yolo_layer(const layer l, network_state state) yolo_args[b].tot_giou_loss = 0; yolo_args[b].count = 0; yolo_args[b].class_count = 0; + yolo_args[b].mloam_ptr = (mloam *)xcalloc(l.max_boxes * 3 + 60, sizeof(mloam)); // multi_label_one_anchor_choose_maxiou if (pthread_create(&threads[b], 0, process_batch, &(yolo_args[b]))) error("Thread creation failed", DARKNET_LOC); } From 4320968ce2f15a652c65023e2fb26bb8b5002502 Mon Sep 17 00:00:00 2001 From: ZouJiu1 <1069679911@qq.com> Date: Tue, 8 Aug 2023 16:37:34 +0800 Subject: [PATCH 02/11] fix a mistake --- src/yolo_layer.c | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/yolo_layer.c b/src/yolo_layer.c index 4864328e06e..db7729e040c 100644 --- a/src/yolo_layer.c +++ b/src/yolo_layer.c @@ -571,7 +571,7 @@ void *process_batch(void* ptr) int class_id = state.truth[t * l.truth_size + b * l.truths + 4]; if (l.map) class_id = l.map[class_id]; if(number==0) { - mloam choose = {truth, 1, best_iou, i, j, class_id, 1, best_n, mask_n, t}; + mloam choose = {truth, 1, iou, i, j, class_id, -1, n, mask_n, t}; mloam_ptr[number++] = choose; } for(int mi = 0; mi < number; mi++) { From 4b72b929a5cdf6537e5957a79f1fb4bfa92d0aec Mon Sep 17 00:00:00 2001 From: ZouJiu <1069679911@qq.com> Date: Tue, 8 Aug 2023 16:59:41 +0800 Subject: [PATCH 03/11] remove duplicated parts and free xcalloc ptr --- include/darknet.h | 1 - 1 file changed, 1 deletion(-) diff --git a/include/darknet.h b/include/darknet.h index 018f6893183..1f9afedee06 100644 --- a/include/darknet.h +++ b/include/darknet.h @@ -918,7 +918,6 @@ typedef struct mloam { float best_iou; int x; int y; - int class_id; int track_id; int best_n; int mask_n; From f305bf6408f9923ede8f4ad31016a5d0c78a349e Mon Sep 17 00:00:00 2001 From: ZouJiu <1069679911@qq.com> Date: Tue, 8 Aug 2023 17:18:27 +0800 Subject: [PATCH 04/11] remove duplicated parts and free xcalloc ptr --- src/yolo_layer.c | 15 +++++---------- 1 file changed, 5 insertions(+), 10 deletions(-) diff --git a/src/yolo_layer.c b/src/yolo_layer.c index db7729e040c..43fd18852e4 100644 --- a/src/yolo_layer.c +++ b/src/yolo_layer.c @@ -541,16 +541,14 @@ void *process_batch(void* ptr) int mask_n = int_index(l.mask, best_n, l.n); if (mask_n >= 0) { - int class_id = state.truth[t * l.truth_size + b * l.truths + 4]; - if (l.map) class_id = l.map[class_id]; if(number==0) { - mloam choose = {truth, 1, best_iou, i, j, class_id, 1, best_n, mask_n, t}; + mloam choose = {truth, 1, best_iou, i, j, 1, best_n, mask_n, t}; mloam_ptr[number++] = choose; } for(int mi = 0; mi < number; mi++) { mloam mp = mloam_ptr[mi]; if(mp.mask_n == mask_n && mp.use_or_not > 0 && mp.best_iou < best_iou) { - mloam choose = {truth, 1, best_iou, i, j, class_id, 1, best_n, mask_n, t}; + mloam choose = {truth, 1, best_iou, i, j, 1, best_n, mask_n, t}; mloam_ptr[number++] = choose; mp.use_or_not = -6; break; @@ -568,16 +566,14 @@ void *process_batch(void* ptr) // iou, n if (iou > l.iou_thresh) { - int class_id = state.truth[t * l.truth_size + b * l.truths + 4]; - if (l.map) class_id = l.map[class_id]; if(number==0) { - mloam choose = {truth, 1, iou, i, j, class_id, -1, n, mask_n, t}; + mloam choose = {truth, 1, iou, i, j, -1, n, mask_n, t}; mloam_ptr[number++] = choose; } for(int mi = 0; mi < number; mi++) { mloam mp = mloam_ptr[mi]; if(mp.mask_n == mask_n && mp.use_or_not > 0 && mp.best_iou < iou) { - mloam choose = {truth, 1, iou, i, j, class_id, -1, n, mask_n, t}; + mloam choose = {truth, 1, iou, i, j, -1, n, mask_n, t}; mloam_ptr[number++] = choose; mp.use_or_not = -6; break; @@ -591,10 +587,8 @@ void *process_batch(void* ptr) mloam mp = mloam_ptr[ni]; box truth = mp.truth; int use_or_not = mp.use_or_not; - float best_iou = mp.best_iou; int i = mp.x; int j = mp.y; - int class_id = mp.class_id; int track_id = mp.track_id; int best_n = mp.best_n; int mask_n = mp.mask_n; @@ -753,6 +747,7 @@ void forward_yolo_layer(const layer l, network_state state) tot_giou_loss += yolo_args[b].tot_giou_loss; count += yolo_args[b].count; class_count += yolo_args[b].class_count; + free(yolo_args[b].mloam_ptr); } free(yolo_args); From 7ddd724c9f6951647642879595a6579f18f4adee Mon Sep 17 00:00:00 2001 From: ZouJiu <1069679911@qq.com> Date: Tue, 8 Aug 2023 18:11:13 +0800 Subject: [PATCH 05/11] del use_or_not param --- src/yolo_layer.c | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/src/yolo_layer.c b/src/yolo_layer.c index 43fd18852e4..500b39a6d64 100644 --- a/src/yolo_layer.c +++ b/src/yolo_layer.c @@ -586,14 +586,13 @@ void *process_batch(void* ptr) for(int ni = 0; ni < number; ni++) { mloam mp = mloam_ptr[ni]; box truth = mp.truth; - int use_or_not = mp.use_or_not; int i = mp.x; int j = mp.y; int track_id = mp.track_id; int best_n = mp.best_n; int mask_n = mp.mask_n; int t = mp.t; - if (use_or_not > 0) { + if (mp.use_or_not > 0) { int class_id = state.truth[t * l.truth_size + b * l.truths + 4]; if (l.map) class_id = l.map[class_id]; From 8a7c413ff55b2fb0d1a2217936d4819d9a77b843 Mon Sep 17 00:00:00 2001 From: ZouJiu <1069679911@qq.com> Date: Wed, 9 Aug 2023 07:48:58 +0800 Subject: [PATCH 06/11] fix logical problem --- include/darknet.h | 1 - src/yolo_layer.c | 137 ++++++++++++++++++++++++++-------------------- 2 files changed, 77 insertions(+), 61 deletions(-) diff --git a/include/darknet.h b/include/darknet.h index 1f9afedee06..cec68e9de8e 100644 --- a/include/darknet.h +++ b/include/darknet.h @@ -914,7 +914,6 @@ typedef struct detection{ // multi_label_one_anchor_choose_maxiou typedef struct mloam { box truth; - int use_or_not; float best_iou; int x; int y; diff --git a/src/yolo_layer.c b/src/yolo_layer.c index 500b39a6d64..b8a571583ce 100644 --- a/src/yolo_layer.c +++ b/src/yolo_layer.c @@ -542,16 +542,25 @@ void *process_batch(void* ptr) int mask_n = int_index(l.mask, best_n, l.n); if (mask_n >= 0) { if(number==0) { - mloam choose = {truth, 1, best_iou, i, j, 1, best_n, mask_n, t}; + mloam choose = {truth, best_iou, i, j, 1, best_n, mask_n, t}; mloam_ptr[number++] = choose; } - for(int mi = 0; mi < number; mi++) { - mloam mp = mloam_ptr[mi]; - if(mp.mask_n == mask_n && mp.use_or_not > 0 && mp.best_iou < best_iou) { - mloam choose = {truth, 1, best_iou, i, j, 1, best_n, mask_n, t}; + else { + int markable = 666; + for(int mi = 0; mi < number; mi++) { + mloam mp = mloam_ptr[mi]; + if(mp.mask_n == mask_n && mp.x==i && mp.y==j) { + markable = -666; + if(mp.best_iou < best_iou) { + mloam choose = {truth, best_iou, i, j, 1, best_n, mask_n, t}; + mloam_ptr[mi] = choose; + break; + } + } + } + if(markable > 0) { + mloam choose = {truth, best_iou, i, j, 1, best_n, mask_n, t}; mloam_ptr[number++] = choose; - mp.use_or_not = -6; - break; } } } @@ -567,16 +576,25 @@ void *process_batch(void* ptr) if (iou > l.iou_thresh) { if(number==0) { - mloam choose = {truth, 1, iou, i, j, -1, n, mask_n, t}; + mloam choose = {truth, iou, i, j, -1, n, mask_n, t}; mloam_ptr[number++] = choose; } - for(int mi = 0; mi < number; mi++) { - mloam mp = mloam_ptr[mi]; - if(mp.mask_n == mask_n && mp.use_or_not > 0 && mp.best_iou < iou) { - mloam choose = {truth, 1, iou, i, j, -1, n, mask_n, t}; + else { + int markable = 666; + for(int mi = 0; mi < number; mi++) { + mloam mp = mloam_ptr[mi]; + if(mp.mask_n == mask_n && mp.x==i && mp.y==j) { + markable = -666; + if(mp.best_iou < iou) { + mloam choose = {truth, iou, i, j, -1, n, mask_n, t}; + mloam_ptr[mi] = choose; + break; + } + } + } + if(markable > 0) { + mloam choose = {truth, iou, i, j, -1, n, mask_n, t}; mloam_ptr[number++] = choose; - mp.use_or_not = -6; - break; } } } @@ -592,55 +610,54 @@ void *process_batch(void* ptr) int best_n = mp.best_n; int mask_n = mp.mask_n; int t = mp.t; - if (mp.use_or_not > 0) { - int class_id = state.truth[t * l.truth_size + b * l.truths + 4]; - if (l.map) class_id = l.map[class_id]; - - int box_index = entry_index(l, b, mask_n * l.w * l.h + j * l.w + i, 0); - const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f; - ious all_ious = delta_yolo_box(truth, l.output, l.biases, best_n, box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2 - truth.w * truth.h), l.w * l.h, l.iou_normalizer * class_multiplier, l.iou_loss, 1, l.max_delta, state.net.rewritten_bbox, l.new_coords); - (*state.net.total_bbox)++; - - if(track_id > 0) { - const int truth_in_index = t * l.truth_size + b * l.truths + 5; - const int track_id = state.truth[truth_in_index]; - const int truth_out_index = b * l.n * l.w * l.h + mask_n * l.w * l.h + j * l.w + i; - l.labels[truth_out_index] = track_id; - l.class_ids[truth_out_index] = class_id; - //printf(" track_id = %d, t = %d, b = %d, truth_in_index = %d, truth_out_index = %d \n", track_id, t, b, truth_in_index, truth_out_index); - } - // range is 0 <= 1 - args->tot_iou += all_ious.iou; - args->tot_iou_loss += 1 - all_ious.iou; - // range is -1 <= giou <= 1 - tot_giou += all_ious.giou; - args->tot_giou_loss += 1 - all_ious.giou; - - tot_diou += all_ious.diou; - tot_diou_loss += 1 - all_ious.diou; - - tot_ciou += all_ious.ciou; - tot_ciou_loss += 1 - all_ious.ciou; - - int obj_index = entry_index(l, b, mask_n * l.w * l.h + j * l.w + i, 4); - avg_obj += l.output[obj_index]; - if (l.objectness_smooth) { - float delta_obj = class_multiplier * l.obj_normalizer * (1 - l.output[obj_index]); - if (l.delta[obj_index] == 0) l.delta[obj_index] = delta_obj; - } - else l.delta[obj_index] = class_multiplier * l.obj_normalizer * (1 - l.output[obj_index]); - int class_index = entry_index(l, b, mask_n * l.w * l.h + j * l.w + i, 4 + 1); - delta_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w * l.h, &avg_cat, l.focal_loss, l.label_smooth_eps, l.classes_multipliers, l.cls_normalizer); + int class_id = state.truth[t * l.truth_size + b * l.truths + 4]; + if (l.map) class_id = l.map[class_id]; + + int box_index = entry_index(l, b, mask_n * l.w * l.h + j * l.w + i, 0); + const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f; + ious all_ious = delta_yolo_box(truth, l.output, l.biases, best_n, box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2 - truth.w * truth.h), l.w * l.h, l.iou_normalizer * class_multiplier, l.iou_loss, 1, l.max_delta, state.net.rewritten_bbox, l.new_coords); + (*state.net.total_bbox)++; + + if(track_id > 0) { + const int truth_in_index = t * l.truth_size + b * l.truths + 5; + const int track_id = state.truth[truth_in_index]; + const int truth_out_index = b * l.n * l.w * l.h + mask_n * l.w * l.h + j * l.w + i; + l.labels[truth_out_index] = track_id; + l.class_ids[truth_out_index] = class_id; + //printf(" track_id = %d, t = %d, b = %d, truth_in_index = %d, truth_out_index = %d \n", track_id, t, b, truth_in_index, truth_out_index); + } + // range is 0 <= 1 + args->tot_iou += all_ious.iou; + args->tot_iou_loss += 1 - all_ious.iou; + // range is -1 <= giou <= 1 + tot_giou += all_ious.giou; + args->tot_giou_loss += 1 - all_ious.giou; + + tot_diou += all_ious.diou; + tot_diou_loss += 1 - all_ious.diou; + + tot_ciou += all_ious.ciou; + tot_ciou_loss += 1 - all_ious.ciou; + + int obj_index = entry_index(l, b, mask_n * l.w * l.h + j * l.w + i, 4); + avg_obj += l.output[obj_index]; + if (l.objectness_smooth) { + float delta_obj = class_multiplier * l.obj_normalizer * (1 - l.output[obj_index]); + if (l.delta[obj_index] == 0) l.delta[obj_index] = delta_obj; + } + else l.delta[obj_index] = class_multiplier * l.obj_normalizer * (1 - l.output[obj_index]); + + int class_index = entry_index(l, b, mask_n * l.w * l.h + j * l.w + i, 4 + 1); + delta_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w * l.h, &avg_cat, l.focal_loss, l.label_smooth_eps, l.classes_multipliers, l.cls_normalizer); - //printf(" label: class_id = %d, truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f \n", class_id, truth.x, truth.y, truth.w, truth.h); - //printf(" mask_n = %d, l.output[obj_index] = %f, l.output[class_index + class_id] = %f \n\n", mask_n, l.output[obj_index], l.output[class_index + class_id]); + //printf(" label: class_id = %d, truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f \n", class_id, truth.x, truth.y, truth.w, truth.h); + //printf(" mask_n = %d, l.output[obj_index] = %f, l.output[class_index + class_id] = %f \n\n", mask_n, l.output[obj_index], l.output[class_index + class_id]); - ++(args->count); - ++(args->class_count); - if (all_ious.iou > .5) recall += 1; - if (all_ious.iou > .75) recall75 += 1; - } + ++(args->count); + ++(args->class_count); + if (all_ious.iou > .5) recall += 1; + if (all_ious.iou > .75) recall75 += 1; } if (l.iou_thresh < 1.0f) { From 638206a4682891e2577efa426a9f6587833b22d0 Mon Sep 17 00:00:00 2001 From: ZouJiu1 <34758215+ZouJiu1@users.noreply.github.com> Date: Fri, 11 Aug 2023 20:19:24 +0800 Subject: [PATCH 07/11] Create yolo_layer.cc --- src/yolo_layer.cc | 1124 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1124 insertions(+) create mode 100644 src/yolo_layer.cc diff --git a/src/yolo_layer.cc b/src/yolo_layer.cc new file mode 100644 index 00000000000..423ca8f980c --- /dev/null +++ b/src/yolo_layer.cc @@ -0,0 +1,1124 @@ +#include "yolo_layer.h" +#include "activations.h" +#include "blas.h" +#include "box.h" +#include "dark_cuda.h" +#include "utils.h" +#include "darknet.h" + +#include +#include +#include +#include +#include + +extern int check_mistakes; + +layer make_yolo_layer(int batch, int w, int h, int n, int total, int *mask, int classes, int max_boxes) +{ + int i; + layer l = { (LAYER_TYPE)0 }; + l.type = YOLO; + + l.n = n; + l.total = total; + l.batch = batch; + l.h = h; + l.w = w; + l.c = n*(classes + 4 + 1); + l.out_w = l.w; + l.out_h = l.h; + l.out_c = l.c; + l.classes = classes; + l.cost = (float*)xcalloc(1, sizeof(float)); + l.biases = (float*)xcalloc(total * 2, sizeof(float)); + if(mask) l.mask = mask; + else{ + l.mask = (int*)xcalloc(n, sizeof(int)); + for(i = 0; i < n; ++i){ + l.mask[i] = i; + } + } + l.bias_updates = (float*)xcalloc(n * 2, sizeof(float)); + l.outputs = h*w*n*(classes + 4 + 1); + l.inputs = l.outputs; + l.max_boxes = max_boxes; + l.truth_size = 4 + 2; + l.truths = l.max_boxes*l.truth_size; // 90*(4 + 1); + l.labels = (int*)xcalloc(batch * l.w*l.h*l.n, sizeof(int)); + for (i = 0; i < batch * l.w*l.h*l.n; ++i) l.labels[i] = -1; + l.class_ids = (int*)xcalloc(batch * l.w*l.h*l.n, sizeof(int)); + for (i = 0; i < batch * l.w*l.h*l.n; ++i) l.class_ids[i] = -1; + + l.delta = (float*)xcalloc(batch * l.outputs, sizeof(float)); + l.output = (float*)xcalloc(batch * l.outputs, sizeof(float)); + for(i = 0; i < total*2; ++i){ + l.biases[i] = .5; + } + + l.forward = forward_yolo_layer; + l.backward = backward_yolo_layer; +#ifdef GPU + l.forward_gpu = forward_yolo_layer_gpu; + l.backward_gpu = backward_yolo_layer_gpu; + l.output_gpu = cuda_make_array(l.output, batch*l.outputs); + l.output_avg_gpu = cuda_make_array(l.output, batch*l.outputs); + l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs); + + free(l.output); + if (cudaSuccess == cudaHostAlloc(&l.output, batch*l.outputs*sizeof(float), cudaHostRegisterMapped)) l.output_pinned = 1; + else { + cudaGetLastError(); // reset CUDA-error + l.output = (float*)xcalloc(batch * l.outputs, sizeof(float)); + } + + free(l.delta); + if (cudaSuccess == cudaHostAlloc(&l.delta, batch*l.outputs*sizeof(float), cudaHostRegisterMapped)) l.delta_pinned = 1; + else { + cudaGetLastError(); // reset CUDA-error + l.delta = (float*)xcalloc(batch * l.outputs, sizeof(float)); + } +#endif + + fprintf(stderr, "yolo\n"); + srand(time(0)); + + return l; +} + +void resize_yolo_layer(layer *l, int w, int h) +{ + l->w = w; + l->h = h; + + l->outputs = h*w*l->n*(l->classes + 4 + 1); + l->inputs = l->outputs; + + if (l->embedding_output) l->embedding_output = (float*)xrealloc(l->output, l->batch * l->embedding_size * l->n * l->h * l->w * sizeof(float)); + if (l->labels) l->labels = (int*)xrealloc(l->labels, l->batch * l->n * l->h * l->w * sizeof(int)); + if (l->class_ids) l->class_ids = (int*)xrealloc(l->class_ids, l->batch * l->n * l->h * l->w * sizeof(int)); + + if (!l->output_pinned) l->output = (float*)xrealloc(l->output, l->batch*l->outputs * sizeof(float)); + if (!l->delta_pinned) l->delta = (float*)xrealloc(l->delta, l->batch*l->outputs*sizeof(float)); + +#ifdef GPU + if (l->output_pinned) { + CHECK_CUDA(cudaFreeHost(l->output)); + if (cudaSuccess != cudaHostAlloc(&l->output, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) { + cudaGetLastError(); // reset CUDA-error + l->output = (float*)xcalloc(l->batch * l->outputs, sizeof(float)); + l->output_pinned = 0; + } + } + + if (l->delta_pinned) { + CHECK_CUDA(cudaFreeHost(l->delta)); + if (cudaSuccess != cudaHostAlloc(&l->delta, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) { + cudaGetLastError(); // reset CUDA-error + l->delta = (float*)xcalloc(l->batch * l->outputs, sizeof(float)); + l->delta_pinned = 0; + } + } + + cuda_free(l->delta_gpu); + cuda_free(l->output_gpu); + cuda_free(l->output_avg_gpu); + + l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs); + l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs); + l->output_avg_gpu = cuda_make_array(l->output, l->batch*l->outputs); +#endif +} + +box get_yolo_box(float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, int stride, int new_coords) +{ + box b; + // ln - natural logarithm (base = e) + // x` = t.x * lw - i; // x = ln(x`/(1-x`)) // x - output of previous conv-layer + // y` = t.y * lh - i; // y = ln(y`/(1-y`)) // y - output of previous conv-layer + // w = ln(t.w * net.w / anchors_w); // w - output of previous conv-layer + // h = ln(t.h * net.h / anchors_h); // h - output of previous conv-layer + if (new_coords) { + b.x = (i + x[index + 0 * stride]) / lw; + b.y = (j + x[index + 1 * stride]) / lh; + b.w = x[index + 2 * stride] * x[index + 2 * stride] * 4 * biases[2 * n] / w; + b.h = x[index + 3 * stride] * x[index + 3 * stride] * 4 * biases[2 * n + 1] / h; + } + else { + b.x = (i + x[index + 0 * stride]) / lw; + b.y = (j + x[index + 1 * stride]) / lh; + b.w = exp(x[index + 2 * stride]) * biases[2 * n] / w; + b.h = exp(x[index + 3 * stride]) * biases[2 * n + 1] / h; + } + return b; +} + +static inline float fix_nan_inf(float val) +{ + if (isnan(val) || isinf(val)) val = 0; + return val; +} + +static inline float clip_value(float val, const float max_val) +{ + if (val > max_val) { + //printf("\n val = %f > max_val = %f \n", val, max_val); + val = max_val; + } + else if (val < -max_val) { + //printf("\n val = %f < -max_val = %f \n", val, -max_val); + val = -max_val; + } + return val; +} + +ious delta_yolo_box(box truth, float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, float *delta, float scale, int stride, float iou_normalizer, IOU_LOSS iou_loss, int accumulate, float max_delta, int *rewritten_bbox, int new_coords) +{ + if (delta[index + 0 * stride] || delta[index + 1 * stride] || delta[index + 2 * stride] || delta[index + 3 * stride]) { + (*rewritten_bbox)++; + } + + ious all_ious = { 0 }; + // i - step in layer width + // j - step in layer height + // Returns a box in absolute coordinates + box pred = get_yolo_box(x, biases, n, index, i, j, lw, lh, w, h, stride, new_coords); + all_ious.iou = box_iou(pred, truth); + all_ious.giou = box_giou(pred, truth); + all_ious.diou = box_diou(pred, truth); + all_ious.ciou = box_ciou(pred, truth); + // avoid nan in dx_box_iou + if (pred.w == 0) { pred.w = 1.0; } + if (pred.h == 0) { pred.h = 1.0; } + if (iou_loss == MSE) // old loss + { + float tx = (truth.x*lw - i); + float ty = (truth.y*lh - j); + float tw = log(truth.w*w / biases[2 * n]); + float th = log(truth.h*h / biases[2 * n + 1]); + + if (new_coords) { + //tx = (truth.x*lw - i + 0.5) / 2; + //ty = (truth.y*lh - j + 0.5) / 2; + tw = sqrt(truth.w*w / (4 * biases[2 * n])); + th = sqrt(truth.h*h / (4 * biases[2 * n + 1])); + } + + //printf(" tx = %f, ty = %f, tw = %f, th = %f \n", tx, ty, tw, th); + //printf(" x = %f, y = %f, w = %f, h = %f \n", x[index + 0 * stride], x[index + 1 * stride], x[index + 2 * stride], x[index + 3 * stride]); + + // accumulate delta + delta[index + 0 * stride] += scale * (tx - x[index + 0 * stride]) * iou_normalizer; + delta[index + 1 * stride] += scale * (ty - x[index + 1 * stride]) * iou_normalizer; + delta[index + 2 * stride] += scale * (tw - x[index + 2 * stride]) * iou_normalizer; + delta[index + 3 * stride] += scale * (th - x[index + 3 * stride]) * iou_normalizer; + } + else { + // https://github.com/generalized-iou/g-darknet + // https://arxiv.org/abs/1902.09630v2 + // https://giou.stanford.edu/ + all_ious.dx_iou = dx_box_iou(pred, truth, iou_loss); + + // jacobian^t (transpose) + //float dx = (all_ious.dx_iou.dl + all_ious.dx_iou.dr); + //float dy = (all_ious.dx_iou.dt + all_ious.dx_iou.db); + //float dw = ((-0.5 * all_ious.dx_iou.dl) + (0.5 * all_ious.dx_iou.dr)); + //float dh = ((-0.5 * all_ious.dx_iou.dt) + (0.5 * all_ious.dx_iou.db)); + + // jacobian^t (transpose) + float dx = all_ious.dx_iou.dt; + float dy = all_ious.dx_iou.db; + float dw = all_ious.dx_iou.dl; + float dh = all_ious.dx_iou.dr; + + + // predict exponential, apply gradient of e^delta_t ONLY for w,h + if (new_coords) { + //dw *= 8 * x[index + 2 * stride]; + //dh *= 8 * x[index + 3 * stride]; + //dw *= 8 * x[index + 2 * stride] * biases[2 * n] / w; + //dh *= 8 * x[index + 3 * stride] * biases[2 * n + 1] / h; + + //float grad_w = 8 * exp(-x[index + 2 * stride]) / pow(exp(-x[index + 2 * stride]) + 1, 3); + //float grad_h = 8 * exp(-x[index + 3 * stride]) / pow(exp(-x[index + 3 * stride]) + 1, 3); + //dw *= grad_w; + //dh *= grad_h; + } + else { + dw *= exp(x[index + 2 * stride]); + dh *= exp(x[index + 3 * stride]); + } + + + //dw *= exp(x[index + 2 * stride]); + //dh *= exp(x[index + 3 * stride]); + + // normalize iou weight + dx *= iou_normalizer; + dy *= iou_normalizer; + dw *= iou_normalizer; + dh *= iou_normalizer; + + + dx = fix_nan_inf(dx); + dy = fix_nan_inf(dy); + dw = fix_nan_inf(dw); + dh = fix_nan_inf(dh); + + if (max_delta != FLT_MAX) { + dx = clip_value(dx, max_delta); + dy = clip_value(dy, max_delta); + dw = clip_value(dw, max_delta); + dh = clip_value(dh, max_delta); + } + + + if (!accumulate) { + delta[index + 0 * stride] = 0; + delta[index + 1 * stride] = 0; + delta[index + 2 * stride] = 0; + delta[index + 3 * stride] = 0; + } + + // accumulate delta + delta[index + 0 * stride] += dx; + delta[index + 1 * stride] += dy; + delta[index + 2 * stride] += dw; + delta[index + 3 * stride] += dh; + } + + return all_ious; +} + +void averages_yolo_deltas(int class_index, int box_index, int stride, int classes, float *delta) +{ + + int classes_in_one_box = 0; + int c; + for (c = 0; c < classes; ++c) { + if (delta[class_index + stride*c] > 0) classes_in_one_box++; + } + + if (classes_in_one_box > 0) { + delta[box_index + 0 * stride] /= classes_in_one_box; + delta[box_index + 1 * stride] /= classes_in_one_box; + delta[box_index + 2 * stride] /= classes_in_one_box; + delta[box_index + 3 * stride] /= classes_in_one_box; + } +} + +void delta_yolo_class(float *output, float *delta, int index, int class_id, int classes, int stride, float *avg_cat, int focal_loss, float label_smooth_eps, float *classes_multipliers, float cls_normalizer) +{ + int n; + if (delta[index + stride*class_id]){ + float y_true = 1; + if(label_smooth_eps) y_true = y_true * (1 - label_smooth_eps) + 0.5*label_smooth_eps; + float result_delta = y_true - output[index + stride*class_id]; + if(!isnan(result_delta) && !isinf(result_delta)) delta[index + stride*class_id] = result_delta; + //delta[index + stride*class_id] = 1 - output[index + stride*class_id]; + + if (classes_multipliers) delta[index + stride*class_id] *= classes_multipliers[class_id]; + if(avg_cat) *avg_cat += output[index + stride*class_id]; + return; + } + // Focal loss + if (focal_loss) { + // Focal Loss + float alpha = 0.5; // 0.25 or 0.5 + //float gamma = 2; // hardcoded in many places of the grad-formula + + int ti = index + stride*class_id; + float pt = output[ti] + 0.000000000000001F; + // http://fooplot.com/#W3sidHlwZSI6MCwiZXEiOiItKDEteCkqKDIqeCpsb2coeCkreC0xKSIsImNvbG9yIjoiIzAwMDAwMCJ9LHsidHlwZSI6MTAwMH1d + float grad = -(1 - pt) * (2 * pt*logf(pt) + pt - 1); // http://blog.csdn.net/linmingan/article/details/77885832 + //float grad = (1 - pt) * (2 * pt*logf(pt) + pt - 1); // https://github.com/unsky/focal-loss + + for (n = 0; n < classes; ++n) { + delta[index + stride*n] = (((n == class_id) ? 1 : 0) - output[index + stride*n]); + + delta[index + stride*n] *= alpha*grad; + + if (n == class_id && avg_cat) *avg_cat += output[index + stride*n]; + } + } + else { + // default + for (n = 0; n < classes; ++n) { + float y_true = ((n == class_id) ? 1 : 0); + if (label_smooth_eps) y_true = y_true * (1 - label_smooth_eps) + 0.5*label_smooth_eps; + float result_delta = y_true - output[index + stride*n]; + if (!isnan(result_delta) && !isinf(result_delta)) delta[index + stride*n] = result_delta; + + if (classes_multipliers && n == class_id) delta[index + stride*class_id] *= classes_multipliers[class_id] * cls_normalizer; + if (n == class_id && avg_cat) *avg_cat += output[index + stride*n]; + } + } +} + +int compare_yolo_class(float *output, int classes, int class_index, int stride, float objectness, int class_id, float conf_thresh) +{ + int j; + for (j = 0; j < classes; ++j) { + //float prob = objectness * output[class_index + stride*j]; + float prob = output[class_index + stride*j]; + if (prob > conf_thresh) { + return 1; + } + } + return 0; +} + +static int entry_index(layer l, int batch, int location, int entry) +{ + int n = location / (l.w*l.h); + int loc = location % (l.w*l.h); + return batch*l.outputs + n*l.w*l.h*(4+l.classes+1) + entry*l.w*l.h + loc; +} + +typedef struct train_yolo_args { + layer l; + network_state state; + int b; + + float tot_iou; + float tot_giou_loss; + float tot_iou_loss; + int count; + int class_count; + mloam* mloam_ptr; +} train_yolo_args; + +void *process_batch(void* ptr) +{ + { + train_yolo_args *args = (train_yolo_args*)ptr; + const layer l = args->l; + network_state state = args->state; + int b = args->b; + + int i, j, t, n, ln, x, y; + + //printf(" b = %d \n", b, b); + + //float tot_iou = 0; + float tot_giou = 0; + float tot_diou = 0; + float tot_ciou = 0; + //float tot_iou_loss = 0; + //float tot_giou_loss = 0; + float tot_diou_loss = 0; + float tot_ciou_loss = 0; + float recall = 0; + float recall75 = 0; + float avg_cat = 0; + float avg_obj = 0; + float avg_anyobj = 0; + //int count = 0; + //int class_count = 0; + mloam* mloam_ptr = args->mloam_ptr; // multi_label_one_anchor_choose_maxiou + int number = 0; + float* maxiou = (float *)xcalloc(l.max_boxes, sizeof(float)); + for (t = 0; t < l.max_boxes; ++t) { + box truth = float_to_box_stride(state.truth + t * l.truth_size + b * l.truths, 1); + if (!truth.x) break; // continue; + if (truth.x < 0 || truth.y < 0 || truth.x > 1 || truth.y > 1 || truth.w < 0 || truth.h < 0) { + char buff[256]; + printf(" Wrong label: truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f \n", truth.x, truth.y, truth.w, truth.h); + sprintf(buff, "echo \"Wrong label: truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f\" >> bad_label.list", + truth.x, truth.y, truth.w, truth.h); + system(buff); + } + int class_id = state.truth[t * l.truth_size + b * l.truths + 4]; + if (class_id >= l.classes || class_id < 0) continue; // if label contains class_id more than number of classes in the cfg-file and class_id check garbage value + + // x = (truth.x * l.w); + // y = (truth.y * l.h); + box truth_shift = truth; + // truth_shift.x = truth_shift.y = 0; + for (ln = 0; ln < l.total; ++ln) { + int n = int_index(l.mask, ln, l.n); + if (n >= 0) { + box pred = { 0 }; + pred.w = l.biases[2 * ln] / state.net.w; + pred.h = l.biases[2 * ln + 1] / state.net.h; + for (j = 0; j < l.h; ++j) { + for (i = 0; i < l.w; ++i) { + pred.x = i / (float)(l.w); + pred.y = j / (float)(l.h); + float iou = box_iou_kind(pred, truth_shift, l.iou_thresh_kind); // IOU, GIOU, MSE, DIOU, CIOU + + const int obj_index = entry_index(l, b, n * l.w * l.h + j * l.w + i, 4); + l.delta[obj_index] = l.obj_normalizer * (0 - l.output[obj_index]); + if(iou > 0.3) { + if(number==0) { + mloam choose = {truth, iou, i, j, 1, ln, n, t}; + mloam_ptr[number++] = choose; + if(iou > maxiou[t]) { + maxiou[t] = iou; + } + } + else { + int markable = 666; + for(int mi = 0; mi < number; mi++) { + mloam mp = mloam_ptr[mi]; + if(mp.mask_n == n && mp.x==i && mp.y==j) { + markable = -666; + if(mp.best_iou < iou) { + mloam choose = {truth, iou, i, j, 1, ln, n, t}; + mloam_ptr[mi] = choose; + if(iou > maxiou[t]) { + maxiou[t] = iou; + } + break; + } + } + } + if(markable > 0) { + mloam choose = {truth, iou, i, j, 1, ln, n, t}; + mloam_ptr[number++] = choose; + if(iou > maxiou[t]) { + maxiou[t] = iou; + } + } + } + } + } + } + } + } + } + + for(int ni = 0; ni < number; ni++) { + mloam mp = mloam_ptr[ni]; + box truth = mp.truth; + int i = mp.x; + int j = mp.y; + int track_id = mp.track_id; + int best_n = mp.best_n; + int mask_n = mp.mask_n; + int t = mp.t; + float iou_scale = mp.best_iou / maxiou[t]; + // printf("%f", iou_scale); + int class_id = state.truth[t * l.truth_size + b * l.truths + 4]; + if (l.map) class_id = l.map[class_id]; + + int box_index = entry_index(l, b, mask_n * l.w * l.h + j * l.w + i, 0); + const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f; + ious all_ious = delta_yolo_box(truth, l.output, l.biases, best_n, box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2 - truth.w * truth.h), l.w * l.h, l.iou_normalizer * class_multiplier * iou_scale, l.iou_loss, 1, l.max_delta, state.net.rewritten_bbox, l.new_coords); + (*state.net.total_bbox)++; + + if(track_id > 0) { + const int truth_in_index = t * l.truth_size + b * l.truths + 5; + const int track_id = state.truth[truth_in_index]; + const int truth_out_index = b * l.n * l.w * l.h + mask_n * l.w * l.h + j * l.w + i; + l.labels[truth_out_index] = track_id; + l.class_ids[truth_out_index] = class_id; + //printf(" track_id = %d, t = %d, b = %d, truth_in_index = %d, truth_out_index = %d \n", track_id, t, b, truth_in_index, truth_out_index); + } + // range is 0 <= 1 + args->tot_iou += all_ious.iou; + args->tot_iou_loss += 1 - all_ious.iou; + // range is -1 <= giou <= 1 + tot_giou += all_ious.giou; + args->tot_giou_loss += 1 - all_ious.giou; + + tot_diou += all_ious.diou; + tot_diou_loss += 1 - all_ious.diou; + + tot_ciou += all_ious.ciou; + tot_ciou_loss += 1 - all_ious.ciou; + + int obj_index = entry_index(l, b, mask_n * l.w * l.h + j * l.w + i, 4); + avg_obj += l.output[obj_index]; + if (l.objectness_smooth) { + float delta_obj = class_multiplier * l.obj_normalizer * (1 - l.output[obj_index]) * iou_scale; + if (l.delta[obj_index] == 0) l.delta[obj_index] = delta_obj; + } + else l.delta[obj_index] = class_multiplier * l.obj_normalizer * (1 - l.output[obj_index]) * iou_scale; + + int class_index = entry_index(l, b, mask_n * l.w * l.h + j * l.w + i, 4 + 1); + delta_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w * l.h, &avg_cat, l.focal_loss, l.label_smooth_eps, l.classes_multipliers, l.cls_normalizer * iou_scale); + + //printf(" label: class_id = %d, truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f \n", class_id, truth.x, truth.y, truth.w, truth.h); + //printf(" mask_n = %d, l.output[obj_index] = %f, l.output[class_index + class_id] = %f \n\n", mask_n, l.output[obj_index], l.output[class_index + class_id]); + + ++(args->count); + ++(args->class_count); + if (all_ious.iou > .5) recall += 1; + if (all_ious.iou > .75) recall75 += 1; + } + } + + return 0; +} + + + +void forward_yolo_layer(const layer l, network_state state) +{ + //int i, j, b, t, n; + memcpy(l.output, state.input, l.outputs*l.batch * sizeof(float)); + int b, n; + +#ifndef GPU + for (b = 0; b < l.batch; ++b) { + for (n = 0; n < l.n; ++n) { + int bbox_index = entry_index(l, b, n*l.w*l.h, 0); + if (l.new_coords) { + //activate_array(l.output + bbox_index, 4 * l.w*l.h, LOGISTIC); // x,y,w,h + } + else { + activate_array(l.output + bbox_index, 2 * l.w*l.h, LOGISTIC); // x,y, + int obj_index = entry_index(l, b, n*l.w*l.h, 4); + activate_array(l.output + obj_index, (1 + l.classes)*l.w*l.h, LOGISTIC); + } + scal_add_cpu(2 * l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output + bbox_index, 1); // scale x,y + } + } +#endif + + // delta is zeroed + memset(l.delta, 0, l.outputs * l.batch * sizeof(float)); + if (!state.train) return; + + int i; + for (i = 0; i < l.batch * l.w*l.h*l.n; ++i) l.labels[i] = -1; + for (i = 0; i < l.batch * l.w*l.h*l.n; ++i) l.class_ids[i] = -1; + //float avg_iou = 0; + float tot_iou = 0; + float tot_giou = 0; + float tot_diou = 0; + float tot_ciou = 0; + float tot_iou_loss = 0; + float tot_giou_loss = 0; + float tot_diou_loss = 0; + float tot_ciou_loss = 0; + float recall = 0; + float recall75 = 0; + float avg_cat = 0; + float avg_obj = 0; + float avg_anyobj = 0; + int count = 0; + int class_count = 0; + *(l.cost) = 0; + + + int num_threads = l.batch; + pthread_t* threads = (pthread_t*)calloc(num_threads, sizeof(pthread_t)); + + struct train_yolo_args* yolo_args = (train_yolo_args*)xcalloc(l.batch, sizeof(struct train_yolo_args)); + + for (b = 0; b < l.batch; b++) + { + yolo_args[b].l = l; + yolo_args[b].state = state; + yolo_args[b].b = b; + + yolo_args[b].tot_iou = 0; + yolo_args[b].tot_iou_loss = 0; + yolo_args[b].tot_giou_loss = 0; + yolo_args[b].count = 0; + yolo_args[b].class_count = 0; + yolo_args[b].mloam_ptr = (mloam *)xcalloc(l.max_boxes * 10 + 60, sizeof(mloam)); // multi_label_one_anchor_choose_maxiou + + if (pthread_create(&threads[b], 0, process_batch, &(yolo_args[b]))) error("Thread creation failed", DARKNET_LOC); + } + + for (b = 0; b < l.batch; b++) + { + pthread_join(threads[b], 0); + + tot_iou += yolo_args[b].tot_iou; + tot_iou_loss += yolo_args[b].tot_iou_loss; + tot_giou_loss += yolo_args[b].tot_giou_loss; + count += yolo_args[b].count; + class_count += yolo_args[b].class_count; + free(yolo_args[b].mloam_ptr); + } + + free(yolo_args); + free(threads); + + // Search for an equidistant point from the distant boundaries of the local minimum + int iteration_num = get_current_iteration(state.net); + const int start_point = state.net.max_batches * 3 / 4; + //printf(" equidistant_point ep = %d, it = %d \n", state.net.equidistant_point, iteration_num); + + if ((state.net.badlabels_rejection_percentage && start_point < iteration_num) || + (state.net.num_sigmas_reject_badlabels && start_point < iteration_num) || + (state.net.equidistant_point && state.net.equidistant_point < iteration_num)) + { + const float progress_it = iteration_num - state.net.equidistant_point; + const float progress = progress_it / (state.net.max_batches - state.net.equidistant_point); + float ep_loss_threshold = (*state.net.delta_rolling_avg) * progress * 1.4; + + float cur_max = 0; + float cur_avg = 0; + float counter = 0; + for (i = 0; i < l.batch * l.outputs; ++i) { + + if (l.delta[i] != 0) { + counter++; + cur_avg += fabs(l.delta[i]); + + if (cur_max < fabs(l.delta[i])) + cur_max = fabs(l.delta[i]); + } + } + + cur_avg = cur_avg / counter; + + if (*state.net.delta_rolling_max == 0) *state.net.delta_rolling_max = cur_max; + *state.net.delta_rolling_max = *state.net.delta_rolling_max * 0.99 + cur_max * 0.01; + *state.net.delta_rolling_avg = *state.net.delta_rolling_avg * 0.99 + cur_avg * 0.01; + + // reject high loss to filter bad labels + if (state.net.num_sigmas_reject_badlabels && start_point < iteration_num) + { + const float rolling_std = (*state.net.delta_rolling_std); + const float rolling_max = (*state.net.delta_rolling_max); + const float rolling_avg = (*state.net.delta_rolling_avg); + const float progress_badlabels = (float)(iteration_num - start_point) / (start_point); + + float cur_std = 0; + float counter = 0; + for (i = 0; i < l.batch * l.outputs; ++i) { + if (l.delta[i] != 0) { + counter++; + cur_std += pow(l.delta[i] - rolling_avg, 2); + } + } + cur_std = sqrt(cur_std / counter); + + *state.net.delta_rolling_std = *state.net.delta_rolling_std * 0.99 + cur_std * 0.01; + + float final_badlebels_threshold = rolling_avg + rolling_std * state.net.num_sigmas_reject_badlabels; + float badlabels_threshold = rolling_max - progress_badlabels * fabs(rolling_max - final_badlebels_threshold); + badlabels_threshold = max_val_cmp(final_badlebels_threshold, badlabels_threshold); + for (i = 0; i < l.batch * l.outputs; ++i) { + if (fabs(l.delta[i]) > badlabels_threshold) + l.delta[i] = 0; + } + printf(" rolling_std = %f, rolling_max = %f, rolling_avg = %f \n", rolling_std, rolling_max, rolling_avg); + printf(" badlabels loss_threshold = %f, start_it = %d, progress = %f \n", badlabels_threshold, start_point, progress_badlabels *100); + + ep_loss_threshold = min_val_cmp(final_badlebels_threshold, rolling_avg) * progress; + } + + + // reject some percent of the highest deltas to filter bad labels + if (state.net.badlabels_rejection_percentage && start_point < iteration_num) { + if (*state.net.badlabels_reject_threshold == 0) + *state.net.badlabels_reject_threshold = *state.net.delta_rolling_max; + + printf(" badlabels_reject_threshold = %f \n", *state.net.badlabels_reject_threshold); + + const float num_deltas_per_anchor = (l.classes + 4 + 1); + float counter_reject = 0; + float counter_all = 0; + for (i = 0; i < l.batch * l.outputs; ++i) { + if (l.delta[i] != 0) { + counter_all++; + if (fabs(l.delta[i]) > (*state.net.badlabels_reject_threshold)) { + counter_reject++; + l.delta[i] = 0; + } + } + } + float cur_percent = 100 * (counter_reject*num_deltas_per_anchor / counter_all); + if (cur_percent > state.net.badlabels_rejection_percentage) { + *state.net.badlabels_reject_threshold += 0.01; + printf(" increase!!! \n"); + } + else if (*state.net.badlabels_reject_threshold > 0.01) { + *state.net.badlabels_reject_threshold -= 0.01; + printf(" decrease!!! \n"); + } + + printf(" badlabels_reject_threshold = %f, cur_percent = %f, badlabels_rejection_percentage = %f, delta_rolling_max = %f \n", + *state.net.badlabels_reject_threshold, cur_percent, state.net.badlabels_rejection_percentage, *state.net.delta_rolling_max); + } + + + // reject low loss to find equidistant point + if (state.net.equidistant_point && state.net.equidistant_point < iteration_num) { + printf(" equidistant_point loss_threshold = %f, start_it = %d, progress = %3.1f %% \n", ep_loss_threshold, state.net.equidistant_point, progress * 100); + for (i = 0; i < l.batch * l.outputs; ++i) { + if (fabs(l.delta[i]) < ep_loss_threshold) + l.delta[i] = 0; + } + } + } + + if (count == 0) count = 1; + if (class_count == 0) class_count = 1; + + if (l.show_details == 0) { + float loss = pow(mag_array(l.delta, l.outputs * l.batch), 2); + *(l.cost) = loss; + + loss /= l.batch; + + fprintf(stderr, "v3 (%s loss, Normalizer: (iou: %.2f, obj: %.2f, cls: %.2f) Region %d Avg (IOU: %f), count: %d, total_loss = %f \n", + (l.iou_loss == MSE ? "mse" : (l.iou_loss == GIOU ? "giou" : "iou")), l.iou_normalizer, l.obj_normalizer, l.cls_normalizer, state.index, tot_iou / count, count, loss); + } + else { + // show detailed output + + int stride = l.w*l.h; + float* no_iou_loss_delta = (float *)calloc(l.batch * l.outputs, sizeof(float)); + memcpy(no_iou_loss_delta, l.delta, l.batch * l.outputs * sizeof(float)); + + + int j, n; + for (b = 0; b < l.batch; ++b) { + for (j = 0; j < l.h; ++j) { + for (i = 0; i < l.w; ++i) { + for (n = 0; n < l.n; ++n) { + int index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 0); + no_iou_loss_delta[index + 0 * stride] = 0; + no_iou_loss_delta[index + 1 * stride] = 0; + no_iou_loss_delta[index + 2 * stride] = 0; + no_iou_loss_delta[index + 3 * stride] = 0; + } + } + } + } + + float classification_loss = l.obj_normalizer * pow(mag_array(no_iou_loss_delta, l.outputs * l.batch), 2); + free(no_iou_loss_delta); + float loss = pow(mag_array(l.delta, l.outputs * l.batch), 2); + float iou_loss = loss - classification_loss; + + float avg_iou_loss = 0; + *(l.cost) = loss; + + // gIOU loss + MSE (objectness) loss + if (l.iou_loss == MSE) { + *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2); + } + else { + // Always compute classification loss both for iou + cls loss and for logging with mse loss + // TODO: remove IOU loss fields before computing MSE on class + // probably split into two arrays + if (l.iou_loss == GIOU) { + avg_iou_loss = count > 0 ? l.iou_normalizer * (tot_giou_loss / count) : 0; + } + else { + avg_iou_loss = count > 0 ? l.iou_normalizer * (tot_iou_loss / count) : 0; + } + *(l.cost) = avg_iou_loss + classification_loss; + } + + + loss /= l.batch; + classification_loss /= l.batch; + iou_loss /= l.batch; + + fprintf(stderr, "v3 (%s loss, Normalizer: (iou: %.2f, obj: %.2f, cls: %.2f) Region %d Avg (IOU: %f), count: %d, class_loss = %f, iou_loss = %f, total_loss = %f \n", + (l.iou_loss == MSE ? "mse" : (l.iou_loss == GIOU ? "giou" : "iou")), l.iou_normalizer, l.obj_normalizer, l.cls_normalizer, state.index, tot_iou / count, count, classification_loss, iou_loss, loss); + + //fprintf(stderr, "v3 (%s loss, Normalizer: (iou: %.2f, cls: %.2f) Region %d Avg (IOU: %f, GIOU: %f), Class: %f, Obj: %f, No Obj: %f, .5R: %f, .75R: %f, count: %d, class_loss = %f, iou_loss = %f, total_loss = %f \n", + // (l.iou_loss == MSE ? "mse" : (l.iou_loss == GIOU ? "giou" : "iou")), l.iou_normalizer, l.obj_normalizer, state.index, tot_iou / count, tot_giou / count, avg_cat / class_count, avg_obj / count, avg_anyobj / (l.w*l.h*l.n*l.batch), recall / count, recall75 / count, count, + // classification_loss, iou_loss, loss); + } +} + +void backward_yolo_layer(const layer l, network_state state) +{ + axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1); +} + +// Converts output of the network to detection boxes +// w,h: image width,height +// netw,neth: network width,height +// relative: 1 (all callers seems to pass TRUE) +void correct_yolo_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative, int letter) +{ + int i; + // network height (or width) + int new_w = 0; + // network height (or width) + int new_h = 0; + // Compute scale given image w,h vs network w,h + // I think this "rotates" the image to match network to input image w/h ratio + // new_h and new_w are really just network width and height + if (letter) { + if (((float)netw / w) < ((float)neth / h)) { + new_w = netw; + new_h = (h * netw) / w; + } + else { + new_h = neth; + new_w = (w * neth) / h; + } + } + else { + new_w = netw; + new_h = neth; + } + // difference between network width and "rotated" width + float deltaw = netw - new_w; + // difference between network height and "rotated" height + float deltah = neth - new_h; + // ratio between rotated network width and network width + float ratiow = (float)new_w / netw; + // ratio between rotated network width and network width + float ratioh = (float)new_h / neth; + for (i = 0; i < n; ++i) { + + box b = dets[i].bbox; + // x = ( x - (deltaw/2)/netw ) / ratiow; + // x - [(1/2 the difference of the network width and rotated width) / (network width)] + b.x = (b.x - deltaw / 2. / netw) / ratiow; + b.y = (b.y - deltah / 2. / neth) / ratioh; + // scale to match rotation of incoming image + b.w *= 1 / ratiow; + b.h *= 1 / ratioh; + + // relative seems to always be == 1, I don't think we hit this condition, ever. + if (!relative) { + b.x *= w; + b.w *= w; + b.y *= h; + b.h *= h; + } + + dets[i].bbox = b; + } +} + +/* +void correct_yolo_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative, int letter) +{ + int i; + int new_w=0; + int new_h=0; + if (letter) { + if (((float)netw / w) < ((float)neth / h)) { + new_w = netw; + new_h = (h * netw) / w; + } + else { + new_h = neth; + new_w = (w * neth) / h; + } + } + else { + new_w = netw; + new_h = neth; + } + for (i = 0; i < n; ++i){ + box b = dets[i].bbox; + b.x = (b.x - (netw - new_w)/2./netw) / ((float)new_w/netw); + b.y = (b.y - (neth - new_h)/2./neth) / ((float)new_h/neth); + b.w *= (float)netw/new_w; + b.h *= (float)neth/new_h; + if(!relative){ + b.x *= w; + b.w *= w; + b.y *= h; + b.h *= h; + } + dets[i].bbox = b; + } +} +*/ + +int yolo_num_detections(layer l, float thresh) +{ + int i, n; + int count = 0; + for(n = 0; n < l.n; ++n){ + for (i = 0; i < l.w*l.h; ++i) { + int obj_index = entry_index(l, 0, n*l.w*l.h + i, 4); + if(l.output[obj_index] > thresh){ + ++count; + } + } + } + return count; +} + +int yolo_num_detections_batch(layer l, float thresh, int batch) +{ + int i, n; + int count = 0; + for (i = 0; i < l.w*l.h; ++i){ + for(n = 0; n < l.n; ++n){ + int obj_index = entry_index(l, batch, n*l.w*l.h + i, 4); + if(l.output[obj_index] > thresh){ + ++count; + } + } + } + return count; +} + +void avg_flipped_yolo(layer l) +{ + int i,j,n,z; + float *flip = l.output + l.outputs; + for (j = 0; j < l.h; ++j) { + for (i = 0; i < l.w/2; ++i) { + for (n = 0; n < l.n; ++n) { + for(z = 0; z < l.classes + 4 + 1; ++z){ + int i1 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + i; + int i2 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + (l.w - i - 1); + float swap = flip[i1]; + flip[i1] = flip[i2]; + flip[i2] = swap; + if(z == 0){ + flip[i1] = -flip[i1]; + flip[i2] = -flip[i2]; + } + } + } + } + } + for(i = 0; i < l.outputs; ++i){ + l.output[i] = (l.output[i] + flip[i])/2.; + } +} + +int get_yolo_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, int relative, detection *dets, int letter) +{ + //printf("\n l.batch = %d, l.w = %d, l.h = %d, l.n = %d \n", l.batch, l.w, l.h, l.n); + int i,j,n; + float *predictions = l.output; + // This snippet below is not necessary + // Need to comment it in order to batch processing >= 2 images + //if (l.batch == 2) avg_flipped_yolo(l); + int count = 0; + for (i = 0; i < l.w*l.h; ++i){ + int row = i / l.w; + int col = i % l.w; + for(n = 0; n < l.n; ++n){ + int obj_index = entry_index(l, 0, n*l.w*l.h + i, 4); + float objectness = predictions[obj_index]; + //if(objectness <= thresh) continue; // incorrect behavior for Nan values + if (objectness > thresh) { + //printf("\n objectness = %f, thresh = %f, i = %d, n = %d \n", objectness, thresh, i, n); + int box_index = entry_index(l, 0, n*l.w*l.h + i, 0); + dets[count].bbox = get_yolo_box(predictions, l.biases, l.mask[n], box_index, col, row, l.w, l.h, netw, neth, l.w*l.h, l.new_coords); + dets[count].objectness = objectness; + dets[count].classes = l.classes; + if (l.embedding_output) { + get_embedding(l.embedding_output, l.w, l.h, l.n*l.embedding_size, l.embedding_size, col, row, n, 0, dets[count].embeddings); + } + + for (j = 0; j < l.classes; ++j) { + int class_index = entry_index(l, 0, n*l.w*l.h + i, 4 + 1 + j); + float prob = objectness*predictions[class_index]; + dets[count].prob[j] = (prob > thresh) ? prob : 0; + } + ++count; + } + } + } + correct_yolo_boxes(dets, count, w, h, netw, neth, relative, letter); + return count; +} + +int get_yolo_detections_batch(layer l, int w, int h, int netw, int neth, float thresh, int *map, int relative, detection *dets, int letter, int batch) +{ + int i,j,n; + float *predictions = l.output; + //if (l.batch == 2) avg_flipped_yolo(l); + int count = 0; + for (i = 0; i < l.w*l.h; ++i){ + int row = i / l.w; + int col = i % l.w; + for(n = 0; n < l.n; ++n){ + int obj_index = entry_index(l, batch, n*l.w*l.h + i, 4); + float objectness = predictions[obj_index]; + //if(objectness <= thresh) continue; // incorrect behavior for Nan values + if (objectness > thresh) { + //printf("\n objectness = %f, thresh = %f, i = %d, n = %d \n", objectness, thresh, i, n); + int box_index = entry_index(l, batch, n*l.w*l.h + i, 0); + dets[count].bbox = get_yolo_box(predictions, l.biases, l.mask[n], box_index, col, row, l.w, l.h, netw, neth, l.w*l.h, l.new_coords); + dets[count].objectness = objectness; + dets[count].classes = l.classes; + if (l.embedding_output) { + get_embedding(l.embedding_output, l.w, l.h, l.n*l.embedding_size, l.embedding_size, col, row, n, batch, dets[count].embeddings); + } + + for (j = 0; j < l.classes; ++j) { + int class_index = entry_index(l, batch, n*l.w*l.h + i, 4 + 1 + j); + float prob = objectness*predictions[class_index]; + dets[count].prob[j] = (prob > thresh) ? prob : 0; + } + ++count; + } + } + } + correct_yolo_boxes(dets, count, w, h, netw, neth, relative, letter); + return count; +} + +#ifdef GPU + +void forward_yolo_layer_gpu(const layer l, network_state state) +{ + if (l.embedding_output) { + layer le = state.net.layers[l.embedding_layer_id]; + cuda_pull_array_async(le.output_gpu, l.embedding_output, le.batch*le.outputs); + } + + //copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1); + simple_copy_ongpu(l.batch*l.inputs, state.input, l.output_gpu); + int b, n; + for (b = 0; b < l.batch; ++b){ + for(n = 0; n < l.n; ++n){ + int bbox_index = entry_index(l, b, n*l.w*l.h, 0); + // y = 1./(1. + exp(-x)) + // x = ln(y/(1-y)) // ln - natural logarithm (base = e) + // if(y->1) x -> inf + // if(y->0) x -> -inf + if (l.new_coords) { + //activate_array_ongpu(l.output_gpu + bbox_index, 4 * l.w*l.h, LOGISTIC); // x,y,w,h + } + else { + activate_array_ongpu(l.output_gpu + bbox_index, 2 * l.w*l.h, LOGISTIC); // x,y + + int obj_index = entry_index(l, b, n*l.w*l.h, 4); + activate_array_ongpu(l.output_gpu + obj_index, (1 + l.classes)*l.w*l.h, LOGISTIC); // classes and objectness + } + if (l.scale_x_y != 1) scal_add_ongpu(2 * l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output_gpu + bbox_index, 1); // scale x,y + } + } + if(!state.train || l.onlyforward){ + //cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs); + if (l.mean_alpha && l.output_avg_gpu) mean_array_gpu(l.output_gpu, l.batch*l.outputs, l.mean_alpha, l.output_avg_gpu); + cuda_pull_array_async(l.output_gpu, l.output, l.batch*l.outputs); + CHECK_CUDA(cudaPeekAtLastError()); + return; + } + + float *in_cpu = (float *)xcalloc(l.batch*l.inputs, sizeof(float)); + cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs); + memcpy(in_cpu, l.output, l.batch*l.outputs*sizeof(float)); + float *truth_cpu = 0; + if (state.truth) { + int num_truth = l.batch*l.truths; + truth_cpu = (float *)xcalloc(num_truth, sizeof(float)); + cuda_pull_array(state.truth, truth_cpu, num_truth); + } + network_state cpu_state = state; + cpu_state.net = state.net; + cpu_state.index = state.index; + cpu_state.train = state.train; + cpu_state.truth = truth_cpu; + cpu_state.input = in_cpu; + forward_yolo_layer(l, cpu_state); + //forward_yolo_layer(l, state); + cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs); + free(in_cpu); + if (cpu_state.truth) free(cpu_state.truth); +} + +void backward_yolo_layer_gpu(const layer l, network_state state) +{ + axpy_ongpu(l.batch*l.inputs, state.net.loss_scale * l.delta_normalizer, l.delta_gpu, 1, state.delta, 1); +} +#endif From 27d3762ccb897c415dc5692139576b3ebc35ce0b Mon Sep 17 00:00:00 2001 From: ZouJiu1 <34758215+ZouJiu1@users.noreply.github.com> Date: Sat, 12 Aug 2023 10:15:45 +0800 Subject: [PATCH 08/11] Delete yolo_layer.cc --- src/yolo_layer.cc | 1124 --------------------------------------------- 1 file changed, 1124 deletions(-) delete mode 100644 src/yolo_layer.cc diff --git a/src/yolo_layer.cc b/src/yolo_layer.cc deleted file mode 100644 index 423ca8f980c..00000000000 --- a/src/yolo_layer.cc +++ /dev/null @@ -1,1124 +0,0 @@ -#include "yolo_layer.h" -#include "activations.h" -#include "blas.h" -#include "box.h" -#include "dark_cuda.h" -#include "utils.h" -#include "darknet.h" - -#include -#include -#include -#include -#include - -extern int check_mistakes; - -layer make_yolo_layer(int batch, int w, int h, int n, int total, int *mask, int classes, int max_boxes) -{ - int i; - layer l = { (LAYER_TYPE)0 }; - l.type = YOLO; - - l.n = n; - l.total = total; - l.batch = batch; - l.h = h; - l.w = w; - l.c = n*(classes + 4 + 1); - l.out_w = l.w; - l.out_h = l.h; - l.out_c = l.c; - l.classes = classes; - l.cost = (float*)xcalloc(1, sizeof(float)); - l.biases = (float*)xcalloc(total * 2, sizeof(float)); - if(mask) l.mask = mask; - else{ - l.mask = (int*)xcalloc(n, sizeof(int)); - for(i = 0; i < n; ++i){ - l.mask[i] = i; - } - } - l.bias_updates = (float*)xcalloc(n * 2, sizeof(float)); - l.outputs = h*w*n*(classes + 4 + 1); - l.inputs = l.outputs; - l.max_boxes = max_boxes; - l.truth_size = 4 + 2; - l.truths = l.max_boxes*l.truth_size; // 90*(4 + 1); - l.labels = (int*)xcalloc(batch * l.w*l.h*l.n, sizeof(int)); - for (i = 0; i < batch * l.w*l.h*l.n; ++i) l.labels[i] = -1; - l.class_ids = (int*)xcalloc(batch * l.w*l.h*l.n, sizeof(int)); - for (i = 0; i < batch * l.w*l.h*l.n; ++i) l.class_ids[i] = -1; - - l.delta = (float*)xcalloc(batch * l.outputs, sizeof(float)); - l.output = (float*)xcalloc(batch * l.outputs, sizeof(float)); - for(i = 0; i < total*2; ++i){ - l.biases[i] = .5; - } - - l.forward = forward_yolo_layer; - l.backward = backward_yolo_layer; -#ifdef GPU - l.forward_gpu = forward_yolo_layer_gpu; - l.backward_gpu = backward_yolo_layer_gpu; - l.output_gpu = cuda_make_array(l.output, batch*l.outputs); - l.output_avg_gpu = cuda_make_array(l.output, batch*l.outputs); - l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs); - - free(l.output); - if (cudaSuccess == cudaHostAlloc(&l.output, batch*l.outputs*sizeof(float), cudaHostRegisterMapped)) l.output_pinned = 1; - else { - cudaGetLastError(); // reset CUDA-error - l.output = (float*)xcalloc(batch * l.outputs, sizeof(float)); - } - - free(l.delta); - if (cudaSuccess == cudaHostAlloc(&l.delta, batch*l.outputs*sizeof(float), cudaHostRegisterMapped)) l.delta_pinned = 1; - else { - cudaGetLastError(); // reset CUDA-error - l.delta = (float*)xcalloc(batch * l.outputs, sizeof(float)); - } -#endif - - fprintf(stderr, "yolo\n"); - srand(time(0)); - - return l; -} - -void resize_yolo_layer(layer *l, int w, int h) -{ - l->w = w; - l->h = h; - - l->outputs = h*w*l->n*(l->classes + 4 + 1); - l->inputs = l->outputs; - - if (l->embedding_output) l->embedding_output = (float*)xrealloc(l->output, l->batch * l->embedding_size * l->n * l->h * l->w * sizeof(float)); - if (l->labels) l->labels = (int*)xrealloc(l->labels, l->batch * l->n * l->h * l->w * sizeof(int)); - if (l->class_ids) l->class_ids = (int*)xrealloc(l->class_ids, l->batch * l->n * l->h * l->w * sizeof(int)); - - if (!l->output_pinned) l->output = (float*)xrealloc(l->output, l->batch*l->outputs * sizeof(float)); - if (!l->delta_pinned) l->delta = (float*)xrealloc(l->delta, l->batch*l->outputs*sizeof(float)); - -#ifdef GPU - if (l->output_pinned) { - CHECK_CUDA(cudaFreeHost(l->output)); - if (cudaSuccess != cudaHostAlloc(&l->output, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) { - cudaGetLastError(); // reset CUDA-error - l->output = (float*)xcalloc(l->batch * l->outputs, sizeof(float)); - l->output_pinned = 0; - } - } - - if (l->delta_pinned) { - CHECK_CUDA(cudaFreeHost(l->delta)); - if (cudaSuccess != cudaHostAlloc(&l->delta, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) { - cudaGetLastError(); // reset CUDA-error - l->delta = (float*)xcalloc(l->batch * l->outputs, sizeof(float)); - l->delta_pinned = 0; - } - } - - cuda_free(l->delta_gpu); - cuda_free(l->output_gpu); - cuda_free(l->output_avg_gpu); - - l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs); - l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs); - l->output_avg_gpu = cuda_make_array(l->output, l->batch*l->outputs); -#endif -} - -box get_yolo_box(float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, int stride, int new_coords) -{ - box b; - // ln - natural logarithm (base = e) - // x` = t.x * lw - i; // x = ln(x`/(1-x`)) // x - output of previous conv-layer - // y` = t.y * lh - i; // y = ln(y`/(1-y`)) // y - output of previous conv-layer - // w = ln(t.w * net.w / anchors_w); // w - output of previous conv-layer - // h = ln(t.h * net.h / anchors_h); // h - output of previous conv-layer - if (new_coords) { - b.x = (i + x[index + 0 * stride]) / lw; - b.y = (j + x[index + 1 * stride]) / lh; - b.w = x[index + 2 * stride] * x[index + 2 * stride] * 4 * biases[2 * n] / w; - b.h = x[index + 3 * stride] * x[index + 3 * stride] * 4 * biases[2 * n + 1] / h; - } - else { - b.x = (i + x[index + 0 * stride]) / lw; - b.y = (j + x[index + 1 * stride]) / lh; - b.w = exp(x[index + 2 * stride]) * biases[2 * n] / w; - b.h = exp(x[index + 3 * stride]) * biases[2 * n + 1] / h; - } - return b; -} - -static inline float fix_nan_inf(float val) -{ - if (isnan(val) || isinf(val)) val = 0; - return val; -} - -static inline float clip_value(float val, const float max_val) -{ - if (val > max_val) { - //printf("\n val = %f > max_val = %f \n", val, max_val); - val = max_val; - } - else if (val < -max_val) { - //printf("\n val = %f < -max_val = %f \n", val, -max_val); - val = -max_val; - } - return val; -} - -ious delta_yolo_box(box truth, float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, float *delta, float scale, int stride, float iou_normalizer, IOU_LOSS iou_loss, int accumulate, float max_delta, int *rewritten_bbox, int new_coords) -{ - if (delta[index + 0 * stride] || delta[index + 1 * stride] || delta[index + 2 * stride] || delta[index + 3 * stride]) { - (*rewritten_bbox)++; - } - - ious all_ious = { 0 }; - // i - step in layer width - // j - step in layer height - // Returns a box in absolute coordinates - box pred = get_yolo_box(x, biases, n, index, i, j, lw, lh, w, h, stride, new_coords); - all_ious.iou = box_iou(pred, truth); - all_ious.giou = box_giou(pred, truth); - all_ious.diou = box_diou(pred, truth); - all_ious.ciou = box_ciou(pred, truth); - // avoid nan in dx_box_iou - if (pred.w == 0) { pred.w = 1.0; } - if (pred.h == 0) { pred.h = 1.0; } - if (iou_loss == MSE) // old loss - { - float tx = (truth.x*lw - i); - float ty = (truth.y*lh - j); - float tw = log(truth.w*w / biases[2 * n]); - float th = log(truth.h*h / biases[2 * n + 1]); - - if (new_coords) { - //tx = (truth.x*lw - i + 0.5) / 2; - //ty = (truth.y*lh - j + 0.5) / 2; - tw = sqrt(truth.w*w / (4 * biases[2 * n])); - th = sqrt(truth.h*h / (4 * biases[2 * n + 1])); - } - - //printf(" tx = %f, ty = %f, tw = %f, th = %f \n", tx, ty, tw, th); - //printf(" x = %f, y = %f, w = %f, h = %f \n", x[index + 0 * stride], x[index + 1 * stride], x[index + 2 * stride], x[index + 3 * stride]); - - // accumulate delta - delta[index + 0 * stride] += scale * (tx - x[index + 0 * stride]) * iou_normalizer; - delta[index + 1 * stride] += scale * (ty - x[index + 1 * stride]) * iou_normalizer; - delta[index + 2 * stride] += scale * (tw - x[index + 2 * stride]) * iou_normalizer; - delta[index + 3 * stride] += scale * (th - x[index + 3 * stride]) * iou_normalizer; - } - else { - // https://github.com/generalized-iou/g-darknet - // https://arxiv.org/abs/1902.09630v2 - // https://giou.stanford.edu/ - all_ious.dx_iou = dx_box_iou(pred, truth, iou_loss); - - // jacobian^t (transpose) - //float dx = (all_ious.dx_iou.dl + all_ious.dx_iou.dr); - //float dy = (all_ious.dx_iou.dt + all_ious.dx_iou.db); - //float dw = ((-0.5 * all_ious.dx_iou.dl) + (0.5 * all_ious.dx_iou.dr)); - //float dh = ((-0.5 * all_ious.dx_iou.dt) + (0.5 * all_ious.dx_iou.db)); - - // jacobian^t (transpose) - float dx = all_ious.dx_iou.dt; - float dy = all_ious.dx_iou.db; - float dw = all_ious.dx_iou.dl; - float dh = all_ious.dx_iou.dr; - - - // predict exponential, apply gradient of e^delta_t ONLY for w,h - if (new_coords) { - //dw *= 8 * x[index + 2 * stride]; - //dh *= 8 * x[index + 3 * stride]; - //dw *= 8 * x[index + 2 * stride] * biases[2 * n] / w; - //dh *= 8 * x[index + 3 * stride] * biases[2 * n + 1] / h; - - //float grad_w = 8 * exp(-x[index + 2 * stride]) / pow(exp(-x[index + 2 * stride]) + 1, 3); - //float grad_h = 8 * exp(-x[index + 3 * stride]) / pow(exp(-x[index + 3 * stride]) + 1, 3); - //dw *= grad_w; - //dh *= grad_h; - } - else { - dw *= exp(x[index + 2 * stride]); - dh *= exp(x[index + 3 * stride]); - } - - - //dw *= exp(x[index + 2 * stride]); - //dh *= exp(x[index + 3 * stride]); - - // normalize iou weight - dx *= iou_normalizer; - dy *= iou_normalizer; - dw *= iou_normalizer; - dh *= iou_normalizer; - - - dx = fix_nan_inf(dx); - dy = fix_nan_inf(dy); - dw = fix_nan_inf(dw); - dh = fix_nan_inf(dh); - - if (max_delta != FLT_MAX) { - dx = clip_value(dx, max_delta); - dy = clip_value(dy, max_delta); - dw = clip_value(dw, max_delta); - dh = clip_value(dh, max_delta); - } - - - if (!accumulate) { - delta[index + 0 * stride] = 0; - delta[index + 1 * stride] = 0; - delta[index + 2 * stride] = 0; - delta[index + 3 * stride] = 0; - } - - // accumulate delta - delta[index + 0 * stride] += dx; - delta[index + 1 * stride] += dy; - delta[index + 2 * stride] += dw; - delta[index + 3 * stride] += dh; - } - - return all_ious; -} - -void averages_yolo_deltas(int class_index, int box_index, int stride, int classes, float *delta) -{ - - int classes_in_one_box = 0; - int c; - for (c = 0; c < classes; ++c) { - if (delta[class_index + stride*c] > 0) classes_in_one_box++; - } - - if (classes_in_one_box > 0) { - delta[box_index + 0 * stride] /= classes_in_one_box; - delta[box_index + 1 * stride] /= classes_in_one_box; - delta[box_index + 2 * stride] /= classes_in_one_box; - delta[box_index + 3 * stride] /= classes_in_one_box; - } -} - -void delta_yolo_class(float *output, float *delta, int index, int class_id, int classes, int stride, float *avg_cat, int focal_loss, float label_smooth_eps, float *classes_multipliers, float cls_normalizer) -{ - int n; - if (delta[index + stride*class_id]){ - float y_true = 1; - if(label_smooth_eps) y_true = y_true * (1 - label_smooth_eps) + 0.5*label_smooth_eps; - float result_delta = y_true - output[index + stride*class_id]; - if(!isnan(result_delta) && !isinf(result_delta)) delta[index + stride*class_id] = result_delta; - //delta[index + stride*class_id] = 1 - output[index + stride*class_id]; - - if (classes_multipliers) delta[index + stride*class_id] *= classes_multipliers[class_id]; - if(avg_cat) *avg_cat += output[index + stride*class_id]; - return; - } - // Focal loss - if (focal_loss) { - // Focal Loss - float alpha = 0.5; // 0.25 or 0.5 - //float gamma = 2; // hardcoded in many places of the grad-formula - - int ti = index + stride*class_id; - float pt = output[ti] + 0.000000000000001F; - // http://fooplot.com/#W3sidHlwZSI6MCwiZXEiOiItKDEteCkqKDIqeCpsb2coeCkreC0xKSIsImNvbG9yIjoiIzAwMDAwMCJ9LHsidHlwZSI6MTAwMH1d - float grad = -(1 - pt) * (2 * pt*logf(pt) + pt - 1); // http://blog.csdn.net/linmingan/article/details/77885832 - //float grad = (1 - pt) * (2 * pt*logf(pt) + pt - 1); // https://github.com/unsky/focal-loss - - for (n = 0; n < classes; ++n) { - delta[index + stride*n] = (((n == class_id) ? 1 : 0) - output[index + stride*n]); - - delta[index + stride*n] *= alpha*grad; - - if (n == class_id && avg_cat) *avg_cat += output[index + stride*n]; - } - } - else { - // default - for (n = 0; n < classes; ++n) { - float y_true = ((n == class_id) ? 1 : 0); - if (label_smooth_eps) y_true = y_true * (1 - label_smooth_eps) + 0.5*label_smooth_eps; - float result_delta = y_true - output[index + stride*n]; - if (!isnan(result_delta) && !isinf(result_delta)) delta[index + stride*n] = result_delta; - - if (classes_multipliers && n == class_id) delta[index + stride*class_id] *= classes_multipliers[class_id] * cls_normalizer; - if (n == class_id && avg_cat) *avg_cat += output[index + stride*n]; - } - } -} - -int compare_yolo_class(float *output, int classes, int class_index, int stride, float objectness, int class_id, float conf_thresh) -{ - int j; - for (j = 0; j < classes; ++j) { - //float prob = objectness * output[class_index + stride*j]; - float prob = output[class_index + stride*j]; - if (prob > conf_thresh) { - return 1; - } - } - return 0; -} - -static int entry_index(layer l, int batch, int location, int entry) -{ - int n = location / (l.w*l.h); - int loc = location % (l.w*l.h); - return batch*l.outputs + n*l.w*l.h*(4+l.classes+1) + entry*l.w*l.h + loc; -} - -typedef struct train_yolo_args { - layer l; - network_state state; - int b; - - float tot_iou; - float tot_giou_loss; - float tot_iou_loss; - int count; - int class_count; - mloam* mloam_ptr; -} train_yolo_args; - -void *process_batch(void* ptr) -{ - { - train_yolo_args *args = (train_yolo_args*)ptr; - const layer l = args->l; - network_state state = args->state; - int b = args->b; - - int i, j, t, n, ln, x, y; - - //printf(" b = %d \n", b, b); - - //float tot_iou = 0; - float tot_giou = 0; - float tot_diou = 0; - float tot_ciou = 0; - //float tot_iou_loss = 0; - //float tot_giou_loss = 0; - float tot_diou_loss = 0; - float tot_ciou_loss = 0; - float recall = 0; - float recall75 = 0; - float avg_cat = 0; - float avg_obj = 0; - float avg_anyobj = 0; - //int count = 0; - //int class_count = 0; - mloam* mloam_ptr = args->mloam_ptr; // multi_label_one_anchor_choose_maxiou - int number = 0; - float* maxiou = (float *)xcalloc(l.max_boxes, sizeof(float)); - for (t = 0; t < l.max_boxes; ++t) { - box truth = float_to_box_stride(state.truth + t * l.truth_size + b * l.truths, 1); - if (!truth.x) break; // continue; - if (truth.x < 0 || truth.y < 0 || truth.x > 1 || truth.y > 1 || truth.w < 0 || truth.h < 0) { - char buff[256]; - printf(" Wrong label: truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f \n", truth.x, truth.y, truth.w, truth.h); - sprintf(buff, "echo \"Wrong label: truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f\" >> bad_label.list", - truth.x, truth.y, truth.w, truth.h); - system(buff); - } - int class_id = state.truth[t * l.truth_size + b * l.truths + 4]; - if (class_id >= l.classes || class_id < 0) continue; // if label contains class_id more than number of classes in the cfg-file and class_id check garbage value - - // x = (truth.x * l.w); - // y = (truth.y * l.h); - box truth_shift = truth; - // truth_shift.x = truth_shift.y = 0; - for (ln = 0; ln < l.total; ++ln) { - int n = int_index(l.mask, ln, l.n); - if (n >= 0) { - box pred = { 0 }; - pred.w = l.biases[2 * ln] / state.net.w; - pred.h = l.biases[2 * ln + 1] / state.net.h; - for (j = 0; j < l.h; ++j) { - for (i = 0; i < l.w; ++i) { - pred.x = i / (float)(l.w); - pred.y = j / (float)(l.h); - float iou = box_iou_kind(pred, truth_shift, l.iou_thresh_kind); // IOU, GIOU, MSE, DIOU, CIOU - - const int obj_index = entry_index(l, b, n * l.w * l.h + j * l.w + i, 4); - l.delta[obj_index] = l.obj_normalizer * (0 - l.output[obj_index]); - if(iou > 0.3) { - if(number==0) { - mloam choose = {truth, iou, i, j, 1, ln, n, t}; - mloam_ptr[number++] = choose; - if(iou > maxiou[t]) { - maxiou[t] = iou; - } - } - else { - int markable = 666; - for(int mi = 0; mi < number; mi++) { - mloam mp = mloam_ptr[mi]; - if(mp.mask_n == n && mp.x==i && mp.y==j) { - markable = -666; - if(mp.best_iou < iou) { - mloam choose = {truth, iou, i, j, 1, ln, n, t}; - mloam_ptr[mi] = choose; - if(iou > maxiou[t]) { - maxiou[t] = iou; - } - break; - } - } - } - if(markable > 0) { - mloam choose = {truth, iou, i, j, 1, ln, n, t}; - mloam_ptr[number++] = choose; - if(iou > maxiou[t]) { - maxiou[t] = iou; - } - } - } - } - } - } - } - } - } - - for(int ni = 0; ni < number; ni++) { - mloam mp = mloam_ptr[ni]; - box truth = mp.truth; - int i = mp.x; - int j = mp.y; - int track_id = mp.track_id; - int best_n = mp.best_n; - int mask_n = mp.mask_n; - int t = mp.t; - float iou_scale = mp.best_iou / maxiou[t]; - // printf("%f", iou_scale); - int class_id = state.truth[t * l.truth_size + b * l.truths + 4]; - if (l.map) class_id = l.map[class_id]; - - int box_index = entry_index(l, b, mask_n * l.w * l.h + j * l.w + i, 0); - const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f; - ious all_ious = delta_yolo_box(truth, l.output, l.biases, best_n, box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2 - truth.w * truth.h), l.w * l.h, l.iou_normalizer * class_multiplier * iou_scale, l.iou_loss, 1, l.max_delta, state.net.rewritten_bbox, l.new_coords); - (*state.net.total_bbox)++; - - if(track_id > 0) { - const int truth_in_index = t * l.truth_size + b * l.truths + 5; - const int track_id = state.truth[truth_in_index]; - const int truth_out_index = b * l.n * l.w * l.h + mask_n * l.w * l.h + j * l.w + i; - l.labels[truth_out_index] = track_id; - l.class_ids[truth_out_index] = class_id; - //printf(" track_id = %d, t = %d, b = %d, truth_in_index = %d, truth_out_index = %d \n", track_id, t, b, truth_in_index, truth_out_index); - } - // range is 0 <= 1 - args->tot_iou += all_ious.iou; - args->tot_iou_loss += 1 - all_ious.iou; - // range is -1 <= giou <= 1 - tot_giou += all_ious.giou; - args->tot_giou_loss += 1 - all_ious.giou; - - tot_diou += all_ious.diou; - tot_diou_loss += 1 - all_ious.diou; - - tot_ciou += all_ious.ciou; - tot_ciou_loss += 1 - all_ious.ciou; - - int obj_index = entry_index(l, b, mask_n * l.w * l.h + j * l.w + i, 4); - avg_obj += l.output[obj_index]; - if (l.objectness_smooth) { - float delta_obj = class_multiplier * l.obj_normalizer * (1 - l.output[obj_index]) * iou_scale; - if (l.delta[obj_index] == 0) l.delta[obj_index] = delta_obj; - } - else l.delta[obj_index] = class_multiplier * l.obj_normalizer * (1 - l.output[obj_index]) * iou_scale; - - int class_index = entry_index(l, b, mask_n * l.w * l.h + j * l.w + i, 4 + 1); - delta_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w * l.h, &avg_cat, l.focal_loss, l.label_smooth_eps, l.classes_multipliers, l.cls_normalizer * iou_scale); - - //printf(" label: class_id = %d, truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f \n", class_id, truth.x, truth.y, truth.w, truth.h); - //printf(" mask_n = %d, l.output[obj_index] = %f, l.output[class_index + class_id] = %f \n\n", mask_n, l.output[obj_index], l.output[class_index + class_id]); - - ++(args->count); - ++(args->class_count); - if (all_ious.iou > .5) recall += 1; - if (all_ious.iou > .75) recall75 += 1; - } - } - - return 0; -} - - - -void forward_yolo_layer(const layer l, network_state state) -{ - //int i, j, b, t, n; - memcpy(l.output, state.input, l.outputs*l.batch * sizeof(float)); - int b, n; - -#ifndef GPU - for (b = 0; b < l.batch; ++b) { - for (n = 0; n < l.n; ++n) { - int bbox_index = entry_index(l, b, n*l.w*l.h, 0); - if (l.new_coords) { - //activate_array(l.output + bbox_index, 4 * l.w*l.h, LOGISTIC); // x,y,w,h - } - else { - activate_array(l.output + bbox_index, 2 * l.w*l.h, LOGISTIC); // x,y, - int obj_index = entry_index(l, b, n*l.w*l.h, 4); - activate_array(l.output + obj_index, (1 + l.classes)*l.w*l.h, LOGISTIC); - } - scal_add_cpu(2 * l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output + bbox_index, 1); // scale x,y - } - } -#endif - - // delta is zeroed - memset(l.delta, 0, l.outputs * l.batch * sizeof(float)); - if (!state.train) return; - - int i; - for (i = 0; i < l.batch * l.w*l.h*l.n; ++i) l.labels[i] = -1; - for (i = 0; i < l.batch * l.w*l.h*l.n; ++i) l.class_ids[i] = -1; - //float avg_iou = 0; - float tot_iou = 0; - float tot_giou = 0; - float tot_diou = 0; - float tot_ciou = 0; - float tot_iou_loss = 0; - float tot_giou_loss = 0; - float tot_diou_loss = 0; - float tot_ciou_loss = 0; - float recall = 0; - float recall75 = 0; - float avg_cat = 0; - float avg_obj = 0; - float avg_anyobj = 0; - int count = 0; - int class_count = 0; - *(l.cost) = 0; - - - int num_threads = l.batch; - pthread_t* threads = (pthread_t*)calloc(num_threads, sizeof(pthread_t)); - - struct train_yolo_args* yolo_args = (train_yolo_args*)xcalloc(l.batch, sizeof(struct train_yolo_args)); - - for (b = 0; b < l.batch; b++) - { - yolo_args[b].l = l; - yolo_args[b].state = state; - yolo_args[b].b = b; - - yolo_args[b].tot_iou = 0; - yolo_args[b].tot_iou_loss = 0; - yolo_args[b].tot_giou_loss = 0; - yolo_args[b].count = 0; - yolo_args[b].class_count = 0; - yolo_args[b].mloam_ptr = (mloam *)xcalloc(l.max_boxes * 10 + 60, sizeof(mloam)); // multi_label_one_anchor_choose_maxiou - - if (pthread_create(&threads[b], 0, process_batch, &(yolo_args[b]))) error("Thread creation failed", DARKNET_LOC); - } - - for (b = 0; b < l.batch; b++) - { - pthread_join(threads[b], 0); - - tot_iou += yolo_args[b].tot_iou; - tot_iou_loss += yolo_args[b].tot_iou_loss; - tot_giou_loss += yolo_args[b].tot_giou_loss; - count += yolo_args[b].count; - class_count += yolo_args[b].class_count; - free(yolo_args[b].mloam_ptr); - } - - free(yolo_args); - free(threads); - - // Search for an equidistant point from the distant boundaries of the local minimum - int iteration_num = get_current_iteration(state.net); - const int start_point = state.net.max_batches * 3 / 4; - //printf(" equidistant_point ep = %d, it = %d \n", state.net.equidistant_point, iteration_num); - - if ((state.net.badlabels_rejection_percentage && start_point < iteration_num) || - (state.net.num_sigmas_reject_badlabels && start_point < iteration_num) || - (state.net.equidistant_point && state.net.equidistant_point < iteration_num)) - { - const float progress_it = iteration_num - state.net.equidistant_point; - const float progress = progress_it / (state.net.max_batches - state.net.equidistant_point); - float ep_loss_threshold = (*state.net.delta_rolling_avg) * progress * 1.4; - - float cur_max = 0; - float cur_avg = 0; - float counter = 0; - for (i = 0; i < l.batch * l.outputs; ++i) { - - if (l.delta[i] != 0) { - counter++; - cur_avg += fabs(l.delta[i]); - - if (cur_max < fabs(l.delta[i])) - cur_max = fabs(l.delta[i]); - } - } - - cur_avg = cur_avg / counter; - - if (*state.net.delta_rolling_max == 0) *state.net.delta_rolling_max = cur_max; - *state.net.delta_rolling_max = *state.net.delta_rolling_max * 0.99 + cur_max * 0.01; - *state.net.delta_rolling_avg = *state.net.delta_rolling_avg * 0.99 + cur_avg * 0.01; - - // reject high loss to filter bad labels - if (state.net.num_sigmas_reject_badlabels && start_point < iteration_num) - { - const float rolling_std = (*state.net.delta_rolling_std); - const float rolling_max = (*state.net.delta_rolling_max); - const float rolling_avg = (*state.net.delta_rolling_avg); - const float progress_badlabels = (float)(iteration_num - start_point) / (start_point); - - float cur_std = 0; - float counter = 0; - for (i = 0; i < l.batch * l.outputs; ++i) { - if (l.delta[i] != 0) { - counter++; - cur_std += pow(l.delta[i] - rolling_avg, 2); - } - } - cur_std = sqrt(cur_std / counter); - - *state.net.delta_rolling_std = *state.net.delta_rolling_std * 0.99 + cur_std * 0.01; - - float final_badlebels_threshold = rolling_avg + rolling_std * state.net.num_sigmas_reject_badlabels; - float badlabels_threshold = rolling_max - progress_badlabels * fabs(rolling_max - final_badlebels_threshold); - badlabels_threshold = max_val_cmp(final_badlebels_threshold, badlabels_threshold); - for (i = 0; i < l.batch * l.outputs; ++i) { - if (fabs(l.delta[i]) > badlabels_threshold) - l.delta[i] = 0; - } - printf(" rolling_std = %f, rolling_max = %f, rolling_avg = %f \n", rolling_std, rolling_max, rolling_avg); - printf(" badlabels loss_threshold = %f, start_it = %d, progress = %f \n", badlabels_threshold, start_point, progress_badlabels *100); - - ep_loss_threshold = min_val_cmp(final_badlebels_threshold, rolling_avg) * progress; - } - - - // reject some percent of the highest deltas to filter bad labels - if (state.net.badlabels_rejection_percentage && start_point < iteration_num) { - if (*state.net.badlabels_reject_threshold == 0) - *state.net.badlabels_reject_threshold = *state.net.delta_rolling_max; - - printf(" badlabels_reject_threshold = %f \n", *state.net.badlabels_reject_threshold); - - const float num_deltas_per_anchor = (l.classes + 4 + 1); - float counter_reject = 0; - float counter_all = 0; - for (i = 0; i < l.batch * l.outputs; ++i) { - if (l.delta[i] != 0) { - counter_all++; - if (fabs(l.delta[i]) > (*state.net.badlabels_reject_threshold)) { - counter_reject++; - l.delta[i] = 0; - } - } - } - float cur_percent = 100 * (counter_reject*num_deltas_per_anchor / counter_all); - if (cur_percent > state.net.badlabels_rejection_percentage) { - *state.net.badlabels_reject_threshold += 0.01; - printf(" increase!!! \n"); - } - else if (*state.net.badlabels_reject_threshold > 0.01) { - *state.net.badlabels_reject_threshold -= 0.01; - printf(" decrease!!! \n"); - } - - printf(" badlabels_reject_threshold = %f, cur_percent = %f, badlabels_rejection_percentage = %f, delta_rolling_max = %f \n", - *state.net.badlabels_reject_threshold, cur_percent, state.net.badlabels_rejection_percentage, *state.net.delta_rolling_max); - } - - - // reject low loss to find equidistant point - if (state.net.equidistant_point && state.net.equidistant_point < iteration_num) { - printf(" equidistant_point loss_threshold = %f, start_it = %d, progress = %3.1f %% \n", ep_loss_threshold, state.net.equidistant_point, progress * 100); - for (i = 0; i < l.batch * l.outputs; ++i) { - if (fabs(l.delta[i]) < ep_loss_threshold) - l.delta[i] = 0; - } - } - } - - if (count == 0) count = 1; - if (class_count == 0) class_count = 1; - - if (l.show_details == 0) { - float loss = pow(mag_array(l.delta, l.outputs * l.batch), 2); - *(l.cost) = loss; - - loss /= l.batch; - - fprintf(stderr, "v3 (%s loss, Normalizer: (iou: %.2f, obj: %.2f, cls: %.2f) Region %d Avg (IOU: %f), count: %d, total_loss = %f \n", - (l.iou_loss == MSE ? "mse" : (l.iou_loss == GIOU ? "giou" : "iou")), l.iou_normalizer, l.obj_normalizer, l.cls_normalizer, state.index, tot_iou / count, count, loss); - } - else { - // show detailed output - - int stride = l.w*l.h; - float* no_iou_loss_delta = (float *)calloc(l.batch * l.outputs, sizeof(float)); - memcpy(no_iou_loss_delta, l.delta, l.batch * l.outputs * sizeof(float)); - - - int j, n; - for (b = 0; b < l.batch; ++b) { - for (j = 0; j < l.h; ++j) { - for (i = 0; i < l.w; ++i) { - for (n = 0; n < l.n; ++n) { - int index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 0); - no_iou_loss_delta[index + 0 * stride] = 0; - no_iou_loss_delta[index + 1 * stride] = 0; - no_iou_loss_delta[index + 2 * stride] = 0; - no_iou_loss_delta[index + 3 * stride] = 0; - } - } - } - } - - float classification_loss = l.obj_normalizer * pow(mag_array(no_iou_loss_delta, l.outputs * l.batch), 2); - free(no_iou_loss_delta); - float loss = pow(mag_array(l.delta, l.outputs * l.batch), 2); - float iou_loss = loss - classification_loss; - - float avg_iou_loss = 0; - *(l.cost) = loss; - - // gIOU loss + MSE (objectness) loss - if (l.iou_loss == MSE) { - *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2); - } - else { - // Always compute classification loss both for iou + cls loss and for logging with mse loss - // TODO: remove IOU loss fields before computing MSE on class - // probably split into two arrays - if (l.iou_loss == GIOU) { - avg_iou_loss = count > 0 ? l.iou_normalizer * (tot_giou_loss / count) : 0; - } - else { - avg_iou_loss = count > 0 ? l.iou_normalizer * (tot_iou_loss / count) : 0; - } - *(l.cost) = avg_iou_loss + classification_loss; - } - - - loss /= l.batch; - classification_loss /= l.batch; - iou_loss /= l.batch; - - fprintf(stderr, "v3 (%s loss, Normalizer: (iou: %.2f, obj: %.2f, cls: %.2f) Region %d Avg (IOU: %f), count: %d, class_loss = %f, iou_loss = %f, total_loss = %f \n", - (l.iou_loss == MSE ? "mse" : (l.iou_loss == GIOU ? "giou" : "iou")), l.iou_normalizer, l.obj_normalizer, l.cls_normalizer, state.index, tot_iou / count, count, classification_loss, iou_loss, loss); - - //fprintf(stderr, "v3 (%s loss, Normalizer: (iou: %.2f, cls: %.2f) Region %d Avg (IOU: %f, GIOU: %f), Class: %f, Obj: %f, No Obj: %f, .5R: %f, .75R: %f, count: %d, class_loss = %f, iou_loss = %f, total_loss = %f \n", - // (l.iou_loss == MSE ? "mse" : (l.iou_loss == GIOU ? "giou" : "iou")), l.iou_normalizer, l.obj_normalizer, state.index, tot_iou / count, tot_giou / count, avg_cat / class_count, avg_obj / count, avg_anyobj / (l.w*l.h*l.n*l.batch), recall / count, recall75 / count, count, - // classification_loss, iou_loss, loss); - } -} - -void backward_yolo_layer(const layer l, network_state state) -{ - axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1); -} - -// Converts output of the network to detection boxes -// w,h: image width,height -// netw,neth: network width,height -// relative: 1 (all callers seems to pass TRUE) -void correct_yolo_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative, int letter) -{ - int i; - // network height (or width) - int new_w = 0; - // network height (or width) - int new_h = 0; - // Compute scale given image w,h vs network w,h - // I think this "rotates" the image to match network to input image w/h ratio - // new_h and new_w are really just network width and height - if (letter) { - if (((float)netw / w) < ((float)neth / h)) { - new_w = netw; - new_h = (h * netw) / w; - } - else { - new_h = neth; - new_w = (w * neth) / h; - } - } - else { - new_w = netw; - new_h = neth; - } - // difference between network width and "rotated" width - float deltaw = netw - new_w; - // difference between network height and "rotated" height - float deltah = neth - new_h; - // ratio between rotated network width and network width - float ratiow = (float)new_w / netw; - // ratio between rotated network width and network width - float ratioh = (float)new_h / neth; - for (i = 0; i < n; ++i) { - - box b = dets[i].bbox; - // x = ( x - (deltaw/2)/netw ) / ratiow; - // x - [(1/2 the difference of the network width and rotated width) / (network width)] - b.x = (b.x - deltaw / 2. / netw) / ratiow; - b.y = (b.y - deltah / 2. / neth) / ratioh; - // scale to match rotation of incoming image - b.w *= 1 / ratiow; - b.h *= 1 / ratioh; - - // relative seems to always be == 1, I don't think we hit this condition, ever. - if (!relative) { - b.x *= w; - b.w *= w; - b.y *= h; - b.h *= h; - } - - dets[i].bbox = b; - } -} - -/* -void correct_yolo_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative, int letter) -{ - int i; - int new_w=0; - int new_h=0; - if (letter) { - if (((float)netw / w) < ((float)neth / h)) { - new_w = netw; - new_h = (h * netw) / w; - } - else { - new_h = neth; - new_w = (w * neth) / h; - } - } - else { - new_w = netw; - new_h = neth; - } - for (i = 0; i < n; ++i){ - box b = dets[i].bbox; - b.x = (b.x - (netw - new_w)/2./netw) / ((float)new_w/netw); - b.y = (b.y - (neth - new_h)/2./neth) / ((float)new_h/neth); - b.w *= (float)netw/new_w; - b.h *= (float)neth/new_h; - if(!relative){ - b.x *= w; - b.w *= w; - b.y *= h; - b.h *= h; - } - dets[i].bbox = b; - } -} -*/ - -int yolo_num_detections(layer l, float thresh) -{ - int i, n; - int count = 0; - for(n = 0; n < l.n; ++n){ - for (i = 0; i < l.w*l.h; ++i) { - int obj_index = entry_index(l, 0, n*l.w*l.h + i, 4); - if(l.output[obj_index] > thresh){ - ++count; - } - } - } - return count; -} - -int yolo_num_detections_batch(layer l, float thresh, int batch) -{ - int i, n; - int count = 0; - for (i = 0; i < l.w*l.h; ++i){ - for(n = 0; n < l.n; ++n){ - int obj_index = entry_index(l, batch, n*l.w*l.h + i, 4); - if(l.output[obj_index] > thresh){ - ++count; - } - } - } - return count; -} - -void avg_flipped_yolo(layer l) -{ - int i,j,n,z; - float *flip = l.output + l.outputs; - for (j = 0; j < l.h; ++j) { - for (i = 0; i < l.w/2; ++i) { - for (n = 0; n < l.n; ++n) { - for(z = 0; z < l.classes + 4 + 1; ++z){ - int i1 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + i; - int i2 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + (l.w - i - 1); - float swap = flip[i1]; - flip[i1] = flip[i2]; - flip[i2] = swap; - if(z == 0){ - flip[i1] = -flip[i1]; - flip[i2] = -flip[i2]; - } - } - } - } - } - for(i = 0; i < l.outputs; ++i){ - l.output[i] = (l.output[i] + flip[i])/2.; - } -} - -int get_yolo_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, int relative, detection *dets, int letter) -{ - //printf("\n l.batch = %d, l.w = %d, l.h = %d, l.n = %d \n", l.batch, l.w, l.h, l.n); - int i,j,n; - float *predictions = l.output; - // This snippet below is not necessary - // Need to comment it in order to batch processing >= 2 images - //if (l.batch == 2) avg_flipped_yolo(l); - int count = 0; - for (i = 0; i < l.w*l.h; ++i){ - int row = i / l.w; - int col = i % l.w; - for(n = 0; n < l.n; ++n){ - int obj_index = entry_index(l, 0, n*l.w*l.h + i, 4); - float objectness = predictions[obj_index]; - //if(objectness <= thresh) continue; // incorrect behavior for Nan values - if (objectness > thresh) { - //printf("\n objectness = %f, thresh = %f, i = %d, n = %d \n", objectness, thresh, i, n); - int box_index = entry_index(l, 0, n*l.w*l.h + i, 0); - dets[count].bbox = get_yolo_box(predictions, l.biases, l.mask[n], box_index, col, row, l.w, l.h, netw, neth, l.w*l.h, l.new_coords); - dets[count].objectness = objectness; - dets[count].classes = l.classes; - if (l.embedding_output) { - get_embedding(l.embedding_output, l.w, l.h, l.n*l.embedding_size, l.embedding_size, col, row, n, 0, dets[count].embeddings); - } - - for (j = 0; j < l.classes; ++j) { - int class_index = entry_index(l, 0, n*l.w*l.h + i, 4 + 1 + j); - float prob = objectness*predictions[class_index]; - dets[count].prob[j] = (prob > thresh) ? prob : 0; - } - ++count; - } - } - } - correct_yolo_boxes(dets, count, w, h, netw, neth, relative, letter); - return count; -} - -int get_yolo_detections_batch(layer l, int w, int h, int netw, int neth, float thresh, int *map, int relative, detection *dets, int letter, int batch) -{ - int i,j,n; - float *predictions = l.output; - //if (l.batch == 2) avg_flipped_yolo(l); - int count = 0; - for (i = 0; i < l.w*l.h; ++i){ - int row = i / l.w; - int col = i % l.w; - for(n = 0; n < l.n; ++n){ - int obj_index = entry_index(l, batch, n*l.w*l.h + i, 4); - float objectness = predictions[obj_index]; - //if(objectness <= thresh) continue; // incorrect behavior for Nan values - if (objectness > thresh) { - //printf("\n objectness = %f, thresh = %f, i = %d, n = %d \n", objectness, thresh, i, n); - int box_index = entry_index(l, batch, n*l.w*l.h + i, 0); - dets[count].bbox = get_yolo_box(predictions, l.biases, l.mask[n], box_index, col, row, l.w, l.h, netw, neth, l.w*l.h, l.new_coords); - dets[count].objectness = objectness; - dets[count].classes = l.classes; - if (l.embedding_output) { - get_embedding(l.embedding_output, l.w, l.h, l.n*l.embedding_size, l.embedding_size, col, row, n, batch, dets[count].embeddings); - } - - for (j = 0; j < l.classes; ++j) { - int class_index = entry_index(l, batch, n*l.w*l.h + i, 4 + 1 + j); - float prob = objectness*predictions[class_index]; - dets[count].prob[j] = (prob > thresh) ? prob : 0; - } - ++count; - } - } - } - correct_yolo_boxes(dets, count, w, h, netw, neth, relative, letter); - return count; -} - -#ifdef GPU - -void forward_yolo_layer_gpu(const layer l, network_state state) -{ - if (l.embedding_output) { - layer le = state.net.layers[l.embedding_layer_id]; - cuda_pull_array_async(le.output_gpu, l.embedding_output, le.batch*le.outputs); - } - - //copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1); - simple_copy_ongpu(l.batch*l.inputs, state.input, l.output_gpu); - int b, n; - for (b = 0; b < l.batch; ++b){ - for(n = 0; n < l.n; ++n){ - int bbox_index = entry_index(l, b, n*l.w*l.h, 0); - // y = 1./(1. + exp(-x)) - // x = ln(y/(1-y)) // ln - natural logarithm (base = e) - // if(y->1) x -> inf - // if(y->0) x -> -inf - if (l.new_coords) { - //activate_array_ongpu(l.output_gpu + bbox_index, 4 * l.w*l.h, LOGISTIC); // x,y,w,h - } - else { - activate_array_ongpu(l.output_gpu + bbox_index, 2 * l.w*l.h, LOGISTIC); // x,y - - int obj_index = entry_index(l, b, n*l.w*l.h, 4); - activate_array_ongpu(l.output_gpu + obj_index, (1 + l.classes)*l.w*l.h, LOGISTIC); // classes and objectness - } - if (l.scale_x_y != 1) scal_add_ongpu(2 * l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output_gpu + bbox_index, 1); // scale x,y - } - } - if(!state.train || l.onlyforward){ - //cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs); - if (l.mean_alpha && l.output_avg_gpu) mean_array_gpu(l.output_gpu, l.batch*l.outputs, l.mean_alpha, l.output_avg_gpu); - cuda_pull_array_async(l.output_gpu, l.output, l.batch*l.outputs); - CHECK_CUDA(cudaPeekAtLastError()); - return; - } - - float *in_cpu = (float *)xcalloc(l.batch*l.inputs, sizeof(float)); - cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs); - memcpy(in_cpu, l.output, l.batch*l.outputs*sizeof(float)); - float *truth_cpu = 0; - if (state.truth) { - int num_truth = l.batch*l.truths; - truth_cpu = (float *)xcalloc(num_truth, sizeof(float)); - cuda_pull_array(state.truth, truth_cpu, num_truth); - } - network_state cpu_state = state; - cpu_state.net = state.net; - cpu_state.index = state.index; - cpu_state.train = state.train; - cpu_state.truth = truth_cpu; - cpu_state.input = in_cpu; - forward_yolo_layer(l, cpu_state); - //forward_yolo_layer(l, state); - cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs); - free(in_cpu); - if (cpu_state.truth) free(cpu_state.truth); -} - -void backward_yolo_layer_gpu(const layer l, network_state state) -{ - axpy_ongpu(l.batch*l.inputs, state.net.loss_scale * l.delta_normalizer, l.delta_gpu, 1, state.delta, 1); -} -#endif From a65af16ae0aa4c22537c4615f8d1d276b56261c5 Mon Sep 17 00:00:00 2001 From: ZouJiu <1069679911@qq.com> Date: Mon, 21 Aug 2023 08:34:24 +0800 Subject: [PATCH 09/11] one predict corresponding to multi truth label --- src/yolo_layer.c | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/src/yolo_layer.c b/src/yolo_layer.c index b8a571583ce..e12109597a5 100644 --- a/src/yolo_layer.c +++ b/src/yolo_layer.c @@ -549,7 +549,7 @@ void *process_batch(void* ptr) int markable = 666; for(int mi = 0; mi < number; mi++) { mloam mp = mloam_ptr[mi]; - if(mp.mask_n == mask_n && mp.x==i && mp.y==j) { + if(mp.best_n==best_n && mp.mask_n == mask_n && mp.x==i && mp.y==j) { markable = -666; if(mp.best_iou < best_iou) { mloam choose = {truth, best_iou, i, j, 1, best_n, mask_n, t}; @@ -583,7 +583,7 @@ void *process_batch(void* ptr) int markable = 666; for(int mi = 0; mi < number; mi++) { mloam mp = mloam_ptr[mi]; - if(mp.mask_n == mask_n && mp.x==i && mp.y==j) { + if(mp.best_n==n && mp.mask_n == mask_n && mp.x==i && mp.y==j) { markable = -666; if(mp.best_iou < iou) { mloam choose = {truth, iou, i, j, -1, n, mask_n, t}; From a99d68631a6979802aef20e70fd837e13b7e9f8d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=E4=B9=9D=E6=98=AF=E5=90=A6=E9=9A=8F=E6=84=8F=E7=9A=84?= =?UTF-8?q?=E7=A7=B0=E5=91=BC?= <1069679911@qq.com> Date: Sat, 1 Feb 2025 19:21:30 +0800 Subject: [PATCH 10/11] Update LICENSE --- LICENSE | 686 +++++++++++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 674 insertions(+), 12 deletions(-) diff --git a/LICENSE b/LICENSE index a50f7d700ba..c75e5d2f28b 100644 --- a/LICENSE +++ b/LICENSE @@ -1,12 +1,674 @@ - YOLO LICENSE - Version 2, July 29 2016 - -THIS SOFTWARE LICENSE IS PROVIDED "ALL CAPS" SO THAT YOU KNOW IT IS SUPER -SERIOUS AND YOU DON'T MESS AROUND WITH COPYRIGHT LAW BECAUSE YOU WILL GET IN -TROUBLE HERE ARE SOME OTHER BUZZWORDS COMMONLY IN THESE THINGS WARRANTIES -LIABILITY CONTRACT TORT LIABLE CLAIMS RESTRICTION MERCHANTABILITY. NOW HERE'S -THE REAL LICENSE: - -0. Darknet is public domain. -1. Do whatever you want with it. -2. Stop emailing me about it! + GNU GENERAL PUBLIC LICENSE + Version 3, 29 June 2007 + + Copyright (C) 2007 Free Software Foundation, Inc. + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + Preamble + + The GNU General Public License is a free, copyleft license for +software and other kinds of works. + + The licenses for most software and other practical works are designed +to take away your freedom to share and change the works. By contrast, +the GNU General Public License is intended to guarantee your freedom to +share and change all versions of a program--to make sure it remains free +software for all its users. We, the Free Software Foundation, use the +GNU General Public License for most of our software; it applies also to +any other work released this way by its authors. You can apply it to +your programs, too. + + When we speak of free software, we are referring to freedom, not +price. Our General Public Licenses are designed to make sure that you +have the freedom to distribute copies of free software (and charge for +them if you wish), that you receive source code or can get it if you +want it, that you can change the software or use pieces of it in new +free programs, and that you know you can do these things. + + To protect your rights, we need to prevent others from denying you +these rights or asking you to surrender the rights. Therefore, you have +certain responsibilities if you distribute copies of the software, or if +you modify it: responsibilities to respect the freedom of others. + + For example, if you distribute copies of such a program, whether +gratis or for a fee, you must pass on to the recipients the same +freedoms that you received. You must make sure that they, too, receive +or can get the source code. And you must show them these terms so they +know their rights. + + Developers that use the GNU GPL protect your rights with two steps: +(1) assert copyright on the software, and (2) offer you this License +giving you legal permission to copy, distribute and/or modify it. + + For the developers' and authors' protection, the GPL clearly explains +that there is no warranty for this free software. For both users' and +authors' sake, the GPL requires that modified versions be marked as +changed, so that their problems will not be attributed erroneously to +authors of previous versions. + + Some devices are designed to deny users access to install or run +modified versions of the software inside them, although the manufacturer +can do so. This is fundamentally incompatible with the aim of +protecting users' freedom to change the software. The systematic +pattern of such abuse occurs in the area of products for individuals to +use, which is precisely where it is most unacceptable. Therefore, we +have designed this version of the GPL to prohibit the practice for those +products. If such problems arise substantially in other domains, we +stand ready to extend this provision to those domains in future versions +of the GPL, as needed to protect the freedom of users. + + Finally, every program is threatened constantly by software patents. +States should not allow patents to restrict development and use of +software on general-purpose computers, but in those that do, we wish to +avoid the special danger that patents applied to a free program could +make it effectively proprietary. To prevent this, the GPL assures that +patents cannot be used to render the program non-free. + + The precise terms and conditions for copying, distribution and +modification follow. + + TERMS AND CONDITIONS + + 0. Definitions. + + "This License" refers to version 3 of the GNU General Public License. + + "Copyright" also means copyright-like laws that apply to other kinds of +works, such as semiconductor masks. + + "The Program" refers to any copyrightable work licensed under this +License. Each licensee is addressed as "you". "Licensees" and +"recipients" may be individuals or organizations. + + To "modify" a work means to copy from or adapt all or part of the work +in a fashion requiring copyright permission, other than the making of an +exact copy. The resulting work is called a "modified version" of the +earlier work or a work "based on" the earlier work. + + A "covered work" means either the unmodified Program or a work based +on the Program. + + To "propagate" a work means to do anything with it that, without +permission, would make you directly or secondarily liable for +infringement under applicable copyright law, except executing it on a +computer or modifying a private copy. Propagation includes copying, +distribution (with or without modification), making available to the +public, and in some countries other activities as well. + + To "convey" a work means any kind of propagation that enables other +parties to make or receive copies. Mere interaction with a user through +a computer network, with no transfer of a copy, is not conveying. + + An interactive user interface displays "Appropriate Legal Notices" +to the extent that it includes a convenient and prominently visible +feature that (1) displays an appropriate copyright notice, and (2) +tells the user that there is no warranty for the work (except to the +extent that warranties are provided), that licensees may convey the +work under this License, and how to view a copy of this License. If +the interface presents a list of user commands or options, such as a +menu, a prominent item in the list meets this criterion. + + 1. Source Code. + + The "source code" for a work means the preferred form of the work +for making modifications to it. "Object code" means any non-source +form of a work. + + A "Standard Interface" means an interface that either is an official +standard defined by a recognized standards body, or, in the case of +interfaces specified for a particular programming language, one that +is widely used among developers working in that language. + + The "System Libraries" of an executable work include anything, other +than the work as a whole, that (a) is included in the normal form of +packaging a Major Component, but which is not part of that Major +Component, and (b) serves only to enable use of the work with that +Major Component, or to implement a Standard Interface for which an +implementation is available to the public in source code form. A +"Major Component", in this context, means a major essential component +(kernel, window system, and so on) of the specific operating system +(if any) on which the executable work runs, or a compiler used to +produce the work, or an object code interpreter used to run it. + + The "Corresponding Source" for a work in object code form means all +the source code needed to generate, install, and (for an executable +work) run the object code and to modify the work, including scripts to +control those activities. However, it does not include the work's +System Libraries, or general-purpose tools or generally available free +programs which are used unmodified in performing those activities but +which are not part of the work. For example, Corresponding Source +includes interface definition files associated with source files for +the work, and the source code for shared libraries and dynamically +linked subprograms that the work is specifically designed to require, +such as by intimate data communication or control flow between those +subprograms and other parts of the work. + + The Corresponding Source need not include anything that users +can regenerate automatically from other parts of the Corresponding +Source. + + The Corresponding Source for a work in source code form is that +same work. + + 2. Basic Permissions. + + All rights granted under this License are granted for the term of +copyright on the Program, and are irrevocable provided the stated +conditions are met. This License explicitly affirms your unlimited +permission to run the unmodified Program. The output from running a +covered work is covered by this License only if the output, given its +content, constitutes a covered work. This License acknowledges your +rights of fair use or other equivalent, as provided by copyright law. + + You may make, run and propagate covered works that you do not +convey, without conditions so long as your license otherwise remains +in force. You may convey covered works to others for the sole purpose +of having them make modifications exclusively for you, or provide you +with facilities for running those works, provided that you comply with +the terms of this License in conveying all material for which you do +not control copyright. Those thus making or running the covered works +for you must do so exclusively on your behalf, under your direction +and control, on terms that prohibit them from making any copies of +your copyrighted material outside their relationship with you. + + Conveying under any other circumstances is permitted solely under +the conditions stated below. Sublicensing is not allowed; section 10 +makes it unnecessary. + + 3. Protecting Users' Legal Rights From Anti-Circumvention Law. + + No covered work shall be deemed part of an effective technological +measure under any applicable law fulfilling obligations under article +11 of the WIPO copyright treaty adopted on 20 December 1996, or +similar laws prohibiting or restricting circumvention of such +measures. + + When you convey a covered work, you waive any legal power to forbid +circumvention of technological measures to the extent such circumvention +is effected by exercising rights under this License with respect to +the covered work, and you disclaim any intention to limit operation or +modification of the work as a means of enforcing, against the work's +users, your or third parties' legal rights to forbid circumvention of +technological measures. + + 4. Conveying Verbatim Copies. + + You may convey verbatim copies of the Program's source code as you +receive it, in any medium, provided that you conspicuously and +appropriately publish on each copy an appropriate copyright notice; +keep intact all notices stating that this License and any +non-permissive terms added in accord with section 7 apply to the code; +keep intact all notices of the absence of any warranty; and give all +recipients a copy of this License along with the Program. + + You may charge any price or no price for each copy that you convey, +and you may offer support or warranty protection for a fee. + + 5. Conveying Modified Source Versions. + + You may convey a work based on the Program, or the modifications to +produce it from the Program, in the form of source code under the +terms of section 4, provided that you also meet all of these conditions: + + a) The work must carry prominent notices stating that you modified + it, and giving a relevant date. + + b) The work must carry prominent notices stating that it is + released under this License and any conditions added under section + 7. This requirement modifies the requirement in section 4 to + "keep intact all notices". + + c) You must license the entire work, as a whole, under this + License to anyone who comes into possession of a copy. This + License will therefore apply, along with any applicable section 7 + additional terms, to the whole of the work, and all its parts, + regardless of how they are packaged. This License gives no + permission to license the work in any other way, but it does not + invalidate such permission if you have separately received it. + + d) If the work has interactive user interfaces, each must display + Appropriate Legal Notices; however, if the Program has interactive + interfaces that do not display Appropriate Legal Notices, your + work need not make them do so. + + A compilation of a covered work with other separate and independent +works, which are not by their nature extensions of the covered work, +and which are not combined with it such as to form a larger program, +in or on a volume of a storage or distribution medium, is called an +"aggregate" if the compilation and its resulting copyright are not +used to limit the access or legal rights of the compilation's users +beyond what the individual works permit. Inclusion of a covered work +in an aggregate does not cause this License to apply to the other +parts of the aggregate. + + 6. Conveying Non-Source Forms. + + You may convey a covered work in object code form under the terms +of sections 4 and 5, provided that you also convey the +machine-readable Corresponding Source under the terms of this License, +in one of these ways: + + a) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by the + Corresponding Source fixed on a durable physical medium + customarily used for software interchange. + + b) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by a + written offer, valid for at least three years and valid for as + long as you offer spare parts or customer support for that product + model, to give anyone who possesses the object code either (1) a + copy of the Corresponding Source for all the software in the + product that is covered by this License, on a durable physical + medium customarily used for software interchange, for a price no + more than your reasonable cost of physically performing this + conveying of source, or (2) access to copy the + Corresponding Source from a network server at no charge. + + c) Convey individual copies of the object code with a copy of the + written offer to provide the Corresponding Source. This + alternative is allowed only occasionally and noncommercially, and + only if you received the object code with such an offer, in accord + with subsection 6b. + + d) Convey the object code by offering access from a designated + place (gratis or for a charge), and offer equivalent access to the + Corresponding Source in the same way through the same place at no + further charge. You need not require recipients to copy the + Corresponding Source along with the object code. If the place to + copy the object code is a network server, the Corresponding Source + may be on a different server (operated by you or a third party) + that supports equivalent copying facilities, provided you maintain + clear directions next to the object code saying where to find the + Corresponding Source. Regardless of what server hosts the + Corresponding Source, you remain obligated to ensure that it is + available for as long as needed to satisfy these requirements. + + e) Convey the object code using peer-to-peer transmission, provided + you inform other peers where the object code and Corresponding + Source of the work are being offered to the general public at no + charge under subsection 6d. + + A separable portion of the object code, whose source code is excluded +from the Corresponding Source as a System Library, need not be +included in conveying the object code work. + + A "User Product" is either (1) a "consumer product", which means any +tangible personal property which is normally used for personal, family, +or household purposes, or (2) anything designed or sold for incorporation +into a dwelling. In determining whether a product is a consumer product, +doubtful cases shall be resolved in favor of coverage. For a particular +product received by a particular user, "normally used" refers to a +typical or common use of that class of product, regardless of the status +of the particular user or of the way in which the particular user +actually uses, or expects or is expected to use, the product. A product +is a consumer product regardless of whether the product has substantial +commercial, industrial or non-consumer uses, unless such uses represent +the only significant mode of use of the product. + + "Installation Information" for a User Product means any methods, +procedures, authorization keys, or other information required to install +and execute modified versions of a covered work in that User Product from +a modified version of its Corresponding Source. The information must +suffice to ensure that the continued functioning of the modified object +code is in no case prevented or interfered with solely because +modification has been made. + + If you convey an object code work under this section in, or with, or +specifically for use in, a User Product, and the conveying occurs as +part of a transaction in which the right of possession and use of the +User Product is transferred to the recipient in perpetuity or for a +fixed term (regardless of how the transaction is characterized), the +Corresponding Source conveyed under this section must be accompanied +by the Installation Information. But this requirement does not apply +if neither you nor any third party retains the ability to install +modified object code on the User Product (for example, the work has +been installed in ROM). + + The requirement to provide Installation Information does not include a +requirement to continue to provide support service, warranty, or updates +for a work that has been modified or installed by the recipient, or for +the User Product in which it has been modified or installed. Access to a +network may be denied when the modification itself materially and +adversely affects the operation of the network or violates the rules and +protocols for communication across the network. + + Corresponding Source conveyed, and Installation Information provided, +in accord with this section must be in a format that is publicly +documented (and with an implementation available to the public in +source code form), and must require no special password or key for +unpacking, reading or copying. + + 7. Additional Terms. + + "Additional permissions" are terms that supplement the terms of this +License by making exceptions from one or more of its conditions. +Additional permissions that are applicable to the entire Program shall +be treated as though they were included in this License, to the extent +that they are valid under applicable law. If additional permissions +apply only to part of the Program, that part may be used separately +under those permissions, but the entire Program remains governed by +this License without regard to the additional permissions. + + When you convey a copy of a covered work, you may at your option +remove any additional permissions from that copy, or from any part of +it. (Additional permissions may be written to require their own +removal in certain cases when you modify the work.) You may place +additional permissions on material, added by you to a covered work, +for which you have or can give appropriate copyright permission. + + Notwithstanding any other provision of this License, for material you +add to a covered work, you may (if authorized by the copyright holders of +that material) supplement the terms of this License with terms: + + a) Disclaiming warranty or limiting liability differently from the + terms of sections 15 and 16 of this License; or + + b) Requiring preservation of specified reasonable legal notices or + author attributions in that material or in the Appropriate Legal + Notices displayed by works containing it; or + + c) Prohibiting misrepresentation of the origin of that material, or + requiring that modified versions of such material be marked in + reasonable ways as different from the original version; or + + d) Limiting the use for publicity purposes of names of licensors or + authors of the material; or + + e) Declining to grant rights under trademark law for use of some + trade names, trademarks, or service marks; or + + f) Requiring indemnification of licensors and authors of that + material by anyone who conveys the material (or modified versions of + it) with contractual assumptions of liability to the recipient, for + any liability that these contractual assumptions directly impose on + those licensors and authors. + + All other non-permissive additional terms are considered "further +restrictions" within the meaning of section 10. If the Program as you +received it, or any part of it, contains a notice stating that it is +governed by this License along with a term that is a further +restriction, you may remove that term. If a license document contains +a further restriction but permits relicensing or conveying under this +License, you may add to a covered work material governed by the terms +of that license document, provided that the further restriction does +not survive such relicensing or conveying. + + If you add terms to a covered work in accord with this section, you +must place, in the relevant source files, a statement of the +additional terms that apply to those files, or a notice indicating +where to find the applicable terms. + + Additional terms, permissive or non-permissive, may be stated in the +form of a separately written license, or stated as exceptions; +the above requirements apply either way. + + 8. Termination. + + You may not propagate or modify a covered work except as expressly +provided under this License. Any attempt otherwise to propagate or +modify it is void, and will automatically terminate your rights under +this License (including any patent licenses granted under the third +paragraph of section 11). + + However, if you cease all violation of this License, then your +license from a particular copyright holder is reinstated (a) +provisionally, unless and until the copyright holder explicitly and +finally terminates your license, and (b) permanently, if the copyright +holder fails to notify you of the violation by some reasonable means +prior to 60 days after the cessation. + + Moreover, your license from a particular copyright holder is +reinstated permanently if the copyright holder notifies you of the +violation by some reasonable means, this is the first time you have +received notice of violation of this License (for any work) from that +copyright holder, and you cure the violation prior to 30 days after +your receipt of the notice. + + Termination of your rights under this section does not terminate the +licenses of parties who have received copies or rights from you under +this License. If your rights have been terminated and not permanently +reinstated, you do not qualify to receive new licenses for the same +material under section 10. + + 9. Acceptance Not Required for Having Copies. + + You are not required to accept this License in order to receive or +run a copy of the Program. Ancillary propagation of a covered work +occurring solely as a consequence of using peer-to-peer transmission +to receive a copy likewise does not require acceptance. However, +nothing other than this License grants you permission to propagate or +modify any covered work. These actions infringe copyright if you do +not accept this License. Therefore, by modifying or propagating a +covered work, you indicate your acceptance of this License to do so. + + 10. Automatic Licensing of Downstream Recipients. + + Each time you convey a covered work, the recipient automatically +receives a license from the original licensors, to run, modify and +propagate that work, subject to this License. You are not responsible +for enforcing compliance by third parties with this License. + + An "entity transaction" is a transaction transferring control of an +organization, or substantially all assets of one, or subdividing an +organization, or merging organizations. If propagation of a covered +work results from an entity transaction, each party to that +transaction who receives a copy of the work also receives whatever +licenses to the work the party's predecessor in interest had or could +give under the previous paragraph, plus a right to possession of the +Corresponding Source of the work from the predecessor in interest, if +the predecessor has it or can get it with reasonable efforts. + + You may not impose any further restrictions on the exercise of the +rights granted or affirmed under this License. For example, you may +not impose a license fee, royalty, or other charge for exercise of +rights granted under this License, and you may not initiate litigation +(including a cross-claim or counterclaim in a lawsuit) alleging that +any patent claim is infringed by making, using, selling, offering for +sale, or importing the Program or any portion of it. + + 11. Patents. + + A "contributor" is a copyright holder who authorizes use under this +License of the Program or a work on which the Program is based. The +work thus licensed is called the contributor's "contributor version". + + A contributor's "essential patent claims" are all patent claims +owned or controlled by the contributor, whether already acquired or +hereafter acquired, that would be infringed by some manner, permitted +by this License, of making, using, or selling its contributor version, +but do not include claims that would be infringed only as a +consequence of further modification of the contributor version. For +purposes of this definition, "control" includes the right to grant +patent sublicenses in a manner consistent with the requirements of +this License. + + Each contributor grants you a non-exclusive, worldwide, royalty-free +patent license under the contributor's essential patent claims, to +make, use, sell, offer for sale, import and otherwise run, modify and +propagate the contents of its contributor version. + + In the following three paragraphs, a "patent license" is any express +agreement or commitment, however denominated, not to enforce a patent +(such as an express permission to practice a patent or covenant not to +sue for patent infringement). To "grant" such a patent license to a +party means to make such an agreement or commitment not to enforce a +patent against the party. + + If you convey a covered work, knowingly relying on a patent license, +and the Corresponding Source of the work is not available for anyone +to copy, free of charge and under the terms of this License, through a +publicly available network server or other readily accessible means, +then you must either (1) cause the Corresponding Source to be so +available, or (2) arrange to deprive yourself of the benefit of the +patent license for this particular work, or (3) arrange, in a manner +consistent with the requirements of this License, to extend the patent +license to downstream recipients. "Knowingly relying" means you have +actual knowledge that, but for the patent license, your conveying the +covered work in a country, or your recipient's use of the covered work +in a country, would infringe one or more identifiable patents in that +country that you have reason to believe are valid. + + If, pursuant to or in connection with a single transaction or +arrangement, you convey, or propagate by procuring conveyance of, a +covered work, and grant a patent license to some of the parties +receiving the covered work authorizing them to use, propagate, modify +or convey a specific copy of the covered work, then the patent license +you grant is automatically extended to all recipients of the covered +work and works based on it. + + A patent license is "discriminatory" if it does not include within +the scope of its coverage, prohibits the exercise of, or is +conditioned on the non-exercise of one or more of the rights that are +specifically granted under this License. You may not convey a covered +work if you are a party to an arrangement with a third party that is +in the business of distributing software, under which you make payment +to the third party based on the extent of your activity of conveying +the work, and under which the third party grants, to any of the +parties who would receive the covered work from you, a discriminatory +patent license (a) in connection with copies of the covered work +conveyed by you (or copies made from those copies), or (b) primarily +for and in connection with specific products or compilations that +contain the covered work, unless you entered into that arrangement, +or that patent license was granted, prior to 28 March 2007. + + Nothing in this License shall be construed as excluding or limiting +any implied license or other defenses to infringement that may +otherwise be available to you under applicable patent law. + + 12. No Surrender of Others' Freedom. + + If conditions are imposed on you (whether by court order, agreement or +otherwise) that contradict the conditions of this License, they do not +excuse you from the conditions of this License. If you cannot convey a +covered work so as to satisfy simultaneously your obligations under this +License and any other pertinent obligations, then as a consequence you may +not convey it at all. For example, if you agree to terms that obligate you +to collect a royalty for further conveying from those to whom you convey +the Program, the only way you could satisfy both those terms and this +License would be to refrain entirely from conveying the Program. + + 13. Use with the GNU Affero General Public License. + + Notwithstanding any other provision of this License, you have +permission to link or combine any covered work with a work licensed +under version 3 of the GNU Affero General Public License into a single +combined work, and to convey the resulting work. The terms of this +License will continue to apply to the part which is the covered work, +but the special requirements of the GNU Affero General Public License, +section 13, concerning interaction through a network will apply to the +combination as such. + + 14. Revised Versions of this License. + + The Free Software Foundation may publish revised and/or new versions of +the GNU General Public License from time to time. Such new versions will +be similar in spirit to the present version, but may differ in detail to +address new problems or concerns. + + Each version is given a distinguishing version number. If the +Program specifies that a certain numbered version of the GNU General +Public License "or any later version" applies to it, you have the +option of following the terms and conditions either of that numbered +version or of any later version published by the Free Software +Foundation. If the Program does not specify a version number of the +GNU General Public License, you may choose any version ever published +by the Free Software Foundation. + + If the Program specifies that a proxy can decide which future +versions of the GNU General Public License can be used, that proxy's +public statement of acceptance of a version permanently authorizes you +to choose that version for the Program. + + Later license versions may give you additional or different +permissions. However, no additional obligations are imposed on any +author or copyright holder as a result of your choosing to follow a +later version. + + 15. Disclaimer of Warranty. + + THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY +APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT +HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY +OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, +THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR +PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM +IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF +ALL NECESSARY SERVICING, REPAIR OR CORRECTION. + + 16. Limitation of Liability. + + IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING +WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS +THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY +GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE +USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF +DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD +PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), +EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF +SUCH DAMAGES. + + 17. Interpretation of Sections 15 and 16. + + If the disclaimer of warranty and limitation of liability provided +above cannot be given local legal effect according to their terms, +reviewing courts shall apply local law that most closely approximates +an absolute waiver of all civil liability in connection with the +Program, unless a warranty or assumption of liability accompanies a +copy of the Program in return for a fee. + + END OF TERMS AND CONDITIONS + + How to Apply These Terms to Your New Programs + + If you develop a new program, and you want it to be of the greatest +possible use to the public, the best way to achieve this is to make it +free software which everyone can redistribute and change under these terms. + + To do so, attach the following notices to the program. It is safest +to attach them to the start of each source file to most effectively +state the exclusion of warranty; and each file should have at least +the "copyright" line and a pointer to where the full notice is found. + + + Copyright (C) + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . + +Also add information on how to contact you by electronic and paper mail. + + If the program does terminal interaction, make it output a short +notice like this when it starts in an interactive mode: + + Copyright (C) + This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. + This is free software, and you are welcome to redistribute it + under certain conditions; type `show c' for details. + +The hypothetical commands `show w' and `show c' should show the appropriate +parts of the General Public License. Of course, your program's commands +might be different; for a GUI interface, you would use an "about box". + + You should also get your employer (if you work as a programmer) or school, +if any, to sign a "copyright disclaimer" for the program, if necessary. +For more information on this, and how to apply and follow the GNU GPL, see +. + + The GNU General Public License does not permit incorporating your program +into proprietary programs. If your program is a subroutine library, you +may consider it more useful to permit linking proprietary applications with +the library. If this is what you want to do, use the GNU Lesser General +Public License instead of this License. But first, please read +. From 70cc46af752c6cf8b0455d305570195195dacb1f Mon Sep 17 00:00:00 2001 From: ZouJiu1 <1069679911@qq.com> Date: Sun, 2 Feb 2025 08:51:11 +0800 Subject: [PATCH 11/11] Revert "Update LICENSE" This reverts commit a99d68631a6979802aef20e70fd837e13b7e9f8d. --- LICENSE | 686 +------------------------------------------------------- 1 file changed, 12 insertions(+), 674 deletions(-) diff --git a/LICENSE b/LICENSE index c75e5d2f28b..a50f7d700ba 100644 --- a/LICENSE +++ b/LICENSE @@ -1,674 +1,12 @@ - GNU GENERAL PUBLIC LICENSE - Version 3, 29 June 2007 - - Copyright (C) 2007 Free Software Foundation, Inc. - Everyone is permitted to copy and distribute verbatim copies - of this license document, but changing it is not allowed. - - Preamble - - The GNU General Public License is a free, copyleft license for -software and other kinds of works. - - The licenses for most software and other practical works are designed -to take away your freedom to share and change the works. By contrast, -the GNU General Public License is intended to guarantee your freedom to -share and change all versions of a program--to make sure it remains free -software for all its users. We, the Free Software Foundation, use the -GNU General Public License for most of our software; it applies also to -any other work released this way by its authors. You can apply it to -your programs, too. - - When we speak of free software, we are referring to freedom, not -price. Our General Public Licenses are designed to make sure that you -have the freedom to distribute copies of free software (and charge for -them if you wish), that you receive source code or can get it if you -want it, that you can change the software or use pieces of it in new -free programs, and that you know you can do these things. - - To protect your rights, we need to prevent others from denying you -these rights or asking you to surrender the rights. Therefore, you have -certain responsibilities if you distribute copies of the software, or if -you modify it: responsibilities to respect the freedom of others. - - For example, if you distribute copies of such a program, whether -gratis or for a fee, you must pass on to the recipients the same -freedoms that you received. You must make sure that they, too, receive -or can get the source code. And you must show them these terms so they -know their rights. - - Developers that use the GNU GPL protect your rights with two steps: -(1) assert copyright on the software, and (2) offer you this License -giving you legal permission to copy, distribute and/or modify it. - - For the developers' and authors' protection, the GPL clearly explains -that there is no warranty for this free software. For both users' and -authors' sake, the GPL requires that modified versions be marked as -changed, so that their problems will not be attributed erroneously to -authors of previous versions. - - Some devices are designed to deny users access to install or run -modified versions of the software inside them, although the manufacturer -can do so. This is fundamentally incompatible with the aim of -protecting users' freedom to change the software. The systematic -pattern of such abuse occurs in the area of products for individuals to -use, which is precisely where it is most unacceptable. Therefore, we -have designed this version of the GPL to prohibit the practice for those -products. If such problems arise substantially in other domains, we -stand ready to extend this provision to those domains in future versions -of the GPL, as needed to protect the freedom of users. - - Finally, every program is threatened constantly by software patents. -States should not allow patents to restrict development and use of -software on general-purpose computers, but in those that do, we wish to -avoid the special danger that patents applied to a free program could -make it effectively proprietary. To prevent this, the GPL assures that -patents cannot be used to render the program non-free. - - The precise terms and conditions for copying, distribution and -modification follow. - - TERMS AND CONDITIONS - - 0. Definitions. - - "This License" refers to version 3 of the GNU General Public License. - - "Copyright" also means copyright-like laws that apply to other kinds of -works, such as semiconductor masks. - - "The Program" refers to any copyrightable work licensed under this -License. Each licensee is addressed as "you". "Licensees" and -"recipients" may be individuals or organizations. - - To "modify" a work means to copy from or adapt all or part of the work -in a fashion requiring copyright permission, other than the making of an -exact copy. The resulting work is called a "modified version" of the -earlier work or a work "based on" the earlier work. - - A "covered work" means either the unmodified Program or a work based -on the Program. - - To "propagate" a work means to do anything with it that, without -permission, would make you directly or secondarily liable for -infringement under applicable copyright law, except executing it on a -computer or modifying a private copy. Propagation includes copying, -distribution (with or without modification), making available to the -public, and in some countries other activities as well. - - To "convey" a work means any kind of propagation that enables other -parties to make or receive copies. Mere interaction with a user through -a computer network, with no transfer of a copy, is not conveying. - - An interactive user interface displays "Appropriate Legal Notices" -to the extent that it includes a convenient and prominently visible -feature that (1) displays an appropriate copyright notice, and (2) -tells the user that there is no warranty for the work (except to the -extent that warranties are provided), that licensees may convey the -work under this License, and how to view a copy of this License. If -the interface presents a list of user commands or options, such as a -menu, a prominent item in the list meets this criterion. - - 1. Source Code. - - The "source code" for a work means the preferred form of the work -for making modifications to it. "Object code" means any non-source -form of a work. - - A "Standard Interface" means an interface that either is an official -standard defined by a recognized standards body, or, in the case of -interfaces specified for a particular programming language, one that -is widely used among developers working in that language. - - The "System Libraries" of an executable work include anything, other -than the work as a whole, that (a) is included in the normal form of -packaging a Major Component, but which is not part of that Major -Component, and (b) serves only to enable use of the work with that -Major Component, or to implement a Standard Interface for which an -implementation is available to the public in source code form. A -"Major Component", in this context, means a major essential component -(kernel, window system, and so on) of the specific operating system -(if any) on which the executable work runs, or a compiler used to -produce the work, or an object code interpreter used to run it. - - The "Corresponding Source" for a work in object code form means all -the source code needed to generate, install, and (for an executable -work) run the object code and to modify the work, including scripts to -control those activities. However, it does not include the work's -System Libraries, or general-purpose tools or generally available free -programs which are used unmodified in performing those activities but -which are not part of the work. For example, Corresponding Source -includes interface definition files associated with source files for -the work, and the source code for shared libraries and dynamically -linked subprograms that the work is specifically designed to require, -such as by intimate data communication or control flow between those -subprograms and other parts of the work. - - The Corresponding Source need not include anything that users -can regenerate automatically from other parts of the Corresponding -Source. - - The Corresponding Source for a work in source code form is that -same work. - - 2. Basic Permissions. - - All rights granted under this License are granted for the term of -copyright on the Program, and are irrevocable provided the stated -conditions are met. This License explicitly affirms your unlimited -permission to run the unmodified Program. The output from running a -covered work is covered by this License only if the output, given its -content, constitutes a covered work. This License acknowledges your -rights of fair use or other equivalent, as provided by copyright law. - - You may make, run and propagate covered works that you do not -convey, without conditions so long as your license otherwise remains -in force. You may convey covered works to others for the sole purpose -of having them make modifications exclusively for you, or provide you -with facilities for running those works, provided that you comply with -the terms of this License in conveying all material for which you do -not control copyright. Those thus making or running the covered works -for you must do so exclusively on your behalf, under your direction -and control, on terms that prohibit them from making any copies of -your copyrighted material outside their relationship with you. - - Conveying under any other circumstances is permitted solely under -the conditions stated below. Sublicensing is not allowed; section 10 -makes it unnecessary. - - 3. Protecting Users' Legal Rights From Anti-Circumvention Law. - - No covered work shall be deemed part of an effective technological -measure under any applicable law fulfilling obligations under article -11 of the WIPO copyright treaty adopted on 20 December 1996, or -similar laws prohibiting or restricting circumvention of such -measures. - - When you convey a covered work, you waive any legal power to forbid -circumvention of technological measures to the extent such circumvention -is effected by exercising rights under this License with respect to -the covered work, and you disclaim any intention to limit operation or -modification of the work as a means of enforcing, against the work's -users, your or third parties' legal rights to forbid circumvention of -technological measures. - - 4. Conveying Verbatim Copies. - - You may convey verbatim copies of the Program's source code as you -receive it, in any medium, provided that you conspicuously and -appropriately publish on each copy an appropriate copyright notice; -keep intact all notices stating that this License and any -non-permissive terms added in accord with section 7 apply to the code; -keep intact all notices of the absence of any warranty; and give all -recipients a copy of this License along with the Program. - - You may charge any price or no price for each copy that you convey, -and you may offer support or warranty protection for a fee. - - 5. Conveying Modified Source Versions. - - You may convey a work based on the Program, or the modifications to -produce it from the Program, in the form of source code under the -terms of section 4, provided that you also meet all of these conditions: - - a) The work must carry prominent notices stating that you modified - it, and giving a relevant date. - - b) The work must carry prominent notices stating that it is - released under this License and any conditions added under section - 7. This requirement modifies the requirement in section 4 to - "keep intact all notices". - - c) You must license the entire work, as a whole, under this - License to anyone who comes into possession of a copy. This - License will therefore apply, along with any applicable section 7 - additional terms, to the whole of the work, and all its parts, - regardless of how they are packaged. This License gives no - permission to license the work in any other way, but it does not - invalidate such permission if you have separately received it. - - d) If the work has interactive user interfaces, each must display - Appropriate Legal Notices; however, if the Program has interactive - interfaces that do not display Appropriate Legal Notices, your - work need not make them do so. - - A compilation of a covered work with other separate and independent -works, which are not by their nature extensions of the covered work, -and which are not combined with it such as to form a larger program, -in or on a volume of a storage or distribution medium, is called an -"aggregate" if the compilation and its resulting copyright are not -used to limit the access or legal rights of the compilation's users -beyond what the individual works permit. Inclusion of a covered work -in an aggregate does not cause this License to apply to the other -parts of the aggregate. - - 6. Conveying Non-Source Forms. - - You may convey a covered work in object code form under the terms -of sections 4 and 5, provided that you also convey the -machine-readable Corresponding Source under the terms of this License, -in one of these ways: - - a) Convey the object code in, or embodied in, a physical product - (including a physical distribution medium), accompanied by the - Corresponding Source fixed on a durable physical medium - customarily used for software interchange. - - b) Convey the object code in, or embodied in, a physical product - (including a physical distribution medium), accompanied by a - written offer, valid for at least three years and valid for as - long as you offer spare parts or customer support for that product - model, to give anyone who possesses the object code either (1) a - copy of the Corresponding Source for all the software in the - product that is covered by this License, on a durable physical - medium customarily used for software interchange, for a price no - more than your reasonable cost of physically performing this - conveying of source, or (2) access to copy the - Corresponding Source from a network server at no charge. - - c) Convey individual copies of the object code with a copy of the - written offer to provide the Corresponding Source. This - alternative is allowed only occasionally and noncommercially, and - only if you received the object code with such an offer, in accord - with subsection 6b. - - d) Convey the object code by offering access from a designated - place (gratis or for a charge), and offer equivalent access to the - Corresponding Source in the same way through the same place at no - further charge. You need not require recipients to copy the - Corresponding Source along with the object code. If the place to - copy the object code is a network server, the Corresponding Source - may be on a different server (operated by you or a third party) - that supports equivalent copying facilities, provided you maintain - clear directions next to the object code saying where to find the - Corresponding Source. Regardless of what server hosts the - Corresponding Source, you remain obligated to ensure that it is - available for as long as needed to satisfy these requirements. - - e) Convey the object code using peer-to-peer transmission, provided - you inform other peers where the object code and Corresponding - Source of the work are being offered to the general public at no - charge under subsection 6d. - - A separable portion of the object code, whose source code is excluded -from the Corresponding Source as a System Library, need not be -included in conveying the object code work. - - A "User Product" is either (1) a "consumer product", which means any -tangible personal property which is normally used for personal, family, -or household purposes, or (2) anything designed or sold for incorporation -into a dwelling. In determining whether a product is a consumer product, -doubtful cases shall be resolved in favor of coverage. For a particular -product received by a particular user, "normally used" refers to a -typical or common use of that class of product, regardless of the status -of the particular user or of the way in which the particular user -actually uses, or expects or is expected to use, the product. A product -is a consumer product regardless of whether the product has substantial -commercial, industrial or non-consumer uses, unless such uses represent -the only significant mode of use of the product. - - "Installation Information" for a User Product means any methods, -procedures, authorization keys, or other information required to install -and execute modified versions of a covered work in that User Product from -a modified version of its Corresponding Source. The information must -suffice to ensure that the continued functioning of the modified object -code is in no case prevented or interfered with solely because -modification has been made. - - If you convey an object code work under this section in, or with, or -specifically for use in, a User Product, and the conveying occurs as -part of a transaction in which the right of possession and use of the -User Product is transferred to the recipient in perpetuity or for a -fixed term (regardless of how the transaction is characterized), the -Corresponding Source conveyed under this section must be accompanied -by the Installation Information. But this requirement does not apply -if neither you nor any third party retains the ability to install -modified object code on the User Product (for example, the work has -been installed in ROM). - - The requirement to provide Installation Information does not include a -requirement to continue to provide support service, warranty, or updates -for a work that has been modified or installed by the recipient, or for -the User Product in which it has been modified or installed. Access to a -network may be denied when the modification itself materially and -adversely affects the operation of the network or violates the rules and -protocols for communication across the network. - - Corresponding Source conveyed, and Installation Information provided, -in accord with this section must be in a format that is publicly -documented (and with an implementation available to the public in -source code form), and must require no special password or key for -unpacking, reading or copying. - - 7. Additional Terms. - - "Additional permissions" are terms that supplement the terms of this -License by making exceptions from one or more of its conditions. -Additional permissions that are applicable to the entire Program shall -be treated as though they were included in this License, to the extent -that they are valid under applicable law. If additional permissions -apply only to part of the Program, that part may be used separately -under those permissions, but the entire Program remains governed by -this License without regard to the additional permissions. - - When you convey a copy of a covered work, you may at your option -remove any additional permissions from that copy, or from any part of -it. (Additional permissions may be written to require their own -removal in certain cases when you modify the work.) You may place -additional permissions on material, added by you to a covered work, -for which you have or can give appropriate copyright permission. - - Notwithstanding any other provision of this License, for material you -add to a covered work, you may (if authorized by the copyright holders of -that material) supplement the terms of this License with terms: - - a) Disclaiming warranty or limiting liability differently from the - terms of sections 15 and 16 of this License; or - - b) Requiring preservation of specified reasonable legal notices or - author attributions in that material or in the Appropriate Legal - Notices displayed by works containing it; or - - c) Prohibiting misrepresentation of the origin of that material, or - requiring that modified versions of such material be marked in - reasonable ways as different from the original version; or - - d) Limiting the use for publicity purposes of names of licensors or - authors of the material; or - - e) Declining to grant rights under trademark law for use of some - trade names, trademarks, or service marks; or - - f) Requiring indemnification of licensors and authors of that - material by anyone who conveys the material (or modified versions of - it) with contractual assumptions of liability to the recipient, for - any liability that these contractual assumptions directly impose on - those licensors and authors. - - All other non-permissive additional terms are considered "further -restrictions" within the meaning of section 10. If the Program as you -received it, or any part of it, contains a notice stating that it is -governed by this License along with a term that is a further -restriction, you may remove that term. If a license document contains -a further restriction but permits relicensing or conveying under this -License, you may add to a covered work material governed by the terms -of that license document, provided that the further restriction does -not survive such relicensing or conveying. - - If you add terms to a covered work in accord with this section, you -must place, in the relevant source files, a statement of the -additional terms that apply to those files, or a notice indicating -where to find the applicable terms. - - Additional terms, permissive or non-permissive, may be stated in the -form of a separately written license, or stated as exceptions; -the above requirements apply either way. - - 8. Termination. - - You may not propagate or modify a covered work except as expressly -provided under this License. Any attempt otherwise to propagate or -modify it is void, and will automatically terminate your rights under -this License (including any patent licenses granted under the third -paragraph of section 11). - - However, if you cease all violation of this License, then your -license from a particular copyright holder is reinstated (a) -provisionally, unless and until the copyright holder explicitly and -finally terminates your license, and (b) permanently, if the copyright -holder fails to notify you of the violation by some reasonable means -prior to 60 days after the cessation. - - Moreover, your license from a particular copyright holder is -reinstated permanently if the copyright holder notifies you of the -violation by some reasonable means, this is the first time you have -received notice of violation of this License (for any work) from that -copyright holder, and you cure the violation prior to 30 days after -your receipt of the notice. - - Termination of your rights under this section does not terminate the -licenses of parties who have received copies or rights from you under -this License. If your rights have been terminated and not permanently -reinstated, you do not qualify to receive new licenses for the same -material under section 10. - - 9. Acceptance Not Required for Having Copies. - - You are not required to accept this License in order to receive or -run a copy of the Program. Ancillary propagation of a covered work -occurring solely as a consequence of using peer-to-peer transmission -to receive a copy likewise does not require acceptance. However, -nothing other than this License grants you permission to propagate or -modify any covered work. These actions infringe copyright if you do -not accept this License. Therefore, by modifying or propagating a -covered work, you indicate your acceptance of this License to do so. - - 10. Automatic Licensing of Downstream Recipients. - - Each time you convey a covered work, the recipient automatically -receives a license from the original licensors, to run, modify and -propagate that work, subject to this License. You are not responsible -for enforcing compliance by third parties with this License. - - An "entity transaction" is a transaction transferring control of an -organization, or substantially all assets of one, or subdividing an -organization, or merging organizations. If propagation of a covered -work results from an entity transaction, each party to that -transaction who receives a copy of the work also receives whatever -licenses to the work the party's predecessor in interest had or could -give under the previous paragraph, plus a right to possession of the -Corresponding Source of the work from the predecessor in interest, if -the predecessor has it or can get it with reasonable efforts. - - You may not impose any further restrictions on the exercise of the -rights granted or affirmed under this License. For example, you may -not impose a license fee, royalty, or other charge for exercise of -rights granted under this License, and you may not initiate litigation -(including a cross-claim or counterclaim in a lawsuit) alleging that -any patent claim is infringed by making, using, selling, offering for -sale, or importing the Program or any portion of it. - - 11. Patents. - - A "contributor" is a copyright holder who authorizes use under this -License of the Program or a work on which the Program is based. The -work thus licensed is called the contributor's "contributor version". - - A contributor's "essential patent claims" are all patent claims -owned or controlled by the contributor, whether already acquired or -hereafter acquired, that would be infringed by some manner, permitted -by this License, of making, using, or selling its contributor version, -but do not include claims that would be infringed only as a -consequence of further modification of the contributor version. For -purposes of this definition, "control" includes the right to grant -patent sublicenses in a manner consistent with the requirements of -this License. - - Each contributor grants you a non-exclusive, worldwide, royalty-free -patent license under the contributor's essential patent claims, to -make, use, sell, offer for sale, import and otherwise run, modify and -propagate the contents of its contributor version. - - In the following three paragraphs, a "patent license" is any express -agreement or commitment, however denominated, not to enforce a patent -(such as an express permission to practice a patent or covenant not to -sue for patent infringement). To "grant" such a patent license to a -party means to make such an agreement or commitment not to enforce a -patent against the party. - - If you convey a covered work, knowingly relying on a patent license, -and the Corresponding Source of the work is not available for anyone -to copy, free of charge and under the terms of this License, through a -publicly available network server or other readily accessible means, -then you must either (1) cause the Corresponding Source to be so -available, or (2) arrange to deprive yourself of the benefit of the -patent license for this particular work, or (3) arrange, in a manner -consistent with the requirements of this License, to extend the patent -license to downstream recipients. "Knowingly relying" means you have -actual knowledge that, but for the patent license, your conveying the -covered work in a country, or your recipient's use of the covered work -in a country, would infringe one or more identifiable patents in that -country that you have reason to believe are valid. - - If, pursuant to or in connection with a single transaction or -arrangement, you convey, or propagate by procuring conveyance of, a -covered work, and grant a patent license to some of the parties -receiving the covered work authorizing them to use, propagate, modify -or convey a specific copy of the covered work, then the patent license -you grant is automatically extended to all recipients of the covered -work and works based on it. - - A patent license is "discriminatory" if it does not include within -the scope of its coverage, prohibits the exercise of, or is -conditioned on the non-exercise of one or more of the rights that are -specifically granted under this License. You may not convey a covered -work if you are a party to an arrangement with a third party that is -in the business of distributing software, under which you make payment -to the third party based on the extent of your activity of conveying -the work, and under which the third party grants, to any of the -parties who would receive the covered work from you, a discriminatory -patent license (a) in connection with copies of the covered work -conveyed by you (or copies made from those copies), or (b) primarily -for and in connection with specific products or compilations that -contain the covered work, unless you entered into that arrangement, -or that patent license was granted, prior to 28 March 2007. - - Nothing in this License shall be construed as excluding or limiting -any implied license or other defenses to infringement that may -otherwise be available to you under applicable patent law. - - 12. No Surrender of Others' Freedom. - - If conditions are imposed on you (whether by court order, agreement or -otherwise) that contradict the conditions of this License, they do not -excuse you from the conditions of this License. If you cannot convey a -covered work so as to satisfy simultaneously your obligations under this -License and any other pertinent obligations, then as a consequence you may -not convey it at all. For example, if you agree to terms that obligate you -to collect a royalty for further conveying from those to whom you convey -the Program, the only way you could satisfy both those terms and this -License would be to refrain entirely from conveying the Program. - - 13. Use with the GNU Affero General Public License. - - Notwithstanding any other provision of this License, you have -permission to link or combine any covered work with a work licensed -under version 3 of the GNU Affero General Public License into a single -combined work, and to convey the resulting work. The terms of this -License will continue to apply to the part which is the covered work, -but the special requirements of the GNU Affero General Public License, -section 13, concerning interaction through a network will apply to the -combination as such. - - 14. Revised Versions of this License. - - The Free Software Foundation may publish revised and/or new versions of -the GNU General Public License from time to time. Such new versions will -be similar in spirit to the present version, but may differ in detail to -address new problems or concerns. - - Each version is given a distinguishing version number. If the -Program specifies that a certain numbered version of the GNU General -Public License "or any later version" applies to it, you have the -option of following the terms and conditions either of that numbered -version or of any later version published by the Free Software -Foundation. If the Program does not specify a version number of the -GNU General Public License, you may choose any version ever published -by the Free Software Foundation. - - If the Program specifies that a proxy can decide which future -versions of the GNU General Public License can be used, that proxy's -public statement of acceptance of a version permanently authorizes you -to choose that version for the Program. - - Later license versions may give you additional or different -permissions. However, no additional obligations are imposed on any -author or copyright holder as a result of your choosing to follow a -later version. - - 15. Disclaimer of Warranty. - - THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY -APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT -HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY -OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, -THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR -PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM -IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF -ALL NECESSARY SERVICING, REPAIR OR CORRECTION. - - 16. Limitation of Liability. - - IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING -WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS -THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY -GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE -USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF -DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD -PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), -EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF -SUCH DAMAGES. - - 17. Interpretation of Sections 15 and 16. - - If the disclaimer of warranty and limitation of liability provided -above cannot be given local legal effect according to their terms, -reviewing courts shall apply local law that most closely approximates -an absolute waiver of all civil liability in connection with the -Program, unless a warranty or assumption of liability accompanies a -copy of the Program in return for a fee. - - END OF TERMS AND CONDITIONS - - How to Apply These Terms to Your New Programs - - If you develop a new program, and you want it to be of the greatest -possible use to the public, the best way to achieve this is to make it -free software which everyone can redistribute and change under these terms. - - To do so, attach the following notices to the program. It is safest -to attach them to the start of each source file to most effectively -state the exclusion of warranty; and each file should have at least -the "copyright" line and a pointer to where the full notice is found. - - - Copyright (C) - - This program is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see . - -Also add information on how to contact you by electronic and paper mail. - - If the program does terminal interaction, make it output a short -notice like this when it starts in an interactive mode: - - Copyright (C) - This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. - This is free software, and you are welcome to redistribute it - under certain conditions; type `show c' for details. - -The hypothetical commands `show w' and `show c' should show the appropriate -parts of the General Public License. Of course, your program's commands -might be different; for a GUI interface, you would use an "about box". - - You should also get your employer (if you work as a programmer) or school, -if any, to sign a "copyright disclaimer" for the program, if necessary. -For more information on this, and how to apply and follow the GNU GPL, see -. - - The GNU General Public License does not permit incorporating your program -into proprietary programs. If your program is a subroutine library, you -may consider it more useful to permit linking proprietary applications with -the library. If this is what you want to do, use the GNU Lesser General -Public License instead of this License. But first, please read -. + YOLO LICENSE + Version 2, July 29 2016 + +THIS SOFTWARE LICENSE IS PROVIDED "ALL CAPS" SO THAT YOU KNOW IT IS SUPER +SERIOUS AND YOU DON'T MESS AROUND WITH COPYRIGHT LAW BECAUSE YOU WILL GET IN +TROUBLE HERE ARE SOME OTHER BUZZWORDS COMMONLY IN THESE THINGS WARRANTIES +LIABILITY CONTRACT TORT LIABLE CLAIMS RESTRICTION MERCHANTABILITY. NOW HERE'S +THE REAL LICENSE: + +0. Darknet is public domain. +1. Do whatever you want with it. +2. Stop emailing me about it!