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License @@® CCBY 4.0

* You are free to:

— Share — copy and redistribute the material in any medium or format for any purpose, even
commercially.

— Adapt — remix, transform, and build upon the material for any purpose, even commercially.
— The licensor cannot revoke these freedoms as long as you follow the license terms.
* Under the following terms:

— Attribution — You must give appropriate credit , provide a link to the license, and indicate if

changes were made . You may do so in any reasonable manner, but not in any way that suggests the
licensor endorses you or your use.

— No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.
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Disclaimer

* The views expressed in this talk are those of the speakers and not their
employers.

* |[f we say something “smart” or worthwhile:
— Credit goes to the many smart people we work with.

* |f we say something stupid...
— It's our own fault

https://github.com/Python-for-HPC/PyOMP
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We all love python ... but what about performance



Software vs. Hardware and the nature of Performance

Up until ~2005,
performance came
from semiconductor
technology

*It's because of the end of
Dennard Scaling ...
Moore’s law has nothing to
do with it

There’s plenty of room at the Top: What will drive

*
computer performance after Moore’s law?

Charles E. Leiserson’, Neil C. Thompson™2*, Joel S. Emer'>, Bradley C. Kuszmaul'{,
Butler W. Lampson™*, Daniel Sanchez', Tao B. Schardl'

Technology

Opportunity

Examples

Leiserson et al., Science 368, eaam9744 (2020) 5 June 2020

The Top
01010011 01100011
01101001 01100101 @
01101110 01100011
01100101 00000000
Software Algorithms Hardware architecture
Software performance New algorithms Hardware streamlining
engineering

Removing software bloat New problem domains Processor simplification

Tailoring software to New machine models

hardware features

Domain specialization

The Bottom P

for example, semiconductor technology

Since ~2005
performance comes
from
“the top”

Better software Tech.

Better algorithms
Better HW architecture®

#HW architecture matters,
but dramatically LESS than
software and algorithms



The view of Python from an HPC perspective

(from the "Room at the top” paper).

for | in range(4096):

for j in range(4096):
for k in range (4096):
Clili] += Alil[k]"BIK][]

A proxy for computing
over nested loops ...

1 Yes, they know you

should use optimized
library code for DGEMM

Table 1. Speedups from performance engineering a program that multiplies two 4096-by-4096 matrices. Each version represents a successive
refinement of the original Python code. “Running time” is the running time of the version. “GFLOPS” is the billions of 64-bit flcating-point operations per
second that the version executes. “Absolute speedup” is time relative to Python, and “relative speedup,” which we show with an additional digit of precision,
is time relative to the preceding line. “Fraction of peak” is GFLOPS relative to the computer’s peak 835 GFLOPS. See Methods for more details.

Version

Implementation Running time (s) GFLOPS

Absolute speedup

Fraction

Relative speedup of peak (%)

NI O BN

~ Python 25,552.48 0.005

e A o e

e S e
~ Parallelloops 6980 1969
~ Paralleldivideandconquer 380 36180
~ plusvectorizaton 110 124914
L

1

A
366

— 0.00
T
g —
78 024
184 433
35 149%
e

Amazon AWS c4.8xlarge spot instance, Intel® Xeon® E5-2666 v3 CPU, 2.9 Ghz, 18 core, 60 GB RAM



The view of Python from an HPC perspective

(from the "Room at the top” paper).

A proxy for computing
for | in range(4096): over nested loops ...

for j in range(4096): _— Yes, they know you
, _ should use optimized
for k 'r_‘ r.ange (409§) _ library code for DGEMM
CHIOT += AlKT*BIK]L]

This demonstrates a common attitude in the HPC community ....

1 Python is great for productivity, algorithm development, and combining functions from high-level modules in
new ways to solve problems. If getting a high fraction of peak performance is a goal ... recode in C.

Version Implementation Running time (s) GFLOPS Absolute speedup Relative speedup of peak (%)

1 <—Python 25,552.48 0.005 1 - 0. 00—
2 Java 2.372.68 0.058 11 10.8 0.01

3 C 542.67 0.253 47 4.4 0.03

4 Parallel loops 69.80 1.969 366 7.8 0.24

5 Parallel divide and conquer 3.80 36.180 6,727 18.4 433

6 plus vectorization 110 124914 23,224 35 14.96

7 plus AVX intrinsics 0.41 337.812 62,806 2.7 40.45

Amazon AWS c4.8xlarge spot instance, Intel® Xeon® E5-2666 v3 CPU, 2.9 Ghz, 18 core, 60 GB RAM



Our goal ... to help people “keep their code in Python”

* Modern technology should be able to map Python onto low-level code (such as
C or LLVM) and avoid the “Python performance tax”.

 We've worked on ...
— Numba (2012): JIT Python code into LLVM

— Parallel accelerator (2017): Find and exploit parallel patterns in Python code.

— Intel High-Performance Analytics Toolkit and Scalable Dataframe Compiler (2019): Parallel
performance from data frames.

— Intel numba-dppy (2020): Numba ParallelAccelerator regions that run on GPUs via SYCL.

Third party names are the property of their owners



If it’s performance you want, then you must go parallel.

It’s in the physics!
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Moore's Law

1975 1980 1985 1990 1995

O
10V Micro. 500
() ® 2000 mips)
™ Pentium” 25
’ __ Processor
BO4BE
100K @ 180386 10
80286
10K AR 0.1
4004 0.01

* In 1965, Intel co-founder Gordon Moore predicted (from just 3 data points!) that semiconductor

density would double every 18 months.

— He was right! Over the last 50 years, transistor densities have increased as he predicted.

Slide source: UCB CS 194 Fall’2010




CPU Frequency (GHz) over time (years)

10 Clock Rates
1 GHz
0.1
=]
s 8
0.01 g, @& : Dennard scaling ignores threshold voltage
D . and leakage ... which do NOT shrink
o much with process technology.
e L Eventually, those factors came to
dominate and Dennard scaling ends
0.0001

1969 1974 1979 1984 1989 1994 1999 2004 2009 2014
Source: James Reinders (from the book “structured parallel programming”) 12



Consider power in a chip ...

C = capacitance ... it measures the ability of a circuit to
store energy:

Input — Processor » Output C=qV-> q=CV
t
_ f. time Work is pushing something (charge or q) across a
“distance” ... in electrostatic terms pushing q from 0 to V:
f
V*qg=W.
Capacitance = C o )
Voltage = V But for a circuit q=CV so
Frequency = f e
Power = CV2f W =CV

power is work over time ... or how many times per second
we oscillate the circuit

Power=W*F = Power = CV2f




... Reduce power by adding cores

\ 4

Input Processor

Capacitance = C
Voltage =V
Frequency = f
Power = CV?4f

\ 4

Output

t

f-time

Input

A 4

\ 4

Processor
f/2 Output
> T
f-time
Processor
f/2 || Capacitance = 2.2C

Voltage = 0.6V
Frequency = 0.5f
Power = 0.396CV?f

Chandrakasan, A.P.; Potkonjak, M.; Mehra, R.; Rabaey, J.; Brodersen, R.W., "Optimizing power using transformations,"

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,, vol.14, no.1, pp.12-31, Jan 1995

Source: Vishwani Agrawal



... 90 how lets talk about parallel
hardware

15



For hardware ... parallelism is the path to performance

All hardware vendors are in the game ... parallelism is ubiquitous so if you care about getting the most from your hardware,
you will need to create parallel software.
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For hardware ... parallelism is the path to performance

All hardware vendors are in the game ... parallelism is ubiquitous so if you care about getting the most from your hardware,
you will need to create parallel software.

We will
HEEE cover the
SIMD/Vector CPU and the
We will let the GPU

compiler take care of
vectorization for us

PyOMP works here as
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For hardware ... parallelism is the path to performance

All hardware vendors are in the game ... parallelism is ubiquitous so if you care about getting the most from your hardware,
you will need to create parallel software.
We will é ? ? ?

start with ~—
the CPU 3} g} i} i} EEEE

SIMD/Vector

CPU

GPU
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A typical multi-core CPU

All the memory (DRAM) is visible to all the cores. HT, || HT, ’S‘F;,rogrihm msLancie ;uns asa proceshs. A process
It presents a single address space. == efines the subset of resources (such as memory)
available to an executing program.

The caches (L1D$, L11$, L2$ and a shared L3$) LiDs] [L1S ]
provide a high-speed window into memory

L2$ Execution of a program occurs through one or

more threads “owned” by the process.

! :
! I
1 |
1
L3$] | L3 '
s * % $ $ % - <§E
T e O L3s] [L3s B e
o) T :
|
|
! :
I I
) I
= =—— = :
|
S | DO: L3$| | L3S % 4:» <§E
T ] B 39| [L35] [L3s] [ L3 O e X
o I
:F :F :F :
|
i :
; Socket 1 I
____________________________________________________________________ I
ALU: arithmetic logic unit, HT: hardware thread QPI: quick path interconnect DDR: Dram memory controller DRAM: dynamic random access memory

L!D$: L1 datacache, L1I$: L1 instruction cache L2: a unified (data and instructions) cache
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The ubiquitous standard for multithreaded
programming on CPUs is OpenMP

20



OpenMP” Overview

CSOMP FLUSH fpragma omp critical

CSOMP THREADPRIVATE (/ABC/) CALL OMP SET NUM THREADS (10)

ol  OpenMP: An API for Writing Multithreaded
Applications

csol » A set of compiler directives and library routines for parallel
application programmers

CS( e Greatly simplifies writing multi-threaded (MT) programs in Fortran, |p
C and C++

« Standardizes established SMP practice + vectorization and
#p|  heterogeneous device programming

C

C$OMP PARALLEL COPYIN (/blk/) CSOMP DO lastprivate (XX)

Nthrds = OMP GET NUM PROCS () omp set lock (lck)

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.



OpenMP is the most popular Programming model for HPC

Quantifying OpenMP:
Statistical Insights into Usage and Adoption

Tal Kadosh!:2, Niranjan Hasabnis3, Timothy Mattson®, Yuval Pinter! and Gal Oren%®

1Depa.rtmcnt of Computer Science, Ben-Gurion University, Israel
2Israel Atomic Energy Commission
3Intel Labs, United States
4Scientific Computing Center, Nuclear Research Center — Negev, Israel
5Department of Computer Science, Technion — Israel Institute of Technology, Israel

Download the paper here: https://arxiv.org/abs/2308.08002

We constructed a dataset from all ¢, c++ and
Fortran programs in github for training large
language models for parallel code generation.

We analyzed programming model usage across the
dataset and found that OpenMP was the most
popular of all parallel programming models in
github.

Note: we did not collect .cu or .cuf files so we
under-counted CUDA usage.

# Repos

OpenMP
5,000
|
00
w-\
I |
4,000 45%
-
3,000 % 6.6%
e Others
2,000 MPI
© o CUDA
g ~
1,000 e < OpenCL
o) [5 = §
0 — —

Aggregate numbers over all repositories from 2013 to 2023
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PyOMP: OpenMP projected into Python

A parallel multithreaded “hello world” program with PyOMP

from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def hello():
with openmp("parallel"):
print("hello")
print("world")

hello()
print ("DONE")

23



PyOMP: OpenMP projected into Python

A parallel multithreaded “hello world” program with PyOMP

Numba Just In Time
(JIT) compiler
compiles the Python
code into LLVM.

Compiled code
cached for later use.

from numba import njit

from numba.openmp import openmp_context as openmp

@njit

“parallel” creates a team of threads

def hello():

with openmp("parallel"):

print("hello")
print("world")

hello()
print ("DONE")

I

OpenMP managed
through the with
context manager.

The code inside the with
context manager is
packaged into a function and
executed by each thread

* Numba Just In Time (JIT) compiler compiles the Python code into LLVM thereby bypassing the
GIL. Hence, the threads execute in parallel.

» The string in the with openmp context manager is identical to the constructs in OpenMP. If you
know OpenMP for C/C++/Fortran, then you know it for Python

24



PyOMP: OpenMP projected into Python When | run this program,

here is the output.

A parallel multithreaded “hello world” program with PyOMP hello

world

. — hello
from numba import njit hello

from numba.openmp import openmp_context as openmp hello

world

@njit hello
def hello(): ne

with openmp("parallel"):
print("hello") hello
: world
print("world") hello

world
world
world
hello
world
DONE

The interleaved print
output is different each
time | run the program

hello()
print ("DONE")




Why is the output from our hello world
program so weird?

To answer that question, we must
digress briefly and settle on a few key
definitions

26



Let’s agree on a few definitions:

« Computer:

— A machine that transforms input data into Central Processing Unit
output data.

— Typically, a computer consists of Control,
Arithmetic/Logic, and Memory units.

— The transformation is defined by a stored Input ) Arithmetic/Logic Unit
. Device
program (von Neumann architecture).

Control Unit

 Task:

- A specmc? sequence of mstruct_lons plus a Memory Unit
data environment. A program is composed
of one or more tasks.

* Active task:

— A task that is available to be scheduled for execution. When the task is moving through its sequence of

instructions, we say it is making forward progress

* Fair scheduling:
— When a scheduler gives each active task an equal opportunity for execution.

Output
Device

27



Concurrency vs. Parallelism

« Two important definitions:

— Concurrency: A condition of a system in which multiple tasks are active and unordered. If scheduled fairly,
they can be described as logically making forward progress at the same time.

— Parallelism: A condition of a system in which multiple tasks are actually making forward progress at the

same time.
PE, L 1
PE, ]— | 1 o
PE,— IS )

Concurrent, non-parallel Execution

Concurrent, parallel Execution

Time

PE = Processing Element

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010



Concurrency vs. Parallelism

« Two important definitions:

— Concurrency: A condition of a system in which multiple tasks are active and unordered. If scheduled fairly,
they can be described as logically making forward progress at the same time.

— Parallelism: A condition of a system in which multiple tasks are actually making forward progress at the
same time.

In most cases, parallel programs exploit
concurrency in a problem to run tasks on

multiple processing elements

Programs

We use Parallelism to:
e Do more work in less time
« Work with larger problems

Concurrent
Programs

Parallel

If tasks execute in “lock step” they are not
Programs

[ concurrent, but they are still parallel.
Example ... a SIMD unit.

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010



PyOMP: OpenMP projected into Python When | run this program,

here is the output.

A parallel multithreaded “hello world” program with PyOMP hello

world

. — hello
from numba import njit hello

from numba.openmp import openmp_context as openmp hello

world

@njit hello
def hello(): e

with openmp("parallel"):
print("hello") hello
: n " world
print("world") hello

world
world
world
hello
world
DONE

hello()
print ("DONE")

The challenge for programmers writing multithreaded code is to make sure every
semantically allowed way statements can interleave results in correct code.




Detailed outline from the tutorial proposal

e Introducing parallel computing and PyOMP
‘. The PyOMP system

e PyOMP and multithreading (parallelism for the CPU)

e GPU programming with PyOMP

e Other approaches to parallelism in Python.

e Wrap-up and Q&A

https://github.com/Python-for-HPC/PyOMP
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How did we implement PyOMP?

We used the “magic” of Numba

e PyOMP currently based on a fork of Numba 0.57
e So, PyOMP is a fully functional Numba but with OpenMP support
e At some point in the future it will become a pure extension to Numba

32



Numba ... C-like performance from Python code ?Numba

e Numba is a JIT compiler. Maps a subset of Python and NumPy API onto LLVMM

e Once code is JIT'ed into LLVM, all performance enhancements exposed at the level of LLVM
are directly available ... result is performance that approaches that from raw C or Fortran

Source code is pure Python for maximum portability

Just add the @jit decorator to enable Numba for a function.

_ 3 Numba JIT compiler applied the first time a function is encountered. Numba
from numba import jit caches the code so subsequent calls to the function don’t run the JIT step.
@ijit Numba defines elementwise functions called ufuncs
def addit(A,B):

return (A+B) This generates the LLVM code and calls the addition ufunc to do an
elementwise add of Aand B

e Numerous options in numba ... we are barely scratching the surface
— @jit(nopython=true) do NOT use any Python objects in the generated code. Can be much faster. Equivalent to njit.
— @jit(parallel=true) invoke parallel accelerator



PyOMP Implementation in Numba

PyOMP changes to Numba:

e Adds an OpenMP context manager
* Provides the ability to call all the OpenMP runtime functions from both Python and Numba JITed code.

Exception handling disabled in OpenMP regions since Numba exception mechanism breaks OpenMP single-
entry/single-exit requirement.

Variables not listed in a data clauses are SHARED if used before or after OpenMP region, PRIVATE otherwise*.

Supports most OpenMP 3.5 and much of OpenMP 4.5. Supported directives and clauses can be found at
https://pyomp.readthedocs.io/en/latest/.

Note that one can use @jit(cache=True) Numba decorator to compile the function once and store the result on
disk to avoid recompilation each time the program is restarted.

* The scope of shared/private variables exposes subtle issues in how the rules for an OpenMP data environment interacts with how Numba
manages the visibility of variables. This is a topic that is still evolving, though in practice it hasn’t impacted the usability of PyOMP .


https://pyomp.readthedocs.io/en/latest/

How do you install PyOMP on your own
system?

35



PyOMP installation

e Preferred installation method is through conda.

e \We’ve simplified the installation command to the following
— conda install -c python-for-hpc -c conda-forge --override-channels pyomp

e \We currently support PyOMP on four systems
— linux-ppc6le
— linux-64 (x86_64)
— 0sx-arm64 (mac)
— linux-arm64

e \We also have a working (free) JupyterLab under binder for OpenMP CPU at:
— https://mybinder.org/v2/gh/Python-for-HPC/binder/HEAD

https://github.com/Python-for-HPC/PyOMP

36


https://mybinder.org/v2/gh/Python-for-HPC/binder/HEAD

Detailed outline from the tutorial proposal

e Introducing parallel computing and PyOMP
e The PyOMP system

‘- PyOMP and multithreading (parallelism for the CPU)

e GPU programming with PyOMP

e Other approaches to parallelism in Python.

e Wrap-up and Q&A

https://github.com/Python-for-HPC/PyOMP
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Lets dive into the details of
multithreading and how they are most
commonly used in an application

38



OpenMP Execution Model
Fork-Join Parallelism:

Initial thread forks a team of threads as needed.
They execute in a shared address space ... All reads read/write a common set of the variables.
When the team is finished, the threads join together and the initial thread continues

Parallelism added incrementally until performance goals are met, i.e., the sequential program
evolves into a parallel program.

Parallel Regions

Initial / | \ A Nested
Thread Parallel
in red I\ /._\‘ )\ / region
~_ . . ‘. N . =
R I A B

Sequential Parts
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We Wm%

Understanding OpenMP

ments of OpenMP as we explore the three fundamental design patterns of

OpenMP((Loop parallelism)SPMD, and divide and conquer) applied to the following problem

Numerical Integration (the hello world program of parallel computing)

4.0

= 4.0/(1+x2)

F(x)

Mathematically, we know that:

1

J‘ 4.0

0

We can approximate the integral as a sum of rectangles:

N
2 FA R T
i=0

Each rectangle: width Ax, height F(x;) at it" interval midpoint.

0.0

1.0

def piFunc(NumSteps):
step=1.0/NumSteps
pisum = 0.0
x=0.5
for i in range(NumSteps):
xX+=step
pisum +=4.0/(1.0+x*x)
pi=step*pisum
return pi

40



The Loop-level parallelism design pattern

 Parallelism defined in terms of parallel loops ... that is, loops where iterations can
safely execute when divided between a collection of threads.

» Key elements:
— identify compute intensive loops in a program
— Expose concurrency by removing or managing loop carried dependencies
— Exploit concurrency for parallel execution usually using a parallel loop construct/directive.

41



The Loop-level parallelism design pattern

 Parallelism defined in terms of parallel loops ... that is, loops where iterations can
safely execute when divided between a collection of threads.

» Key elements:
— identify compute intensive loops in a program
— Expose concurrency by removing or managing loop carried dependencies
— Exploit concurrency for parallel execution usually using a parallel loop construct/directive.

def piFunc(NumSteps):
step=1.0/NumSteps
pisum = 0.0
x=0.5
for i in range(NumSteps):
x+=step
pisum += 4.0/(1.0+x*x)
pi=step*pisum
return pi

42



The Loop-level parallelism design pattern

 Parallelism defined in terms of parallel loops ... that is, loops where iterations can
safely execute when divided between a collection of threads.

» Key elements:
— identify compute intensive loops in a program
— Expose concurrency by removing or managing loop carried dependencies
— Exploit concurrency for parallel execution usually using a parallel loop construct/directive.

def piFunc(NumSteps):
step=1.0/NumSteps
pisum = 0.0
x=0.5
foriin range(NumStepS): A loop carried
Xt=step S« dependency

pisum += 4.0/(1.0+x*x)

pi=step*pisum
return pi




The Loop-level parallelism design pattern

 Parallelism defined in terms of parallel loops ... that is, loops where iterations can

safely execute when divided between a collection of threads.

» Key elements:

— identify compute intensive loops in a program
— Expose concurrency by removing or managing loop carried dependencies

— Exploit concurrency for parallel execution usually using a parallel loop construct/directive.

def piFunc(NumSteps):
step=1.0/NumSteps
pisum = 0.0
x=0.5

for i in range(NumSteps):

Xt+=step S«

pi=step*pisum
return pi

pisum += 4.0/(1.0+x*x)

A loop carried
dependency

Recast to N
compute from i

def piFunc(NumSteps):
step=1.0/NumSteps
pisum = 0.0

ange(NumSteps):
pisum = 4.0/(1.0+x*x)
pi=step*pisum

return pi
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The Loop-level parallelism design pattern

 Parallelism defined in terms of parallel loops ... that is, loops where iterations can
safely execute when divided between a collection of threads.

» Key elements:
— identify compute intensive loops in a program
— Expose concurrency by removing or managing loop carried dependencies
— Exploit concurrency for parallel execution usually using a parallel loop construct/directive.

def piFunc(NumSteps): def piFunc(NumSteps):
step=1.0/NumSteps step=1.0/NumSteps
pisum = 0.0 pisum = 0.0
x=0.5 :
for i in range(NumSteps): A loop carried Recastto | foriin range(NumSteps): g Tgls .
X*H=step o< dependency compute from i | x=(j+0.5)*step epenaency Is

pisum += 4.0/(1.0+x*x) isum += 4.0/(1.0+X"XJ>+— more -
—sten®Di —~ i complicated. It’s
pi=step*pisum pi=step™piSum called a
return pi return pi :
reduction 45




Loop Parallelism code

from numba import njit
from numba.openmp import openmp_context as openmp  OpenMP managed through the with context manager.

@njit Numba Just In Time (JIT) compiler compiles the Python code into
def piFunc(NumSteps): LLVM thereby bypassing the GIL. Compiled code cached for
later use.
step = 1.0/NumSteps
pisum = 0.0
with openmp ("parallel for private(x) reduction(+:pisum)"): Pass the OpenMP directive into the OpenMP context
for i in range(NumSteps): manager as a string

x = (i+0.5)*step
pisum +=4.0/(1.0 + x*x)

» parallel: creates a team of threads

« for: maps loop iterations onto threads.

« private(x): each threads gets its own x

» Loop control index of a parallel for (i) is private to each thread.
* reduction(+:sum): combine sum from each thread using +

pi = step*pisum
return pi

pi = piFunc(100000000)

GIL: Global Interpreter Lock 46



Reduction

* OpenMP reduction clause added to a parallel for:  |from numba import njit

reduction (op : list)

* Inside the parallel for:

— Each thread gets a private copy of each
variable in list ... initialized depending on the

(1 ”»

op
(e.g., O for “+7).

— Updates to the reduction variable from each
thread happens to its private copy.

from numba.openmp import openmp_context as openmp

@njit

def piFunc(NumSteps):
step = 1.0/NumSteps
pisum = 0.0

with openmp ("parallel for private(x) reduction(+:pisum)"):
for i in range(NumSteps):
x = (i+0.5)*step
pisum +=4.0/(1.0 + x*x)

pi = step*pisum

— The private copies from each thread are return pi

combined into a single value ... and then

combined with the original global value ... all pi = piFunc(100000000)

using the op from the reduction clause.

 The variables in the “list” must be shared in the

enclosing parallel region.

We don'’t discuss the details here, but you can also add a reduction clause to a parallel or a for construct.
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Numerical Integration results in seconds ... lower is better

PyOMP C
Threads Loop loop
1 0.447 0.444
2 0.252 0.245
4 0.160 0.149
8 0.0890 0.0827
16 0.0520 0.0451
108 steps

Intel® Xeon® E5-2699 v3 CPU with 18 cores running at 2.30 GHz.
For the C programs we used Intel® icc compiler version 19.1.3.304 as icc -gnextgen -O3 —fopenmp
Ran each case 5 times and kept the minimum time. JIT time is not included for PyOMP (it was about 1.5 seconds)



Parallel Loop are great ... but sometimes
you want more control over individual
threads
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Understanding OpenMP

We will explain the key ele

OpenMP (Loop parallelism

and divide and conquer) applied to the following problem

m enMP as we explore the three fundamental design patterns of

Numerical Integration (the hello world program of parallel computing)

4.0

= 4.0/(1+x2)

F(x)

Mathematically, we know that:

1

J‘ 4.0

0

We can approximate the integral as a sum of rectangles:

N
2 FA R T
i=0

Each rectangle: width Ax, height F(x;) at it" interval midpoint.

0.0

1.0

def piFunc(NumSteps):
step=1.0/NumSteps
pisum = 0.0
x=0.5
for i in range(NumSteps):
xX+=step
pisum +=4.0/(1.0+x*x)
pi=step*pisum
return pi

50



SPMD (Single Program Multiple Data) design pattern

* Run the same program on P processing elements where P can be arbitrarily large.
« Usetherank ... an ID ranging from 0 to (P-1) ... to select between a set of tasks and to manage any shared

data structures.
Replicate the program.
Add glue code
Break up the data

- \ 7/

This pattern is very general and has been used to support most (if not all) the algorithm strategy patterns.

MPI programs almost always use this pattern ... it is probably the most commonly used pattern in the history of parallel programming.

Third party names are the property of their owners
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Single Program Multiple Data (SPMD)

from numba import njit
import numpy as np
from numba.openmp import openmp_context as openmp

from numba.openmp import omp_get_thread_num, omp_get _num_threads

MaxTHREADS = 32
@nijit
def piFunc(NumSteps):
step = 1.0/NumSteps
partialSums = np.zeros(MaxTHREADS)

with openmp(“parallel shared(partialSums,numThrds) private(threadID,i,x,localSum)”):

threadID = omp_get_thread _num()

with openmp("single"): .
numThrds = omp_get_num_threads() .
localSum = 0.0 y
for i in range(threadID, NumSteps, numThrds): | °
x = (i+0.5)*step *

omp_get num_threads(): get N=number of threads
omp_get _thread _num(): thread rank = 0...(N-1)
single: One thread does the work, others wait
private(x): each threads gets its own x

shared(x): all threads see the same x

localSum = localSum + 4.0/(1.0 + x*x)

partialSums|[threadID] = localSum Deal out loop iterations as if a deck of cards (a cyclic distribution)

return step*np.sum(partialSums)

... each threads starts with the Iteration = ID, incremented by the
number of threads, until the whole “deck” is dealt out.

pi = piFunc(100000000)
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The data environment seen by OpenMP threads

 The data environment is the collection of variables visible to the threads in a team.

» Variables can be shared or private.

— Shared variable: A variable that is visible (i.e. can be
read or written) to all threads in a team.

— Private variable: A variable that is only visible to an
individual thread.

» All the code associated with an OpenMP directive
(such as parallel or for), including the code in
functions called inside that code, is called a region. A
directive plus code in the immediate block associated
with it, is called a construct

* Rules for defining a variable as shared or private:

— A variable is shared if it is used before or after an
OpenMP construct, otherwise it is private.

— Variables can be made shared or private through clauses
included with a directive.

from numba import njit

from numba.openmp import openmp_context as openmp

@njit

def piFunc(NumSteps):
step = 1.0/NumSteps
pisum = 0.0

with openmp ("parallel for reduction(+:pisum)"):

for i in range(NumSteps):
x = (i+0.5)*step
pisum +=4.0/(1.0 + x*x)

pi = step*pisum
return pi

pi = piFunc(100000000)

x first used inside the
OpenMP construct ... it
is private.
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Numerical Integration results in seconds ... lower is better

PyOMP ®
Threads . SPMD Loop SPMD
1 0.447 0.450 0.444 0.448
2 0.252 0.255 0.245 0.242
4 0.160 0.164 0.149 0.149
8 0.0890 0.0890 0.0827 0.0826
16 0.0520 0.0503 0.0451 0.0451
108 steps

Intel® Xeon® E5-2699 v3 CPU with 18 cores running at 2.30 GHz.
For the C programs we used Intel® icc compiler version 19.1.3.304 as icc -gnextgen -O3 —fiopenmp
Ran each case 5 times and kept the minimum time. JIT time is not included for PyOMP (it was about 1.5 seconds)



How do we handle problems without such
regular structure or with complex load
balancing problems?

We do this in OpenMP with explicit tasks
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Explicit tasks in PyOMP

« Atask is a sequence of statements and an associated data environment. Lots of flexibility in how those
tasks are created, so handles irregular parallelism, recursive parallelism, and many other control structures.

« A common pattern ... one thread creates explicit tasks and puts them in a queue. All the threads work
together to execute them. The single construct causes one thread to execute statements while the other
threads wait at a barrier at the end of the single. It's perfect for task level parallelism.

from numba import njit
from numba.openmp import openmp_context

as openmp

@njit

Single: one thread does the work while the
other threads wait (and execute tasks) at the
barrier implied at the end of single

def irregularPar():
with openmp("parallel"):
with openmp("single"):

StateVal = 1
while (Stateval > 0):

BigComp(StateVal)
StateVal = ExitYet()

An explicit task ...

with openmp("task firstprivate(StateVal)"): | captures value of

— the variable

StateVal and
calls BigComp.

return ‘\\\\\\

irregularPar()

Returns a negative value at
some point (function not shown)




Divide and conquer design pattern

 Split the problem into smaller sub-problems; continue until the sub-problems can be
solved directly

[ problem ]

split
subproblem subproblem ] 3 Options for parallelism:

spllt \ SP/'t \ O Do work as you split

[ subproblem] [ subproblem] [subproblem] [subproblem] into sub-problems
0 Do work at the
solve solve solve solve
. Y y leaves
bsoluti b | ti subsolution ] [ : ]
[Su S ] [su > on] [ subsolution 0 Do work as you

merge merge / recombine

subsolution subsolution ]
merg

[ solution




Divide and conquer (with explicit tasks)

from numba import njit
from numba.openmp import openmp_context as openmp

from numba.openmp import omp_get _num_threads, omp_set_num_threads

MIN_BLK = 1024*256
@nijit
def piComp(Nstart, Nfinish, step):
iblk = Nfinish-Nstart
if(iblk<MIN_BLK):
pisum = 0.0
for i in range(Nstart,Nfinish): ~—
x= (i+0.5)*step
pisum +=4.0/(1.0 + x*x)

Solve

else:
sum1 =0.0
sum2 =0.0

with openmp ("task shared(sum1)"):
sum1 = piComp(Nstart, Nfinish-iblk/2,step)
with openmp ("task shared(sumz2)"):

— Split

sum2 = piComp(Nfinish-iblk/2,Nfinish,step) |
with openmp ("taskwait"):
pisum = sum1 + sum2 } Merge
return pisum

@nijit

def piFunc(NumSteps):
step = 1.0/NumSteps
sum = 0.0

startTime = omp get wtime()

with openmp ("parallel”):
with openmp ("single"):

Fork threads
and launch the
computation

pisum = piComp(0,NumSteps,step)

pi = step*pisum
return pi

pi = piFunc(100000000)

single: One thread does the work, others wait
task: code block enqueued for execution
taskwait: wait until task in the code block finish
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Numerical Integration results in seconds ... lower is better

PyOMP C
Threads . SPMD Task Loop SPMD Task
1 0.447 0.450 0.453 0.444 0.448 0.445
2 0.252 0.255 0.245 0.245 0.242 0.222
4 0.160 0.164 0.146 0.149 0.149 0.131
8 0.0890 0.0890 0.0898 0.0827 0.0826 0.0720
16 0.0520 0.0503 0.0517 0.0451 0.0451 | 0.0431

Intel® Xeon® E5-2699 v3 CPU with 18 cores running at 2.30 GHz.

For the C programs we used Intel® icc compiler version 19.1.3.304 as icc -gnextgen -O3 —fiopenmp

108 steps

Ran each case 5 times and kept the minimum time. JIT time is not included for PyOMP (it was about 1.5 seconds)
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There is more .... But this is enough
to get you started with CPU
programming in PyOMP

So let’s wrap up our discussion of
CPU programming
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PyOMP subset of OpenMP for CPU programming

with openmp ("parallel"):

Create a team of threads. Execute a parallel region

with openmp ("for") :

Use inside a parallel region. Split up a loop across the team.

with openmp ("parallel for"):

A combined construct. Same a parallel followed by a for.

with openmp ("single"):

One thread does the work. Others wait for it to finish

with openmp ("task") :

Create an explicit task for work within the construct.

with openmp ("taskwait"):

Wait for all tasks in the current task to complete.

with openmp ("barrier"):

All threads arrive at a barrier before any proceed.

with openmp ("critical"):

Mutual exclusion. One thread at a time executes code

schedule (static [,chunk])

Map blocks of loop iterations across the team. Use with for.

reduction (op:1list)

Combine values with op across the team. Used with for

private (list)

Make a local copy of variables for each thread. Use with parallel, for or task.

firstprivate (list)

private, but initialize with original value. Use with parallel, for or task

shared(list)

Variables shared between threads. Use with parallel, for or task.

default (none)

Force definition of variables as private or shared.

omp get num threads()

Return the number of threads in a team

omp get thread num()

Return an ID from O to the number of threads minus one

omp set num threads(int)

Set the number of threads to request for parallel regions

omp get wtime ()

Return a snapshot of the wall clock time.

OMP_NUM THREADS=N

Environment variable to set the default number of threads




PyOMP subset of OpenMP for CPU programming

with openmp ("parallel"):

Create a team of threads. Execute a parallel region ork threads

with openmp ("for") :

Use inside a parallel region. Split up a loop across the team.

with openmp ("parallel for"):

with openmp ("single"):

A combined construct. Same a parallel followed by a for.
One thread does the work. Others wait for it to finish %mﬁ?
\/\A

with openmp ("task") :

with openmp ("taskwait"):

with openmp ("barrier"):

Create an explicit task for work within the construct.
% Synchronization

with openmp ("critical"):

Wait for all tasks in the current task to complete.
Mutual exclusion. One thread at a time executes code L

schedule (static [,chunk])

reduction (op:1list)

All threads arrive at a barrier before any proceed.
Map blocks of loop iterations across the team. Use with for. _
Combine values with op across the team. Used with for ar. Loop suppott

private (list)

Make a local copy of variables for each thread. Use with parallel, for or task.

firstprivate (list)

private, but initialize with original value. Use with parallel, for or task
ata

shared(list)

Variables shared between threads. Use with parallel, for or tas nvironment

default (none)

Force definition of variables as private or shared.

omp get num threads()

Return the number of threads in a team

omp get thread num()

omp set num threads(int)

Return an ID from O to the number of threads minus one ; N ™

runtime
Set the number of threads to request for parallel regions

omp get wtime ()

libraries
Return a snapshot of the wall clock time.

OMP_NUM THREADS=N

Environment variable to set the default number of threads ﬁn:vironment: g




The view of Python from an HPC perspective

for | in range(4096):
for j in range(4096):
for k in range (4096):

We know better ... .
the IKJ order is more fOF I N range(1 OOO)

——>

cache friendly for k in range(1000):

Clilh] += Al[k]"BIK][]

for j in range (1000):
And we picked a C[I][j] += A[I][k]*B[k][j]

smaller problem

Table 1. Speedups from performance engineering a program that multiplies two 4096-by-4096 matrices. Each version represents a successive
refinement of the original Python code. “Running time” is the running time of the version. “GFLOPS” is the billions of 64-bit flcating-point operations per
second that the version executes. “Absolute speedup” is time relative to Python, and “relative speedup,” which we show with an additional digit of precision,
is time relative to the preceding line. “Fraction of peak™ is GFLOPS relative to the computer’s peak 835 GFLOPS. See Methods for more details.

Version

Implementation Running time (s)

GFLOPS Absolute speedup Relative speedup

Fraction
of peak (%)

NI O BN

_Python - 25,552.48

7
~ Parallelloops 6980
~ Parallel divide andconquer 380
~ plusvectorizaon 110
~ plus AVXintrinsies 041

Amazon AWS c4.8xlarge spot instance, Intel®

0.005 1 —

Xeon® E5-2666 v3 CPU, 2.9 Ghz, 18 core, 60 GB RAM

e —
0253 AT A
1969 366 7.8

0.00

o
S
024
433
149
4045



PyOMP DGEMM (Mat-Mul with double precision numbers)

tInit = omp_get_wtime()
with openmp("parallel for private(j,k)"):

import numpy as np for i in range(order):
from numba.openmp import openmp_context as openmp for k in range(order):

from numba.openmp import omp_get_wtime for j in range(order):

CIill] += Alil[k] * BIK]Li]

from numba import njit

@nijit(fastmath=True)

def dgemm(iterations,order): dgemmTime = omp_get_wtime() - tInit
# allocate and initialize arrays # Check result
A = np.zeros((order,order)) checksum = 0.0;
B = np.zeros((order,order)) for i in range(order):
C = np.zeros((order,order)) for j in range(order):
checksum += CJi][j]
# Assign values to A and B such that ref_checksum = order“orderorder
# the product matrix has a known value. ref_checksum *= 0.25%(order-1.0)*(order-1.0)
for i in range(order): eps=1.e-8
AL,i] = float(i) if abs((checksum - ref_checksum)/ref_checksum) < eps:
B[.,i] = float(i) print('Solution validates')

nflops = 2.0*order*order*order

print('Rate (MF/s): ',1.e-6"nflops/dgemmTime) 64



DGEMM PyOMP vs C-OpenMP

Matrix Multiplication, double precision, order = 1000, with error bars (std dev)

250 runs for order
1000 matrices

N
o

. PyOwmP PyOMP ti
| y imes
~ Cwith OpenMP DO NOT include
the one-time JIT
cost of ~2
seconds.

N
o

... but remember,
the JIT ed code
can be cached for
future use. It's
straightforward to
hide the JIT cost.

RN
o
1

(0oes uad sdo juiod Buneoyy jo suol||ig) SdO149 oAy
w
o

1 2 4 8 16
Number of threads

Intel® Xeon® E5-2699 v3 CPU, 18 cores, 2.30 GHz, threads mapped to a single CPU, one thread/per core, first 16 physical cores.
Intel® icc compiler ver 19.1.3.304 (icc —std=c11 —pthread —O3 xHOST —qopenmp)



... and in talking about PyOMP we
have covered three of the key
design patterns in parallel
programming
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Divide and conquer design pattern

 Split the problem into smaller sub-problems; continue until the sub-problems can be
solve directly

[ problem ]

split
subproblem subproblem ] 3 Options for parallelism:

spllt \ SP/'t \ O Do work as you split

[ subproblem] [ subproblem] [subproblem] [subproblem] into sub-problems
0 Do work at the
solve solve solve solve
. Y y leaves
bsoluti b | ti subsolution ] [ : ]
[Su S ] [su > on] [ subsolution 0 Do work as you

merge merge / recombine

subsolution subsolution ]
merg

[ solution




SPMD (Single Program Multiple Data) design pattern

* Run the same program on P processing elements where P can be arbitrarily large.
« Usetherank ... an ID ranging from 0 to (P-1) ... to select between a set of tasks and to manage any shared

data structures.
Replicate the program.
Add glue code
Break up the data

- \ 7/

This pattern is very general and has been used to support most (if not all) the algorithm strategy patterns.

MPI programs almost always use this pattern ... it is probably the most commonly used pattern in the history of parallel programming.

Third party names are the property of their owners
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The Loop-level parallelism design pattern

 Parallelism defined in terms of parallel loops ... that is, loops where iterations can
safely execute when divided between a collection of threads.

» Key elements:
— identify compute intensive loops in a program
— Expose concurrency by removing or managing loop carried dependencies
— Exploit concurrency for parallel execution usually using a parallel loop construct/directive.

def piFunc(NumSteps): def piFunc(NumSteps):
step=1.0/NumSteps step=1.0/NumSteps
pisum = 0.0 pisum = 0.0
x=0.5 :
for i in range(NumSteps): Aloop carried __ Recastto _| foriin range(NumSteps): S Tg's _
X*H=step o< dependency compute fromi | > x=(i+0.5)*step ependency Is
pisum += 4.0/(1.0+x*x) isum += 4.0/(1.0+X"XJ>+— more -
—sten®Di —~ i complicated. It’s
pi=step*pisum pi=step™piSum called a
return pi return pi :
reduction




Outline

e |Introducing parallel computing and PyOMP
e The PyOMP system

e PyOMP and multithreading (parallelism for the CPU)

mm) ¢ GPU programming with PyOMP

e Other approaches to parallelism in Python.

e Wrap-up and Q&A

https://github.com/Python-for-HPC/PyOMP
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For hardware ... parallelism is the path to performance

All hardware vendors are in the game ... parallelism is ubiquitous so if you care about getting the most from your hardware,

you will need to create parallel software.
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Let’s start by understanding GPU
programming in general ... and then
see how it maps onto PyOMP
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The “BlIG idea” Behind GPU programming

Traditional Loop based vector addition (vadd)

int main() {
intN=...;
float *a, *b, *c;

a* =(float *) malloc(N * sizeof(float));

// ... allocate other arrays (b and c)
// and fill with data

for (int i=0@;i<N; i++)
c[i] = a[i] + b[i];

Data Parallel vadd with CUDA

l// Compute sum of length-N vectors: C = A + B
void _ global

vecAdd (float* a, float* b, float* c, int N) {

int i = blockIdx.x * blockDim.x + threadIdx.Xx;
if (1 < N) c[i] = a[i] + b[i];

Assume a GPU with
unified shared memory
... allocate on host,
visible on device too

int main () {

int N = ... ;
float *a, *b, *c; ‘/////////
cudaMalloc (&, sizeof(float) * N);

// ... allocate other arrays (b and c)
// and fill with data

// Use thread blocks with 256 threads each
vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);
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How do we execute code on a GPU:
The SIMT model (Single Instruction Multiple Thread)

1. Turn source code into a 2. Map work-items onto an 4. Run on hardware
scalar work-item N dim index space. designed around the
same SIMT
Céiﬁm"p:fibﬁm of dength-N vectors: € = A+ B 0000 ce0ee 0000 0000 execution model
vecAdd_(-Float*_a, float* b, float* c, int N) { :::: :::: :::: ::::
int i = blockIdx.x * blockDim.x + threadIdx.x;
— P
’ 0000 0000 0000 0000
int main () { 0000 0000 0000 0000
it N ‘0000 e00® 0000 0000
float *a, *b, *c; e00e o0c0e o0eee o000
cudaMalloc (&a, sizeof(float) * N); 0000 6006006006 0600006 o000
// ... allocate other arrays (b and c) :::: :::: :::: ::::
// and fill with data
0000 0000 0000 0000
// Use thread blocks with 256 threads each 0000 06606006 060600606 0000
vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N); :::: :::: :::: ::::
}
3. Map data structures
This is CUDA code ... the sort of code the onto the same index
OpenMP compiler generates on your behalf space

Note: The CUDA code defines a 1D grid. | show a 2D grid on this slide to make kernel execution and its relation to data more clear.
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SIMT: One instruction stream maps onto many SIMD lanes

« SIMT model: Individual scalar instruction streams are grouped together for SIMD
execution on hardware

SLO SL1 SL2 SL3 SL4 SL5 SL6 SL7

1d x 1dx |[1dx [1dx|1dx [1dx [1d x | 1d x | 14 x
A stream of mul a mul a [mul a| mul afmul afmul @ |mul a|mul afmul a
Scalar dd dd dd dd dd [ add dd dd dd
. . a a a a a a a a
Instructions st Y sty [sty |sty[sty |[StY [sty |sty |sty
A 4
SIMD execution scheduled <€ >
across a fixed number of NVIDIA calls this set of

SIMD Lanes (SL) work-items a warp



A Generic GPU (following Hennessey and Patterson)
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A Generic Host/Device Platform Model

AT,

| %
Processing —onn H
Element fNsls Host

0 rm mm
U
T
Compute Unit Device

* One Host and one or more Devices
— Each Device is composed of one or more Compute Units
— Each Compute Unit is divided into one or more Processing Elements

 Memory divided into host memory and device memory

PE: processing element. The finest-grained processing element inside a GPU. Also known as a SiMD-lane or CUDA-core.
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Executing a program on CPUs and GPUs
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CPU/GPU execution models

Executing a program on CPUs and GPUs

Work decomposed Mapped onto
into blocks threads for
execution

o

Program
defines work
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work-items work-groups execution

[1mMo e | o

| ues | tas ||| ves || s |
| s | s ]

lie[uefiz]is
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For a CPU, the
threads are all
active and able
to make forward
progress.

For a GPU, any
given work-group
might be in the
gueue waiting to
execute.



How do we map a loop onto the
GPU execution model in PyOMP?
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Step 1: move code and data onto the GPU:

The target construct and default data movement

Scalars and numpy arrays are moved onto the
Host thread device by default before execution.

Generating Task

A = numpy.ones(N)

B = numpy.ones(N) A, BandN
. . . mapped to the
v with openmp ("target”): device Initial task
-------------- 2 {
Vl;lgi?; :‘r(])rret?\((ja Target task target region, Device Initial
: canuse A,Band N evice a
task region to thread

complete

the arrays
Aand B
mapped back to
the host

Only the arrays are moved back to the
host after the target region completes

Based on figure 6.4 in Using OpenMP — The Next Step by van der Pas, Stotzer and Terboven, MIT Press, 2017 83



Step 2: Map loop iterations onto the GPU’s SIMD lanes

@nijit
def main():
N = 1024

A = numpy.ones(N)
B = numpy.ones(N)

with openmp ("target "):
with openmp ("loop"):

for i in range(N):
Ali] += BIi]

The loop construct tells the compiler:

"this loop will execute correctly if
the loop iterations run in any order.
You can safely run them
concurrently. And the loop-body
doesn’t contain any OpenMP
constructs. So do whatever you
can to make the code run fast”

The loop construct is a declarative construct. You
tell the compiler what you want done but you DO
NOT tell it how to “do it”.  This is new for OpenMP
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Step 2: Map loop iterations onto the GPU’s SIMD lanes

@nijit
def main():
N = 1024

A = numpy.ones(N)
B = numpy.ones(N)

with openmp ( target
with openmp (' Ioop
for iin range(N):

Ali] += BIi]

1. Variables created in host memory.

2. Scalar N and arrays A and B are copied
to device memorydExecutlon transferred to
evice

3. For-loop index variables (such as 1) are
private in openmp regions

4. Loop iterations define the index space,

/ work-items, and work-groups.

=

5. After the OpenMP construct, arrays A
and B are copied from device' memory
back to the host. Host resumes execution.

Difference from OpenMP/C: PyOMP only
information. So, PyOMP arrays sent in full by default ... as it is with C static-arrays.

has NumPy arrays, which carry size
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Loop Parallelism code naturally maps onto the CPU

from numba import njit
import numpy as np

from numba.openmp import openmp_context as openmp OpenMP constructs managed through

the with context manager.

@nijit(fastmath=True)
def dgemm(iterations,N):

# allocate and initialize numpy arrays
# A, B and C of size N by N. <<< code not shown>>>

with openmp("parallel for private(j,k)"):
for i in range(N):
for k in range(N):
for j in range(N):

Create a team of threads. Map loop iterations onto them

CIil[j]1 += A[il[k] * BIKI][] « parallel: creates a team of threads

« for: maps loop iterations onto threads.

« private(j,k): each threads gets its own j and k variables

« Loop control index of a parallel for (i) is private to each thread.
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Loop Parallelism code naturally maps onto the CPU

from numba import njit

import numpy as np

from numba.openmp import openmp_context as openmp OpenMP constructs managed through
the with context manager.

@nijit(fastmath=True)

def dgemm(iterations,N):

# allocate and initialize numpy arrays
# A, B and C of size N by N. <<< code not shown>>>

Map the loop onto a 2D index space ... the

with openmp(“target teams loop collapse(2) private()"): -\, b4y defines the kernel function

for i in range(N):

for k in range(N): . target: map execution from the host onto the device
for j in range(N): - teams loop: Map kernel instances onto PEs inside the compute units
CLiI0] += ALillk] * BIKIOD | . collapse(2): combine following two loops into a single iteration space.
« private(j): each threads gets its own j variable
« Indices of parallelized loops (i,k) are private to each thread.

PE: processing element. The finest-grained processing element inside a GPU. Also known as a SiMD lane or CUDA-core. 87



Implicit data movement covers a small subset of
the cases you need in a real program.

To be more general ... we need to manage data
movement explicitly
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Implicit data movement

* Previously, we described the rules for implicit data movement ... N, A and B moved to the GPU on
entry to the target construct. A and B moved to the CPU on exit from the target construct.

* Notice that in this case, B is not changed on the GPU ... moving it is a waste of resources

@nijit
def main():
N = 1024

A = numpy.ones(N)
B = numpy.ones(N)

with openmp ("target"):
foriin range(N):
Ali] += BJi]
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Controlling data movement with the map clause

@nijit
def main():
N = 1024

A = numpy.ones(N)
B = numpy.ones(N)

with openmp ("target map(tofrom: A) map(to: B)"):
for i in range(N):
Ali] += BJi]

map(tofrom: A) Map data at the
start and end of target region.

map(to: B) map data at the start
of target region but NOT at the
end.

We use the term “map” since depending on the detailed memory architecture of the CPU
and the GPU, data may be in a shared address space so copying may not be needed.
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PyOMP array notation

 When mapping data arrays, if you only give the array name then PyOMP
transfers the entire array (using the NumPy array metadata to determine the size)

« To transfer less than the full array, the array section syntax can be used
— array_name[begin:end]
— This follows Python/NumPYy slicing syntax where begin is inclusive but end is exclusive.
A[N:M]. In set notation implies elements [N:M)

— Multi-dimensional arrays work as expected when transferred in full. Currently PyOmp doesn’t
support array-section syntax for multi-dimensional arrays.

C Difference: In C, arrays are usually dynamically allocated and referenced through a pointer. You
must use array-section syntax to move data. In C, array-syntax is “(initial-offset: number-of-items)”.
Fortran uses “begin:end” syntax (as Python does), but the ending index is inclusive (i.e., [begin:end]).
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Controlling data movement: the map clause

— map(to:list): On entering the region, variables in the list are initialized on the device

using the original values from the host (host to device copy).

— map(from:list): At the end of the target region, the values from variables in the list are mNoc\),t:r:nIZﬁﬁs
copied into the original variables on the host (device to host copy). On entering the defined from
region, the initial value of the variables on the device is not initialized. the

perspective of

— map(tofrom:list): the effect of both a map-to and a map-from (host to device copy at the host

start of region, device to host copy at end).

— map(alloc:list): On entering the region, data is allocated and uninitialized on the device.
— map(list): equivalent to map(tofrom:list).

@njit
def main|():
a numpy . ones (N)
b numpy . ones (N)
c numpy . empty (N)
with openmp ("target teams loop map(to: a,b) map(tofrom: c)"):
for i in range(N):
c[i] = a[i] + b[i]

When applied to an array, the mapping mode applies only to the array’s data. Array metadata is always
transferred as to and no operations which would change the metadata (e.g., resize) are permitted.
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Commonly used clauses on target and loop constructs

* The basic construct® is:
with openmp ("target [clause[[,[clause]...]"):
with openmp ("loop [clause([,[clause]...]"):
for-loops

* The most commonly used clauses are:

— map(to | from | tofrom list) < default is tofrom
— private(/ist) firstprivate(/ist) lastprivate(/ist) shared(/ist)

— behave as data environment clauses in the rest of OpenMP, but note values are only created or copied into the
region, not back out “at the end”.

— reduction(reduction-identifier : list)
— behaves as in the rest of OpenMP
— collapse(n)
— Combines loops before the distribute directive splits up the iterations between teams
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Going beyond simple vector addition ...

Using OpenMP for GPU application
programming ... the heat diffusion problem



5-point stencil: the heat program

The heat equation models changes in temperature over time.

Ju V2 = 0
5 aVeu =

We'll solve this numerically on a computer using an explicit finite difference discretisation.
u = u(t, x,y) is a function of space and time.
Partial differentials are approximated using diamond difference formulae:

du N ult+1,x,y) —u(t,x,y)
ot dt

0’u  u(t,x+1,y)—2ult,x,y) +u(t,x—1,y)

0x2 dx?

— Forward finite difference in time, central finite difference in space.
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5-point stencil: the heat program

Given an initial value of u, and any boundary conditions, we can calculate the value of u at time
t+1 given the value at time t.

Each update requires values from the north, south, east and west neighbours only:

AN
<EE
%

Computation is essentially a weighted average of each cell and its neighbouring cells.
If on a boundary, look up a boundary condition instead.
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How do we know the answer is correct?
The Method of Manufactured Solution

Stencil codes are notoriously difficult to know if the answer is “correct”.

Analytic solutions hard to come by:
— It's why you’re using a computer to solve the equation approximately after all!

Method of Manufactured Solution (MMS) is a way to help determine if the code does the correct
thing.

An approach often used to find errors in CFD codes and check convergence properties.
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Method of Manufactured Solution

« Choose a function for u(t, x, y), substitute into the equation and work through the algebra.

* Its easier if the differential equation evaluates to zero so we don’t need to consider a right-hand
side to the equation.

e u(0,x,y) gives the initial conditions.

« Can evaluate boundary conditions, e.g. bottom boundary 1 (0,0, y)

« Because u is known for all timesteps (it was chosen!), the exact solution is known.
« Compare the computed solution to the known u to compute an error.

« Any differences come from approximations in the method, or a bug in your code.
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Method of Manufactured Solution

* For the problem of length [, choose u:

2
-2
an“t Ty

. ITX .
u(t,x,y) = e 1 sin—-sin —

* Boundary conditions: u is always zero on the boundaries

+ Initial value of grid is then u(0,x,) = sin™sin™

[
CO00000000
O—=NW,LUIONOO—
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Heat diffusion problem ...

# Loop over time steps
for 1in range (nsteps):

# solve over spatial domain for step t

solve(n, alpha, dx, dt, u, u tmp)

# Array swap to get ready for next step

u, u tmp = u tmp, u

Array-swap on the host works. Why?

u and u_tmp are references to structs that
hold NumPy metadata and a data pointer.

The OpenMP runtime creates a device
struct at the target enter data construct
and maintains a fixed association between
host and device struct references.

Hence, as you swap the array variables,
the references to the struct addresses in
device memory are swapped.
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Heat diffusion problem ...

# Loop over time steps
for 1in range (nsteps):

# solve over spatial domain for step t

solve(n, alpha, dx, dt, u, u tmp)

# Array swap to get ready for next step

u, u tmp = u tmp, u

* Our program takes two optional command
line arguments: <ncells> <nsteps>

- E.g. ./heat 1000 10

— 1000x1000 cells, 10 timesteps (the
default problem size).

 If no command line arguments are
provided, it uses a default:

— These two commands both run the
default problem size of 1000x1000
cells, 10 timesteps.

— ./heat
— ./heat 1000 10

» A sensible bigger problem is 8000 x 8000
cells and 10 timesteps.
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5-point stencil: solve kernel

@njit 25,000x25,000 grid for 10 time steps
def solve(n, alpha, dx, dt, u, u_tlnp); * Xeon Platinum 8480+: 67.6 secs
# Finite difference constant multiplier
r = alpha * dt / (dx ** 2)
r2 =1-4 *r
# Loop over the nxn grid
for i in range(n):
for j in range(n):
# Update the 5-point stencil.
# Using boundary conditions on the edges of the domain.
# Boundaries are zero because the MMS solution is zero there.
u_tmp[j, i] = (r2 * u[j, i] +
(u[j, i+1l] if i < n-1 else 0.0) +
(ul[j, i-1] if 1 > O else 0.0) +
(u[j+1l, i] if j < n-1 else 0.0) +
(ul[j-1, i] if j > 0 else 0.0))
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Solution: parallel stencil (heat) 25,000x25,00 grid for 10 time steps
« Xeon Platinum 8480+: 67.6 secs
@njit * Nvidia V100: 22.6 secs

def solve(n, alpha, dx, dt, u, u _tmp):

"""Compute the next timestep, given the current timestep"""

# Finite difference constant multiplier
r = alpha * dt / (dx ** 2)
r2 =1-4 *r
with openmp ("target loop collapse(2) map(tofrom: u, u tmp)"):
# Loop over the nxn grid
for i in range(n):
for j in range(n):
u_tmp[j, i] = (r2 * ul[j, i] +
(ul[j, i+1l] if i < n-1 else 0.0) +
(ul[j, 1i-1] i£f i > O else 0.0) +
(u[j+1, i] if j < n-1 else 0.0) +
(ul[j-1, i] if j > 0 else 0.0))
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Data Movement dominates...

25,000x25,00 grid for 10 time steps
« Xeon Platinum 8480+: 67.6 secs
* Nvidia V100: 22.6 secs

solve (n,

u, u tmp

alpha,

= u tmp, u

# Loop over time steps

for in range (nsteps) :

dx,

Typically, many time steps!

# solve over spatial domain for step t

dt, u, u tmp)

# Array swap to get ready for next step

solve() function uses this context:

with openmp ("target loop collapse(2) map(tofrom: u, u_tmp)"):

For each iteration, copy from device
(2*N?)*sizeof(TYPE) bytes

* We need to keep data resident on the device between target regions
 We need a way to manage the device data environment across iterations.
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Target data directive

* The target data construct creates a target data region
... use map clauses for explicit data management

Data is mapped onto the
device at the beginning of
the construct

\ with openmp ("target data map(to: A, B) map(from: C)"):

with openmp ("target"):

{do lots of stuff with A, B and C}
one or more target
{do something on the host} regions work within the
target data region

with openmp ("target"):
{do lots of stuff with A, B and C}

\ Data is mapped back to
the host at the end of the

target data region
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Target enter/exit data constructs

* The target data construct requires a structured block of code.
— Often inconvenient in real codes.

« Can achieve similar behavior with two standalone directives:
with openmp ("target enter data map(..."):
with openmp ("target exit data map(..."):

* The target enter data maps variables to the device data environment.
* The target exit data unmaps variables from the device data environment.
« Future target regions inherit the existing data environment.
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Target enter/exit data example

@nijit
def main():
N = 1024

A = numpy.arange(N)

with openmp ("target enter data map(to: A)"):

pass pass is a python

keyword indicating an
with openmp ("target teams loop"): empty block of code.

for i in range(N):
Ali] = AJi] * AJi]

with openmp ("target exit data map(from: A)"):
pass
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Target enter/exit data details

« with openmp ("target enter data clause[[[,]Jclause]...]"):

» Creates a target task to handle data movement between the host and a device.

* clause is one of the following:
— if(scalar-expression)
— device(integer-expression)
— map (map-type: list)
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Solution: Reference swapping in action

with openmp ("target enter data map(to: u, u tmp)"):

pass Copy data to device
before iteration loop
for _ in range(nsteps):
solve(n, alpha, dx, dt, u, u tmp); Change solve() routine to remove map clauses:
- with openmp ("target loop collapse(2)”)

# Array swap to get ready for next step
u, u tmp = u_tmp, u

with openmp ("target exit data map(from: u)"):

pass

Copy data from device
after iteration loop

25,000x25,00 grid for 10 time steps

« Xeon Platinum 8480+ default data movement: 67.6 secs
* Nvidia V100 default data movement: 22.6 secs
« Nvidia V100 target enter/exit: 1.2 secs
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Target update directive

* You can update data between target regions with
the target update directive.

Set up the data

region ahead of
/ time.

with openmp ("target data map(to: A, B) map(from: C)"):

with openmp ("target"):
{do lots of stuff with A, B and C}

map A on the

with openmp (“target update from(A)"): ———"déevicetoAonthe
{do something on the host} host.

with openmp ("target update to(A)"):

pass
map A on the host to A on the
with openmp ("target"): device. Note: openmp
{do lots of stuff with A, B and C} context body cannot be
empty so use “pass’

Note: update directive has the transfer direction as the clause: e.g. update to(...)
Compare to map clause with direction inside: map(to: ...) 110




Data movement summary

 Data transfers between host/device occur at:
— Beginning and end of target region
— Beginning and end of target data region
— At the target enter data construct
— At the target exit data construct
— At the target update construct

« Can use target data and target enter/exit data to reduce redundant transfers.

« Use the target update construct to transfer data on the fly within a target data
region or between target enter/exit data directives.
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The loop construct is great, but sometimes you
want more control.
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Our host/device Platform Model and OpenMP

00O
I T
[= !—l._l.—l._ll_l — |:| F/7
Processing =L er Host
os

Element J |H” :_||—||_||—| ﬁ mm

T~ Target
Compute Unit Device construct to
Parallel for simd v getonto a
to run each block device
of loop iterations Teams construct to create a
on the processing  |eague of teams with one team of
elements threads on each compute unit.

Distribute construct to assign
blocks of loop iterations to teams.
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teams and distribute constructs

* The teams construct
— Similar to the parallel construct
— It starts a league of thread teams
— Each team in the league starts as one initial thread — a team of one
— Threads in different teams cannot synchronize with each other
— The construct must be “perfectly” nested in a target construct

* The distribute construct
— Similar to the for construct
— Loop iterations are workshared across the initial threads in a league

— No implicit barrier at the end of the construct

— dist_schedule(kind[, chunk_size])
— If specified, scheduling kind must be static
— Chunks are distributed in round-robin fashion in chunks of size chunk_size
— If no chunk size specified, chunks are of (almost) equal size; each team receives at least one chunk
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Create a league of teams and distribute a loop among them

 teams construct

host thread
 distribute construct l device initial
threads
"""""""""""""""" %‘
with openmp ("target"): ( ( Ny

with openmp ("teams™):
with openmp ("distribute"):
for i in range(N):

 Transfer execution control to MULTIPLE device initial threads
« Workshare loop iterations across the initial threads.
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Create a league of teams and distribute a loop among them
and run each team in parallel with its partition of the loop

. teams distribute host thread
» parallel for l device hread
MM

with openmp ("target"):

—
with openmp ("teams™): -~ —-
with openmp ("distribute"):
with openmp ("parallel for"):
— Y

for i in range(N):

» Transfer execution control to MULTIPLE device initial threads
— Workshare loop iterations across the initial threads (teams distribute)

« Each initial thread becomes the primary* thread in a thread team

— Workshare loop iterations across the threads in a team (parallel for)
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Create a league of teams and distribute a loop among them
and run each team in parallel with its partition of the loop

host thread

* loop
device thread
teams

with openmp ("target"):

—
with openmp ("teams"): A 4 \ 4
with openmp ("loop”):
for i in range(N):
— Y

» Transfer execution control to MULTIPLE device initial threads
— Workshare loop iterations across the initial threads (teams distribute)

« Each initial thread becomes the primary* thread in a thread team
— Workshare loop iterations across the threads in a team (parallel for)
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Create a league of teams and distribute a loop among them
and run each team in parallel with its partition of the loop

. teams distribute host thread
» parallel for l device thread
A4 |
/

with openmp ("target"):
with openmp ("teams jnum_teams(3) thread_limit(5)"):

—
\ 4 v
with openmp ("distribute™): Explicit control
with openmp ("parallel for"): of number and
for i in range(N):
— Y

size of teams

» Transfer execution control to MULTIPLE device initial threads
— Workshare loop iterations across the initial threads (teams distribute)

« Each initial thread becomes the primary* thread in a thread team

— Workshare loop iterations across the threads in a team (parallel for)
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Create a league of teams and distribute a loop among them
and run each team in parallel with its partition of the loop

host thread

device thread
teams

—
: \ 2 \ 2
with openmp ("target teams loop"):
for i in range(N):
— Y

» Transfer execution control to MULTIPLE device initial threads
— Workshare loop iterations across the initial threads (teams distribute)

« Each initial thread becomes the primary* thread in a thread team
— Workshare loop iterations across the threads in a team (parallel for)

« Combined construct
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Create a league of teams and distribute a loop among them
and run each team in parallel with its partition of the loop

 teams distribute host thread
« parallel for l device thread
with openmp ("target”): |  —— / )‘%N |
Works with | With openmp ("teams distribute"): T

—
nested loops foriin range(N): 4 \ 2
as well with openmp ("parallel for"):
for j in range(M):
— Y

» Transfer execution control to MULTIPLE device initial threads
— Workshare loop iterations across the initial threads (teams distribute)

« Each initial thread becomes the primary* thread in a thread team

— Workshare loop iterations across the threads in a team (parallel for)
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There is MUCH more ... beyond what have time to cover

* Do as much as you can with a simple loop construct. It's portable and as
compilers improve over time, it will keep up with compiler driven performance
Improvements.

« But sometimes you need more:
— Control over number of teams in a league and the size of the teams
— Explicit scheduling of loop iterations onto the the teams
— Management of data movement across the memory hierarchy: global vs. shared vs. private ...
— Calling optimized math libraries
— Multi-device programming
— Asynchrony

 Ultimately, you may need to master all those advanced features of GPU
programming. But start with loop. Start with how data on the host maps onto the
device (i.e. the GPU). Master that level of GPU programming before worrying
about the complex stuff.
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Outline

e |Introducing parallel computing and PyOMP
e The PyOMP system

e PyOMP and multithreading (parallelism for the CPU)

e GPU programming with PyOMP

mm) o Other approaches to parallelism in Python.

e Wrap-up and Q&A

https://github.com/Python-for-HPC/PyOMP
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PyOMP is great ... but it is a research system
still under development.

Let’s talk about parallel programming
models and ask the question ... what are the
key mainstream programming models in
Python
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But lets first look at programming models from the early
days of parallel computing.

ABCPL
ACE
ACT++
Active messages
Adl
Adsmith
ADDAP
AFAPI
ALWAN
AM

AMDC
AppLeS
Amoeba
ARTS
Athapascan-0b
Aurora
Automap
bb_threads
Blaze

BSP
BlockComm
C*.

"C*in C
C**

CarlOS
Cashmere

Cc4

CC++

Chu
Charlotte
Charm
Charm++
Cid

Cilk
CM-Fortran
Converse
Code
COOL
CORRELATE
CPS

CRL

CSpP
Cthreads
CUMULVS
DAGGER
DAPPLE
Data Parallel C
DC++
DCE++
DDD
DICE.
DIPC

DOLIB
DOME
DOSMOS.
DRL
DSM-Threads
Ease .
ECO
Eiffel
Eilean
Emerald
EPL
Excalibur
Express
Falcon
Filaments
FM
FLASH
The FORCE
Fork
Fortran-M
FX

GA
GAMMA
Glenda
GLU
GUARD

HASL.
Haskell
HPC++
JAVAR.
HORUS
HPC
IMPACT
ISIS.
JAVAR
JADE

Java RMI
javaPG
JavaSpace
JIDL

Joyce
Khoros
Karma
KOAN/Fortran-S
LAM

Lilac

Linda
JADA
WWWinda
ISETL-Linda
ParLin
Eilean

Third party names are the property of their owners.

P4-Linda
Glenda
POSYBL
Objective-
Linda
LiPS
Locust
Lparx
Lucid
Maisie
Manifold
Mentat
Legion
Meta Chaos
Midway
Millipede
CparPar
Mirage
MpC
MOSIX
Modula-P
Modula-2*
Multipol
MPI
MPC++
Munin

Nano-Threads
NESL
NetClasses++
Nexus
Nimrod
NOW
Objective
Linda
Occam
Omega
OpenMP
Orca
OOF90
P++
P3L
p4-Linda
Pablo
PADE
PADRE
Panda
Papers
AFAPI.
Para++
Paradigm
Parafrase2
Paralation

Parallel programming environments in the 90's

Parallel-C++
Parallaxis
ParC
ParLib++
ParLin
Parmacs
Parti

pC

pCH++
PCN
PCP:

PH
PEACE
PCU
PET
PETSc
PENNY
Phosphorus
POET.
Polaris
POOMA
POOL-T
PRESTO
P-RIO
Prospero
Proteus

QPC++
PVM
PSI
PSDM
Quake
Quark
Quick
Threads
Sage++
SCANDAL
SAM
pC++
SCHEDULE
SciTL
POET
SDDA.
SHMEM
SIMPLE
Sina
SISAL.
distributed
smalltalk
SMLI.
SONiC
Split-C.
SR

Sthreads
Strand.
SUIF.
Synergy
Telegrphos
SuperPascal
TCGMSG.
Threads.h++.
TreadMarks
TRAPPER
uC++
UNITY

ucC

v

ViC*
Visifold V-
NUS

VPE

Win32
threads
WinPar
WWWinda
XENOOPS
XPC
Zounds
ZPL



Is it bad to have so many languages?
Too many options can hurt you

m The Draeger Grocery Store 60
experiment consumer choice:
- Two Jam-displays with coupon’s o -
A Warning I've for purchase discount. g
been making for = 24 different Jam’s § 30
9 = 6 different Jam’s @
the last 20 years - How many stopped by to try -
samples at the display?
- Of those who “tried”, how many £
bought jam? T 3 >
24 6

Programmers don't need a glut of options ... just give us something that works OK
on every platform we care about. Give us a decent standard and we’ll do the rest

The findings from this study show that an extensive array of options can at first seem highly appealing to
consumers, yet can reduce their subsequent motivation to purchase the product.

lyengar, Sheena S., & Lepper, Mark (2000). When choice is demotivating: Can one desire too much of a good thing? Journal of Personality
and Social Psychology, 76, 995-1006.




Parallel programming environments: post-90s

« The application community (with leadership from the Accelerated Strategic Computing Initiative)
pushed for convergence around a small number of programming languages:
— For clusters and massively parallel computers: MPI
— For shared memory systems: OpenMP

« With only two languages, vendors could focus on engineering high quality solutions ... rather than
chasing the latest fad.

 All was good until ~2006 when fully programmable GPUs came along. We are still sorting out
what will become the converged solution ...

— Cuda, Sycl, OpenACC, OpenMP <& hopefully the open standard Sycl will win, but its too early to say



How about Parallel programming with Python

dispy Dask pyPastSet
Delegate Deap pypvm
forkmap disco pynpvm
forkfun dispy Pyro
Jobibppmap DistributedPYthon Ray
POSH exec_proxy Rth_reaq_
pp execnet Sc?lenfuflchthon.BSP
pprocess iPython Sc!ent!f!c.DlstrubedComputing.MasterSIave
processing job_stream jug Scientific.MP!
PyCSP mi4py SCOOP
PyMP NetWorkSpaces seppo
Ray PaPy PySpark
remoteD papyrus Star-P
torcp PyCOMPSs superrpy
VecPy PyLinda torcpy
batchlib pyMP] StarCluster
Celery pypar dpctl
Charm4py multiprocessing arkouda
PyCUDA PyOpenCL PyOMP
Ramba dpnp

Building on the list at https://wiki.python.org/moin/ParallelProcessing



How about Parallel programming with Python

dISpy Dask pyPastSet

Delegate Deap Pypvm

forkmap disco pynpvm

forkfun dispy Pyro

Jobibppmap DistributedPYthon Ray

POSH eXEeC_DIOXY Rthread

pp We are still early (compared to HPC) in the evolution of parallel programmin
pprocess | models for Pyth)(;rg. P ) P i ’ h9-MasterSlave
processing

PyCSP Hopefully, soon the python application community will come together and
PyMP help us narrow down to a handful of systems to focus on.

Ray

remoteD | That would allow vendors to carry out HW/SW optimization and focus on
torcp quality over "chasing fads”.

VecPy PyCmda =TT

batchlib oUMP| StarCluster

Celery pypar dpctl

Charm4py multiprocessing arkouda

PyCUDA PyOpenCL PyOMP

Ramba dpnp

Building on the list at https://wiki.python.org/moin/ParallelProcessing



Popular python parallel Programming models

We compared many python parallel programming models with google-trends (which
tracks web searches)

These four systems are popular and (in our opinion) are the key systems to consider

Key Parallel Programming Models for Python ... U.S. last 12 months

Google Trend percentages
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Popular python parallel Programming models

Leading Parallel Programming Models for Python ... U.S. last three months

PySpark is popular and useful for parallel algorithms that map onto the map
! reduce pattern. We didn’t explore it in this presentation since PySpark is more
of a data analytics pipeline than a parallel programming model.

We compared
many python
parallel
programming
models with
google-trends
(which tracks web
searches)

Our best guess ...
M\M these are the top

o o N 0N

[=]
(e

7 day sliding average or Google Trend percentages

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

RESERERREAESSSSSRRRAARARAERAESSSSRRRIEEIRIIRRR
S8 8RN ARRARST L5288 NS ARTSEE8808R38R38 8
T o0 00 o0 00 00 00 00 00 00 00 00 ) L= - - U~ N~ M- = DR~ - = (=
—_— — —_—

PySpark Dask Numba MPl4py Ray
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Dask
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DASK

 Parallel and distributed computing library for Python
 Client / driver submits tasks to Dask cluster (set of worker processes on one or
more physical nodes)

Schedulers

Dask API (define tasks) = Task Graph el (execute task graph)

gum—
Dask Array
High level APlIs for
data analytlc.s and —= Dask DataFrame Single-machine
data-parallelism D (threads, processes,
synchronous)
Dask Bag p—v
— _,( )_. Distributed
Low level APls to Dask Delayed
manage tasks
explicitly Futures

Source: https://docs.dask.org/en/latest/ 130



Dask Delayed — lazy, remote functions

* Define a remote function:

@dask.delayed <€— Decorator turns r-10rmal
def add one (i) : Python function into Dask

. lazy function
time.sleep (1)

return i+l
 Calling remote function, getting results:

futurevalue = add one(7)

v = futurevalue.compute ()
Returns immediately after
creating task in task graph

Triggers execution of task graph
Returns value 8 after about
1 second when task completes
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Dask — parallel and chaining calls

» Parallel execution:
fv = [add one(1) for 1 in range(5)] €

—_Returns immediately with
v = sum(fv) <€ a list of “futures”

v = v.compute ()

__Standard Python sum function;
Returns immediately with a future

 Chained execution:

v o= 2

Returns value 15

after about 1 second
for x in range (5) :

v = add one(v) e

v = v.compute () = These return immediately

Returns value 7 after
about 5 seconds
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Chaining forms DAGs of Tasks

# A, B, C, and D are delayed functions

u = A(x)

v = B(u)

W C(u) B

Y D(v, w) i yd N

y = y.compute () — A D ——
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Dask Futures

« Same concept, but eager asynchronous execution, different syntax

def add one(1):
time.sleep (1)

return i+1

future = client.submit (add one, 3) Submits add_one(3) for
distributed execution

\ Returns value 4 in about 1 second

* Note: no decorator, explicit job submission
« Can pass futures as parameters to chain functions/construct DAGs

result future.result ()



Dask Array

 High-level API provides distributed, Numpy-like array interface

 Arrays partitioned into chunks — serves as unit of storage and computation
« Arrays can be disk-backed, and thus larger than memory

 Array operations are lazy, internally constructing DAG of operations

 Explicit triggering of execution using compute() method
— Parallel execution of relevant portions of task graph on Dask cluster
— Computation at chunk granularity
— Only necessary chunks computed for requested result



Dask Array example

A = da.ones((1000,1000),chunks=(1000,500))
— Constructs 1000x1000 array, with two chunks of size 1000x500

B = da.sum(A, axis=0)
— Sum along axis 0 = should produce a Sum

1000 element array w aggregate

B.compute()
— Triggers computation of DAG:
— Parallel execution on chunks .
B[0].compute() aggregate
— Only compute chunks needed for B[0]
Typically, Dask will not materialize a derived array
— Keeps the DAG that describes how to compute it

— May need to recompute (but may cache results as well)
— Optimized for computations on disk-based data that won't fit in memory

Persist() method to force computation, materialization of an array




Multi-tasking, Pi program with Dask

import numpy np
import dask

@dask.delayed

Calculate over part of the range;

calc_pi(nstart, nstop, step): Written in Numpy vector style
start = (nstart+0.5)*step
stop = (nstop-0.5)%step Faster than Python loops, but use
nsteps = nstop-nstart memory for the arrays X, Y, temps
X = np.linspace(start, stop, num=nsteps)
Y =4.0/ (1.0 + X*X)

np.sum(y)

Start NumTasks tasks,
piFunc(Numsteps, NumTasks): construct DAG of operations
step = 1.0/NumSteps .

s =0 computmg sum

i range (NumTasks) :

nstart = (1*NumSteps)//NumTasks . . .

nstop = ((i+1)*NumSteps)//NumTasks - Trigger gxecutmn, wait for

s = s + calc_pi(nstart, nstop, step) completion, get result
s = s.compute() Y

step*s NORT
Initialize dask “cluster” on local
—name__=="__main__": _ — machine; can provide address

from dask.distributed import Client P t tt te clust
client = client() O connect to remote ciuster

pi = piFunc(100000000, 100)



Numba with ParallelAccelerator
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Numba ... C-like performance from Python code ?Numba

e Numba is a JIT compiler. Maps a subset of python with numpy arrays onto LLVM

e Once code is JIT'ed into LLVM, all performance enhancements exposed at the level of LLVM
are directly available ... result is performance that approaches that from raw C or Fortran

Source code is pure python for maximum portability

Just add the @jit decorator to enable numba for a function.

_ 3 Numba jit comiler applied the first time a function is encountered. Caches the
from numba import jit code so subsequent calls to the function don’t run the jit step.
@ijit Numba defines elementwise functions called ufuncs
def addit(A,B):
return (A+B) This generates the LLVM code and calls the addition ufunc to do an
elementwise add of Aand B

e Numerous options in numba ... we are barely scratching the surface
— @jit (nopython = true) tells the system to NOT use any python objects in the generated code. Can be much faster
— @jit(parallel = true) invoke parallel accelerator



Numba with ParallelAccelerator Numba

ParallelAccelerator

e ParallelAccelerator has been Available in Numba since 2017.

e Let’s users parallelize their code with a one-line change, namely annotating their Numba “jit”
decorator with “parallel=True”

e |dentifies operations in the code with concurrent semantics and executes them in parallel, making
full use of modern multi-core CPUs.

e Allows operations to be fused together and to eliminate temporaries which results in improved
cache utilization.

e Works for vector-style codes as well as explicitly parallel loops annotated with the prange keyword.



ParallelAccelerator Numba

ParallelAccelerator

— Accelerates execution of Python applications by auto-parallelizing and optimizing numeric
operations

— Brings performance without rewriting code in “performance languages”

1 line change

@numba. jit (nopython=True, parallel=True) o [
def logistic regression(Y, X, w, 1iter): performance
for 1 1n range(iter):
w —= np.dot (((1.0 / (1.0 + np.exp (=Y * np.dot (X, w))) - 1.0) ,

retudrn w Y

Y, X, and w are numpy arrays. Elementwise operations and dot
products are transparently mapped onto threads for parallel execution.

The Data Parallelism design pattern ... the parallelism is expressed through the data .. Typically as functions
applied independently to the elements of data structures combined with collective ops (such as dot products). | .,




Parallel Accelerator Numba

Works with numba to JIT code that executes in parallel. It does the following:

1. Recognize parallelism.
* Pattern recognition of operations with concurrent semantics.
2. Represent parallelism.
* Numba’s parfor node — represents a strictly nested set of for loops known to
have no cross-iteration dependencies.
3. Optimizations.
 Fusion —combine compatible parfors together. Eliminates unnecessary
temporary arrays and traverses arrays only once for better cache utilization.
4. Runin parallel.
* Improves performance by leveraging multiple cores and vector instructions.
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Transformation carried out for array-based Numba

data parallelism

D=A*B + C

_ A l Recognize parallelism
¥

parfor 1=1:n

IB t[1]=A[1]*B[1]
parfor 1=1:n
L D[1]=t[1]+C[1]

\ Fuse loops

parfor 1=1:n
[) D[1]=A[1]*B[1]+C[1]
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ParallelAccelerator — Softmax program Numba

import numba

@numba.njit(parallel=True)

def sigArr(A):
Amax = np.max(A)
Ashift = A - Amax
expAshift = np.exp(Ashift)
Normalization = np.sum(expAshift)
reciNorm = 1/Normalization
sigma = expAshift*reciNorm
return sigma

ParallelAccelerator

= Same as the NumPy version.

" np.max executed in one parallel
region.

" Subtraction, exp, and sum fused
into one parallel region.

" Ashift temporary eliminated.

" expAshift * reciNorm the final
parallel region.



ParallelAccelerator: loop level parallelism Numba

ParallelAccelerator

The Pi program

import numba = ParallelAccelerator includes parallel loops for
loop-level parallelism

@numba.njit(parallel=True)

def pi(): * The prange construct causes equal portions of
num_steps = 1000000 the iteration space from 0 to num_steps
step = 1.0 / num_steps distributed to each core.
the_ sum =0.0
for i in numba.prange(num_steps):
x = (0.5 + i) * step * The reduction (the_sum +=...) recognized and
the sum += 4.0/ (1.0 + x * x) implemented safely and efficiently in parallel.

pi = step * the_sum
return pi

print(pi())




Running Parfors in Parallel Numba

ParallelAccelerator

Generate a Numba function (i.e., a generated ufunc or gufunc) with a loop nest corresponding to the
parfor’s loop nest.

 Adds a schedule argument that specifies which threads do which iterations.
Add the body of the parfor inside the loop nest.
Allocate a reduction array for each reduction (warner: scalers NOT in a reduction lead to data races).
Initialize each thread’s reduction value from this array and write back to the array just before the end of
the parallel region.
Generate code to perform final reduction across these arrays after parallel region.
Execute gufunc using Numba’s existing parallel execution infrastructure.

Scheduling:
 The default scheduler is equivalent to OpenMP static and divides multi-dimensional iteration space up into
approximately equal-sized hyperrectangles, one for each available core.
* Programmers may optionally specify a chunksize, which results in the equivalent of OpenMP dynamic
scheduling behavior.
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Parfor optimizations Numba

Array analysis

* Called the “secret sauce” by Numba’s lead developer.

* Tracks integers and arrays to determine when two or more arrays must have a common dimension length.
Fusion

* Parfors with equivalent nested loops are merged (under certain conditions).

* Equivalence determined by array analysis.

* Reduces looping overhead, minimizes passes over arrays (cache friendly), eliminates temporaries.
Loop invariant code motion

* Operations not recursively dependent on loop indices moved before the loop.
Allocation hoisting

* Allows allocation of space for arrays of the same size created by the loop body to be moved before the loop.
Threads compute reductions locally and combined after the parallel region to get the final value.
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How ParallelAccelerator fits into Numba Numba

Re-code
by hand

\ 4

Scalar Kernel

@nijit

Sequential

Accelerator

@vectorize

Compiled
Code

@njit (parallel=True)

Parallel

g Compiled

Code

ParallelAccelerator

Most of ParallelAccelerator could be
done manually using Numba’s
@vectorize or @guvectorize but
those APIs are very difficult to use,
are error prone, and time-consuming.

ParallelAccelerator achieves this
performance with a one or two line
code change.



Numba

RecogniZing Parallelism ParallelAccelerator

The following patterns are recognized by ParallelAccelerator for parallel execution:
1. Implicit

Element-wise operations: unary(+,-,~), binary(+,-,*/,//?,%,|,>>,,&,**,//),
comparison(==,!=,<,<=,>,>=), NumPy ufuncs, user-defined DUFunc.

NumPy reductions: sum, prod, min, max, argmin, argmax, mean, var, std.
Array creation: zeros, ones, arrange, linspace, and random array create for all
available distributions.

NumPy dot: matrix/vector or vector/vector.

Array assignment.

Functools.reduce.

Stencil decorator.

2. Explicit

prange, pndindex

151



Other ParallelAccelerator Technology Numba

ParallelAccelerator

e Stencils are very common in scientific computing.

e ParallelAccelerator provides a productive stencil abstraction with automatic
parallelization.

@stencil
def jacobi_kernel(a):
return 0.25 * (a[0,1] + a[0,-1] + a[-1,0] + a[1,0])

@numba.njit(parallel=True)
def run_jacobi(a):
return jacobi_kernel(a)
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Performance

Numba

ParallelAccelerator

Kernel Times Relative to Numba with parallel=True (lower is better)
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ParallelAccelerator — Next steps Numba

e Gradually add support for new NumPy functions or variants of existing NumPy functions supported
by Numba.

e Continues to add additional code recognition patterns that enable it to infer the size of arrays
which in turn enable additional fusion opportunities.

e Long term, MLIR dialects are being developed that express tensor operations with concurrent
semantics. These dialects will then be lowered to existing MLIR dialects that also have support for
not only the kind of fusion currently supported by ParallelAccelerator but also polyhedral fusion. The
MLIR pipeline also includes functionality to lower these operations with concurrent semantics not
only to multi-core CPUs but also various types of accelerators including GPUs.

e From the user perspective, nothing will change but we hope to incorporate this new MLIR-based
compilation pipeline into Numba which will provide a superset of the existing parallelization
opportunities as well as providing better backend code generation.



MPI4py
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Execution Model: Communicating Sequential Processes (CSP)

A collection of processes are launched when the program begins to execute.

« The processes interact through explicit communication events. All aspects of coordinating the processes (i.e.
synchronization) are expressed in terms of communication events. —>

« The CSP model does not interact with any concurrency issues inside a process ... to the CSP model, they
processes appear to be sequential.

« CSP is very general, but in practice, it is paired with
the SPMD pattern

« Message passing systems are the class of APls used
to express CSP execution models.

MPI is the dominant message passing library ... has
been since the mid 1990’s.

‘ ‘ ‘ ‘ * It has been extended to go well beyond CSP, but

frankly few applications developers use those

‘ - features.
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MPI4py

* MPl4py: python binding to MPI

* An MPI instance is initialized on import

« An MPI instance is finalized when all python processes
in the program execution complete

« To launch a single mpi program on multiple nodes of a
system (distributed memory) use the program mpirun
where the flag —np is used to select how many copies
of the program to run

from mpi4dpy import MPI

print(“Hello World!”)

> mpirun —np 3 python helloMPI.py

Hello World!
Hello World!
Hello World!
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MPI4py: Communicators, ranks and number of processes

« MPI in practice is all about the SPMD pattern ... i.e., run the same program on each
node and use the rank (ID) and number of processes to split up the work.

from mpi4dpy import MPI
* A communicator is used to organize MPI ~
operations ... it is a communication context and comm = MPI.COMM_WORLD

a process group. Np = comm.Get_size()
ID = comm.Get_rank()

 If Np is the number of processes (the size of the
process group), the rank is a unique number

ranging from 0 to (Np-1). We use the rank as an
ID for processes.

print(“Hello World from {0} or {1} \n”.format(ID, Np))

> mpirun —np 3 python helloMPI.py

Hello World from 1 of 3
Hello World from 0 of 3
Hello World from 2 of 3
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M PI4py: passing messages

* Processes coordinate their execution by passing messages ... communication and synchronization
combined through message passing function.

from mpi4py import MPI
« MPI4py supports two types of communication: one for  comm = MPL.COMM_WORLD

generic objects, and another for buffers in Np= e Eed si=e))
. ID = comm.Get_rank()
contiguous memory (such as numpy arrays).
- Lower case function names: Generic objects if (myrank == 0):
— Uppercase function names: Buffer objects a =[""love”,"MPl4py’]
comm.send(a, dest = 1, tag=42)
 Buffer objects are much more efficient so if you are else : . )
i i : a_recv = comm.recv(source=u, tag=
yv?rlr(flng with numpy arrays, use the Buffer object orint(* | am proc {0} and {ONn” format(a. recv))
interface.

> mpirun —np 2 python helloMPI.py

lamproc1and ['I', 'love', 'MPI4py'l]
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MPI Communication

« Blocking Communication

— Python objects
— comm.send(sendobj, dest=1, tag=0)

We show these message passing routines for the

case of node 0 sending a message to node 1

— recvobj = comm.recv(None, src=0, tag=0)

— Numpy buffer

— comm.Send([sendarray, count, datatype], dest=1, tag=0)
— comm.Recv([recvarray, count, datatype], src=0, tag=0)

* Nonblocking Communication
— Python objects
— regs = comm.isend(obj, dest=1, tag=0)
— regr = comm.irecv(src=0, tag=0)
— regs.wait()
— data = regr.wait()
— Numpy buffer

The parameter tag is used to prevent confusion

this case 0

The parameter datatype is the MPI datatype which includes
MPLINT, MPL.LFLOAT, MPI.DOUBLE, MPI.CHAR and others

count is the number of items of type datatype in the buffer

| [comemame iy

— regs = comm.lsend([sendarray, count, datatype], dest=1, tag=0)
— regr = comm.lrecv([recvarray, count, datatype], src=0, tag=0)

— MPI.Request.Waitall([regs, reqr])

between similar messages sent between pairs of
node. It can take any integer type you wish ... in

\ You can use type discovery in Python and write the triple
[array, count, type] as just the array ... so this becomes:

Reqgr = comm.Irecv(recvarray, src=0, tag=0)
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MPI4py: Reductions

« MPI includes all the usual collective communication routines (gather, scatter,
broadcast, and more). The most commonly used is reduction.

from mpidpy import MPI
import numpy as np

* Program sums area under the curve to compute comm = MPI.COMM_WORLD
an integral that ideally is equal to pi id = comm.Get_rank()
9 y G P numb = comm.Get_size()
nsteps = 1000000
» We use a cyclic distribution of the loop to spread orint(* Rank: '.id, ' numb: ',numb)

out the work among the processes

step = 1.0/nsteps
_ , sum = np.array(0.0,'d")
» Reduction to compute the final answer pi = np.array(0.0,'d")
for i in range (id,nsteps,numb):
X = stepx(1i+0.5)
sum = sum + 4.0/(1.0 + x*x)

> mpirun —np 4 python piMPI.py comm.Reduce(sum, pi, op=MPI.SUM, root=0)
.. if (id == 0):
piis 3.1415926535899388 pi = pi * step

print(' pi is :', pi)
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Python multiprocessing
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Python Multiprocessing

« Fork multiple processes from Python
« Useful to overcome GIL limitation, utilize multi-core machines
» Forked child processes run target function, with a set of arguments

* Multiple communication, coordination options:
— Pipes, Queues
— Shared memory arrays
— Semaphores, mutexes

« Common patterns: fork-join, pipelines



Multiprocessing code

import numpy np
import multiprocessing mp

(nstart, nstop, step, i, outArr):
out = np.frombuffer(outArr, dtype=np.float64)

start = (nstart+0.5)*step
stop = (nstop-0.5)*step
nsteps = nstop-nstart

X = np.linspace(start, stop, num=nsteps)

Y =4.0/ (1.0 + X*X)
out[i] = np.sum(Y)

(NumSteps, NumProcs):
step = 1.0/NumSteps
outArr = mp.Array('d',NumProcs, lock=

out = np.frombuffer(outArr, dtype=np.float64)

procs = []
i (NumProcs):
nstart = (i*NumSteps)//NumProcs

nstop = ((i+1)*NumSteps)//NumProcs
procs.append( mp.Process( target=calc_pi,

)

Wrap shared memory buffer as numpy
array object

Compute over part of range; written in
numpy vector style; could use Python

Y

2=

loops (slower, less memory), or Numba
Store result in position i of output array

Construct shared memory array,

args=(nstart, nstop, step, i, outArr)) )

p procs: p.start()

p procs: p.join(Q)
step * (out)

pi = piFunc(100000000,50)

<«

Wrap as numpy array object

Construct processes to perform

- computation over parts of total range

Fork, Join pattern
Final reduction on shared memory array



Pi program

« Single dual-socket server

— 2X Intel® Xeon® E5-2699v3 @ 2.3Ghz (36 cores, 72 hypercores, total)

- 128GB RAM

* Mean, stddev of 10 runs (unless stated otherwise), after 1 warmup (in seconds)
» For multithreaded runs, we used the default number of threads.

T Namsteps e 17 18 i liew

Python loops 0.09 (0.0006)
Numpy

Numba

Parallel Accelerator
Multiprocessing

Dask

PyOMP (loop) 0.051 (0.004)
5 runs

0.92 (0.006)
0.135 (0.005)
0.039 (0.001)

0.133 (0.008)

0.041 (0.005)
5 runs

1.45 (0.0015)
0.39 (0.001)
0.019 (0.003)
0.229 (0.002)
0.75 (0.04)

0.073 (0.005)
5 runs

3.92 (0.003)
0.141 (0.002)
1.54 (0.016)
6.9 (0.46)

0.282 (0.02)
5 runs

Single
threaded

Compiled
1.48 (0.077)

1.56 (0.02) <« Compiled
S runs



« Parallel programming is here to stay.
If you don’t need it today, you will
eventually. Fortunately, it’s really fun.

« Software outlives hardware. Do not
let a vendor lock you in to their
platform. Portability must be non-
negotiable.

* There are too many parallel
programming models for python.
Focus on the core principles and
fundamental design patterns. Don't
wear yourself out chasing the latest
fad.
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OpenMP Organizations

* OpenMP Architecture Review Board (ARB) URL, the “owner” of the OpenMP
specification:

WWW.openmp.org

* OpenMP User’s Group (cOMPunity) URL:
WwWw.compunity.org

Get involved, join the ARB and cOMPunity.
lelp define the future of OpenMP
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Resources
« www.openmp.org has a wealth of helpful resources

OpenMIP

Community v

Specifications

Including a
comprehensiv
e collection of

examples of
code using the
OpenMP
constructs

OpenMP 5.2 Specification

= OpenMP API 5.2 Specification - Nov 2021
= Softcover Book on Amazon
= OpenMP API Additional Definitions 2.0 - Nov 2020

= OpenMP API 5.2 Reference Guide (English) (Japanese)
= OpenMP API 5.2 Supplementary Source Code
s _OpenMP API 5.2 Examples - April 2

= Softcover Book on Amazon
= OpenMP API 5.2 Stack Overflow

Resources v

The OpenMP API specification for parallel programming

News & Events v About v

Home > Specifications

OpenMP 5.1 Specification

OpenMP API 5.1 Specification - Nov 2020

= HTML Version  Softcover Book on Amazon
OpenMP API Additional Definitions 2.0 - Nov 2020
OpenMP API 5.1 Reference Guide
OpenMP API 5.1 Supplementary Source Code
OpenMP API 5.1 Examples - August 2021
OpenMP API 5.1 Stack Overflow

169


http://www.openmp.org/

To learn OpenMP:

« An exciting new book that Covers the
Common Core of OpenMP plus a few key
features beyond the common core that
people frequently use

THE OPENMP
COMMON CORE

Making OpenMP Simple Again

* It's geared towards people learning
OpenMP, but as one commentator put it
... everyone at any skill level should
read the memory model chapters.
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* Available from MIT Press
Timothy G. Mattson, Yun (Helen) He,

and Alice E. Koniges

www.ompcore.com for code samples and the Fortran supplement
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Books about OpenMP

A great book that covers
OpenMP features beyond
OpenMP 2.5
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THE NEXT STEP

Affinity, Accelerators, Tasking, and SIMD

Ruud van der Pas, Eric Stotzer,
and Christian Terboven

USING.OPENMP— -

b3
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Books about OpenMP

{ PROGRAMMING
/{/ YOUR GPU WITH

The latest book on OpenMP ...

Now available at amazon.com and ' { :; OPENMP

M IT preSS- ) *  Performance Portability for GPUs

A book about how to use OpenMP to | ( |
program a GPU. Tom Deakin and Timothy G. Mattson

’
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