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License 

• You are free to:
– Share — copy and redistribute the material in any medium or format for any purpose, even 

commercially.
– Adapt — remix, transform, and build upon the material for any purpose, even commercially.
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit , provide a link to the license, and indicate if 

changes were made . You may do so in any reasonable manner, but not in any way that suggests the 
licensor endorses you or your use.

– No additional restrictions — You may not apply legal terms or technological measures that legally 
restrict others from doing anything the license permits.
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Disclaimer

• The views expressed in this talk are those of the speakers and not their 
employers.

• If we say something “smart” or worthwhile:
– Credit goes to the many smart people we work with.

• If we say something stupid…
– It’s our own fault

https://github.com/Python-for-HPC/PyOMP



Outline
• Introducing parallel computing and PyOMP 

• The PyOMP system

• PyOMP and multithreading (parallelism for the CPU)

• GPU programming with PyOMP

• Other approaches to parallelism in Python.   

• Wrap-up and Q&A
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We all love python … but what about performance
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Software vs. Hardware and the nature of Performance

Up until ~2005, 
performance came 
from semiconductor 

technology 

Since ~2005 
performance comes 

from 
“the top”

Better software Tech.
Better algorithms
Better HW architecture#

#HW architecture matters, 
but dramatically LESS than 
software and algorithms

*It’s because of the end of 
Dennard Scaling … 

Moore’s law has nothing to 
do with it

*



The view of Python from an HPC perspective 
(from the ”Room at the top” paper).

for I in range(4096):
   for j in range(4096):
       for k in range (4096):
             C[i][j] += A[i][k]*B[k][j]

Amazon AWS c4.8xlarge spot instance, Intel®    Xeon® E5-2666 v3 CPU, 2.9 Ghz, 18 core, 60 GB RAM

A proxy for computing 
over nested loops … 
yes, they know you 

should use optimized 
library code for DGEMM



The view of Python from an HPC perspective 
(from the ”Room at the top” paper).

for I in range(4096):
   for j in range(4096):
       for k in range (4096):
             C[i][j] += A[i][k]*B[k][j]

Amazon AWS c4.8xlarge spot instance, Intel®    Xeon® E5-2666 v3 CPU, 2.9 Ghz, 18 core, 60 GB RAM

A proxy for computing 
over nested loops … 
yes, they know you 

should use optimized 
library code for DGEMM

This demonstrates a common attitude in the HPC community ….

Python is great for productivity, algorithm development, and combining functions from high-level modules in 
new ways to solve problems.     If getting a high fraction of peak performance is a goal … recode in C.



Our goal … to help people “keep their code in Python”

• Modern technology should be able to map Python onto low-level code (such as 
C or LLVM) and avoid the “Python performance tax”.

• We’ve worked on …
– Numba (2012): JIT Python code into LLVM

– Parallel accelerator (2017): Find and exploit parallel patterns in Python code.

– Intel High-Performance Analytics Toolkit and Scalable Dataframe Compiler (2019): Parallel 
performance from data frames.

– Intel numba-dppy (2020):  Numba ParallelAccelerator regions that run on GPUs via SYCL.  

9Third party names are the property of their owners



If it’s performance you want, then you must go parallel.

It’s in the physics!
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Moore's Law

Moore’s Law

Slide source: UCB CS 194 Fall’2010

• In 1965, Intel co-founder Gordon Moore predicted (from just 3 data points!) that semiconductor 
density would double every 18 months.
– He was right! Over the last 50 years, transistor densities have increased as he predicted.



CPU Frequency (GHz) over time (years)

12Source: James Reinders (from the book “structured parallel programming”)

Dennard scaling ignores threshold voltage 
and leakage … which do NOT shrink 

much with process technology.

Eventually, those factors came to 
dominate and Dennard scaling ends



Consider power in a chip … 
C = capacitance  … it measures the ability of a circuit to 
store energy:

C = q/V à    q = CV

Work is pushing something (charge or q) across a 
“distance” … in electrostatic terms  pushing q from 0 to V:

V * q = W.     

But for a circuit    q = CV   so 
    

 W = CV2     

power is work over time … or how many times per second 
we oscillate the circuit 

      Power = W* F   à      Power = CV2f

Processor 

f

Input Output

Capacitance = C
Voltage = V
Frequency = f
Power = CV2f

f * time



... Reduce power by adding cores

Chandrakasan, A.P.; Potkonjak, M.; Mehra, R.; Rabaey, J.; Brodersen, R.W., "Optimizing power using transformations," 
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,, vol.14, no.1, pp.12-31, Jan 1995 Source:  Vishwani Agrawal

Processor 

f

Input Output

Capacitance = C
Voltage = V
Frequency = f
Power = CV2f

f * time

Processor 

f/2

Processor 

f/2

Input Output

Capacitance = 2.2C
Voltage = 0.6V
Frequency = 0.5f
Power = 0.396CV2f

f * time



… So now lets talk about parallel 
hardware

15



For hardware … parallelism is the path to performance

CPU

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware, 
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

SIMD/Vector



For hardware … parallelism is the path to performance

CPU

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware, 
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

SIMD/Vector

We will 
cover the 

CPU and the 
GPUWe will let the 

compiler take care of 
vectorization for us

PyOMP works here as 
well … though we 
won’t discuss this 
case in this tutorial



For hardware … parallelism is the path to performance

CPU

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware, 
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

SIMD/Vector

We will 
start with 
the CPU



A typical multi-core CPU
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All the memory (DRAM)  is visible to all the cores.  
It presents a single address space.

The caches (L1D$, L1I$, L2$ and a shared L3$) 
provide a high-speed window into memory 

ALU: arithmetic logic unit,   HT: hardware thread   QPI: quick path interconnect   DDR: Dram memory controller    DRAM: dynamic random access memory
L!D$:   L1 data cache,    L1I$:   L1 instruction cache       L2: a unified (data and instructions) cache

D
R

AM
D

R
AM

D
R

AM
D

R
AM

A program instance runs as a process.  A process 
defines the subset of resources (such as memory) 
available to an executing program.

Execution of a program occurs through one or 
more threads “owned” by the process.  



The ubiquitous standard for multithreaded 
programming on CPUs is OpenMP
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OpenMP* Overview

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL  REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok) 

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP  SINGLE PRIVATE(X)

C$OMP SECTIONS 

C$OMP MASTERC$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP  BARRIER

OpenMP:  An API for Writing Multithreaded 
Applications

• A set of compiler directives and library routines  for parallel 
application programmers

• Greatly simplifies writing multi-threaded (MT) programs in Fortran, 
C and C++

• Standardizes established SMP practice + vectorization and 
heterogeneous device programming

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.
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OpenMP is the most popular Programming model for HPC

Aggregate numbers over all repositories from 2013 to 2023

Download the paper here:   https://arxiv.org/abs/2308.08002

We constructed a dataset from all c, c++ and 
Fortran programs in github for training large 
language models for parallel code generation.

We analyzed programming model usage across the 
dataset and found that OpenMP was the most 
popular of all parallel programming models in 
github.

Note: we did not collect .cu or .cuf files so we 
under-counted CUDA usage.



from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def hello():
  with openmp("parallel"):
    print("hello")
    print("world")

hello()
print("DONE")

PyOMP: OpenMP projected into Python
• A parallel multithreaded “hello world” program with PyOMP

23



PyOMP: OpenMP projected into Python
• A parallel multithreaded “hello world” program with PyOMP

24

from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def hello():
  with openmp("parallel"):
    print("hello")
    print("world")

hello()
print("DONE")

OpenMP managed 
through the with 

context manager.

• Numba Just In Time (JIT) compiler compiles the Python code into LLVM thereby bypassing the 
GIL.   Hence, the threads execute in parallel. 

• The string in the with openmp context manager is identical to the constructs in OpenMP.  If you 
know OpenMP for C/C++/Fortran, then you know it for Python

Numba Just In Time 
(JIT) compiler 

compiles the Python 
code into LLVM.   

Compiled code 
cached for later use.

The code inside the with 
context manager is 

packaged into a function and 
executed by each thread

“parallel” creates a team of threads



from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def hello():
  with openmp("parallel"):
    print("hello")
    print("world")

hello()
print("DONE")

PyOMP: OpenMP projected into Python
• A parallel multithreaded “hello world” program with PyOMP
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hello
world
hello
hello
hello
world
hello
world
hello
world
hello
world
world
world
hello
world
DONE

When I run this program, 
here is the output.

The interleaved print 
output is different each 
time I run the program



Why is the output from our hello world 
program so weird?

To answer that question, we must  
digress briefly and settle on a few key 

definitions

26



Let’s agree on a few definitions: 

• Active task: 
– A task that is available to be scheduled for execution.  When the task is moving through its sequence of 

instructions, we say it is making forward progress

• Fair scheduling:
– When a scheduler gives each active task an equal opportunity for execution. 

27

• Computer:
– A machine that transforms input data into 

output data. 
– Typically, a computer consists of Control, 

Arithmetic/Logic, and  Memory units.  
– The transformation is defined by a stored 

program (von Neumann architecture).

• Task:  
– A specific sequence of instructions plus a 

data environment.  A program is composed 
of one or more tasks.



Concurrency vs. Parallelism
• Two important definitions:

– Concurrency: A condition of a system in which multiple tasks are active and unordered.  If scheduled fairly, 
they can be described as logically making forward progress at the same time.

– Parallelism: A condition of a system in which multiple tasks are actually making forward progress at the 
same time.

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

Concurrent, parallel Execution

Concurrent, non-parallel Execution
PE0

PE0

PE1

PE1

PE2

PE3

Time
PE = Processing Element



Concurrency vs. Parallelism

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

In most cases, parallel programs exploit 
concurrency in a problem to run tasks on 
multiple processing elements

We use Parallelism to:
• Do more work in less time
• Work with larger problems 

Programs

Concurrent 
Programs

Parallel 
Programs If tasks execute in “lock step” they are not 

concurrent, but they are still parallel.  
Example … a SIMD unit.

• Two important definitions:
– Concurrency: A condition of a system in which multiple tasks are active and unordered.  If scheduled fairly, 

they can be described as logically making forward progress at the same time.

– Parallelism: A condition of a system in which multiple tasks are actually making forward progress at the 
same time.



from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def hello():
  with openmp("parallel"):
    print("hello")
    print("world")

hello()
print("DONE")

PyOMP: OpenMP projected into Python
• A parallel multithreaded “hello world” program with PyOMP
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hello
world
hello
hello
hello
world
hello
world
hello
world
hello
world
world
world
hello
world
DONE

When I run this program, 
here is the output.

The challenge for programmers writing multithreaded code is to make sure every 
semantically allowed way statements can interleave results in correct code.



Detailed outline from the tutorial proposal
• Introducing parallel computing and PyOMP 

• The PyOMP system

• PyOMP and multithreading (parallelism for the CPU)

• GPU programming with PyOMP

• Other approaches to parallelism in Python.   

• Wrap-up and Q&A
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Break

https://github.com/Python-for-HPC/PyOMP



How did we implement PyOMP?

We used the “magic” of Numba

32

• PyOMP currently based on a fork of Numba 0.57
• So, PyOMP is a fully functional Numba but with OpenMP support
• At some point in the future it will become a pure extension to Numba



Numba … C-like performance from Python code

• Numba is a JIT compiler. Maps a subset of Python and NumPy API onto LLVM
• Once code is JIT’ed into LLVM, all performance enhancements exposed at the level of LLVM 

are directly available … result is performance that approaches that from raw C or Fortran
• Source code is pure Python for maximum portability

• Just add the @jit decorator to enable Numba for a function.

from numba import jit

@jit
def addit(A,B):
      return (A+B)

Numba JIT compiler applied the first time a function is encountered.  Numba 
caches the code so subsequent calls to the function don’t run the JIT step.

Numba defines elementwise functions called ufuncs

This generates the LLVM code and calls the addition ufunc to do an 
elementwise add of A and B

• Numerous options in numba … we are barely scratching the surface
– @jit(nopython=true)         do NOT use any Python objects in the generated code.  Can be much faster.  Equivalent to njit.
– @jit(parallel=true)             invoke parallel accelerator



PyOMP Implementation in Numba
• PyOMP changes to Numba:

• Adds an OpenMP context manager
• Provides the ability to call all the OpenMP runtime functions from both Python and Numba JITed code.

• Exception handling disabled in OpenMP regions since Numba exception mechanism breaks OpenMP single-
entry/single-exit requirement.

• Variables not listed in a data clauses are SHARED if used before or after OpenMP region, PRIVATE otherwise*.

• Supports most OpenMP 3.5 and much of OpenMP 4.5.  Supported directives and clauses can be found at 
https://pyomp.readthedocs.io/en/latest/.

• Note that one can use @jit(cache=True) Numba decorator to compile the function once and store the result on 
disk to avoid recompilation each time the program is restarted.

* The scope of shared/private variables exposes subtle issues in how the rules for an OpenMP data environment interacts with how Numba 
manages the visibility of variables.  This is a topic that is still evolving, though in practice it hasn’t impacted the usability of PyOMP .

https://pyomp.readthedocs.io/en/latest/


How do you install PyOMP on your own 
system?

35



PyOMP installation
• Preferred installation method is through conda.

• We’ve simplified the installation command to the following
–conda install -c python-for-hpc -c conda-forge  --override-channels pyomp

• We currently support PyOMP on four systems
– linux-ppc6le
– linux-64 (x86_64)
–osx-arm64 (mac)
– linux-arm64

• We also have a working (free) JupyterLab under binder for OpenMP CPU at:
–https://mybinder.org/v2/gh/Python-for-HPC/binder/HEAD 

36
https://github.com/Python-for-HPC/PyOMP

https://mybinder.org/v2/gh/Python-for-HPC/binder/HEAD


Detailed outline from the tutorial proposal
• Introducing parallel computing and PyOMP 

• The PyOMP system

• PyOMP and multithreading (parallelism for the CPU)

• GPU programming with PyOMP

• Other approaches to parallelism in Python.   

• Wrap-up and Q&A

37

Break

https://github.com/Python-for-HPC/PyOMP



Lets dive into the details of 
multithreading and how they are most 

commonly used in an application

38
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OpenMP Execution Model
Fork-Join Parallelism: 

• Initial thread forks a team of threads as needed.
• They execute in a shared address space … All reads read/write a common set of the variables.
• When the team is finished, the threads join together and the initial thread continues
• Parallelism added incrementally until performance goals are met, i.e., the sequential program 

evolves into a parallel program.
Parallel Regions

Initial 
Thread 
in red

A Nested 
Parallel 
region

Sequential Parts



The information on this page is subject to the use and disclosure restrictions provided on the second page to this document.

Understanding OpenMP

40

We will explain the key elements of OpenMP as we explore the three fundamental design patterns of 
OpenMP (Loop parallelism, SPMD, and divide and conquer) applied to the following problem

def piFunc(NumSteps):
    step=1.0/NumSteps
    pisum = 0.0
    x = 0.5
    for i in range(NumSteps):
        x+=step
        pisum += 4.0/(1.0+x*x)
    pi=step*pisum
    return pi
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The Loop-level parallelism design pattern
• Parallelism defined in terms of parallel loops … that is, loops where iterations can 

safely execute when divided between a collection of threads.  
• Key elements:

– identify compute intensive loops in a program
– Expose concurrency by removing or managing loop carried dependencies
– Exploit concurrency for parallel execution usually using a parallel loop construct/directive.
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The Loop-level parallelism design pattern
• Parallelism defined in terms of parallel loops … that is, loops where iterations can 

safely execute when divided between a collection of threads.  
• Key elements:

– identify compute intensive loops in a program
– Expose concurrency by removing or managing loop carried dependencies
– Exploit concurrency for parallel execution usually using a parallel loop construct/directive.

def piFunc(NumSteps):
    step=1.0/NumSteps
    pisum = 0.0
    x = 0.5
    for i in range(NumSteps):
        x+=step
        pisum += 4.0/(1.0+x*x)
    pi=step*pisum
    return pi
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The Loop-level parallelism design pattern
• Parallelism defined in terms of parallel loops … that is, loops where iterations can 

safely execute when divided between a collection of threads.  
• Key elements:

– identify compute intensive loops in a program
– Expose concurrency by removing or managing loop carried dependencies
– Exploit concurrency for parallel execution usually using a parallel loop construct/directive.

def piFunc(NumSteps):
    step=1.0/NumSteps
    pisum = 0.0
    x = 0.5
    for i in range(NumSteps):
        x+=step
        pisum += 4.0/(1.0+x*x)
    pi=step*pisum
    return pi

A loop carried 
dependency
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The Loop-level parallelism design pattern
• Parallelism defined in terms of parallel loops … that is, loops where iterations can 

safely execute when divided between a collection of threads.  
• Key elements:

– identify compute intensive loops in a program
– Expose concurrency by removing or managing loop carried dependencies
– Exploit concurrency for parallel execution usually using a parallel loop construct/directive.

def piFunc(NumSteps):
    step=1.0/NumSteps
    pisum = 0.0
    x = 0.5
    for i in range(NumSteps):
        x+=step
        pisum += 4.0/(1.0+x*x)
    pi=step*pisum
    return pi

def piFunc(NumSteps):
    step=1.0/NumSteps
    pisum = 0.0
 
    for i in range(NumSteps):
        x=(i+0.5)*step
        pisum += 4.0/(1.0+x*x)
    pi=step*pisum
    return pi

A loop carried 
dependency

Recast to 
compute from i



This 
dependency is 

more 
complicated.  It’s 

called a 
reduction 45

The Loop-level parallelism design pattern
• Parallelism defined in terms of parallel loops … that is, loops where iterations can 

safely execute when divided between a collection of threads.  
• Key elements:

– identify compute intensive loops in a program
– Expose concurrency by removing or managing loop carried dependencies
– Exploit concurrency for parallel execution usually using a parallel loop construct/directive.

def piFunc(NumSteps):
    step=1.0/NumSteps
    pisum = 0.0
    x = 0.5
    for i in range(NumSteps):
        x+=step
        pisum += 4.0/(1.0+x*x)
    pi=step*pisum
    return pi

def piFunc(NumSteps):
    step=1.0/NumSteps
    pisum = 0.0
 
    for i in range(NumSteps):
        x=(i+0.5)*step
        pisum += 4.0/(1.0+x*x)
    pi=step*pisum
    return pi

A loop carried 
dependency

Recast to 
compute from i



Loop Parallelism code
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from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def piFunc(NumSteps):
    step = 1.0/NumSteps
    pisum = 0.0
    
    with openmp ("parallel for private(x) reduction(+:pisum)"):
        for i in range(NumSteps):
            x = (i+0.5)*step
            pisum += 4.0/(1.0 + x*x)

    pi = step*pisum
    return pi

pi = piFunc(100000000)

OpenMP managed through the with context manager.

Pass the OpenMP directive into the OpenMP context 
manager as a string

• parallel: creates a team of threads
• for: maps loop iterations onto threads.   
• private(x): each threads gets its own x
• Loop control index of a parallel for (i) is private to each thread.
• reduction(+:sum): combine sum from each thread using +

Numba Just In Time (JIT) compiler compiles the Python code into 
LLVM thereby bypassing the GIL.   Compiled code cached for 
later use.

GIL: Global Interpreter Lock
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Reduction
• OpenMP reduction clause added to a parallel for:   

reduction (op : list)

• Inside the parallel for:
– Each thread gets a private copy of each 

variable in list … initialized depending on the 
“op” 
(e.g., 0 for “+”).

– Updates to the reduction variable from each 
thread happens to its private copy. 

– The private copies from each thread are 
combined into a single value … and then 
combined with the original global value … all 
using the op from the reduction clause.

• The variables in the “list” must be shared in the 
enclosing parallel region.  

from numba import njit
 from numba.openmp import openmp_context as openmp

 @njit
 def piFunc(NumSteps):
     step = 1.0/NumSteps
     pisum = 0.0
    
     with openmp ("parallel for private(x) reduction(+:pisum)"):
         for i in range(NumSteps):
             x = (i+0.5)*step
             pisum += 4.0/(1.0 + x*x)

     pi = step*pisum
     return pi

 pi = piFunc(100000000)

We don’t discuss the details here, but you can also add a reduction clause to a parallel or a for construct.



Numerical Integration results in seconds … lower is better

Intel® Xeon® E5-2699 v3 CPU with 18 cores running at 2.30  GHz. 
For the C programs we used Intel® icc compiler version 19.1.3.304 as  icc -qnextgen -O3 –fopenmp
Ran each case 5 times and kept the minimum time. JIT time is not included for PyOMP (it was about 1.5 seconds)
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Threads
PyOMP C

Loop SPMD Task Loop SPMD Task

1 0.447 0.450 0.453 0.444 0.448 0.445

2 0.252 0.255 0.245 0.245 0.242 0.222

4 0.160 0.164 0.146 0.149 0.149 0.131 

8 0.0890 0.0890 0.0898 0.0827 0.0826 0.0720

16 0.0520 0.0503 0.0517 0.0451 0.0451 0.0431

108 steps



Parallel Loop are great … but sometimes 
you want more control over individual 

threads

49



The information on this page is subject to the use and disclosure restrictions provided on the second page to this document.

Understanding OpenMP

50

We will explain the key elements of OpenMP as we explore the three fundamental design patterns of 
OpenMP (Loop parallelism, SPMD, and divide and conquer) applied to the following problem

def piFunc(NumSteps):
    step=1.0/NumSteps
    pisum = 0.0
    x = 0.5
    for i in range(NumSteps):
        x+=step
        pisum += 4.0/(1.0+x*x)
    pi=step*pisum
    return pi
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SPMD (Single Program Multiple Data) design pattern

• Run the same program on P processing elements where P can be arbitrarily large. 
• Use the rank … an ID ranging from 0 to (P-1) … to select between a set of tasks and to manage any shared 

data structures. 

This pattern is very general and has been used to support most (if not all) the algorithm strategy patterns.

MPI programs almost always use this pattern … it is probably the most commonly used pattern in the history of parallel programming.

Replicate the program.

Add glue code

Break up the data

Third party names are the property of their owners



Single Program Multiple Data (SPMD)
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from numba import njit
import numpy as np
from numba.openmp import openmp_context as openmp
from numba.openmp import omp_get_thread_num, omp_get_num_threads
MaxTHREADS = 32
@njit
def piFunc(NumSteps):
    step = 1.0/NumSteps
    partialSums = np.zeros(MaxTHREADS)
    with openmp(“parallel shared(partialSums,numThrds) private(threadID,i,x,localSum)”):
        threadID = omp_get_thread_num()
        with openmp("single"):
            numThrds = omp_get_num_threads()
        localSum = 0.0
        for i in range(threadID, NumSteps, numThrds):
            x = (i+0.5)*step
            localSum = localSum + 4.0/(1.0 + x*x)
        partialSums[threadID] = localSum
    return step*np.sum(partialSums)

pi = piFunc(100000000)

• omp_get_num_threads(): get N=number of threads
• omp_get_thread_num(): thread rank = 0…(N-1)
• single: One thread does the work, others wait 
• private(x): each threads gets its own x
• shared(x): all threads see the same x

Deal out loop iterations as if a deck of cards (a cyclic distribution) 
… each threads starts with the Iteration = ID, incremented by the 
number of threads, until the whole “deck” is dealt out.    



The data environment seen by OpenMP threads

• Variables can be shared or private.
– Shared variable: A variable that is visible (i.e. can be 

read or written) to all threads in a team.
– Private variable: A  variable that is only visible to an 

individual thread.   

• All the code associated with an OpenMP directive 
(such as parallel or for), including the code in 
functions called inside that code, is called a region.  A 
directive plus code in the immediate block associated 
with it, is called a construct

• Rules for defining a variable as shared or private:
– A variable is shared if it is used before or after an 

OpenMP construct, otherwise it is private.
– Variables can be made shared or private through clauses 

included with a directive.
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• The data environment is the collection of variables visible to the threads in a team.

from numba import njit
 from numba.openmp import openmp_context as openmp

 @njit
 def piFunc(NumSteps):
     step = 1.0/NumSteps
     pisum = 0.0
     with openmp ("parallel for reduction(+:pisum)"):
         for i in range(NumSteps):
             x = (i+0.5)*step
             pisum += 4.0/(1.0 + x*x)

     pi = step*pisum
     return pi

 pi = piFunc(100000000)

x first used inside the 
OpenMP construct  … it 

is private.



Numerical Integration results in seconds … lower is better

Intel® Xeon® E5-2699 v3 CPU with 18 cores running at 2.30  GHz. 
For the C programs we used Intel® icc compiler version 19.1.3.304 as  icc -qnextgen -O3 –fiopenmp
Ran each case 5 times and kept the minimum time. JIT time is not included for PyOMP (it was about 1.5 seconds)
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Threads
PyOMP C

Loop SPMD Task Loop SPMD Task

1 0.447 0.450 0.453 0.444 0.448 0.445

2 0.252 0.255 0.245 0.245 0.242 0.222

4 0.160 0.164 0.146 0.149 0.149 0.131 

8 0.0890 0.0890 0.0898 0.0827 0.0826 0.0720

16 0.0520 0.0503 0.0517 0.0451 0.0451 0.0431

108 steps



How do we handle problems without such 
regular structure or with complex load 

balancing problems?

We do this in OpenMP with explicit tasks
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Explicit tasks in PyOMP
• A task is a sequence of statements and an associated data environment.  Lots of flexibility in how those 

tasks are created, so handles irregular parallelism, recursive parallelism, and many other control structures.

• A common pattern … one thread creates explicit tasks and puts them in a queue.  All the threads work 
together to execute them. The single construct causes one thread to execute statements while the other 
threads wait at a barrier at the end of the single.   It’s perfect for task level parallelism.

from numba import njit
from numba.openmp import openmp_context as openmp
   
@njit
def irregularPar():
  with openmp("parallel"):
   with openmp("single"):
        StateVal = 1
      while (StateVal > 0):
        with openmp("task firstprivate(StateVal)"):
          BigComp(StateVal)
        StateVal = ExitYet()
  return
   
irregularPar()

An explicit task … 
captures value of 

the variable 
StateVal and 
calls BigComp.

Single: one thread does the work while the 
other threads wait (and execute tasks) at the 

barrier implied at the end of single

Returns a negative value at 
some point (function not shown)



Divide and conquer design pattern
• Split the problem into smaller sub-problems; continue until the sub-problems can be 

solved directly

3 Options for parallelism:
¨ Do work as you split 

into sub-problems
¨ Do work at the 

leaves
¨ Do work as you 

recombine



Divide and conquer (with explicit tasks)
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Solve

Split

Merge

Fork threads 
and launch the 
computation

• single: One thread does the work, others wait 
• task: code block enqueued for execution
• taskwait: wait until task in the code block finish

@njit
def piFunc(NumSteps):
    step = 1.0/NumSteps
    sum = 0.0
    startTime = omp_get_wtime()
    with openmp ("parallel"):
        with openmp ("single"):
             pisum = piComp(0,NumSteps,step)

    pi = step*pisum
    return pi

pi = piFunc(100000000)

from numba import njit
from numba.openmp import openmp_context as openmp
from numba.openmp import omp_get_num_threads, omp_set_num_threads
MIN_BLK = 1024*256 
@njit
def piComp(Nstart, Nfinish, step):
    iblk = Nfinish-Nstart
    if(iblk<MIN_BLK):
        pisum = 0.0
        for i in range(Nstart,Nfinish): 
            x= (i+0.5)*step
            pisum += 4.0/(1.0 + x*x)
    else:
        sum1 = 0.0
        sum2 = 0.0
        with openmp ("task shared(sum1)"):
            sum1 = piComp(Nstart, Nfinish-iblk/2,step)
        with openmp ("task shared(sum2)"):
            sum2 = piComp(Nfinish-iblk/2,Nfinish,step)
        with openmp ("taskwait"):
            pisum = sum1 + sum2
    return pisum



Numerical Integration results in seconds … lower is better

Intel® Xeon® E5-2699 v3 CPU with 18 cores running at 2.30  GHz. 
For the C programs we used Intel® icc compiler version 19.1.3.304 as  icc -qnextgen -O3 –fiopenmp
Ran each case 5 times and kept the minimum time. JIT time is not included for PyOMP (it was about 1.5 seconds)
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Threads
PyOMP C

Loop SPMD Task Loop SPMD Task

1 0.447 0.450 0.453 0.444 0.448 0.445

2 0.252 0.255 0.245 0.245 0.242 0.222

4 0.160 0.164 0.146 0.149 0.149 0.131 

8 0.0890 0.0890 0.0898 0.0827 0.0826 0.0720

16 0.0520 0.0503 0.0517 0.0451 0.0451 0.0431

108 steps



There is more …. But this is enough 
to get you started with CPU 

programming in PyOMP

So let’s wrap up our discussion of 
CPU programming
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with openmp("parallel"): Create a team of threads.   Execute a parallel region  
with openmp("for"): Use inside a parallel region.  Split up a loop across the team. 
with openmp("parallel for"): A combined construct. Same a parallel followed by a for. 
with openmp ("single"): One thread does the work.  Others wait for it to finish 
with openmp("task"): Create an explicit task for work within the construct.
with openmp("taskwait"): Wait for all tasks in the current task to complete.  
with openmp("barrier"): All threads arrive at a barrier before any proceed.   
with openmp("critical"): Mutual exclusion.   One thread at a time executes code 
schedule(static [,chunk]) Map blocks of loop iterations across the team.  Use with for.
reduction(op:list) Combine values with op across the team. Used with for

private(list)                        Make a local copy of variables for each thread. Use with parallel, for or task.
firstprivate(list) private, but initialize with original value. Use with parallel, for or task

shared(list) Variables shared between threads. Use with parallel, for or task. 

default(none) Force definition of variables as private or shared. 
omp_get_num_threads() Return the number of threads in a team  
omp_get_thread_num() Return an ID from 0 to the number of threads minus one  
omp_set_num_threads(int) Set the number of threads to request for parallel regions
omp_get_wtime() Return a snapshot of the wall clock time. 
OMP_NUM_THREADS=N Environment variable to set the default number of threads 

PyOMP subset of OpenMP for CPU programming



PyOMP subset of OpenMP for CPU programming
with openmp("parallel"): Create a team of threads.   Execute a parallel region  
with openmp("for"): Use inside a parallel region.  Split up a loop across the team. 
with openmp("parallel for"): A combined construct. Same a parallel followed by a for. 
with openmp ("single"): One thread does the work.  Others wait for it to finish 
with openmp("task"): Create an explicit task for work within the construct.
with openmp("taskwait"): Wait for all tasks in the current task to complete.  
with openmp("barrier"): All threads arrive at a barrier before any proceed.   
with openmp("critical"): Mutual exclusion.   One thread at a time executes code 
schedule(static [,chunk]) Map blocks of loop iterations across the team.  Use with for.
reduction(op:list) Combine values with op across the team. Used with for

private(list)                        Make a local copy of variables for each thread. Use with parallel, for or task.
firstprivate(list) private, but initialize with original value. Use with parallel, for or task

shared(list) Variables shared between threads. Use with parallel, for or task. 

default(none) Force definition of variables as private or shared. 
omp_get_num_threads() Return the number of threads in a team  
omp_get_thread_num() Return an ID from 0 to the number of threads minus one  
omp_set_num_threads(int) Set the number of threads to request for parallel regions
omp_get_wtime() Return a snapshot of the wall clock time. 
OMP_NUM_THREADS=N Environment variable to set the default number of threads 

Work sharing

Synchronization

Data
Environment

runtime 
libraries

Par. Loop support

Fork threads

Environment



The view of Python from an HPC perspective 

for I in range(4096):
   for j in range(4096):
       for k in range (4096):
             C[i][j] += A[i][k]*B[k][j]

Amazon AWS c4.8xlarge spot instance, Intel®    Xeon® E5-2666 v3 CPU, 2.9 Ghz, 18 core, 60 GB RAM

We know better … 
the IKJ order is more 

cache friendly 
for I in range(1000):
   for k in range(1000):
       for j in range (1000):
             C[i][j] += A[i][k]*B[k][j]And we picked a 

smaller problem



PyOMP DGEMM (Mat-Mul with double precision numbers)
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from numba import njit
import numpy as np
from numba.openmp import openmp_context as openmp
from numba.openmp import omp_get_wtime
 
@njit(fastmath=True)
def dgemm(iterations,order):

    # allocate and initialize arrays
    A = np.zeros((order,order))
    B = np.zeros((order,order))
    C = np.zeros((order,order))

    # Assign values to A and B such that 
    # the product matrix has a known value.
    for i in range(order):
        A[:,i] = float(i)
        B[:,i] = float(i)
 

tInit = omp_get_wtime()    
    with openmp("parallel for private(j,k)"):
          for i in range(order):
              for k in range(order):
                  for j in range(order):
                      C[i][j] += A[i][k] * B[k][j]

    dgemmTime = omp_get_wtime() - tInit
   
    # Check result
    checksum = 0.0;
    for i in range(order):
        for j in range(order):
            checksum += C[i][j]
    ref_checksum = order*order*order
    ref_checksum *= 0.25*(order-1.0)*(order-1.0)
    eps=1.e-8
    if abs((checksum - ref_checksum)/ref_checksum) < eps:
        print('Solution validates')
        nflops = 2.0*order*order*order
        print('Rate (MF/s): ',1.e-6*nflops/dgemmTime)
    



DGEMM PyOMP vs C-OpenMP

40

30

20

10

1 2 4 8 16
Number of threads

Ave. G
FLO

PS (B
illions of floating point ops per sec)

C with OpenMP

PyOMP

Matrix Multiplication, double precision, order = 1000, with error bars (std dev)

Intel® Xeon® E5-2699 v3 CPU, 18 cores, 2.30 GHz, threads mapped to a single CPU, one thread/per core, first 16 physical cores.  
Intel® icc compiler ver 19.1.3.304 (icc –std=c11 –pthread –O3 xHOST –qopenmp)

250 runs for order 
1000 matrices

PyOMP times 
DO NOT include 
the one-time JIT 

cost of ~2 
seconds.

… but remember, 
the JIT’ed code  

can be cached for 
future use.  It’s 

straightforward to 
hide the JIT cost.



… and in talking about PyOMP we 
have covered three of the key 

design patterns in parallel 
programming
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Divide and conquer design pattern
• Split the problem into smaller sub-problems; continue until the sub-problems can be 

solve directly

3 Options for parallelism:
¨ Do work as you split 

into sub-problems
¨ Do work at the 

leaves
¨ Do work as you 

recombine
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SPMD (Single Program Multiple Data) design pattern

• Run the same program on P processing elements where P can be arbitrarily large. 
• Use the rank … an ID ranging from 0 to (P-1) … to select between a set of tasks and to manage any shared 

data structures. 

This pattern is very general and has been used to support most (if not all) the algorithm strategy patterns.

MPI programs almost always use this pattern … it is probably the most commonly used pattern in the history of parallel programming.

Replicate the program.

Add glue code

Break up the data

Third party names are the property of their owners
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The Loop-level parallelism design pattern
• Parallelism defined in terms of parallel loops … that is, loops where iterations can 

safely execute when divided between a collection of threads.  
• Key elements:

– identify compute intensive loops in a program
– Expose concurrency by removing or managing loop carried dependencies
– Exploit concurrency for parallel execution usually using a parallel loop construct/directive.

def piFunc(NumSteps):
    step=1.0/NumSteps
    pisum = 0.0
    x = 0.5
    for i in range(NumSteps):
        x+=step
        pisum += 4.0/(1.0+x*x)
    pi=step*pisum
    return pi

def piFunc(NumSteps):
    step=1.0/NumSteps
    pisum = 0.0
 
    for i in range(NumSteps):
        x=(i+0.5)*step
        pisum += 4.0/(1.0+x*x)
    pi=step*pisum
    return pi

A loop carried 
dependency

Recast to 
compute from i

This 
dependency is 

more 
complicated.  It’s 

called a 
reduction



Outline
• Introducing parallel computing and PyOMP 

• The PyOMP system

• PyOMP and multithreading (parallelism for the CPU)

• GPU programming with PyOMP

• Other approaches to parallelism in Python.   

• Wrap-up and Q&A
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Break

https://github.com/Python-for-HPC/PyOMP



For hardware … parallelism is the path to performance

CPU

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware, 
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

SIMD/Vector



Let’s start by understanding GPU 
programming in general … and then 

see how it maps onto PyOMP
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The “BIG idea” Behind GPU programming

// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    if (i < N) c[i] = a[i] + b[i];
}

int main () {
    int N = ... ;
    float *a, *b, *c;
    cudaMalloc (&a,  sizeof(float) * N);
  // ... allocate other arrays (b and c)
  // and fill with data

  // Use thread blocks with 256 threads each
    vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);
}
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Assume a GPU with 
unified shared memory 

… allocate on host, 
visible on device too

int main() {
   int N = . . . ;
   float *a, *b, *c;
   
   a* =(float *) malloc(N * sizeof(float));

   // ... allocate other arrays (b and c)
   // and fill with data

   for (int i=0;i<N; i++)
      c[i] = a[i] + b[i]; 

}

Traditional Loop based vector addition (vadd)

Data Parallel vadd with CUDA



How do we execute code on a GPU:
The SIMT model (Single Instruction Multiple Thread)
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// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    if (i < N) c[i] = a[i] + b[i];
}

int main () {
    int N = ... ;
    float *a, *b, *c;
    cudaMalloc (&a,  sizeof(float) * N);
  // ... allocate other arrays (b and c)
  // and fill with data

  // Use thread blocks with 256 threads each
    vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);
}

1. Turn source code into a 
scalar work-item

2. Map work-items onto an 
N dim index space. 

4. Run on hardware 
designed around the 

same SIMT 
execution model

3. Map data structures 
onto the same index 

space
This is CUDA code … the sort of code the 

OpenMP compiler generates on your behalf

Note: The CUDA code defines a 1D grid. I show a 2D grid on this slide to make kernel execution and its relation to data more clear.



SIMT: One instruction stream maps onto many SIMD lanes

• SIMT model: Individual scalar instruction streams are grouped together for SIMD 
execution on hardware

SL0 SL1 SL2 SL3 SL4 SL5 SL6 SL7

ld x
mul a
ld y
add
st y

A stream of 
Scalar 
instructions

NVIDIA calls this set of 
work-items a warp

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

SIMD execution scheduled 
across a fixed number of 

SIMD Lanes (SL)
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A Generic GPU (following Hennessey and Patterson)
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A Generic Host/Device Platform Model

• One Host and one or more Devices
– Each Device is composed of one or more Compute Units
– Each Compute Unit is divided into one or more Processing Elements

• Memory divided into host memory and device memory

Processing 
Element

Device

……
…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

78PE: processing element. The finest-grained processing element inside a GPU.  Also known as a SiMD-lane or CUDA-core.
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CPU/GPU execution models

For a CPU, the 
threads are all 
active and able 

to make forward 
progress.

For a GPU, any 
given work-group 

might be in the 
queue waiting to 

execute.



How do we map a loop onto the 
GPU execution model in PyOMP?
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Step 1: move code and data onto the GPU:  
The target construct and default data movement

Host thread
Generating Task

Initial task

Target task

with openmp ("target"):
{
      target region, 
can use A, B and N
    

}

Device Initial 
thread

Host thread
waits for the 

task region to 
complete

A = numpy.ones(N)
B = numpy.ones(N) A, B and N 

mapped to the 
device

the arrays 
A and B 

mapped back to 
the host

Based on figure 6.4 in Using OpenMP – The Next Step by van der Pas, Stotzer and Terboven, MIT Press, 2017

Scalars and numpy arrays are moved onto the 
device by default before execution.

Only the arrays are moved back to the 
host after the target region completes

83



Step 2: Map loop iterations onto the GPU’s SIMD lanes  
@njit
def main():
    N = 1024
    A = numpy.ones(N)
    B = numpy.ones(N)

    with openmp ("target "):
        with openmp ("loop"):
            for i in range(N):
                A[i] += B[i]

The loop construct tells the compiler: 
“this loop will execute correctly if 

the loop iterations run in any order.  
You can safely run them 

concurrently.  And the loop-body 
doesn’t contain any OpenMP 

constructs.  So do whatever you 
can to make the code run fast”

84

The loop construct is a declarative construct.   You 
tell the compiler what you want done but you DO 
NOT tell it how to “do it”.     This is new for OpenMP



Step 2: Map loop iterations onto the GPU’s SIMD lanes  
@njit
def main():
    N = 1024
    A = numpy.ones(N)
    B = numpy.ones(N)

    with openmp ("target "):
        with openmp ("loop"):
            for i in range(N):
                A[i] += B[i]

85

1. Variables created in host memory.

2. Scalar N and arrays A and B are copied 
to device memory. Execution transferred to 

device.

3. For-loop index variables (such as i) are 
private in openmp regions

4. Loop iterations define the index space, 
work-items, and work-groups.

5. After the OpenMP construct, arrays A 
and B are copied from device memory 

back to the host. Host resumes execution.

Difference from OpenMP/C: PyOMP only has NumPy arrays, which carry size 
information.   So, PyOMP arrays sent in full by default ... as it is with C static-arrays.



Loop Parallelism code naturally maps onto the CPU

86

from numba import njit
import numpy as np
from numba.openmp import openmp_context as openmp
 
@njit(fastmath=True)
def dgemm(iterations,N):

    # allocate and initialize numpy arrays
    # A, B and C of size N by N.   <<< code not shown>>>
     
    with openmp("parallel for private(j,k)"):
          for i in range(N):
              for k in range(N):
                  for j in range(N):
                      C[i][j] += A[i][k] * B[k][j]

OpenMP constructs managed through 
the with context manager.

Create a team of threads.  Map loop iterations onto them

• parallel: creates a team of threads
• for: maps loop iterations onto threads.   
• private(j,k): each threads gets its own j and k variables
• Loop control index of a parallel for (i) is private to each thread.



Loop Parallelism code naturally maps onto the CPU

87

from numba import njit
import numpy as np
from numba.openmp import openmp_context as openmp
 
@njit(fastmath=True)
def dgemm(iterations,N):

    # allocate and initialize numpy arrays
    # A, B and C of size N by N.   <<< code not shown>>>
     
    with openmp(”target teams loop collapse(2) private(j)"):
          for i in range(N):
              for k in range(N):
                  for j in range(N):
                      C[i][j] += A[i][k] * B[k][j]

OpenMP constructs managed through 
the with context manager.

Map the loop onto a 2D index space … the 
loop body defines the kernel function 

• target: map execution from the host onto the device
• teams loop: Map kernel instances onto PEs inside the compute units
• collapse(2): combine following two loops into a single iteration space. 
• private(j): each threads gets its own j variable
• Indices of parallelized loops (i,k) are private to each thread.

PE: processing element. The finest-grained processing element inside a GPU.  Also known as a SiMD lane or CUDA-core.



Implicit data movement covers a small subset of 
the cases you need in a real program.

To be more general … we need to manage data 
movement explicitly

88



Implicit data movement

• Previously, we described the rules for implicit data movement … N, A and B moved to the GPU on 
entry to the target construct.   A and B moved to the CPU on exit from the target construct.

• Notice that in this case, B is not changed on the GPU … moving it is a waste of resources

@njit
def main():
    N = 1024
    A = numpy.ones(N)
    B = numpy.ones(N)

    with openmp ("target"):
        for i in range(N):
            A[i] += B[i]

 

89



Controlling data movement with the map clause

@njit
def main():
    N = 1024
    A = numpy.ones(N)
    B = numpy.ones(N)

    with openmp ("target map(tofrom: A) map(to: B)"):
        for i in range(N):
            A[i] += B[i]

map(tofrom: A) Map data at the 
start and end of target region.

map(to: B) map data at the start 
of target region but NOT at the 
end.

90

We use the term “map” since depending on the detailed memory architecture of the CPU 
and the GPU, data may be in a shared address space so copying may not be needed.



PyOMP array notation

• When mapping data arrays, if you only give the array name then PyOMP 
transfers the entire array (using the NumPy array metadata to determine the size)

• To transfer less than the full array, the array section syntax can be used
– array_name[begin:end]
– This follows Python/NumPy slicing syntax where begin is inclusive but end is exclusive.

A[N:M]. In set notation implies elements [N:M)
– Multi-dimensional arrays work as expected when transferred in full.  Currently PyOmp doesn’t 

support array-section syntax for multi-dimensional arrays.

91

C Difference: In C, arrays are usually dynamically allocated and referenced through a pointer.  You 
must use array-section syntax to move data.  In C, array-syntax is “(initial-offset: number-of-items)”. 
Fortran uses “begin:end” syntax (as Python does), but the ending index is inclusive (i.e., [begin:end]).



Controlling data movement: the map clause
– map(to:list): On entering the region, variables in the list are initialized on the device 

using the original values from the host (host to device copy).
– map(from:list):  At the end of the target region, the values from variables in the list are 

copied into the original variables on the host (device to host copy). On entering the 
region, the initial value of the variables on the device is not initialized.
– map(tofrom:list): the effect of both a map-to and a map-from (host to device copy at 

start of region, device to host copy at end).
– map(alloc:list): On entering the region, data is allocated and uninitialized on the device.
– map(list): equivalent to map(tofrom:list).

92

When applied to an array, the mapping mode applies only to the array’s data.  Array metadata is always 
transferred as to and no operations which would change the metadata (e.g., resize) are permitted.

Note: Data 
movement is 
defined from 

the 
perspective of 

the host.

@njit
def main():

a = numpy.ones(N)
b = numpy.ones(N)
c = numpy.empty(N)
with openmp ("target teams loop map(to: a,b) map(tofrom: c)"):

for i in range(N):
c[i] = a[i] + b[i]



Commonly used clauses on target and loop constructs

• The basic construct* is:
with openmp ("target [clause[[,]clause]...]"):
    with openmp ("loop [clause[[,]clause]...]"):
        for-loops

• The most commonly used clauses are:
– map(to | from | tofrom list)    ß default is tofrom
– private(list)   firstprivate(list)   lastprivate(list)   shared(list) 
– behave as data environment clauses in the rest of OpenMP, but note values are only created or copied into the 

region, not back out “at the end”.
– reduction(reduction-identifier : list) 
– behaves as in the rest of OpenMP

– collapse(n) 
– Combines loops before the distribute directive splits up the iterations between teams

93



Going beyond simple vector addition … 

Using OpenMP for GPU application 
programming … the heat diffusion problem



5-point stencil: the heat program

• The heat equation models changes in temperature over time.

• We’ll solve this numerically on a computer using an explicit finite difference discretisation.
• 𝑢 = 𝑢 𝑡, 𝑥, 𝑦 is a function of space and time.
• Partial differentials are approximated using diamond difference formulae:

𝜕𝑢
𝜕𝑡 ≈

𝑢 𝑡 + 1, 𝑥, 𝑦 − 𝑢 𝑡, 𝑥, 𝑦
𝑑𝑡

𝜕!𝑢
𝜕𝑥! ≈

𝑢 𝑡, 𝑥 + 1, 𝑦 − 2𝑢 𝑡, 𝑥, 𝑦 + 𝑢(𝑡, 𝑥 − 1, 𝑦)
𝑑𝑥!

– Forward finite difference in time, central finite difference in space.

𝜕𝑢
𝜕𝑡 − 𝛼∇

!𝑢 = 0
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5-point stencil: the heat program

• Given an initial value of 𝑢, and any boundary conditions, we can calculate the value of 𝑢 at time 
t+1 given the value at time t.

• Each update requires values from the north, south, east and west neighbours only:

• Computation is essentially a weighted average of each cell and its neighbouring cells.
• If on a boundary, look up a boundary condition instead.
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How do we know the answer is correct?
The Method of Manufactured Solution

• Stencil codes are notoriously difficult to know if the answer is “correct”.

• Analytic solutions hard to come by:
– It’s why you’re using a computer to solve the equation approximately after all!

• Method of Manufactured Solution (MMS) is a way to help determine if the code does the correct 
thing.

• An approach often used to find errors in CFD codes and check convergence properties.
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Method of Manufactured Solution

• Choose a function for 𝑢(𝑡, 𝑥, 𝑦), substitute into the equation and work through the algebra.

• Its easier if the differential equation evaluates to zero so we don’t need to consider a right-hand 
side to the equation.

• 𝑢 0, 𝑥, 𝑦 gives the initial conditions.

• Can evaluate boundary conditions, e.g. bottom boundary 𝑢 0,0, 𝑦

• Because 𝑢 is known for all timesteps (it was chosen!), the exact solution is known.

• Compare the computed solution to the known 𝑢 to compute an error.

• Any differences come from approximations in the method, or a bug in your code.
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Method of Manufactured Solution

• For the problem of length 𝑙, choose 𝑢:

𝑢 𝑡, 𝑥, 𝑦 = 𝑒
!"#$"%

&" sin "#
$
sin "%

$

• Boundary conditions: 𝑢 is always zero on the boundaries

• Initial value of grid is then 𝑢 0, 𝑥, 𝑦 = sin "#
$
sin "%

$

0 200 400 600 800 10000
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Heat diffusion problem  …  

# Loop over time steps

for _ in range(nsteps):

# solve over spatial domain for step t

solve(n, alpha, dx, dt, u, u_tmp)

# Array swap to get ready for next step

u, u_tmp = u_tmp, u  
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Array-swap on the host works.  Why?

u and u_tmp are references to structs that 
hold NumPy metadata and a data pointer.

 The OpenMP runtime creates a device 
struct at the target enter data construct 

and maintains a fixed association between 
host and device struct references. 

 Hence, as you swap the array variables, 
the references to the struct addresses in 

device memory are swapped.



Heat diffusion problem  …  

# Loop over time steps

for _ in range(nsteps):

# solve over spatial domain for step t

solve(n, alpha, dx, dt, u, u_tmp)

# Array swap to get ready for next step

u, u_tmp = u_tmp, u  

• Our program takes two optional command 
line arguments: <ncells> <nsteps>
– E.g. ./heat 1000 10
– 1000x1000 cells, 10 timesteps (the 

default problem size).

• If no command line arguments are 
provided, it uses a default:
– These two commands both run the 

default problem size of 1000x1000 
cells, 10 timesteps.

– ./heat
– ./heat 1000 10

• A sensible bigger problem is 8000 x 8000 
cells and 10 timesteps.
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5-point stencil: solve kernel

@njit
def solve(n, alpha, dx, dt, u, u_tmp):

# Finite difference constant multiplier
r = alpha * dt / (dx ** 2)
r2 = 1 - 4 * r
# Loop over the nxn grid

for i in range(n):
for j in range(n):

# Update the 5-point stencil.
# Using boundary conditions on the edges of the domain.
# Boundaries are zero because the MMS solution is zero there.
u_tmp[j, i] = (r2 * u[j, i] +

(u[j, i+1] if i < n-1 else 0.0) +
(u[j, i-1] if i > 0   else 0.0) +
(u[j+1, i] if j < n-1 else 0.0) +
(u[j-1, i] if j > 0 else 0.0))
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25,000x25,000 grid for 10 time steps
* Xeon Platinum 8480+:       67.6 secs



Solution: parallel stencil (heat)
@njit
def solve(n, alpha, dx, dt, u, u_tmp):

"""Compute the next timestep, given the current timestep"""

# Finite difference constant multiplier
r = alpha * dt / (dx ** 2)
r2 = 1 - 4 * r
with openmp ("target loop collapse(2) map(tofrom: u, u_tmp)"):

# Loop over the nxn grid
for i in range(n):

for j in range(n):
u_tmp[j, i] = (r2 * u[j, i] +

(u[j, i+1] if i < n-1 else 0.0) +
(u[j, i-1] if i > 0   else 0.0) +
(u[j+1, i] if j < n-1 else 0.0) +
(u[j-1, i] if j > 0 else 0.0))

103

25,000x25,00 grid for 10 time steps
• Xeon Platinum 8480+:       67.6 secs
• Nvidia V100:                       22.6 secs



Data Movement dominates…  

# Loop over time steps

for _ in range(nsteps):

# solve over spatial domain for step t

solve(n, alpha, dx, dt, u, u_tmp)

# Array swap to get ready for next step

u, u_tmp = u_tmp, u  
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Typically, many time steps!

solve() function uses this context:
with openmp ("target loop collapse(2) map(tofrom: u, u_tmp)"):

For each iteration, copy from device
(2*N2)*sizeof(TYPE) bytes

25,000x25,00 grid for 10 time steps
• Xeon Platinum 8480+:       67.6 secs
• Nvidia V100:                       22.6 secs

• We need to keep data resident on the device between target regions
• We need a way to manage the device data environment across iterations.  



Target data directive
• The target data construct creates a target data region 

… use map clauses for explicit data management

one or more target 
regions work within the 

target data region

with openmp ("target data map(to: A, B) map(from: C)"):

with openmp ("target"):
 {do lots of stuff with A, B and C}

{do something on the host}

with openmp ("target"):
 {do lots of stuff with A, B and C}

Data is mapped onto the 
device at the beginning of 

the construct

Data is mapped back to 
the host at the end of the 

target data region
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Target enter/exit data constructs

• The target data construct requires a structured block of code.
– Often inconvenient in real codes.

• Can achieve similar behavior with two standalone directives:
with openmp ("target enter data map(…"):
with openmp ("target exit data map(…"):

• The target enter data maps variables to the device data environment.
• The target exit data unmaps variables from the device data environment.
• Future target regions inherit the existing data environment.
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Target enter/exit data example

@njit
def main():
    N = 1024
    A = numpy.arange(N)

    with openmp ("target enter data map(to: A)"):
        pass

    with openmp ("target teams loop"):
        for i in range(N):
            A[i] = A[i] * A[i]

    with openmp ("target exit data map(from: A)"):
        pass
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pass is a python 
keyword indicating an 
empty block of code.



Target enter/exit data details

• with openmp ("target enter data clause[[[,]clause]...]"):

• Creates a target task to handle data movement between the host and a device.

• clause is one of the following: 
– if(scalar-expression) 
– device(integer-expression)
– map (map-type: list) 
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Solution:  Reference swapping in action
with openmp ("target enter data map(to: u, u_tmp)"):

pass

for _ in range(nsteps):

solve(n, alpha, dx, dt, u, u_tmp);

# Array swap to get ready for next step
    u, u_tmp = u_tmp, u

with openmp ("target exit data map(from: u)"):
pass

Copy data to device 
before iteration loop

Change solve() routine to remove map clauses:
with openmp ("target loop collapse(2)”)

Copy data from device 
after iteration loop
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25,000x25,00 grid for 10 time steps
• Xeon Platinum 8480+ default data movement:   67.6 secs
• Nvidia V100 default data movement:                  22.6 secs
• Nvidia V100 target enter/exit:                                1.2 secs



Target update directive
• You can update data between target regions with 

the target update directive.

with openmp ("target data map(to: A, B) map(from: C)"):

with openmp ("target"):
 {do lots of stuff with A, B and C}

with openmp ("target update from(A)"):
    {do something on the host}

with openmp ("target update to(A)"):
    pass

with openmp ("target"):
 {do lots of stuff with A, B and C}

map A on the 
device to A on the 
host.  

map A on the host to A on the 
device.  Note: openmp 
context body cannot be 
empty so use “pass”

Set up the data 
region ahead of 
time.

Note: update directive has the transfer direction as the clause: e.g. update to(…)
Compare to map clause with direction inside: map(to: …) 110



Data movement summary

• Data transfers between host/device occur at:
– Beginning and end of target region
– Beginning and end of target data region
– At the target enter data construct
– At the target exit data construct
– At the target update construct

• Can use target data and target enter/exit data to reduce redundant transfers.

• Use the target update construct to transfer data on the fly within a target data 
region or between target enter/exit data directives.
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The loop construct is great, but sometimes you 
want more control.
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Our host/device Platform Model and OpenMP

Processing 
Element

Device

……
…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

Target 
construct to 
get onto a 

device

Teams construct to create a 
league of teams with one team of 

threads on each compute unit.

Distribute construct to assign 
blocks of loop iterations to teams.

Parallel for simd 
to run each block 
of loop iterations 

on the processing 
elements
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teams and distribute constructs

• The teams construct
– Similar to the parallel construct
– It starts a league of thread teams
– Each team in the league starts as one initial thread – a team of one
– Threads in different teams cannot synchronize with each other
– The construct must be “perfectly” nested in a target construct

• The distribute construct
– Similar to the for construct
– Loop iterations are workshared across the initial threads in a league
– No implicit barrier at the end of the construct
– dist_schedule(kind[, chunk_size])
– If specified, scheduling kind must be static
– Chunks are distributed in round-robin fashion in chunks of size chunk_size
– If no chunk size specified, chunks are of (almost) equal size; each team receives at least one chunk
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Create a league of teams and distribute a loop among them

• teams construct
• distribute construct

• Transfer execution control to MULTIPLE device initial threads
• Workshare loop iterations across the initial threads.

host thread
device initial 

threads

teams

with openmp ("target"):  
with openmp ("teams"):  
with openmp ("distribute"):
for i in range(N):

        …
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Create a league of teams and distribute a loop among them 
and run each team in parallel with its partition of the loop

• teams distribute
• parallel for

• Transfer execution control to MULTIPLE device initial threads
– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team
– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread 
teams
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with openmp ("target"):  
with openmp ("teams"):  
with openmp ("distribute"):
with openmp ("parallel for"):
for i in range(N):

          …



Create a league of teams and distribute a loop among them 
and run each team in parallel with its partition of the loop

• loop

• Transfer execution control to MULTIPLE device initial threads
– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team
– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread 
teams
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with openmp ("target"):  
with openmp ("teams"):  
with openmp ("loop"):
for i in range(N):

        …



Create a league of teams and distribute a loop among them 
and run each team in parallel with its partition of the loop

• teams distribute
• parallel for

• Transfer execution control to MULTIPLE device initial threads
– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team
– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread 
teams
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with openmp ("target"):  
with openmp ("teams num_teams(3) thread_limit(5)"):  
with openmp ("distribute"):
with openmp ("parallel for"):
for i in range(N):

          …

Explicit control 
of number and 
size of teams



Create a league of teams and distribute a loop among them 
and run each team in parallel with its partition of the loop

• Combined construct

• Transfer execution control to MULTIPLE device initial threads
– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team
– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread 
teams
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with openmp ("target teams loop"):  
  for i in range(N):
    …



Create a league of teams and distribute a loop among them 
and run each team in parallel with its partition of the loop

• teams distribute
• parallel for

• Transfer execution control to MULTIPLE device initial threads
– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team
– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread 
teams
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with openmp ("target"):  
with openmp ("teams distribute"):  
for i in range(N):

  with openmp ("parallel for"):
       for j in range(M):
          …

Works with 
nested loops 

as well



There is MUCH more … beyond what have time to cover
• Do as much as you can with a simple loop construct.  It’s portable and as 

compilers improve over time, it will keep up with compiler driven performance 
improvements.

• But sometimes you need more:
– Control over number of teams in a league and the size of the teams
– Explicit scheduling of loop iterations onto the the teams 
– Management of data movement across the memory hierarchy: global vs. shared vs. private …
– Calling optimized math libraries
– Multi-device programming
– Asynchrony

• Ultimately, you may need to master all those advanced features of GPU 
programming.   But start with loop.  Start with how data on the host maps onto the 
device (i.e. the GPU).   Master that level of GPU programming before worrying 
about the complex stuff.
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Outline
• Introducing parallel computing and PyOMP 

• The PyOMP system

• PyOMP and multithreading (parallelism for the CPU)

• GPU programming with PyOMP

• Other approaches to parallelism in Python.   

• Wrap-up and Q&A
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Break

https://github.com/Python-for-HPC/PyOMP



PyOMP is great … but it is a research system 
still under development.

Let’s talk about parallel programming 
models and ask the question … what are the 

key mainstream programming models in 
Python
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But lets first look at programming models from the early 
days of parallel computing.

ABCPL
ACE 
ACT++ 
Active messages 
Adl
Adsmith
ADDAP
AFAPI
ALWAN
AM
AMDC
AppLeS
Amoeba 
ARTS
Athapascan-0b
Aurora
Automap
bb_threads 
Blaze
BSP
BlockComm 
C*. 
"C* in C 
C** 
CarlOS
Cashmere

C4
CC++ 
Chu
Charlotte
Charm
Charm++
Cid
Cilk
CM-Fortran 
Converse
Code
COOL 
CORRELATE 
CPS 
CRL
CSP
Cthreads 
CUMULVS
DAGGER
DAPPLE 
Data Parallel C 
DC++ 
DCE++ 
DDD
DICE.
DIPC 

DOLIB
DOME 
DOSMOS.
DRL
DSM-Threads
Ease .
ECO
Eiffel 
Eilean 
Emerald 
EPL 
Excalibur
Express
Falcon
Filaments
FM
FLASH
The FORCE 
Fork
Fortran-M
FX
GA 
GAMMA 
Glenda
GLU
GUARD

P4-Linda
Glenda 
POSYBL
Objective-
Linda
LiPS
Locust
Lparx
Lucid
Maisie 
Manifold 
Mentat
Legion
Meta Chaos 
Midway
Millipede
CparPar
Mirage
MpC
MOSIX
Modula-P
Modula-2*
Multipol
MPI
MPC++
Munin

Nano-Threads
NESL
NetClasses++ 
Nexus
Nimrod
NOW
Objective 
Linda
Occam
Omega
OpenMP
Orca
OOF90
P++
P3L
p4-Linda
Pablo
PADE
PADRE 
Panda 
Papers 
AFAPI.
 Para++
Paradigm 
Parafrase2 
Paralation 

QPC++ 
PVM
PSI
PSDM
Quake
Quark
Quick 
Threads
Sage++
SCANDAL
 SAM
pC++ 
SCHEDULE
SciTL 
POET 
SDDA.
SHMEM 
SIMPLE
Sina 
SISAL.
distributed 
smalltalk 
SMI.
SONiC
Split-C.
SR

Third party names are the property of their owners.

HAsL.
Haskell 
HPC++
JAVAR.
HORUS
HPC
IMPACT
ISIS.
JAVAR
JADE 
Java RMI
javaPG
JavaSpace
JIDL
Joyce
Khoros
Karma 
KOAN/Fortran-S
LAM
Lilac 
Linda
JADA 
WWWinda
ISETL-Linda 
ParLin 
Eilean 

Parallel-C++ 
Parallaxis
ParC 
ParLib++
ParLin
Parmacs
Parti
pC
pC++
PCN
PCP: 
PH
PEACE
PCU
PET
PETSc
PENNY
Phosphorus 
POET.
Polaris 
POOMA
POOL-T
PRESTO
P-RIO 
Prospero
Proteus 

Sthreads 
Strand.
SUIF.
Synergy
Telegrphos
SuperPascal 
TCGMSG.
Threads.h++.
TreadMarks
TRAPPER
uC++ 
UNITY 
UC 
V 
ViC* 
Visifold V-
NUS 
VPE
Win32 
threads 
WinPar 
WWWinda 
 XENOOPS  
XPC
Zounds
ZPL

Parallel programming environments in the 90’s



A warning I’ve 
been making for 
the last 20 years



Parallel programming environments: post-90s

• The application community (with leadership from the Accelerated Strategic Computing Initiative) 
pushed for convergence around a small number of programming languages:
– For clusters and massively parallel computers:  MPI
– For shared memory systems: OpenMP

• With only two languages, vendors could focus on engineering high quality solutions … rather than 
chasing the latest fad.

• All was good until ~2006 when fully programmable GPUs came along.   We are still sorting out 
what will become the converged solution …
– Cuda, Sycl, OpenACC, OpenMP      ß  hopefully the open standard Sycl will win, but its too early to say



How about Parallel programming with Python
dispy
Delegate 
forkmap 
forkfun 
Jobibppmap
POSH
 pp 
pprocess 
processing 
PyCSP 
PyMP 
Ray 
remoteD 
torcp 
VecPy 
batchlib 
Celery 
Charm4py 
PyCUDA 
Ramba

Dask 
Deap 
disco 
dispy 
DistributedPYthon 
exec_proxy 
execnet 
iPython 
job_stream jug 
mi4py 
NetWorkSpaces 
PaPy 
papyrus 
PyCOMPSs 
PyLinda 
pyMPI 
pypar 
multiprocessing 
PyOpenCL

pyPastSet 
pypvm 
pynpvm 
Pyro 
Ray 
Rthread
 ScientificPython.BSP 
Scientific.DistrubedComputing.MasterSlave 
Scientific.MPI 
SCOOP 
seppo 
PySpark 
Star-P 
superrpy 
torcpy 
StarCluster 
dpctl 
arkouda
PyOMP
dpnp

Building on the list at https://wiki.python.org/moin/ParallelProcessing



How about Parallel programming with Python
dispy
Delegate 
forkmap 
forkfun 
Jobibppmap
POSH
 pp 
pprocess 
processing 
PyCSP 
PyMP 
Ray 
remoteD 
torcp 
VecPy 
batchlib 
Celery 
Charm4py 
PyCUDA 
Ramba

Dask 
Deap 
disco 
dispy 
DistributedPYthon 
exec_proxy 
execnet 
iPython 
job_stream jug 
mi4py 
NetWorkSpaces 
PaPy 
papyrus 
PyCOMPSs 
PyLinda 
puMPI 
pypar 
multiprocessing 
PyOpenCL

pyPastSet 
pypvm 
pynpvm 
Pyro 
Ray 
Rthread
 ScientificPython.BSP 
Scientific.DistrubedComputing.MasterSlave 
Sciuentific.MPI 
SCOOP 
seppo 
PySpark 
Star-P 
superrpy 
torcpy 
StarCluster 
dpctl 
arkouda
PyOMP
dpnp

Building on the list at https://wiki.python.org/moin/ParallelProcessing

We are still early (compared to HPC) in the evolution of parallel programming 
models for Python.

Hopefully, soon  the python application community will come together and 
help us narrow down to a handful of systems to focus on.

That would allow vendors to carry out HW/SW optimization and focus on 
quality over ”chasing fads”. 



Popular python parallel Programming models 
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We compared many python parallel programming models with google-trends (which 
tracks web searches)

These four systems are popular and (in our opinion) are the key systems to consider

Dask

Numba
Ray

Key Parallel Programming Models for Python … U.S. last 12 months
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Popular python parallel Programming models 

130
PySpark Dask Numba MPI4py Ray

Leading Parallel Programming Models for Python … U.S. last three months
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We compared 
many python 
parallel 
programming 
models with 
google-trends 
(which tracks web 
searches)

Our best guess … 
these are the top 
five)

PySpark is popular and useful for parallel algorithms that map onto the map 
reduce pattern.   We didn’t explore it in this presentation since PySpark is more 
of a data analytics pipeline than a parallel programming model.



Dask
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DASK

132
Source: https://docs.dask.org/en/latest/

Task Graph Schedulers 
(execute task graph)Dask API (define tasks)

• Parallel and distributed computing library for Python
• Client / driver submits tasks to Dask cluster (set of worker processes on one or 

more physical nodes)

High level APIs for 
data analytics and 
data-parallelism

Low level APIs to 
manage tasks 
explicitly



Dask Delayed – lazy, remote functions

• Define a remote function:
 @dask.delayed
 def add_one(i):

  time.sleep(1)

  return i+1

• Calling remote function, getting results:
 futurevalue = add_one(7)

 v = futurevalue.compute()

Decorator turns normal
Python function into Dask
lazy function

Returns immediately after 
creating task in task graph

Triggers execution of task graph
Returns value 8 after about 
1 second when task completes
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Dask – parallel and chaining calls 

• Parallel execution:
 fv = [add_one(i) for i in range(5)]

 v = sum(fv)

 v = v.compute()

• Chained execution:
 v = 2
      for x in range(5):

  v = add_one(v)

 v = v.compute()

Returns immediately with 
a list of “futures”

Returns value 15 
after about 1 second

These return immediately

Returns value 7 after
about 5 seconds
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Standard Python sum function;
Returns immediately with a future 



Chaining forms DAGs of Tasks

# A, B, C, and D are delayed functions
u = A(x)
v = B(u)
w = C(u)
y = D(v, w)
y = y.compute() 
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Dask Futures

• Same concept, but eager asynchronous execution, different syntax
 
       def add_one(i):
  time.sleep(1)

  return i+1

 future = client.submit(add_one, 3)  

 result = future.result()

• Note: no decorator, explicit job submission
• Can pass futures as parameters to chain functions/construct DAGs

Submits add_one(3) for 
distributed execution

Returns value 4 in about 1 second



Dask Array

• High-level API provides distributed, Numpy-like array interface
• Arrays partitioned into chunks – serves as unit of storage and computation
• Arrays can be disk-backed, and thus larger than memory 
• Array operations are lazy, internally constructing DAG of operations
• Explicit triggering of execution using compute() method

– Parallel execution of relevant portions of task graph on Dask cluster
– Computation at chunk granularity
– Only necessary chunks computed for requested result



Dask Array example

• A = da.ones((1000,1000),chunks=(1000,500))
– Constructs 1000x1000 array, with two chunks of size 1000x500

• B = da.sum(A, axis=0)
– Sum along axis 0 à should produce a 

1000 element array
• B.compute()
– Triggers computation of DAG:
– Parallel execution on chunks

• B[0].compute()
– Only compute chunks needed for B[0]

• Typically, Dask will not materialize a derived array
– Keeps the DAG that describes how to compute it
– May need to recompute (but may cache results as well)
– Optimized for computations on disk-based data that won’t fit in memory

• Persist() method to force computation, materialization of an array

ones

ones

sum

sum

Sum
aggregate

ones sum Sum
aggregate



Multi-tasking, Pi program with Dask
import numpy as np
import dask

@dask.delayed
def calc_pi(nstart, nstop, step):
    start = (nstart+0.5)*step
    stop = (nstop-0.5)*step
    nsteps = nstop-nstart
    X = np.linspace(start, stop, num=nsteps)

Y = 4.0 / (1.0 + X*X)
    return np.sum(Y)

def piFunc(NumSteps, NumTasks):
    step = 1.0/NumSteps
    s = 0
    for i in range(NumTasks):
        nstart = (i*NumSteps)//NumTasks
        nstop = ((i+1)*NumSteps)//NumTasks
        s = s + calc_pi(nstart, nstop, step)
    s = s.compute()
    return step*s

if __name__=="__main__":
    from dask.distributed import Client
    client = Client()
    pi = piFunc(100000000, 100)

Initialize dask “cluster” on local 
machine; can provide address 
to connect to remote cluster

Calculate over part of the range;
Written in Numpy vector style
Faster than Python loops, but use 
memory for the arrays X, Y, temps

Start NumTasks tasks, 
construct DAG of operations 
computing sum 

Trigger execution, wait for
completion, get result



Numba with ParallelAccelerator

140



Numba … C-like performance from Python code

• Numba is a JIT compiler. Maps a subset of python with numpy arrays onto LLVM
• Once code is JIT’ed into LLVM, all performance enhancements exposed at the level of LLVM 

are directly available … result is performance that approaches that from raw C or Fortran
• Source code is pure python for maximum portability

• Just add the @jit decorator to enable numba for a function.

from numba import jit

@jit
def addit(A,B):
      return (A+B)

Numba jit comiler applied the first time a function is encountered.  Caches the 
code so subsequent calls to the function don’t run the jit step.

Numba defines elementwise functions called ufuncs

This generates the LLVM code and calls the addition ufunc to do an 
elementwise add of A and B

• Numerous options in numba … we are barely scratching the surface
– @jit (nopython = true)        tells the system to NOT use any python objects in the generated code.  Can be much faster
– @jit(parallel = true)             invoke parallel accelerator



Numba with ParallelAccelerator

• ParallelAccelerator has been Available in Numba since 2017.
• Let’s users parallelize their code with a one-line change, namely annotating their Numba “jit” 

decorator with “parallel=True”
• Identifies operations in the code with concurrent semantics and executes them in parallel, making 

full use of modern multi-core CPUs.
• Allows operations to be fused together and to eliminate temporaries which results in improved 

cache utilization.
• Works for vector-style codes as well as explicitly parallel loops annotated with the prange keyword.



ParallelAccelerator
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@numba.jit(nopython=True, parallel=True) 
def logistic_regression(Y, X, w, iter):
    for i in range(iter): 
        w -= np.dot(((1.0 / (1.0 + np.exp(-Y * np.dot(X, w))) - 1.0) * Y), X) 
    return w

– Accelerates execution of Python applications by auto-parallelizing and optimizing numeric 
operations

– Brings performance without rewriting code in “performance languages”  

1 line change
6x better 

performance

Y, X, and w are numpy arrays.  Elementwise operations and dot 
products are transparently mapped onto threads for parallel execution. 

The Data Parallelism design pattern … the parallelism is expressed through the data .. Typically as functions 
applied independently to the elements of data structures combined with collective ops (such as dot products).  



Parallel Accelerator
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Works with numba to JIT code that executes in parallel.  It does the following:

1. Recognize parallelism.
• Pattern recognition of operations with concurrent semantics.

2. Represent parallelism.
• Numba’s parfor node – represents a strictly nested set of for loops known to 

have no cross-iteration dependencies.
3. Optimizations.

• Fusion – combine compatible parfors together.  Eliminates unnecessary 
temporary arrays and traverses arrays only once for better cache utilization.

4. Run in parallel.
• Improves performance by leveraging multiple cores and vector instructions.



Transformation carried out for array-based 
data parallelism
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*

+

A

B

C
=

D

D = A * B + C

parfor i=1:n
 t[i]=A[i]*B[i]
parfor i=1:n
 D[i]=t[i]+C[i]

parfor i=1:n
 D[i]=A[i]*B[i]+C[i]

Recognize parallelism

Fuse loops



ParallelAccelerator – Softmax program

import numba

@numba.njit(parallel=True)
def sigArr(A):
    Amax = np.max(A)
    Ashift = A - Amax
    expAshift = np.exp(Ashift)
    Normalization = np.sum(expAshift)
    reciNorm = 1/Normalization
    sigma = expAshift*reciNorm
    return sigma

§ Same as the NumPy version.
§ np.max executed in one parallel 

region.
§ Subtraction, exp, and sum fused 

into one parallel region.
§ Ashift temporary eliminated.
§ expAshift * reciNorm the final 

parallel region.



ParallelAccelerator: loop level parallelism

import numba

@numba.njit(parallel=True)
def pi():
    num_steps = 1000000
    step = 1.0 / num_steps
    the_sum = 0.0
    for i in numba.prange(num_steps):
        x = (0.5 + i) * step
        the_sum += 4.0 / (1.0 + x * x)
    pi = step * the_sum
    return pi

print(pi())

§ ParallelAccelerator includes parallel loops for 
loop-level parallelism

§ The prange construct causes equal portions of 
the iteration space from 0 to num_steps 
distributed to each core.

§ The reduction (the_sum += …) recognized and 
implemented safely and efficiently in parallel.

The Pi program



Running Parfors in Parallel
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• Generate a Numba function (i.e., a generated ufunc or gufunc) with a loop nest corresponding to the 
parfor’s loop nest.
• Adds a schedule argument that specifies which threads do which iterations.

• Add the body of the parfor inside the loop nest.
• Allocate a reduction array for each reduction (warner: scalers NOT in a reduction lead to data races).
• Initialize each thread’s reduction value from this array and write back to the array just before the end of 

the parallel region.
• Generate code to perform final reduction across these arrays after parallel region.
• Execute gufunc using Numba’s existing parallel execution infrastructure.
• Scheduling:

• The default scheduler is equivalent to OpenMP static and divides multi-dimensional iteration space up into 
approximately equal-sized hyperrectangles, one for each available core.

• Programmers may optionally specify a chunksize, which results in the equivalent of OpenMP dynamic 
scheduling behavior.



Parfor optimizations
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• Array analysis
• Called the “secret sauce” by Numba’s lead developer.
• Tracks integers and arrays to determine when two or more arrays must have a common dimension length.

• Fusion
• Parfors with equivalent nested loops are merged (under certain conditions).
• Equivalence determined by array analysis.
• Reduces looping overhead, minimizes passes over arrays (cache friendly), eliminates temporaries.

• Loop invariant code motion
• Operations not recursively dependent on loop indices moved before the loop.

• Allocation hoisting
• Allows allocation of space for arrays of the same size created by the loop body to be moved before the loop.

• Threads compute reductions locally and combined after the parallel region to get the final value.
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How ParallelAccelerator fits into Numba

@njit

@vectorize

Parallel
Accelerator

NumPy 
Function

Scalar Kernel

Sequential 
Compiled 

Code

Parallel 
Compiled 

Code

@njit (parallel=True)

Re-code 
by hand

• Most of ParallelAccelerator could be 
done manually using Numba’s 
@vectorize or @guvectorize but 
those APIs are very difficult to use, 
are error prone, and time-consuming.

• ParallelAccelerator achieves this 
performance with a one or two line 
code change.



Recognizing Parallelism
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The following patterns are recognized by ParallelAccelerator for parallel execution:
1. Implicit

• Element-wise operations: unary(+,-,~), binary(+,-,*/,//?,%,|,>>,^,&,**,//), 
comparison(==,!=,<,<=,>,>=), NumPy ufuncs, user-defined DUFunc.

• NumPy reductions: sum, prod, min, max, argmin, argmax, mean, var, std.
• Array creation: zeros, ones, arrange, linspace, and random array create for all 

available distributions.
• NumPy dot: matrix/vector or vector/vector.
• Array assignment.
• Functools.reduce.
• Stencil decorator.

2. Explicit
• prange, pndindex
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Other ParallelAccelerator Technology

• Stencils are very common in scientific computing.
• ParallelAccelerator provides a productive stencil abstraction with automatic 

parallelization.

@stencil
def jacobi_kernel(a):
    return 0.25 * (a[0,1] + a[0,-1] + a[-1,0] + a[1,0])

@numba.njit(parallel=True)
def run_jacobi(a):
    return jacobi_kernel(a)
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ParallelAccelerator – Next steps
• Gradually add support for new NumPy functions or variants of existing NumPy functions supported 
by Numba.

• Continues to add additional code recognition patterns that enable it to infer the size of arrays 
which in turn enable additional fusion opportunities.

• Long term, MLIR dialects are being developed that express tensor operations with concurrent 
semantics.  These dialects will then be lowered to existing MLIR dialects that also have support for 
not only the kind of fusion currently supported by ParallelAccelerator but also polyhedral fusion.  The 
MLIR pipeline also includes functionality to lower these operations with concurrent semantics not 
only to multi-core CPUs but also various types of accelerators including GPUs.

• From the user perspective, nothing will change but we hope to incorporate this new MLIR-based 
compilation pipeline into Numba which will provide a superset of the existing parallelization 
opportunities as well as providing better backend code generation.



MPI4py
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Execution Model: Communicating Sequential Processes (CSP) 
• A collection of processes are launched when the program begins to execute.

• The processes interact through explicit communication events.   All aspects of coordinating the processes (i.e. 
synchronization) are expressed in terms of communication events.

• The CSP model does not interact with any concurrency issues inside a process … to the CSP model, they 
processes appear to be sequential.
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• CSP is very general, but in practice, it is paired with 
the SPMD pattern 

• Message passing systems are the class of APIs used 
to express CSP execution models.

• MPI is the dominant message passing library … has 
been since the mid 1990’s.  

• It has been extended to go well beyond CSP, but 
frankly few applications developers use those 
features.



MPI4py

• An MPI instance is initialized on import

• An MPI instance is finalized when all python processes 
in the program execution complete

• To launch a single mpi program on multiple nodes of a 
system (distributed memory) use the program mpirun 
where the flag –np is used to select how many copies 
of the program to run
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from mpi4py import MPI

print(“Hello World!”)

> mpirun –np 3 python helloMPI.py

  Hello World!
  Hello World!
  Hello World!

• MPI4py: python binding to MPI



MPI4py: Communicators, ranks and number of processes

• A communicator is used to organize MPI 
operations … it is a communication context and 
a  process group.

• If Np is the number of processes (the size of the 
process group), the rank is a unique number 
ranging from 0 to (Np-1).  We use the rank as an 
ID for processes.
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from mpi4py import MPI

comm =  MPI.COMM_WORLD
Np = comm.Get_size()
ID  = comm.Get_rank()

print(“Hello World from {0} or {1} \n”.format(ID, Np))

> mpirun –np 3 python helloMPI.py

  Hello World from 1 of 3
  Hello World from 0 of 3
  Hello World from 2 of 3

• MPI in practice is all about the SPMD pattern … i.e., run the same program on each 
node and use the rank (ID) and number of processes to split up the work.



MPI4py: passing messages

• MPI4py supports two types of communication: one for 
generic objects, and another for buffers in 
contiguous memory (such as numpy arrays).
– Lower case function names: Generic objects
– Uppercase function names: Buffer objects

• Buffer objects are much more efficient so if you are 
working with numpy arrays, use the Buffer object 
interface.
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from mpi4py import MPI
comm =  MPI.COMM_WORLD
 Np = comm.Get_size()
 ID  = comm.Get_rank()

if (myrank == 0):
        a = [“I”,”love”,”MPI4py”]
        comm.send(a, dest = 1, tag=42)
 
else
        a_recv = comm.recv(source=0, tag=42)
        print(“ I am proc {0} and {0}\n”.format(a_recv))

> mpirun –np 2 python helloMPI.py

  I am proc 1 and ['I', 'love', 'MPI4py']

• Processes coordinate their execution by passing messages … communication and synchronization 
combined through message passing function.



MPI Communication
• Blocking Communication

– Python objects
– comm.send(sendobj, dest=1, tag=0)
– recvobj = comm.recv(None, src=0, tag=0)

– Numpy buffer
– comm.Send([sendarray, count, datatype], dest=1, tag=0)
– comm.Recv([recvarray, count, datatype], src=0, tag=0)

• Nonblocking Communication
– Python objects
– reqs = comm.isend(obj, dest=1, tag=0)
– reqr = comm.irecv(src=0, tag=0)
– reqs.wait()
– data = reqr.wait()

– Numpy buffer
– reqs = comm.Isend([sendarray, count, datatype], dest=1, tag=0)
– reqr = comm.Irecv([recvarray, count, datatype], src=0, tag=0)
– MPI.Request.Waitall([reqs, reqr])
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We show these message passing routines for the 
case of node 0 sending a message to node 1

The parameter tag is used to prevent confusion 
between similar messages sent between pairs of 
node.  It can take any integer type you wish … in 
this case 0

You can use type discovery in Python and write the triple 
[array, count, type] as just the array … so this becomes:

Reqr = comm.Irecv(recvarray, src=0, tag=0)

The parameter datatype is the MPI datatype which includes 
MPI.INT, MPI.FLOAT, MPI.DOUBLE, MPI.CHAR and others

count is the number of items of type datatype in the buffer 



MPI4py: Reductions

• Program sums area under the curve to compute 
an integral that ideally is equal to pi

• We use a cyclic distribution of the loop to spread 
out the work among the processes

• Reduction to compute the final answer
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from mpi4py import MPI
import numpy as np

comm = MPI.COMM_WORLD
id  = comm.Get_rank()
numb  = comm.Get_size()
nsteps = 1000000

print(' Rank: ',id, ' numb: ',numb)

step = 1.0/nsteps
sum = np.array(0.0,'d')
pi = np.array(0.0,'d')
for i in range (id,nsteps,numb):
  x = step*(i+0.5)
  sum = sum + 4.0/(1.0 + x*x)

comm.Reduce(sum, pi, op=MPI.SUM, root=0)

if (id == 0):
 pi = pi * step
 print(' pi is :', pi)

> mpirun –np 4 python piMPI.py

  pi is 3.1415926535899388

• MPI includes all the usual collective communication routines (gather, scatter, 
broadcast, and more).  The most commonly used is reduction.



Python multiprocessing
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Python Multiprocessing

• Fork multiple processes from Python
• Useful to overcome GIL limitation, utilize multi-core machines
• Forked child processes run target function, with a set of arguments
• Multiple communication, coordination options:

– Pipes, Queues
– Shared memory arrays
– Semaphores, mutexes

• Common patterns:  fork-join, pipelines



Multiprocessing code

import numpy as np

import multiprocessing as mp

def calc_pi(nstart, nstop, step, i, outArr):
    out = np.frombuffer(outArr, dtype=np.float64)
    start = (nstart+0.5)*step

    stop = (nstop-0.5)*step
    nsteps = nstop-nstart

    X = np.linspace(start, stop, num=nsteps)
Y = 4.0 / (1.0 + X*X)

    out[i] = np.sum(Y)

def piFunc(NumSteps, NumProcs):

    step = 1.0/NumSteps
    outArr = mp.Array('d',NumProcs,lock=False)
    out = np.frombuffer(outArr, dtype=np.float64)

    procs = []
    for i in range(NumProcs):

        nstart = (i*NumSteps)//NumProcs
        nstop = ((i+1)*NumSteps)//NumProcs
        procs.append( mp.Process( target=calc_pi,

            args=(nstart, nstop, step, i, outArr)) )
    for p in procs: p.start()

    for p in procs: p.join()
    return step * sum(out)

pi = piFunc(100000000,50)

Wrap shared memory buffer as numpy 
array object

Compute over part of range; written in 
numpy vector style; could use Python 
loops (slower, less memory), or Numba
Store result in position i of output array

Construct processes to perform 
computation over parts of total range
Fork, Join pattern
Final reduction on shared memory array

Construct shared memory array, 
Wrap as numpy array object



Pi program
• Single dual-socket server
– 2x Intel® Xeon® E5-2699v3 @ 2.3Ghz (36 cores, 72 hypercores, total)
– 128GB RAM

• Mean, stddev of 10 runs (unless stated otherwise), after 1 warmup (in seconds)
• For multithreaded runs, we used the default number of threads.

Single
threaded}
Compiled

Num steps 1e6 1e7 1e8 1e9 1e10

Python loops 0.09 (0.0006) 0.92 (0.006)

Numpy 0.135 (0.005) 1.45 (0.0015)

Numba 0.039 (0.001) 0.39 (0.001) 3.92 (0.003)

Parallel Accelerator 0.019 (0.003) 0.141 (0.002) 1.48 (0.077)

Multiprocessing 0.229 (0.002) 1.54 (0.016)

Dask 0.133 (0.008) 0.75 (0.04) 6.9 (0.46)

PyOMP (loop) 0.051 (0.004)
5 runs

0.041 (0.005) 
5 runs

0.073 (0.005) 
5 runs

0.282 (0.02)
5 runs

1.56 (0.02) 
5 runs

Compiled

}



Summary
• Parallel programming is here to stay.  

If you don’t need it today, you will 
eventually.   Fortunately, it’s really fun.

• Software outlives hardware.  Do not 
let a vendor lock you in to their 
platform.   Portability must be non-
negotiable.

• There are too many parallel 
programming models for python. 
Focus on the core principles and 
fundamental design patterns. Don’t 
wear yourself out chasing the latest 
fad. 

167My Greenlandic skin-on-frame kayak in the middle of Budd Inlet during a negative tide
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OpenMP Organizations

• OpenMP Architecture Review  Board (ARB) URL, the “owner” of the OpenMP 
specification:

www.openmp.org  

• OpenMP User’s Group (cOMPunity) URL:
www.compunity.org

Get involved, join the ARB and cOMPunity.

Help define the future of OpenMP



Resources
• www.openmp.org has a wealth of helpful resources
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Including a 
comprehensiv
e collection of 
examples of 

code using the 
OpenMP 

constructs

http://www.openmp.org/


To learn OpenMP:
• An exciting new book that Covers the 

Common Core of OpenMP plus a few key 
features beyond the common core that 
people frequently use

• It’s geared towards people learning 
OpenMP, but as one commentator put it 
… everyone at any skill level should 
read the memory model chapters.

• Available from MIT Press

170www.ompcore.com for code samples and the Fortran supplement

http://www.ompcore.com/


Books about OpenMP
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A great book that covers 
OpenMP features beyond 

OpenMP 2.5



Books about OpenMP
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The latest book on OpenMP … 

Now available at amazon.com and 
MIT press.

A book about how to use OpenMP to 
program a GPU.


