8000 Poisson Matrix Factorization · Issue #213 · PGM-Lab/InferPy · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content
Poisson Matrix Factorization #213
Open
@sommukh

Description

@sommukh

Hi,

First of all, thank you so much for inferpy. Its an wonderful project. I am trying to implement Poisson Matrix factorization using this library. I first implemented the basic Matrix factorization using the example given in the older version of inferpy. The relevant part of the code is as follows :
`

# definition of a generic model
@inf.probmodel
def mf(M, K):
	w_Item = inf.Normal(loc=tf.zeros([M, K]), scale=1, name="wItem") 
	
	with inf.datamodel():
		w_User = inf.Normal(tf.ones(K), scale=1, name="wUser") 
		Rating = inf.Normal(tf.matmul(w_User, w_Item, transpose_b = True), 1, name="Rating") 
	   
#In variational inference - define Q-model 
@inf.probmodel
def qmodel(M, K):
	qw_Item_loc = inf.Parameter(tf.zeros([M, K]), name="qw_Item_loc")
	qw_Item_scale = tf.math.softplus(inf.Parameter(tf.ones([M, K]),  name="qw_Item_scale"))
	qw_Item = inf.Normal(qw_Item_loc, qw_Item_scale, name="wItem")
	
	with inf.datamodel():
		qw_Userloc = inf.Parameter(np.ones(K), name="qw_Userloc")
		qw_Userscale = tf.math.softplus(inf.Parameter(tf.ones(K), name="qw_Userscale"))
		qw = inf.Normal(qw_Userloc, qw_Userscale, name="wUser")`

This code seems to work ... so I modified the code for Poisson factorization as follows:

`

# definition of a generic model
@inf.probmodel
def mf(M, K):
	w_Item = inf.Normal(loc=tf.zeros([M, K]), scale=1, name="wItem") # shape = [M,K]

	with inf.datamodel():
		w_User = inf.Normal(tf.ones(K), scale=1, name="wUser") # shape = [N,K]
		Rating = inf.Poisson(tf.math.exp(w_User) @  tf.transpose(tf.math.exp(w_Item)), name="Rating")
	   
#In variational inference - define Q-model 
@inf.probmodel
def qmodel(M, K):
	qw_Item_loc = inf.Parameter(tf.zeros([M, K]), name="qw_Item_loc")
	qw_Item_scale = tf.math.softplus(inf.Parameter(tf.ones([M, K]),  name="qw_Item_scale"))
	qw_Item = inf.Normal(qw_Item_loc, qw_Item_scale, name="wItem")
	
	with inf.datamodel():
		qw_Userloc = inf.Parameter(np.ones(K), name="qw_Userloc")
		qw_Userscale = tf.math.softplus(inf.Parameter(tf.ones(K), name="qw_Userscale"))
		qw = inf.Normal(qw_Userloc, qw_Userscale, name="wUser")`

Unfortunately it gives the following error ...
LookupError: No gradient defined for operation 'Rating_46/sample/random_poisson/RandomPoissonV2' (op type: RandomPoissonV2)

I tried to find some examples using Poisson distribution but could not find any ...where am I going wrong ? Kindly help ...

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions

      0