
11/19/24 1

PYOMP: PARALLEL PROGRAMMING IN
PYTHON WITH OPENMP
Tim Mattson (University of Bristol)

Giorgis Georgakoudis (Lawrence Livermore Nat. Lab)

Todd A. Anderson (Intel Labs)

https://github.com/Python-for-HPC/PyOMP

License

• You are free to:
– Share — copy and redistribute the material in any medium or format for any purpose, even

commercially.
– Adapt — remix, transform, and build upon the material for any purpose, even commercially.
– The licensor cannot revoke these freedoms as long as you follow the license terms.

• Under the following terms:
– Attribution — You must give appropriate credit , provide a link to the license, and indicate if

changes were made . You may do so in any reasonable manner, but not in any way that suggests the
licensor endorses you or your use.

– No additional restrictions — You may not apply legal terms or technological measures that legally
restrict others from doing anything the license permits.

2

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Disclaimer

• The views expressed in this talk are those of the speakers and not their
employers.

• If we say something “smart” or worthwhile:
– Credit goes to the many smart people we work with.

• If we say something stupid…
– It’s our own fault

https://github.com/Python-for-HPC/PyOMP

Outline
• Introducing parallel computing and PyOMP

• The PyOMP system

• PyOMP and multithreading (parallelism for the CPU)

• GPU programming with PyOMP

• Other approaches to parallelism in Python.

• Wrap-up and Q&A

4

Break

https://github.com/Python-for-HPC/PyOMP

We all love python … but what about performance

5

Software vs. Hardware and the nature of Performance

Up until ~2005,
performance came
from semiconductor

technology

Since ~2005
performance comes

from
“the top”

Better software Tech.
Better algorithms
Better HW architecture#

#HW architecture matters,
but dramatically LESS than
software and algorithms

*It’s because of the end of
Dennard Scaling …

Moore’s law has nothing to
do with it

*

The view of Python from an HPC perspective
(from the ”Room at the top” paper).

for I in range(4096):
 for j in range(4096):
 for k in range (4096):
 C[i][j] += A[i][k]*B[k][j]

Amazon AWS c4.8xlarge spot instance, Intel® Xeon® E5-2666 v3 CPU, 2.9 Ghz, 18 core, 60 GB RAM

A proxy for computing
over nested loops …
yes, they know you

should use optimized
library code for DGEMM

The view of Python from an HPC perspective
(from the ”Room at the top” paper).

for I in range(4096):
 for j in range(4096):
 for k in range (4096):
 C[i][j] += A[i][k]*B[k][j]

Amazon AWS c4.8xlarge spot instance, Intel® Xeon® E5-2666 v3 CPU, 2.9 Ghz, 18 core, 60 GB RAM

A proxy for computing
over nested loops …
yes, they know you

should use optimized
library code for DGEMM

This demonstrates a common attitude in the HPC community ….

Python is great for productivity, algorithm development, and combining functions from high-level modules in
new ways to solve problems. If getting a high fraction of peak performance is a goal … recode in C.

Our goal … to help people “keep their code in Python”

• Modern technology should be able to map Python onto low-level code (such as
C or LLVM) and avoid the “Python performance tax”.

• We’ve worked on …
– Numba (2012): JIT Python code into LLVM

– Parallel accelerator (2017): Find and exploit parallel patterns in Python code.

– Intel High-Performance Analytics Toolkit and Scalable Dataframe Compiler (2019): Parallel
performance from data frames.

– Intel numba-dppy (2020): Numba ParallelAccelerator regions that run on GPUs via SYCL.

9Third party names are the property of their owners

If it’s performance you want, then you must go parallel.

It’s in the physics!

10

Moore's Law

Moore’s Law

Slide source: UCB CS 194 Fall’2010

• In 1965, Intel co-founder Gordon Moore predicted (from just 3 data points!) that semiconductor
density would double every 18 months.
– He was right! Over the last 50 years, transistor densities have increased as he predicted.

CPU Frequency (GHz) over time (years)

12Source: James Reinders (from the book “structured parallel programming”)

Dennard scaling ignores threshold voltage
and leakage … which do NOT shrink

much with process technology.

Eventually, those factors came to
dominate and Dennard scaling ends

Consider power in a chip …
C = capacitance … it measures the ability of a circuit to
store energy:

C = q/V à q = CV

Work is pushing something (charge or q) across a
“distance” … in electrostatic terms pushing q from 0 to V:

V * q = W.

But for a circuit q = CV so

 W = CV2

power is work over time … or how many times per second
we oscillate the circuit

 Power = W* F à Power = CV2f

Processor

f

Input Output

Capacitance = C
Voltage = V
Frequency = f
Power = CV2f

f * time

... Reduce power by adding cores

Chandrakasan, A.P.; Potkonjak, M.; Mehra, R.; Rabaey, J.; Brodersen, R.W., "Optimizing power using transformations,"
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,, vol.14, no.1, pp.12-31, Jan 1995 Source: Vishwani Agrawal

Processor

f

Input Output

Capacitance = C
Voltage = V
Frequency = f
Power = CV2f

f * time

Processor

f/2

Processor

f/2

Input Output

Capacitance = 2.2C
Voltage = 0.6V
Frequency = 0.5f
Power = 0.396CV2f

f * time

… So now lets talk about parallel
hardware

15

For hardware … parallelism is the path to performance

CPU

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware,
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

SIMD/Vector

For hardware … parallelism is the path to performance

CPU

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware,
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

SIMD/Vector

We will
cover the

CPU and the
GPUWe will let the

compiler take care of
vectorization for us

PyOMP works here as
well … though we
won’t discuss this
case in this tutorial

For hardware … parallelism is the path to performance

CPU

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware,
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

SIMD/Vector

We will
start with
the CPU

A typical multi-core CPU

19

All the memory (DRAM) is visible to all the cores.
It presents a single address space.

The caches (L1D$, L1I$, L2$ and a shared L3$)
provide a high-speed window into memory

ALU: arithmetic logic unit, HT: hardware thread QPI: quick path interconnect DDR: Dram memory controller DRAM: dynamic random access memory
L!D$: L1 data cache, L1I$: L1 instruction cache L2: a unified (data and instructions) cache

D
R

AM
D

R
AM

D
R

AM
D

R
AM

A program instance runs as a process. A process
defines the subset of resources (such as memory)
available to an executing program.

Execution of a program occurs through one or
more threads “owned” by the process.

The ubiquitous standard for multithreaded
programming on CPUs is OpenMP

20

OpenMP* Overview

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP SECTIONS

C$OMP MASTERC$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

OpenMP: An API for Writing Multithreaded
Applications

• A set of compiler directives and library routines for parallel
application programmers

• Greatly simplifies writing multi-threaded (MT) programs in Fortran,
C and C++

• Standardizes established SMP practice + vectorization and
heterogeneous device programming

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

22

OpenMP is the most popular Programming model for HPC

Aggregate numbers over all repositories from 2013 to 2023

Download the paper here: https://arxiv.org/abs/2308.08002

We constructed a dataset from all c, c++ and
Fortran programs in github for training large
language models for parallel code generation.

We analyzed programming model usage across the
dataset and found that OpenMP was the most
popular of all parallel programming models in
github.

Note: we did not collect .cu or .cuf files so we
under-counted CUDA usage.

from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def hello():
 with openmp("parallel"):
 print("hello")
 print("world")

hello()
print("DONE")

PyOMP: OpenMP projected into Python
• A parallel multithreaded “hello world” program with PyOMP

23

PyOMP: OpenMP projected into Python
• A parallel multithreaded “hello world” program with PyOMP

24

from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def hello():
 with openmp("parallel"):
 print("hello")
 print("world")

hello()
print("DONE")

OpenMP managed
through the with

context manager.

• Numba Just In Time (JIT) compiler compiles the Python code into LLVM thereby bypassing the
GIL. Hence, the threads execute in parallel.

• The string in the with openmp context manager is identical to the constructs in OpenMP. If you
know OpenMP for C/C++/Fortran, then you know it for Python

Numba Just In Time
(JIT) compiler

compiles the Python
code into LLVM.

Compiled code
cached for later use.

The code inside the with
context manager is

packaged into a function and
executed by each thread

“parallel” creates a team of threads

from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def hello():
 with openmp("parallel"):
 print("hello")
 print("world")

hello()
print("DONE")

PyOMP: OpenMP projected into Python
• A parallel multithreaded “hello world” program with PyOMP

25

hello
world
hello
hello
hello
world
hello
world
hello
world
hello
world
world
world
hello
world
DONE

When I run this program,
here is the output.

The interleaved print
output is different each
time I run the program

Why is the output from our hello world
program so weird?

To answer that question, we must
digress briefly and settle on a few key

definitions

26

Let’s agree on a few definitions:

• Active task:
– A task that is available to be scheduled for execution. When the task is moving through its sequence of

instructions, we say it is making forward progress

• Fair scheduling:
– When a scheduler gives each active task an equal opportunity for execution.

27

• Computer:
– A machine that transforms input data into

output data.
– Typically, a computer consists of Control,

Arithmetic/Logic, and Memory units.
– The transformation is defined by a stored

program (von Neumann architecture).

• Task:
– A specific sequence of instructions plus a

data environment. A program is composed
of one or more tasks.

Concurrency vs. Parallelism
• Two important definitions:

– Concurrency: A condition of a system in which multiple tasks are active and unordered. If scheduled fairly,
they can be described as logically making forward progress at the same time.

– Parallelism: A condition of a system in which multiple tasks are actually making forward progress at the
same time.

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

Concurrent, parallel Execution

Concurrent, non-parallel Execution
PE0

PE0

PE1

PE1

PE2

PE3

Time
PE = Processing Element

Concurrency vs. Parallelism

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

In most cases, parallel programs exploit
concurrency in a problem to run tasks on
multiple processing elements

We use Parallelism to:
• Do more work in less time
• Work with larger problems

Programs

Concurrent
Programs

Parallel
Programs If tasks execute in “lock step” they are not

concurrent, but they are still parallel.
Example … a SIMD unit.

• Two important definitions:
– Concurrency: A condition of a system in which multiple tasks are active and unordered. If scheduled fairly,

they can be described as logically making forward progress at the same time.

– Parallelism: A condition of a system in which multiple tasks are actually making forward progress at the
same time.

from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def hello():
 with openmp("parallel"):
 print("hello")
 print("world")

hello()
print("DONE")

PyOMP: OpenMP projected into Python
• A parallel multithreaded “hello world” program with PyOMP

30

hello
world
hello
hello
hello
world
hello
world
hello
world
hello
world
world
world
hello
world
DONE

When I run this program,
here is the output.

The challenge for programmers writing multithreaded code is to make sure every
semantically allowed way statements can interleave results in correct code.

Detailed outline from the tutorial proposal
• Introducing parallel computing and PyOMP

• The PyOMP system

• PyOMP and multithreading (parallelism for the CPU)

• GPU programming with PyOMP

• Other approaches to parallelism in Python.

• Wrap-up and Q&A

31

Break

https://github.com/Python-for-HPC/PyOMP

How did we implement PyOMP?

We used the “magic” of Numba

32

• PyOMP currently based on a fork of Numba 0.57
• So, PyOMP is a fully functional Numba but with OpenMP support
• At some point in the future it will become a pure extension to Numba

Numba … C-like performance from Python code

• Numba is a JIT compiler. Maps a subset of Python and NumPy API onto LLVM
• Once code is JIT’ed into LLVM, all performance enhancements exposed at the level of LLVM

are directly available … result is performance that approaches that from raw C or Fortran
• Source code is pure Python for maximum portability

• Just add the @jit decorator to enable Numba for a function.

from numba import jit

@jit
def addit(A,B):
 return (A+B)

Numba JIT compiler applied the first time a function is encountered. Numba
caches the code so subsequent calls to the function don’t run the JIT step.

Numba defines elementwise functions called ufuncs

This generates the LLVM code and calls the addition ufunc to do an
elementwise add of A and B

• Numerous options in numba … we are barely scratching the surface
– @jit(nopython=true) do NOT use any Python objects in the generated code. Can be much faster. Equivalent to njit.
– @jit(parallel=true) invoke parallel accelerator

PyOMP Implementation in Numba
• PyOMP changes to Numba:

• Adds an OpenMP context manager
• Provides the ability to call all the OpenMP runtime functions from both Python and Numba JITed code.

• Exception handling disabled in OpenMP regions since Numba exception mechanism breaks OpenMP single-
entry/single-exit requirement.

• Variables not listed in a data clauses are SHARED if used before or after OpenMP region, PRIVATE otherwise*.

• Supports most OpenMP 3.5 and much of OpenMP 4.5. Supported directives and clauses can be found at
https://pyomp.readthedocs.io/en/latest/.

• Note that one can use @jit(cache=True) Numba decorator to compile the function once and store the result on
disk to avoid recompilation each time the program is restarted.

* The scope of shared/private variables exposes subtle issues in how the rules for an OpenMP data environment interacts with how Numba
manages the visibility of variables. This is a topic that is still evolving, though in practice it hasn’t impacted the usability of PyOMP .

https://pyomp.readthedocs.io/en/latest/

How do you install PyOMP on your own
system?

35

PyOMP installation
• Preferred installation method is through conda.

• We’ve simplified the installation command to the following
–conda install -c python-for-hpc -c conda-forge --override-channels pyomp

• We currently support PyOMP on four systems
– linux-ppc6le
– linux-64 (x86_64)
–osx-arm64 (mac)
– linux-arm64

• We also have a working (free) JupyterLab under binder for OpenMP CPU at:
–https://mybinder.org/v2/gh/Python-for-HPC/binder/HEAD

36
https://github.com/Python-for-HPC/PyOMP

https://mybinder.org/v2/gh/Python-for-HPC/binder/HEAD

Detailed outline from the tutorial proposal
• Introducing parallel computing and PyOMP

• The PyOMP system

• PyOMP and multithreading (parallelism for the CPU)

• GPU programming with PyOMP

• Other approaches to parallelism in Python.

• Wrap-up and Q&A

37

Break

https://github.com/Python-for-HPC/PyOMP

Lets dive into the details of
multithreading and how they are most

commonly used in an application

38

39

OpenMP Execution Model
Fork-Join Parallelism:

• Initial thread forks a team of threads as needed.
• They execute in a shared address space … All reads read/write a common set of the variables.
• When the team is finished, the threads join together and the initial thread continues
• Parallelism added incrementally until performance goals are met, i.e., the sequential program

evolves into a parallel program.
Parallel Regions

Initial
Thread
in red

A Nested
Parallel
region

Sequential Parts

The information on this page is subject to the use and disclosure restrictions provided on the second page to this document.

Understanding OpenMP

40

We will explain the key elements of OpenMP as we explore the three fundamental design patterns of
OpenMP (Loop parallelism, SPMD, and divide and conquer) applied to the following problem

def piFunc(NumSteps):
 step=1.0/NumSteps
 pisum = 0.0
 x = 0.5
 for i in range(NumSteps):
 x+=step
 pisum += 4.0/(1.0+x*x)
 pi=step*pisum
 return pi

41

The Loop-level parallelism design pattern
• Parallelism defined in terms of parallel loops … that is, loops where iterations can

safely execute when divided between a collection of threads.
• Key elements:

– identify compute intensive loops in a program
– Expose concurrency by removing or managing loop carried dependencies
– Exploit concurrency for parallel execution usually using a parallel loop construct/directive.

42

The Loop-level parallelism design pattern
• Parallelism defined in terms of parallel loops … that is, loops where iterations can

safely execute when divided between a collection of threads.
• Key elements:

– identify compute intensive loops in a program
– Expose concurrency by removing or managing loop carried dependencies
– Exploit concurrency for parallel execution usually using a parallel loop construct/directive.

def piFunc(NumSteps):
 step=1.0/NumSteps
 pisum = 0.0
 x = 0.5
 for i in range(NumSteps):
 x+=step
 pisum += 4.0/(1.0+x*x)
 pi=step*pisum
 return pi

43

The Loop-level parallelism design pattern
• Parallelism defined in terms of parallel loops … that is, loops where iterations can

safely execute when divided between a collection of threads.
• Key elements:

– identify compute intensive loops in a program
– Expose concurrency by removing or managing loop carried dependencies
– Exploit concurrency for parallel execution usually using a parallel loop construct/directive.

def piFunc(NumSteps):
 step=1.0/NumSteps
 pisum = 0.0
 x = 0.5
 for i in range(NumSteps):
 x+=step
 pisum += 4.0/(1.0+x*x)
 pi=step*pisum
 return pi

A loop carried
dependency

44

The Loop-level parallelism design pattern
• Parallelism defined in terms of parallel loops … that is, loops where iterations can

safely execute when divided between a collection of threads.
• Key elements:

– identify compute intensive loops in a program
– Expose concurrency by removing or managing loop carried dependencies
– Exploit concurrency for parallel execution usually using a parallel loop construct/directive.

def piFunc(NumSteps):
 step=1.0/NumSteps
 pisum = 0.0
 x = 0.5
 for i in range(NumSteps):
 x+=step
 pisum += 4.0/(1.0+x*x)
 pi=step*pisum
 return pi

def piFunc(NumSteps):
 step=1.0/NumSteps
 pisum = 0.0

 for i in range(NumSteps):
 x=(i+0.5)*step
 pisum += 4.0/(1.0+x*x)
 pi=step*pisum
 return pi

A loop carried
dependency

Recast to
compute from i

This
dependency is

more
complicated. It’s

called a
reduction 45

The Loop-level parallelism design pattern
• Parallelism defined in terms of parallel loops … that is, loops where iterations can

safely execute when divided between a collection of threads.
• Key elements:

– identify compute intensive loops in a program
– Expose concurrency by removing or managing loop carried dependencies
– Exploit concurrency for parallel execution usually using a parallel loop construct/directive.

def piFunc(NumSteps):
 step=1.0/NumSteps
 pisum = 0.0
 x = 0.5
 for i in range(NumSteps):
 x+=step
 pisum += 4.0/(1.0+x*x)
 pi=step*pisum
 return pi

def piFunc(NumSteps):
 step=1.0/NumSteps
 pisum = 0.0

 for i in range(NumSteps):
 x=(i+0.5)*step
 pisum += 4.0/(1.0+x*x)
 pi=step*pisum
 return pi

A loop carried
dependency

Recast to
compute from i

Loop Parallelism code

46

from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def piFunc(NumSteps):
 step = 1.0/NumSteps
 pisum = 0.0

 with openmp ("parallel for private(x) reduction(+:pisum)"):
 for i in range(NumSteps):
 x = (i+0.5)*step
 pisum += 4.0/(1.0 + x*x)

 pi = step*pisum
 return pi

pi = piFunc(100000000)

OpenMP managed through the with context manager.

Pass the OpenMP directive into the OpenMP context
manager as a string

• parallel: creates a team of threads
• for: maps loop iterations onto threads.
• private(x): each threads gets its own x
• Loop control index of a parallel for (i) is private to each thread.
• reduction(+:sum): combine sum from each thread using +

Numba Just In Time (JIT) compiler compiles the Python code into
LLVM thereby bypassing the GIL. Compiled code cached for
later use.

GIL: Global Interpreter Lock

47

Reduction
• OpenMP reduction clause added to a parallel for:

reduction (op : list)

• Inside the parallel for:
– Each thread gets a private copy of each

variable in list … initialized depending on the
“op”
(e.g., 0 for “+”).

– Updates to the reduction variable from each
thread happens to its private copy.

– The private copies from each thread are
combined into a single value … and then
combined with the original global value … all
using the op from the reduction clause.

• The variables in the “list” must be shared in the
enclosing parallel region.

from numba import njit
 from numba.openmp import openmp_context as openmp

 @njit
 def piFunc(NumSteps):
 step = 1.0/NumSteps
 pisum = 0.0

 with openmp ("parallel for private(x) reduction(+:pisum)"):
 for i in range(NumSteps):
 x = (i+0.5)*step
 pisum += 4.0/(1.0 + x*x)

 pi = step*pisum
 return pi

 pi = piFunc(100000000)

We don’t discuss the details here, but you can also add a reduction clause to a parallel or a for construct.

Numerical Integration results in seconds … lower is better

Intel® Xeon® E5-2699 v3 CPU with 18 cores running at 2.30 GHz.
For the C programs we used Intel® icc compiler version 19.1.3.304 as icc -qnextgen -O3 –fopenmp
Ran each case 5 times and kept the minimum time. JIT time is not included for PyOMP (it was about 1.5 seconds)

48

Threads
PyOMP C

Loop SPMD Task Loop SPMD Task

1 0.447 0.450 0.453 0.444 0.448 0.445

2 0.252 0.255 0.245 0.245 0.242 0.222

4 0.160 0.164 0.146 0.149 0.149 0.131

8 0.0890 0.0890 0.0898 0.0827 0.0826 0.0720

16 0.0520 0.0503 0.0517 0.0451 0.0451 0.0431

108 steps

Parallel Loop are great … but sometimes
you want more control over individual

threads

49

The information on this page is subject to the use and disclosure restrictions provided on the second page to this document.

Understanding OpenMP

50

We will explain the key elements of OpenMP as we explore the three fundamental design patterns of
OpenMP (Loop parallelism, SPMD, and divide and conquer) applied to the following problem

def piFunc(NumSteps):
 step=1.0/NumSteps
 pisum = 0.0
 x = 0.5
 for i in range(NumSteps):
 x+=step
 pisum += 4.0/(1.0+x*x)
 pi=step*pisum
 return pi

51

SPMD (Single Program Multiple Data) design pattern

• Run the same program on P processing elements where P can be arbitrarily large.
• Use the rank … an ID ranging from 0 to (P-1) … to select between a set of tasks and to manage any shared

data structures.

This pattern is very general and has been used to support most (if not all) the algorithm strategy patterns.

MPI programs almost always use this pattern … it is probably the most commonly used pattern in the history of parallel programming.

Replicate the program.

Add glue code

Break up the data

Third party names are the property of their owners

Single Program Multiple Data (SPMD)

52

from numba import njit
import numpy as np
from numba.openmp import openmp_context as openmp
from numba.openmp import omp_get_thread_num, omp_get_num_threads
MaxTHREADS = 32
@njit
def piFunc(NumSteps):
 step = 1.0/NumSteps
 partialSums = np.zeros(MaxTHREADS)
 with openmp(“parallel shared(partialSums,numThrds) private(threadID,i,x,localSum)”):
 threadID = omp_get_thread_num()
 with openmp("single"):
 numThrds = omp_get_num_threads()
 localSum = 0.0
 for i in range(threadID, NumSteps, numThrds):
 x = (i+0.5)*step
 localSum = localSum + 4.0/(1.0 + x*x)
 partialSums[threadID] = localSum
 return step*np.sum(partialSums)

pi = piFunc(100000000)

• omp_get_num_threads(): get N=number of threads
• omp_get_thread_num(): thread rank = 0…(N-1)
• single: One thread does the work, others wait
• private(x): each threads gets its own x
• shared(x): all threads see the same x

Deal out loop iterations as if a deck of cards (a cyclic distribution)
… each threads starts with the Iteration = ID, incremented by the
number of threads, until the whole “deck” is dealt out.

The data environment seen by OpenMP threads

• Variables can be shared or private.
– Shared variable: A variable that is visible (i.e. can be

read or written) to all threads in a team.
– Private variable: A variable that is only visible to an

individual thread.

• All the code associated with an OpenMP directive
(such as parallel or for), including the code in
functions called inside that code, is called a region. A
directive plus code in the immediate block associated
with it, is called a construct

• Rules for defining a variable as shared or private:
– A variable is shared if it is used before or after an

OpenMP construct, otherwise it is private.
– Variables can be made shared or private through clauses

included with a directive.

53

• The data environment is the collection of variables visible to the threads in a team.

from numba import njit
 from numba.openmp import openmp_context as openmp

 @njit
 def piFunc(NumSteps):
 step = 1.0/NumSteps
 pisum = 0.0
 with openmp ("parallel for reduction(+:pisum)"):
 for i in range(NumSteps):
 x = (i+0.5)*step
 pisum += 4.0/(1.0 + x*x)

 pi = step*pisum
 return pi

 pi = piFunc(100000000)

x first used inside the
OpenMP construct … it

is private.

Numerical Integration results in seconds … lower is better

Intel® Xeon® E5-2699 v3 CPU with 18 cores running at 2.30 GHz.
For the C programs we used Intel® icc compiler version 19.1.3.304 as icc -qnextgen -O3 –fiopenmp
Ran each case 5 times and kept the minimum time. JIT time is not included for PyOMP (it was about 1.5 seconds)

54

Threads
PyOMP C

Loop SPMD Task Loop SPMD Task

1 0.447 0.450 0.453 0.444 0.448 0.445

2 0.252 0.255 0.245 0.245 0.242 0.222

4 0.160 0.164 0.146 0.149 0.149 0.131

8 0.0890 0.0890 0.0898 0.0827 0.0826 0.0720

16 0.0520 0.0503 0.0517 0.0451 0.0451 0.0431

108 steps

How do we handle problems without such
regular structure or with complex load

balancing problems?

We do this in OpenMP with explicit tasks

55

56

Explicit tasks in PyOMP
• A task is a sequence of statements and an associated data environment. Lots of flexibility in how those

tasks are created, so handles irregular parallelism, recursive parallelism, and many other control structures.

• A common pattern … one thread creates explicit tasks and puts them in a queue. All the threads work
together to execute them. The single construct causes one thread to execute statements while the other
threads wait at a barrier at the end of the single. It’s perfect for task level parallelism.

from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def irregularPar():
 with openmp("parallel"):
 with openmp("single"):
 StateVal = 1
 while (StateVal > 0):
 with openmp("task firstprivate(StateVal)"):
 BigComp(StateVal)
 StateVal = ExitYet()
 return

irregularPar()

An explicit task …
captures value of

the variable
StateVal and
calls BigComp.

Single: one thread does the work while the
other threads wait (and execute tasks) at the

barrier implied at the end of single

Returns a negative value at
some point (function not shown)

Divide and conquer design pattern
• Split the problem into smaller sub-problems; continue until the sub-problems can be

solved directly

3 Options for parallelism:
¨ Do work as you split

into sub-problems
¨ Do work at the

leaves
¨ Do work as you

recombine

Divide and conquer (with explicit tasks)

58

Solve

Split

Merge

Fork threads
and launch the
computation

• single: One thread does the work, others wait
• task: code block enqueued for execution
• taskwait: wait until task in the code block finish

@njit
def piFunc(NumSteps):
 step = 1.0/NumSteps
 sum = 0.0
 startTime = omp_get_wtime()
 with openmp ("parallel"):
 with openmp ("single"):
 pisum = piComp(0,NumSteps,step)

 pi = step*pisum
 return pi

pi = piFunc(100000000)

from numba import njit
from numba.openmp import openmp_context as openmp
from numba.openmp import omp_get_num_threads, omp_set_num_threads
MIN_BLK = 1024*256
@njit
def piComp(Nstart, Nfinish, step):
 iblk = Nfinish-Nstart
 if(iblk<MIN_BLK):
 pisum = 0.0
 for i in range(Nstart,Nfinish):
 x= (i+0.5)*step
 pisum += 4.0/(1.0 + x*x)
 else:
 sum1 = 0.0
 sum2 = 0.0
 with openmp ("task shared(sum1)"):
 sum1 = piComp(Nstart, Nfinish-iblk/2,step)
 with openmp ("task shared(sum2)"):
 sum2 = piComp(Nfinish-iblk/2,Nfinish,step)
 with openmp ("taskwait"):
 pisum = sum1 + sum2
 return pisum

Numerical Integration results in seconds … lower is better

Intel® Xeon® E5-2699 v3 CPU with 18 cores running at 2.30 GHz.
For the C programs we used Intel® icc compiler version 19.1.3.304 as icc -qnextgen -O3 –fiopenmp
Ran each case 5 times and kept the minimum time. JIT time is not included for PyOMP (it was about 1.5 seconds)

59

Threads
PyOMP C

Loop SPMD Task Loop SPMD Task

1 0.447 0.450 0.453 0.444 0.448 0.445

2 0.252 0.255 0.245 0.245 0.242 0.222

4 0.160 0.164 0.146 0.149 0.149 0.131

8 0.0890 0.0890 0.0898 0.0827 0.0826 0.0720

16 0.0520 0.0503 0.0517 0.0451 0.0451 0.0431

108 steps

There is more …. But this is enough
to get you started with CPU

programming in PyOMP

So let’s wrap up our discussion of
CPU programming

60

with openmp("parallel"): Create a team of threads. Execute a parallel region
with openmp("for"): Use inside a parallel region. Split up a loop across the team.
with openmp("parallel for"): A combined construct. Same a parallel followed by a for.
with openmp ("single"): One thread does the work. Others wait for it to finish
with openmp("task"): Create an explicit task for work within the construct.
with openmp("taskwait"): Wait for all tasks in the current task to complete.
with openmp("barrier"): All threads arrive at a barrier before any proceed.
with openmp("critical"): Mutual exclusion. One thread at a time executes code
schedule(static [,chunk]) Map blocks of loop iterations across the team. Use with for.
reduction(op:list) Combine values with op across the team. Used with for

private(list) Make a local copy of variables for each thread. Use with parallel, for or task.
firstprivate(list) private, but initialize with original value. Use with parallel, for or task

shared(list) Variables shared between threads. Use with parallel, for or task.

default(none) Force definition of variables as private or shared.
omp_get_num_threads() Return the number of threads in a team
omp_get_thread_num() Return an ID from 0 to the number of threads minus one
omp_set_num_threads(int) Set the number of threads to request for parallel regions
omp_get_wtime() Return a snapshot of the wall clock time.
OMP_NUM_THREADS=N Environment variable to set the default number of threads

PyOMP subset of OpenMP for CPU programming

PyOMP subset of OpenMP for CPU programming
with openmp("parallel"): Create a team of threads. Execute a parallel region
with openmp("for"): Use inside a parallel region. Split up a loop across the team.
with openmp("parallel for"): A combined construct. Same a parallel followed by a for.
with openmp ("single"): One thread does the work. Others wait for it to finish
with openmp("task"): Create an explicit task for work within the construct.
with openmp("taskwait"): Wait for all tasks in the current task to complete.
with openmp("barrier"): All threads arrive at a barrier before any proceed.
with openmp("critical"): Mutual exclusion. One thread at a time executes code
schedule(static [,chunk]) Map blocks of loop iterations across the team. Use with for.
reduction(op:list) Combine values with op across the team. Used with for

private(list) Make a local copy of variables for each thread. Use with parallel, for or task.
firstprivate(list) private, but initialize with original value. Use with parallel, for or task

shared(list) Variables shared between threads. Use with parallel, for or task.

default(none) Force definition of variables as private or shared.
omp_get_num_threads() Return the number of threads in a team
omp_get_thread_num() Return an ID from 0 to the number of threads minus one
omp_set_num_threads(int) Set the number of threads to request for parallel regions
omp_get_wtime() Return a snapshot of the wall clock time.
OMP_NUM_THREADS=N Environment variable to set the default number of threads

Work sharing

Synchronization

Data
Environment

runtime
libraries

Par. Loop support

Fork threads

Environment

The view of Python from an HPC perspective

for I in range(4096):
 for j in range(4096):
 for k in range (4096):
 C[i][j] += A[i][k]*B[k][j]

Amazon AWS c4.8xlarge spot instance, Intel® Xeon® E5-2666 v3 CPU, 2.9 Ghz, 18 core, 60 GB RAM

We know better …
the IKJ order is more

cache friendly
for I in range(1000):
 for k in range(1000):
 for j in range (1000):
 C[i][j] += A[i][k]*B[k][j]And we picked a

smaller problem

PyOMP DGEMM (Mat-Mul with double precision numbers)

64

from numba import njit
import numpy as np
from numba.openmp import openmp_context as openmp
from numba.openmp import omp_get_wtime

@njit(fastmath=True)
def dgemm(iterations,order):

 # allocate and initialize arrays
 A = np.zeros((order,order))
 B = np.zeros((order,order))
 C = np.zeros((order,order))

 # Assign values to A and B such that
 # the product matrix has a known value.
 for i in range(order):
 A[:,i] = float(i)
 B[:,i] = float(i)

tInit = omp_get_wtime()
 with openmp("parallel for private(j,k)"):
 for i in range(order):
 for k in range(order):
 for j in range(order):
 C[i][j] += A[i][k] * B[k][j]

 dgemmTime = omp_get_wtime() - tInit

 # Check result
 checksum = 0.0;
 for i in range(order):
 for j in range(order):
 checksum += C[i][j]
 ref_checksum = order*order*order
 ref_checksum *= 0.25*(order-1.0)*(order-1.0)
 eps=1.e-8
 if abs((checksum - ref_checksum)/ref_checksum) < eps:
 print('Solution validates')
 nflops = 2.0*order*order*order
 print('Rate (MF/s): ',1.e-6*nflops/dgemmTime)

DGEMM PyOMP vs C-OpenMP

40

30

20

10

1 2 4 8 16
Number of threads

Ave. G
FLO

PS (B
illions of floating point ops per sec)

C with OpenMP

PyOMP

Matrix Multiplication, double precision, order = 1000, with error bars (std dev)

Intel® Xeon® E5-2699 v3 CPU, 18 cores, 2.30 GHz, threads mapped to a single CPU, one thread/per core, first 16 physical cores.
Intel® icc compiler ver 19.1.3.304 (icc –std=c11 –pthread –O3 xHOST –qopenmp)

250 runs for order
1000 matrices

PyOMP times
DO NOT include
the one-time JIT

cost of ~2
seconds.

… but remember,
the JIT’ed code

can be cached for
future use. It’s

straightforward to
hide the JIT cost.

… and in talking about PyOMP we
have covered three of the key

design patterns in parallel
programming

66

Divide and conquer design pattern
• Split the problem into smaller sub-problems; continue until the sub-problems can be

solve directly

3 Options for parallelism:
¨ Do work as you split

into sub-problems
¨ Do work at the

leaves
¨ Do work as you

recombine

68

SPMD (Single Program Multiple Data) design pattern

• Run the same program on P processing elements where P can be arbitrarily large.
• Use the rank … an ID ranging from 0 to (P-1) … to select between a set of tasks and to manage any shared

data structures.

This pattern is very general and has been used to support most (if not all) the algorithm strategy patterns.

MPI programs almost always use this pattern … it is probably the most commonly used pattern in the history of parallel programming.

Replicate the program.

Add glue code

Break up the data

Third party names are the property of their owners

69

The Loop-level parallelism design pattern
• Parallelism defined in terms of parallel loops … that is, loops where iterations can

safely execute when divided between a collection of threads.
• Key elements:

– identify compute intensive loops in a program
– Expose concurrency by removing or managing loop carried dependencies
– Exploit concurrency for parallel execution usually using a parallel loop construct/directive.

def piFunc(NumSteps):
 step=1.0/NumSteps
 pisum = 0.0
 x = 0.5
 for i in range(NumSteps):
 x+=step
 pisum += 4.0/(1.0+x*x)
 pi=step*pisum
 return pi

def piFunc(NumSteps):
 step=1.0/NumSteps
 pisum = 0.0

 for i in range(NumSteps):
 x=(i+0.5)*step
 pisum += 4.0/(1.0+x*x)
 pi=step*pisum
 return pi

A loop carried
dependency

Recast to
compute from i

This
dependency is

more
complicated. It’s

called a
reduction

Outline
• Introducing parallel computing and PyOMP

• The PyOMP system

• PyOMP and multithreading (parallelism for the CPU)

• GPU programming with PyOMP

• Other approaches to parallelism in Python.

• Wrap-up and Q&A

70

Break

https://github.com/Python-for-HPC/PyOMP

For hardware … parallelism is the path to performance

CPU

All hardware vendors are in the game … parallelism is ubiquitous so if you care about getting the most from your hardware,
you will need to create parallel software.

GPU

Cluster

Cloud

Heterogeneous node

SIMD/Vector

Let’s start by understanding GPU
programming in general … and then

see how it maps onto PyOMP

72

The “BIG idea” Behind GPU programming

// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < N) c[i] = a[i] + b[i];
}

int main () {
 int N = ... ;
 float *a, *b, *c;
 cudaMalloc (&a, sizeof(float) * N);
 // ... allocate other arrays (b and c)
 // and fill with data

 // Use thread blocks with 256 threads each
 vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);
}

73

Assume a GPU with
unified shared memory

… allocate on host,
visible on device too

int main() {
 int N = . . . ;
 float *a, *b, *c;

 a* =(float *) malloc(N * sizeof(float));

 // ... allocate other arrays (b and c)
 // and fill with data

 for (int i=0;i<N; i++)
 c[i] = a[i] + b[i];

}

Traditional Loop based vector addition (vadd)

Data Parallel vadd with CUDA

How do we execute code on a GPU:
The SIMT model (Single Instruction Multiple Thread)

74

// Compute sum of length-N vectors: C = A + B
void __global__
vecAdd (float* a, float* b, float* c, int N) {
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 if (i < N) c[i] = a[i] + b[i];
}

int main () {
 int N = ... ;
 float *a, *b, *c;
 cudaMalloc (&a, sizeof(float) * N);
 // ... allocate other arrays (b and c)
 // and fill with data

 // Use thread blocks with 256 threads each
 vecAdd <<< (N+255)/256, 256 >>> (a, b, c, N);
}

1. Turn source code into a
scalar work-item

2. Map work-items onto an
N dim index space.

4. Run on hardware
designed around the

same SIMT
execution model

3. Map data structures
onto the same index

space
This is CUDA code … the sort of code the

OpenMP compiler generates on your behalf

Note: The CUDA code defines a 1D grid. I show a 2D grid on this slide to make kernel execution and its relation to data more clear.

SIMT: One instruction stream maps onto many SIMD lanes

• SIMT model: Individual scalar instruction streams are grouped together for SIMD
execution on hardware

SL0 SL1 SL2 SL3 SL4 SL5 SL6 SL7

ld x
mul a
ld y
add
st y

A stream of
Scalar
instructions

NVIDIA calls this set of
work-items a warp

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

ld x

mul a

ld y

add

st y

SIMD execution scheduled
across a fixed number of

SIMD Lanes (SL)

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

L3 Cache
Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

L1 Cache

L2 Cache

G
PU

 M
em

or
y

L2 Cache

L2 Cache L2 Cache

G
PU

 M
em

or
y

G
PU

 M
em

or
y

G
PU

 M
em

or
y

A Generic GPU (following Hennessey and Patterson)

A multithreaded SIMD
processor

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

L3 Cache
Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

Cache

Instruction Cache

SIMD Thread Scheduler

Dispatch Unit

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Dispatch Unit

L1 Cache

L2 Cache

G
PU

 M
em

or
y

L2 Cache

L2 Cache L2 Cache

G
PU

 M
em

or
y

G
PU

 M
em

or
y

G
PU

 M
em

or
y

A Generic GPU (following Hennessey and Patterson)

Private Memory (work-item)

Local Memory (work-group)

Global Memory (kernel)

Logical Memory Hierarchy

A Generic Host/Device Platform Model

• One Host and one or more Devices
– Each Device is composed of one or more Compute Units
– Each Compute Unit is divided into one or more Processing Elements

• Memory divided into host memory and device memory

Processing
Element

Device

……
…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

78PE: processing element. The finest-grained processing element inside a GPU. Also known as a SiMD-lane or CUDA-core.

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

cache

G
PU

 M
em

ory

L3$

ALU

L1D$

L2$

L1I$

ALU

L1D$

L2$

L1I$

L1D$

L2$

ALU

L1I$ L1D$

L2$

ALU

L1I$

SIMD LanesSIMD Lanes

SIMD Lanes SIMD Lanes

Program
defines work

For a CPU

For a GPU

Work decomposed
into blocks

Work
decomposed into

work-items

Organized into
work-groups

One work-group per
compute-unit executing

Executing a program on CPUs and GPUs

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

Instruction Cache

SIMD Thread Scheduler

SIMD
Lane

Register File

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

SIMD
Lane

cache

G
PU

 M
em

ory

L3$

ALU

L1D$

L2$

L1I$

ALU

L1D$

L2$

L1I$

L1D$

L2$

ALU

L1I$ L1D$

L2$

ALU

L1I$

SIMD LanesSIMD Lanes

SIMD Lanes SIMD Lanes

Program
defines work

For a CPU

For a GPU

Work decomposed
into blocks

Work
decomposed into

work-items

Organized into
work-groups

Enqueued for
execution

Mapped onto
threads for
execution

One work-group per
compute-unit executing

Executing a program on CPUs and GPUs

CPU/GPU execution models

For a CPU, the
threads are all
active and able

to make forward
progress.

For a GPU, any
given work-group

might be in the
queue waiting to

execute.

How do we map a loop onto the
GPU execution model in PyOMP?

82

Step 1: move code and data onto the GPU:
The target construct and default data movement

Host thread
Generating Task

Initial task

Target task

with openmp ("target"):
{
 target region,
can use A, B and N

}

Device Initial
thread

Host thread
waits for the

task region to
complete

A = numpy.ones(N)
B = numpy.ones(N) A, B and N

mapped to the
device

the arrays
A and B

mapped back to
the host

Based on figure 6.4 in Using OpenMP – The Next Step by van der Pas, Stotzer and Terboven, MIT Press, 2017

Scalars and numpy arrays are moved onto the
device by default before execution.

Only the arrays are moved back to the
host after the target region completes

83

Step 2: Map loop iterations onto the GPU’s SIMD lanes
@njit
def main():
 N = 1024
 A = numpy.ones(N)
 B = numpy.ones(N)

 with openmp ("target "):
 with openmp ("loop"):
 for i in range(N):
 A[i] += B[i]

The loop construct tells the compiler:
“this loop will execute correctly if

the loop iterations run in any order.
You can safely run them

concurrently. And the loop-body
doesn’t contain any OpenMP

constructs. So do whatever you
can to make the code run fast”

84

The loop construct is a declarative construct. You
tell the compiler what you want done but you DO
NOT tell it how to “do it”. This is new for OpenMP

Step 2: Map loop iterations onto the GPU’s SIMD lanes
@njit
def main():
 N = 1024
 A = numpy.ones(N)
 B = numpy.ones(N)

 with openmp ("target "):
 with openmp ("loop"):
 for i in range(N):
 A[i] += B[i]

85

1. Variables created in host memory.

2. Scalar N and arrays A and B are copied
to device memory. Execution transferred to

device.

3. For-loop index variables (such as i) are
private in openmp regions

4. Loop iterations define the index space,
work-items, and work-groups.

5. After the OpenMP construct, arrays A
and B are copied from device memory

back to the host. Host resumes execution.

Difference from OpenMP/C: PyOMP only has NumPy arrays, which carry size
information. So, PyOMP arrays sent in full by default ... as it is with C static-arrays.

Loop Parallelism code naturally maps onto the CPU

86

from numba import njit
import numpy as np
from numba.openmp import openmp_context as openmp

@njit(fastmath=True)
def dgemm(iterations,N):

 # allocate and initialize numpy arrays
 # A, B and C of size N by N. <<< code not shown>>>

 with openmp("parallel for private(j,k)"):
 for i in range(N):
 for k in range(N):
 for j in range(N):
 C[i][j] += A[i][k] * B[k][j]

OpenMP constructs managed through
the with context manager.

Create a team of threads. Map loop iterations onto them

• parallel: creates a team of threads
• for: maps loop iterations onto threads.
• private(j,k): each threads gets its own j and k variables
• Loop control index of a parallel for (i) is private to each thread.

Loop Parallelism code naturally maps onto the CPU

87

from numba import njit
import numpy as np
from numba.openmp import openmp_context as openmp

@njit(fastmath=True)
def dgemm(iterations,N):

 # allocate and initialize numpy arrays
 # A, B and C of size N by N. <<< code not shown>>>

 with openmp(”target teams loop collapse(2) private(j)"):
 for i in range(N):
 for k in range(N):
 for j in range(N):
 C[i][j] += A[i][k] * B[k][j]

OpenMP constructs managed through
the with context manager.

Map the loop onto a 2D index space … the
loop body defines the kernel function

• target: map execution from the host onto the device
• teams loop: Map kernel instances onto PEs inside the compute units
• collapse(2): combine following two loops into a single iteration space.
• private(j): each threads gets its own j variable
• Indices of parallelized loops (i,k) are private to each thread.

PE: processing element. The finest-grained processing element inside a GPU. Also known as a SiMD lane or CUDA-core.

Implicit data movement covers a small subset of
the cases you need in a real program.

To be more general … we need to manage data
movement explicitly

88

Implicit data movement

• Previously, we described the rules for implicit data movement … N, A and B moved to the GPU on
entry to the target construct. A and B moved to the CPU on exit from the target construct.

• Notice that in this case, B is not changed on the GPU … moving it is a waste of resources

@njit
def main():
 N = 1024
 A = numpy.ones(N)
 B = numpy.ones(N)

 with openmp ("target"):
 for i in range(N):
 A[i] += B[i]

89

Controlling data movement with the map clause

@njit
def main():
 N = 1024
 A = numpy.ones(N)
 B = numpy.ones(N)

 with openmp ("target map(tofrom: A) map(to: B)"):
 for i in range(N):
 A[i] += B[i]

map(tofrom: A) Map data at the
start and end of target region.

map(to: B) map data at the start
of target region but NOT at the
end.

90

We use the term “map” since depending on the detailed memory architecture of the CPU
and the GPU, data may be in a shared address space so copying may not be needed.

PyOMP array notation

• When mapping data arrays, if you only give the array name then PyOMP
transfers the entire array (using the NumPy array metadata to determine the size)

• To transfer less than the full array, the array section syntax can be used
– array_name[begin:end]
– This follows Python/NumPy slicing syntax where begin is inclusive but end is exclusive.

A[N:M]. In set notation implies elements [N:M)
– Multi-dimensional arrays work as expected when transferred in full. Currently PyOmp doesn’t

support array-section syntax for multi-dimensional arrays.

91

C Difference: In C, arrays are usually dynamically allocated and referenced through a pointer. You
must use array-section syntax to move data. In C, array-syntax is “(initial-offset: number-of-items)”.
Fortran uses “begin:end” syntax (as Python does), but the ending index is inclusive (i.e., [begin:end]).

Controlling data movement: the map clause
– map(to:list): On entering the region, variables in the list are initialized on the device

using the original values from the host (host to device copy).
– map(from:list): At the end of the target region, the values from variables in the list are

copied into the original variables on the host (device to host copy). On entering the
region, the initial value of the variables on the device is not initialized.
– map(tofrom:list): the effect of both a map-to and a map-from (host to device copy at

start of region, device to host copy at end).
– map(alloc:list): On entering the region, data is allocated and uninitialized on the device.
– map(list): equivalent to map(tofrom:list).

92

When applied to an array, the mapping mode applies only to the array’s data. Array metadata is always
transferred as to and no operations which would change the metadata (e.g., resize) are permitted.

Note: Data
movement is
defined from

the
perspective of

the host.

@njit
def main():

a = numpy.ones(N)
b = numpy.ones(N)
c = numpy.empty(N)
with openmp ("target teams loop map(to: a,b) map(tofrom: c)"):

for i in range(N):
c[i] = a[i] + b[i]

Commonly used clauses on target and loop constructs

• The basic construct* is:
with openmp ("target [clause[[,]clause]...]"):
 with openmp ("loop [clause[[,]clause]...]"):
 for-loops

• The most commonly used clauses are:
– map(to | from | tofrom list) ß default is tofrom
– private(list) firstprivate(list) lastprivate(list) shared(list)
– behave as data environment clauses in the rest of OpenMP, but note values are only created or copied into the

region, not back out “at the end”.
– reduction(reduction-identifier : list)
– behaves as in the rest of OpenMP

– collapse(n)
– Combines loops before the distribute directive splits up the iterations between teams

93

Going beyond simple vector addition …

Using OpenMP for GPU application
programming … the heat diffusion problem

5-point stencil: the heat program

• The heat equation models changes in temperature over time.

• We’ll solve this numerically on a computer using an explicit finite difference discretisation.
• 𝑢 = 𝑢 𝑡, 𝑥, 𝑦 is a function of space and time.
• Partial differentials are approximated using diamond difference formulae:

𝜕𝑢
𝜕𝑡 ≈

𝑢 𝑡 + 1, 𝑥, 𝑦 − 𝑢 𝑡, 𝑥, 𝑦
𝑑𝑡

𝜕!𝑢
𝜕𝑥! ≈

𝑢 𝑡, 𝑥 + 1, 𝑦 − 2𝑢 𝑡, 𝑥, 𝑦 + 𝑢(𝑡, 𝑥 − 1, 𝑦)
𝑑𝑥!

– Forward finite difference in time, central finite difference in space.

𝜕𝑢
𝜕𝑡 − 𝛼∇

!𝑢 = 0

95

5-point stencil: the heat program

• Given an initial value of 𝑢, and any boundary conditions, we can calculate the value of 𝑢 at time
t+1 given the value at time t.

• Each update requires values from the north, south, east and west neighbours only:

• Computation is essentially a weighted average of each cell and its neighbouring cells.
• If on a boundary, look up a boundary condition instead.

96

How do we know the answer is correct?
The Method of Manufactured Solution

• Stencil codes are notoriously difficult to know if the answer is “correct”.

• Analytic solutions hard to come by:
– It’s why you’re using a computer to solve the equation approximately after all!

• Method of Manufactured Solution (MMS) is a way to help determine if the code does the correct
thing.

• An approach often used to find errors in CFD codes and check convergence properties.

97

Method of Manufactured Solution

• Choose a function for 𝑢(𝑡, 𝑥, 𝑦), substitute into the equation and work through the algebra.

• Its easier if the differential equation evaluates to zero so we don’t need to consider a right-hand
side to the equation.

• 𝑢 0, 𝑥, 𝑦 gives the initial conditions.

• Can evaluate boundary conditions, e.g. bottom boundary 𝑢 0,0, 𝑦

• Because 𝑢 is known for all timesteps (it was chosen!), the exact solution is known.

• Compare the computed solution to the known 𝑢 to compute an error.

• Any differences come from approximations in the method, or a bug in your code.

98

Method of Manufactured Solution

• For the problem of length 𝑙, choose 𝑢:

𝑢 𝑡, 𝑥, 𝑦 = 𝑒
!"#$"%

&" sin "#
$
sin "%

$

• Boundary conditions: 𝑢 is always zero on the boundaries

• Initial value of grid is then 𝑢 0, 𝑥, 𝑦 = sin "#
$
sin "%

$

0 200 400 600 800 10000
200

400
600

800
10000

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

x
y

u

99

Heat diffusion problem …

Loop over time steps

for _ in range(nsteps):

solve over spatial domain for step t

solve(n, alpha, dx, dt, u, u_tmp)

Array swap to get ready for next step

u, u_tmp = u_tmp, u

100

Array-swap on the host works. Why?

u and u_tmp are references to structs that
hold NumPy metadata and a data pointer.

 The OpenMP runtime creates a device
struct at the target enter data construct

and maintains a fixed association between
host and device struct references.

 Hence, as you swap the array variables,
the references to the struct addresses in

device memory are swapped.

Heat diffusion problem …

Loop over time steps

for _ in range(nsteps):

solve over spatial domain for step t

solve(n, alpha, dx, dt, u, u_tmp)

Array swap to get ready for next step

u, u_tmp = u_tmp, u

• Our program takes two optional command
line arguments: <ncells> <nsteps>
– E.g. ./heat 1000 10
– 1000x1000 cells, 10 timesteps (the

default problem size).

• If no command line arguments are
provided, it uses a default:
– These two commands both run the

default problem size of 1000x1000
cells, 10 timesteps.

– ./heat
– ./heat 1000 10

• A sensible bigger problem is 8000 x 8000
cells and 10 timesteps.

101

5-point stencil: solve kernel

@njit
def solve(n, alpha, dx, dt, u, u_tmp):

Finite difference constant multiplier
r = alpha * dt / (dx ** 2)
r2 = 1 - 4 * r
Loop over the nxn grid

for i in range(n):
for j in range(n):

Update the 5-point stencil.
Using boundary conditions on the edges of the domain.
Boundaries are zero because the MMS solution is zero there.
u_tmp[j, i] = (r2 * u[j, i] +

(u[j, i+1] if i < n-1 else 0.0) +
(u[j, i-1] if i > 0 else 0.0) +
(u[j+1, i] if j < n-1 else 0.0) +
(u[j-1, i] if j > 0 else 0.0))

102

25,000x25,000 grid for 10 time steps
* Xeon Platinum 8480+: 67.6 secs

Solution: parallel stencil (heat)
@njit
def solve(n, alpha, dx, dt, u, u_tmp):

"""Compute the next timestep, given the current timestep"""

Finite difference constant multiplier
r = alpha * dt / (dx ** 2)
r2 = 1 - 4 * r
with openmp ("target loop collapse(2) map(tofrom: u, u_tmp)"):

Loop over the nxn grid
for i in range(n):

for j in range(n):
u_tmp[j, i] = (r2 * u[j, i] +

(u[j, i+1] if i < n-1 else 0.0) +
(u[j, i-1] if i > 0 else 0.0) +
(u[j+1, i] if j < n-1 else 0.0) +
(u[j-1, i] if j > 0 else 0.0))

103

25,000x25,00 grid for 10 time steps
• Xeon Platinum 8480+: 67.6 secs
• Nvidia V100: 22.6 secs

Data Movement dominates…

Loop over time steps

for _ in range(nsteps):

solve over spatial domain for step t

solve(n, alpha, dx, dt, u, u_tmp)

Array swap to get ready for next step

u, u_tmp = u_tmp, u

104

Typically, many time steps!

solve() function uses this context:
with openmp ("target loop collapse(2) map(tofrom: u, u_tmp)"):

For each iteration, copy from device
(2*N2)*sizeof(TYPE) bytes

25,000x25,00 grid for 10 time steps
• Xeon Platinum 8480+: 67.6 secs
• Nvidia V100: 22.6 secs

• We need to keep data resident on the device between target regions
• We need a way to manage the device data environment across iterations.

Target data directive
• The target data construct creates a target data region

… use map clauses for explicit data management

one or more target
regions work within the

target data region

with openmp ("target data map(to: A, B) map(from: C)"):

with openmp ("target"):
 {do lots of stuff with A, B and C}

{do something on the host}

with openmp ("target"):
 {do lots of stuff with A, B and C}

Data is mapped onto the
device at the beginning of

the construct

Data is mapped back to
the host at the end of the

target data region
105

Target enter/exit data constructs

• The target data construct requires a structured block of code.
– Often inconvenient in real codes.

• Can achieve similar behavior with two standalone directives:
with openmp ("target enter data map(…"):
with openmp ("target exit data map(…"):

• The target enter data maps variables to the device data environment.
• The target exit data unmaps variables from the device data environment.
• Future target regions inherit the existing data environment.

106

Target enter/exit data example

@njit
def main():
 N = 1024
 A = numpy.arange(N)

 with openmp ("target enter data map(to: A)"):
 pass

 with openmp ("target teams loop"):
 for i in range(N):
 A[i] = A[i] * A[i]

 with openmp ("target exit data map(from: A)"):
 pass

107

pass is a python
keyword indicating an
empty block of code.

Target enter/exit data details

• with openmp ("target enter data clause[[[,]clause]...]"):

• Creates a target task to handle data movement between the host and a device.

• clause is one of the following:
– if(scalar-expression)
– device(integer-expression)
– map (map-type: list)

108

Solution: Reference swapping in action
with openmp ("target enter data map(to: u, u_tmp)"):

pass

for _ in range(nsteps):

solve(n, alpha, dx, dt, u, u_tmp);

Array swap to get ready for next step
 u, u_tmp = u_tmp, u

with openmp ("target exit data map(from: u)"):
pass

Copy data to device
before iteration loop

Change solve() routine to remove map clauses:
with openmp ("target loop collapse(2)”)

Copy data from device
after iteration loop

109

25,000x25,00 grid for 10 time steps
• Xeon Platinum 8480+ default data movement: 67.6 secs
• Nvidia V100 default data movement: 22.6 secs
• Nvidia V100 target enter/exit: 1.2 secs

Target update directive
• You can update data between target regions with

the target update directive.

with openmp ("target data map(to: A, B) map(from: C)"):

with openmp ("target"):
 {do lots of stuff with A, B and C}

with openmp ("target update from(A)"):
 {do something on the host}

with openmp ("target update to(A)"):
 pass

with openmp ("target"):
 {do lots of stuff with A, B and C}

map A on the
device to A on the
host.

map A on the host to A on the
device. Note: openmp
context body cannot be
empty so use “pass”

Set up the data
region ahead of
time.

Note: update directive has the transfer direction as the clause: e.g. update to(…)
Compare to map clause with direction inside: map(to: …) 110

Data movement summary

• Data transfers between host/device occur at:
– Beginning and end of target region
– Beginning and end of target data region
– At the target enter data construct
– At the target exit data construct
– At the target update construct

• Can use target data and target enter/exit data to reduce redundant transfers.

• Use the target update construct to transfer data on the fly within a target data
region or between target enter/exit data directives.

111

The loop construct is great, but sometimes you
want more control.

112

Our host/device Platform Model and OpenMP

Processing
Element

Device

……
…

…
……

…
…

……
…

…
……

…

Host

Compute Unit

Target
construct to
get onto a

device

Teams construct to create a
league of teams with one team of

threads on each compute unit.

Distribute construct to assign
blocks of loop iterations to teams.

Parallel for simd
to run each block
of loop iterations

on the processing
elements

113

teams and distribute constructs

• The teams construct
– Similar to the parallel construct
– It starts a league of thread teams
– Each team in the league starts as one initial thread – a team of one
– Threads in different teams cannot synchronize with each other
– The construct must be “perfectly” nested in a target construct

• The distribute construct
– Similar to the for construct
– Loop iterations are workshared across the initial threads in a league
– No implicit barrier at the end of the construct
– dist_schedule(kind[, chunk_size])
– If specified, scheduling kind must be static
– Chunks are distributed in round-robin fashion in chunks of size chunk_size
– If no chunk size specified, chunks are of (almost) equal size; each team receives at least one chunk

114

Create a league of teams and distribute a loop among them

• teams construct
• distribute construct

• Transfer execution control to MULTIPLE device initial threads
• Workshare loop iterations across the initial threads.

host thread
device initial

threads

teams

with openmp ("target"):
with openmp ("teams"):
with openmp ("distribute"):
for i in range(N):

 …

115

Create a league of teams and distribute a loop among them
and run each team in parallel with its partition of the loop

• teams distribute
• parallel for

• Transfer execution control to MULTIPLE device initial threads
– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team
– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread
teams

116

with openmp ("target"):
with openmp ("teams"):
with openmp ("distribute"):
with openmp ("parallel for"):
for i in range(N):

 …

Create a league of teams and distribute a loop among them
and run each team in parallel with its partition of the loop

• loop

• Transfer execution control to MULTIPLE device initial threads
– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team
– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread
teams

117

with openmp ("target"):
with openmp ("teams"):
with openmp ("loop"):
for i in range(N):

 …

Create a league of teams and distribute a loop among them
and run each team in parallel with its partition of the loop

• teams distribute
• parallel for

• Transfer execution control to MULTIPLE device initial threads
– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team
– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread
teams

118

with openmp ("target"):
with openmp ("teams num_teams(3) thread_limit(5)"):
with openmp ("distribute"):
with openmp ("parallel for"):
for i in range(N):

 …

Explicit control
of number and
size of teams

Create a league of teams and distribute a loop among them
and run each team in parallel with its partition of the loop

• Combined construct

• Transfer execution control to MULTIPLE device initial threads
– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team
– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread
teams

119

with openmp ("target teams loop"):
 for i in range(N):
 …

Create a league of teams and distribute a loop among them
and run each team in parallel with its partition of the loop

• teams distribute
• parallel for

• Transfer execution control to MULTIPLE device initial threads
– Workshare loop iterations across the initial threads (teams distribute)

• Each initial thread becomes the primary* thread in a thread team
– Workshare loop iterations across the threads in a team (parallel for)

host thread

device thread
teams

120

with openmp ("target"):
with openmp ("teams distribute"):
for i in range(N):

 with openmp ("parallel for"):
 for j in range(M):
 …

Works with
nested loops

as well

There is MUCH more … beyond what have time to cover
• Do as much as you can with a simple loop construct. It’s portable and as

compilers improve over time, it will keep up with compiler driven performance
improvements.

• But sometimes you need more:
– Control over number of teams in a league and the size of the teams
– Explicit scheduling of loop iterations onto the the teams
– Management of data movement across the memory hierarchy: global vs. shared vs. private …
– Calling optimized math libraries
– Multi-device programming
– Asynchrony

• Ultimately, you may need to master all those advanced features of GPU
programming. But start with loop. Start with how data on the host maps onto the
device (i.e. the GPU). Master that level of GPU programming before worrying
about the complex stuff.

121

Outline
• Introducing parallel computing and PyOMP

• The PyOMP system

• PyOMP and multithreading (parallelism for the CPU)

• GPU programming with PyOMP

• Other approaches to parallelism in Python.

• Wrap-up and Q&A

122

Break

https://github.com/Python-for-HPC/PyOMP

PyOMP is great … but it is a research system
still under development.

Let’s talk about parallel programming
models and ask the question … what are the

key mainstream programming models in
Python

123

But lets first look at programming models from the early
days of parallel computing.

ABCPL
ACE
ACT++
Active messages
Adl
Adsmith
ADDAP
AFAPI
ALWAN
AM
AMDC
AppLeS
Amoeba
ARTS
Athapascan-0b
Aurora
Automap
bb_threads
Blaze
BSP
BlockComm
C*.
"C* in C
C**
CarlOS
Cashmere

C4
CC++
Chu
Charlotte
Charm
Charm++
Cid
Cilk
CM-Fortran
Converse
Code
COOL
CORRELATE
CPS
CRL
CSP
Cthreads
CUMULVS
DAGGER
DAPPLE
Data Parallel C
DC++
DCE++
DDD
DICE.
DIPC

DOLIB
DOME
DOSMOS.
DRL
DSM-Threads
Ease .
ECO
Eiffel
Eilean
Emerald
EPL
Excalibur
Express
Falcon
Filaments
FM
FLASH
The FORCE
Fork
Fortran-M
FX
GA
GAMMA
Glenda
GLU
GUARD

P4-Linda
Glenda
POSYBL
Objective-
Linda
LiPS
Locust
Lparx
Lucid
Maisie
Manifold
Mentat
Legion
Meta Chaos
Midway
Millipede
CparPar
Mirage
MpC
MOSIX
Modula-P
Modula-2*
Multipol
MPI
MPC++
Munin

Nano-Threads
NESL
NetClasses++
Nexus
Nimrod
NOW
Objective
Linda
Occam
Omega
OpenMP
Orca
OOF90
P++
P3L
p4-Linda
Pablo
PADE
PADRE
Panda
Papers
AFAPI.
 Para++
Paradigm
Parafrase2
Paralation

QPC++
PVM
PSI
PSDM
Quake
Quark
Quick
Threads
Sage++
SCANDAL
 SAM
pC++
SCHEDULE
SciTL
POET
SDDA.
SHMEM
SIMPLE
Sina
SISAL.
distributed
smalltalk
SMI.
SONiC
Split-C.
SR

Third party names are the property of their owners.

HAsL.
Haskell
HPC++
JAVAR.
HORUS
HPC
IMPACT
ISIS.
JAVAR
JADE
Java RMI
javaPG
JavaSpace
JIDL
Joyce
Khoros
Karma
KOAN/Fortran-S
LAM
Lilac
Linda
JADA
WWWinda
ISETL-Linda
ParLin
Eilean

Parallel-C++
Parallaxis
ParC
ParLib++
ParLin
Parmacs
Parti
pC
pC++
PCN
PCP:
PH
PEACE
PCU
PET
PETSc
PENNY
Phosphorus
POET.
Polaris
POOMA
POOL-T
PRESTO
P-RIO
Prospero
Proteus

Sthreads
Strand.
SUIF.
Synergy
Telegrphos
SuperPascal
TCGMSG.
Threads.h++.
TreadMarks
TRAPPER
uC++
UNITY
UC
V
ViC*
Visifold V-
NUS
VPE
Win32
threads
WinPar
WWWinda
 XENOOPS
XPC
Zounds
ZPL

Parallel programming environments in the 90’s

A warning I’ve
been making for
the last 20 years

Parallel programming environments: post-90s

• The application community (with leadership from the Accelerated Strategic Computing Initiative)
pushed for convergence around a small number of programming languages:
– For clusters and massively parallel computers: MPI
– For shared memory systems: OpenMP

• With only two languages, vendors could focus on engineering high quality solutions … rather than
chasing the latest fad.

• All was good until ~2006 when fully programmable GPUs came along. We are still sorting out
what will become the converged solution …
– Cuda, Sycl, OpenACC, OpenMP ß hopefully the open standard Sycl will win, but its too early to say

How about Parallel programming with Python
dispy
Delegate
forkmap
forkfun
Jobibppmap
POSH
 pp
pprocess
processing
PyCSP
PyMP
Ray
remoteD
torcp
VecPy
batchlib
Celery
Charm4py
PyCUDA
Ramba

Dask
Deap
disco
dispy
DistributedPYthon
exec_proxy
execnet
iPython
job_stream jug
mi4py
NetWorkSpaces
PaPy
papyrus
PyCOMPSs
PyLinda
pyMPI
pypar
multiprocessing
PyOpenCL

pyPastSet
pypvm
pynpvm
Pyro
Ray
Rthread
 ScientificPython.BSP
Scientific.DistrubedComputing.MasterSlave
Scientific.MPI
SCOOP
seppo
PySpark
Star-P
superrpy
torcpy
StarCluster
dpctl
arkouda
PyOMP
dpnp

Building on the list at https://wiki.python.org/moin/ParallelProcessing

How about Parallel programming with Python
dispy
Delegate
forkmap
forkfun
Jobibppmap
POSH
 pp
pprocess
processing
PyCSP
PyMP
Ray
remoteD
torcp
VecPy
batchlib
Celery
Charm4py
PyCUDA
Ramba

Dask
Deap
disco
dispy
DistributedPYthon
exec_proxy
execnet
iPython
job_stream jug
mi4py
NetWorkSpaces
PaPy
papyrus
PyCOMPSs
PyLinda
puMPI
pypar
multiprocessing
PyOpenCL

pyPastSet
pypvm
pynpvm
Pyro
Ray
Rthread
 ScientificPython.BSP
Scientific.DistrubedComputing.MasterSlave
Sciuentific.MPI
SCOOP
seppo
PySpark
Star-P
superrpy
torcpy
StarCluster
dpctl
arkouda
PyOMP
dpnp

Building on the list at https://wiki.python.org/moin/ParallelProcessing

We are still early (compared to HPC) in the evolution of parallel programming
models for Python.

Hopefully, soon the python application community will come together and
help us narrow down to a handful of systems to focus on.

That would allow vendors to carry out HW/SW optimization and focus on
quality over ”chasing fads”.

Popular python parallel Programming models

129

We compared many python parallel programming models with google-trends (which
tracks web searches)

These four systems are popular and (in our opinion) are the key systems to consider

Dask

Numba
Ray

Key Parallel Programming Models for Python … U.S. last 12 months

G
oo

gl
e

Tr
en

d
pe

rc
en

ta
ge

s

MPI4py

Popular python parallel Programming models

130
PySpark Dask Numba MPI4py Ray

Leading Parallel Programming Models for Python … U.S. last three months

7
da

y
sl

id
in

g
av

er
ag

e
or

 G
oo

gl
e

Tr
en

d
pe

rc
en

ta
ge

s

We compared
many python
parallel
programming
models with
google-trends
(which tracks web
searches)

Our best guess …
these are the top
five)

PySpark is popular and useful for parallel algorithms that map onto the map
reduce pattern. We didn’t explore it in this presentation since PySpark is more
of a data analytics pipeline than a parallel programming model.

Dask

131

DASK

132
Source: https://docs.dask.org/en/latest/

Task Graph Schedulers
(execute task graph)Dask API (define tasks)

• Parallel and distributed computing library for Python
• Client / driver submits tasks to Dask cluster (set of worker processes on one or

more physical nodes)

High level APIs for
data analytics and
data-parallelism

Low level APIs to
manage tasks
explicitly

Dask Delayed – lazy, remote functions

• Define a remote function:
 @dask.delayed
 def add_one(i):

 time.sleep(1)

 return i+1

• Calling remote function, getting results:
 futurevalue = add_one(7)

 v = futurevalue.compute()

Decorator turns normal
Python function into Dask
lazy function

Returns immediately after
creating task in task graph

Triggers execution of task graph
Returns value 8 after about
1 second when task completes

133

Dask – parallel and chaining calls

• Parallel execution:
 fv = [add_one(i) for i in range(5)]

 v = sum(fv)

 v = v.compute()

• Chained execution:
 v = 2
 for x in range(5):

 v = add_one(v)

 v = v.compute()

Returns immediately with
a list of “futures”

Returns value 15
after about 1 second

These return immediately

Returns value 7 after
about 5 seconds

134

Standard Python sum function;
Returns immediately with a future

Chaining forms DAGs of Tasks

A, B, C, and D are delayed functions
u = A(x)
v = B(u)
w = C(u)
y = D(v, w)
y = y.compute()

135

Dask Futures

• Same concept, but eager asynchronous execution, different syntax

 def add_one(i):
 time.sleep(1)

 return i+1

 future = client.submit(add_one, 3)

 result = future.result()

• Note: no decorator, explicit job submission
• Can pass futures as parameters to chain functions/construct DAGs

Submits add_one(3) for
distributed execution

Returns value 4 in about 1 second

Dask Array

• High-level API provides distributed, Numpy-like array interface
• Arrays partitioned into chunks – serves as unit of storage and computation
• Arrays can be disk-backed, and thus larger than memory
• Array operations are lazy, internally constructing DAG of operations
• Explicit triggering of execution using compute() method

– Parallel execution of relevant portions of task graph on Dask cluster
– Computation at chunk granularity
– Only necessary chunks computed for requested result

Dask Array example

• A = da.ones((1000,1000),chunks=(1000,500))
– Constructs 1000x1000 array, with two chunks of size 1000x500

• B = da.sum(A, axis=0)
– Sum along axis 0 à should produce a

1000 element array
• B.compute()
– Triggers computation of DAG:
– Parallel execution on chunks

• B[0].compute()
– Only compute chunks needed for B[0]

• Typically, Dask will not materialize a derived array
– Keeps the DAG that describes how to compute it
– May need to recompute (but may cache results as well)
– Optimized for computations on disk-based data that won’t fit in memory

• Persist() method to force computation, materialization of an array

ones

ones

sum

sum

Sum
aggregate

ones sum Sum
aggregate

Multi-tasking, Pi program with Dask
import numpy as np
import dask

@dask.delayed
def calc_pi(nstart, nstop, step):
 start = (nstart+0.5)*step
 stop = (nstop-0.5)*step
 nsteps = nstop-nstart
 X = np.linspace(start, stop, num=nsteps)

Y = 4.0 / (1.0 + X*X)
 return np.sum(Y)

def piFunc(NumSteps, NumTasks):
 step = 1.0/NumSteps
 s = 0
 for i in range(NumTasks):
 nstart = (i*NumSteps)//NumTasks
 nstop = ((i+1)*NumSteps)//NumTasks
 s = s + calc_pi(nstart, nstop, step)
 s = s.compute()
 return step*s

if __name__=="__main__":
 from dask.distributed import Client
 client = Client()
 pi = piFunc(100000000, 100)

Initialize dask “cluster” on local
machine; can provide address
to connect to remote cluster

Calculate over part of the range;
Written in Numpy vector style
Faster than Python loops, but use
memory for the arrays X, Y, temps

Start NumTasks tasks,
construct DAG of operations
computing sum

Trigger execution, wait for
completion, get result

Numba with ParallelAccelerator

140

Numba … C-like performance from Python code

• Numba is a JIT compiler. Maps a subset of python with numpy arrays onto LLVM
• Once code is JIT’ed into LLVM, all performance enhancements exposed at the level of LLVM

are directly available … result is performance that approaches that from raw C or Fortran
• Source code is pure python for maximum portability

• Just add the @jit decorator to enable numba for a function.

from numba import jit

@jit
def addit(A,B):
 return (A+B)

Numba jit comiler applied the first time a function is encountered. Caches the
code so subsequent calls to the function don’t run the jit step.

Numba defines elementwise functions called ufuncs

This generates the LLVM code and calls the addition ufunc to do an
elementwise add of A and B

• Numerous options in numba … we are barely scratching the surface
– @jit (nopython = true) tells the system to NOT use any python objects in the generated code. Can be much faster
– @jit(parallel = true) invoke parallel accelerator

Numba with ParallelAccelerator

• ParallelAccelerator has been Available in Numba since 2017.
• Let’s users parallelize their code with a one-line change, namely annotating their Numba “jit”

decorator with “parallel=True”
• Identifies operations in the code with concurrent semantics and executes them in parallel, making

full use of modern multi-core CPUs.
• Allows operations to be fused together and to eliminate temporaries which results in improved

cache utilization.
• Works for vector-style codes as well as explicitly parallel loops annotated with the prange keyword.

ParallelAccelerator

143

@numba.jit(nopython=True, parallel=True)
def logistic_regression(Y, X, w, iter):
 for i in range(iter):
 w -= np.dot(((1.0 / (1.0 + np.exp(-Y * np.dot(X, w))) - 1.0) * Y), X)
 return w

– Accelerates execution of Python applications by auto-parallelizing and optimizing numeric
operations

– Brings performance without rewriting code in “performance languages”

1 line change
6x better

performance

Y, X, and w are numpy arrays. Elementwise operations and dot
products are transparently mapped onto threads for parallel execution.

The Data Parallelism design pattern … the parallelism is expressed through the data .. Typically as functions
applied independently to the elements of data structures combined with collective ops (such as dot products).

Parallel Accelerator

144

Works with numba to JIT code that executes in parallel. It does the following:

1. Recognize parallelism.
• Pattern recognition of operations with concurrent semantics.

2. Represent parallelism.
• Numba’s parfor node – represents a strictly nested set of for loops known to

have no cross-iteration dependencies.
3. Optimizations.

• Fusion – combine compatible parfors together. Eliminates unnecessary
temporary arrays and traverses arrays only once for better cache utilization.

4. Run in parallel.
• Improves performance by leveraging multiple cores and vector instructions.

Transformation carried out for array-based
data parallelism

145

*

+

A

B

C
=

D

D = A * B + C

parfor i=1:n
 t[i]=A[i]*B[i]
parfor i=1:n
 D[i]=t[i]+C[i]

parfor i=1:n
 D[i]=A[i]*B[i]+C[i]

Recognize parallelism

Fuse loops

ParallelAccelerator – Softmax program

import numba

@numba.njit(parallel=True)
def sigArr(A):
 Amax = np.max(A)
 Ashift = A - Amax
 expAshift = np.exp(Ashift)
 Normalization = np.sum(expAshift)
 reciNorm = 1/Normalization
 sigma = expAshift*reciNorm
 return sigma

§ Same as the NumPy version.
§ np.max executed in one parallel

region.
§ Subtraction, exp, and sum fused

into one parallel region.
§ Ashift temporary eliminated.
§ expAshift * reciNorm the final

parallel region.

ParallelAccelerator: loop level parallelism

import numba

@numba.njit(parallel=True)
def pi():
 num_steps = 1000000
 step = 1.0 / num_steps
 the_sum = 0.0
 for i in numba.prange(num_steps):
 x = (0.5 + i) * step
 the_sum += 4.0 / (1.0 + x * x)
 pi = step * the_sum
 return pi

print(pi())

§ ParallelAccelerator includes parallel loops for
loop-level parallelism

§ The prange construct causes equal portions of
the iteration space from 0 to num_steps
distributed to each core.

§ The reduction (the_sum += …) recognized and
implemented safely and efficiently in parallel.

The Pi program

Running Parfors in Parallel

148

• Generate a Numba function (i.e., a generated ufunc or gufunc) with a loop nest corresponding to the
parfor’s loop nest.
• Adds a schedule argument that specifies which threads do which iterations.

• Add the body of the parfor inside the loop nest.
• Allocate a reduction array for each reduction (warner: scalers NOT in a reduction lead to data races).
• Initialize each thread’s reduction value from this array and write back to the array just before the end of

the parallel region.
• Generate code to perform final reduction across these arrays after parallel region.
• Execute gufunc using Numba’s existing parallel execution infrastructure.
• Scheduling:

• The default scheduler is equivalent to OpenMP static and divides multi-dimensional iteration space up into
approximately equal-sized hyperrectangles, one for each available core.

• Programmers may optionally specify a chunksize, which results in the equivalent of OpenMP dynamic
scheduling behavior.

Parfor optimizations

149

• Array analysis
• Called the “secret sauce” by Numba’s lead developer.
• Tracks integers and arrays to determine when two or more arrays must have a common dimension length.

• Fusion
• Parfors with equivalent nested loops are merged (under certain conditions).
• Equivalence determined by array analysis.
• Reduces looping overhead, minimizes passes over arrays (cache friendly), eliminates temporaries.

• Loop invariant code motion
• Operations not recursively dependent on loop indices moved before the loop.

• Allocation hoisting
• Allows allocation of space for arrays of the same size created by the loop body to be moved before the loop.

• Threads compute reductions locally and combined after the parallel region to get the final value.

150

How ParallelAccelerator fits into Numba

@njit

@vectorize

Parallel
Accelerator

NumPy
Function

Scalar Kernel

Sequential
Compiled

Code

Parallel
Compiled

Code

@njit (parallel=True)

Re-code
by hand

• Most of ParallelAccelerator could be
done manually using Numba’s
@vectorize or @guvectorize but
those APIs are very difficult to use,
are error prone, and time-consuming.

• ParallelAccelerator achieves this
performance with a one or two line
code change.

Recognizing Parallelism

151

The following patterns are recognized by ParallelAccelerator for parallel execution:
1. Implicit

• Element-wise operations: unary(+,-,~), binary(+,-,*/,//?,%,|,>>,^,&,**,//),
comparison(==,!=,<,<=,>,>=), NumPy ufuncs, user-defined DUFunc.

• NumPy reductions: sum, prod, min, max, argmin, argmax, mean, var, std.
• Array creation: zeros, ones, arrange, linspace, and random array create for all

available distributions.
• NumPy dot: matrix/vector or vector/vector.
• Array assignment.
• Functools.reduce.
• Stencil decorator.

2. Explicit
• prange, pndindex

152

Other ParallelAccelerator Technology

• Stencils are very common in scientific computing.
• ParallelAccelerator provides a productive stencil abstraction with automatic

parallelization.

@stencil
def jacobi_kernel(a):
 return 0.25 * (a[0,1] + a[0,-1] + a[-1,0] + a[1,0])

@numba.njit(parallel=True)
def run_jacobi(a):
 return jacobi_kernel(a)

11

15

28

24

33

8

12 12

17 17 19
21

28

66
71

19

0

10

20

30

40

50

60

70

80

Logistic
Regression

Pi Harris K-means Juliaset Mandelbrot Quant Blackscholes Kernel Density
Estimation

Gaussian Blur Geometric
Mean

Kernel Times Relative to Numba with parallel=True (lower is better)

Python 3.5

Numba (1-thread)

Numba (parallel=True)

Platinum 8180 (Skylake)
2-socket, 56 total cores
1.7GHz, no turbo

154

Performance

2120 85071387 337119813 179

ParallelAccelerator – Next steps
• Gradually add support for new NumPy functions or variants of existing NumPy functions supported
by Numba.

• Continues to add additional code recognition patterns that enable it to infer the size of arrays
which in turn enable additional fusion opportunities.

• Long term, MLIR dialects are being developed that express tensor operations with concurrent
semantics. These dialects will then be lowered to existing MLIR dialects that also have support for
not only the kind of fusion currently supported by ParallelAccelerator but also polyhedral fusion. The
MLIR pipeline also includes functionality to lower these operations with concurrent semantics not
only to multi-core CPUs but also various types of accelerators including GPUs.

• From the user perspective, nothing will change but we hope to incorporate this new MLIR-based
compilation pipeline into Numba which will provide a superset of the existing parallelization
opportunities as well as providing better backend code generation.

MPI4py

156

Execution Model: Communicating Sequential Processes (CSP)
• A collection of processes are launched when the program begins to execute.

• The processes interact through explicit communication events. All aspects of coordinating the processes (i.e.
synchronization) are expressed in terms of communication events.

• The CSP model does not interact with any concurrency issues inside a process … to the CSP model, they
processes appear to be sequential.

157

• CSP is very general, but in practice, it is paired with
the SPMD pattern

• Message passing systems are the class of APIs used
to express CSP execution models.

• MPI is the dominant message passing library … has
been since the mid 1990’s.

• It has been extended to go well beyond CSP, but
frankly few applications developers use those
features.

MPI4py

• An MPI instance is initialized on import

• An MPI instance is finalized when all python processes
in the program execution complete

• To launch a single mpi program on multiple nodes of a
system (distributed memory) use the program mpirun
where the flag –np is used to select how many copies
of the program to run

158

from mpi4py import MPI

print(“Hello World!”)

> mpirun –np 3 python helloMPI.py

 Hello World!
 Hello World!
 Hello World!

• MPI4py: python binding to MPI

MPI4py: Communicators, ranks and number of processes

• A communicator is used to organize MPI
operations … it is a communication context and
a process group.

• If Np is the number of processes (the size of the
process group), the rank is a unique number
ranging from 0 to (Np-1). We use the rank as an
ID for processes.

159

from mpi4py import MPI

comm = MPI.COMM_WORLD
Np = comm.Get_size()
ID = comm.Get_rank()

print(“Hello World from {0} or {1} \n”.format(ID, Np))

> mpirun –np 3 python helloMPI.py

 Hello World from 1 of 3
 Hello World from 0 of 3
 Hello World from 2 of 3

• MPI in practice is all about the SPMD pattern … i.e., run the same program on each
node and use the rank (ID) and number of processes to split up the work.

MPI4py: passing messages

• MPI4py supports two types of communication: one for
generic objects, and another for buffers in
contiguous memory (such as numpy arrays).
– Lower case function names: Generic objects
– Uppercase function names: Buffer objects

• Buffer objects are much more efficient so if you are
working with numpy arrays, use the Buffer object
interface.

160

from mpi4py import MPI
comm = MPI.COMM_WORLD
 Np = comm.Get_size()
 ID = comm.Get_rank()

if (myrank == 0):
 a = [“I”,”love”,”MPI4py”]
 comm.send(a, dest = 1, tag=42)

else
 a_recv = comm.recv(source=0, tag=42)
 print(“ I am proc {0} and {0}\n”.format(a_recv))

> mpirun –np 2 python helloMPI.py

 I am proc 1 and ['I', 'love', 'MPI4py']

• Processes coordinate their execution by passing messages … communication and synchronization
combined through message passing function.

MPI Communication
• Blocking Communication

– Python objects
– comm.send(sendobj, dest=1, tag=0)
– recvobj = comm.recv(None, src=0, tag=0)

– Numpy buffer
– comm.Send([sendarray, count, datatype], dest=1, tag=0)
– comm.Recv([recvarray, count, datatype], src=0, tag=0)

• Nonblocking Communication
– Python objects
– reqs = comm.isend(obj, dest=1, tag=0)
– reqr = comm.irecv(src=0, tag=0)
– reqs.wait()
– data = reqr.wait()

– Numpy buffer
– reqs = comm.Isend([sendarray, count, datatype], dest=1, tag=0)
– reqr = comm.Irecv([recvarray, count, datatype], src=0, tag=0)
– MPI.Request.Waitall([reqs, reqr])

161

We show these message passing routines for the
case of node 0 sending a message to node 1

The parameter tag is used to prevent confusion
between similar messages sent between pairs of
node. It can take any integer type you wish … in
this case 0

You can use type discovery in Python and write the triple
[array, count, type] as just the array … so this becomes:

Reqr = comm.Irecv(recvarray, src=0, tag=0)

The parameter datatype is the MPI datatype which includes
MPI.INT, MPI.FLOAT, MPI.DOUBLE, MPI.CHAR and others

count is the number of items of type datatype in the buffer

MPI4py: Reductions

• Program sums area under the curve to compute
an integral that ideally is equal to pi

• We use a cyclic distribution of the loop to spread
out the work among the processes

• Reduction to compute the final answer

162

from mpi4py import MPI
import numpy as np

comm = MPI.COMM_WORLD
id = comm.Get_rank()
numb = comm.Get_size()
nsteps = 1000000

print(' Rank: ',id, ' numb: ',numb)

step = 1.0/nsteps
sum = np.array(0.0,'d')
pi = np.array(0.0,'d')
for i in range (id,nsteps,numb):
 x = step*(i+0.5)
 sum = sum + 4.0/(1.0 + x*x)

comm.Reduce(sum, pi, op=MPI.SUM, root=0)

if (id == 0):
 pi = pi * step
 print(' pi is :', pi)

> mpirun –np 4 python piMPI.py

 pi is 3.1415926535899388

• MPI includes all the usual collective communication routines (gather, scatter,
broadcast, and more). The most commonly used is reduction.

Python multiprocessing

163

Python Multiprocessing

• Fork multiple processes from Python
• Useful to overcome GIL limitation, utilize multi-core machines
• Forked child processes run target function, with a set of arguments
• Multiple communication, coordination options:

– Pipes, Queues
– Shared memory arrays
– Semaphores, mutexes

• Common patterns: fork-join, pipelines

Multiprocessing code

import numpy as np

import multiprocessing as mp

def calc_pi(nstart, nstop, step, i, outArr):
 out = np.frombuffer(outArr, dtype=np.float64)
 start = (nstart+0.5)*step

 stop = (nstop-0.5)*step
 nsteps = nstop-nstart

 X = np.linspace(start, stop, num=nsteps)
Y = 4.0 / (1.0 + X*X)

 out[i] = np.sum(Y)

def piFunc(NumSteps, NumProcs):

 step = 1.0/NumSteps
 outArr = mp.Array('d',NumProcs,lock=False)
 out = np.frombuffer(outArr, dtype=np.float64)

 procs = []
 for i in range(NumProcs):

 nstart = (i*NumSteps)//NumProcs
 nstop = ((i+1)*NumSteps)//NumProcs
 procs.append(mp.Process(target=calc_pi,

 args=(nstart, nstop, step, i, outArr)))
 for p in procs: p.start()

 for p in procs: p.join()
 return step * sum(out)

pi = piFunc(100000000,50)

Wrap shared memory buffer as numpy
array object

Compute over part of range; written in
numpy vector style; could use Python
loops (slower, less memory), or Numba
Store result in position i of output array

Construct processes to perform
computation over parts of total range
Fork, Join pattern
Final reduction on shared memory array

Construct shared memory array,
Wrap as numpy array object

Pi program
• Single dual-socket server
– 2x Intel® Xeon® E5-2699v3 @ 2.3Ghz (36 cores, 72 hypercores, total)
– 128GB RAM

• Mean, stddev of 10 runs (unless stated otherwise), after 1 warmup (in seconds)
• For multithreaded runs, we used the default number of threads.

Single
threaded}
Compiled

Num steps 1e6 1e7 1e8 1e9 1e10

Python loops 0.09 (0.0006) 0.92 (0.006)

Numpy 0.135 (0.005) 1.45 (0.0015)

Numba 0.039 (0.001) 0.39 (0.001) 3.92 (0.003)

Parallel Accelerator 0.019 (0.003) 0.141 (0.002) 1.48 (0.077)

Multiprocessing 0.229 (0.002) 1.54 (0.016)

Dask 0.133 (0.008) 0.75 (0.04) 6.9 (0.46)

PyOMP (loop) 0.051 (0.004)
5 runs

0.041 (0.005)
5 runs

0.073 (0.005)
5 runs

0.282 (0.02)
5 runs

1.56 (0.02)
5 runs

Compiled

}

Summary
• Parallel programming is here to stay.

If you don’t need it today, you will
eventually. Fortunately, it’s really fun.

• Software outlives hardware. Do not
let a vendor lock you in to their
platform. Portability must be non-
negotiable.

• There are too many parallel
programming models for python.
Focus on the core principles and
fundamental design patterns. Don’t
wear yourself out chasing the latest
fad.

167My Greenlandic skin-on-frame kayak in the middle of Budd Inlet during a negative tide

168

OpenMP Organizations

• OpenMP Architecture Review Board (ARB) URL, the “owner” of the OpenMP
specification:

www.openmp.org

• OpenMP User’s Group (cOMPunity) URL:
www.compunity.org

Get involved, join the ARB and cOMPunity.

Help define the future of OpenMP

Resources
• www.openmp.org has a wealth of helpful resources

169

Including a
comprehensiv
e collection of
examples of

code using the
OpenMP

constructs

http://www.openmp.org/

To learn OpenMP:
• An exciting new book that Covers the

Common Core of OpenMP plus a few key
features beyond the common core that
people frequently use

• It’s geared towards people learning
OpenMP, but as one commentator put it
… everyone at any skill level should
read the memory model chapters.

• Available from MIT Press

170www.ompcore.com for code samples and the Fortran supplement

http://www.ompcore.com/

Books about OpenMP

171

A great book that covers
OpenMP features beyond

OpenMP 2.5

Books about OpenMP

172

The latest book on OpenMP …

Now available at amazon.com and
MIT press.

A book about how to use OpenMP to
program a GPU.

