8000 Notebook Task 8: Case Study Development · Issue #25 · UOR-Foundation/factorizer · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content
Notebook Task 8: Case Study Development #25
Open
@afflom

Description

@afflom

Task 8: Case Study Development

Problem

No real-world examples demonstrating RFH3 effectiveness.

Implementation Plan

Create comprehensive case studies with real historical data and systematic analysis:

Case Study Notebooks:

1. 08_case_studies/01_rsa_challenge_numbers.ipynb

  • Historical RSA Challenges: Analysis of RSA-100, RSA-129, RSA-155, RSA-768
  • Timeline Comparisons: Historical factorization time vs RFH3 projections
  • Security Impact Analysis: Implications for current cryptographic systems
  • Future Challenge Predictions: Projected timeline for remaining RSA challenges
class RSAChallengeAnalyzer:
    def __init__(self):
        self.rsa_challenges = {
            'RSA-100': {
                'number': '1522605027922533360535618378132637429718068114961380688657908494580122963258952897654000350692006139',
                'bits': 330,
                'factored_year': 1991,
                'factoring_time': '17 days',
                'method': 'Quadratic Sieve'
            },
            'RSA-129': {
                'number': '114381625757888867669235779976146612010218296721242362562561842935706935245733897830597123563958705058989075147599290026879543541',
                'bits': 426,
                'factored_year': 1994,
                'factoring_time': '8 months',
                'method': 'Quadratic Sieve'
            }
            # ... more challenges
        }
    
    def analyze_historical_performance(self, challenge_name: str):
        """Compare historical vs RFH3 projected performance"""
        # RFH3 time estimate
        # Resource requirement analysis
        # Success probability calculation
        # Security timeline projection
        pass
    
    def project_future_challenges(self):
        """Predict timeline for remaining challenges"""
        # RFH3 capability growth modeling
        # Hardware improvement projections
        # Algorithm advancement estimates
        # Risk assessment for each challenge
        pass

2. 08_case_studies/02_balanced_vs_unbalanced_semiprimes.ipynb

  • Systematic Performance Analysis: Performance across different semiprime balance ratios
  • Phase Effectiveness Study: Which phases work best for different semiprime types
  • Pattern Recognition: Learning patterns specific to balanced/unbalanced cases
  • Optimization Strategies: Tailored approaches for different semiprime structures
class SemiprimeTypeAnalyzer:
    def categorize_semiprime_balance(self, p: int, q: int) -> str:
        """Categorize semiprime by factor balance"""
        ratio = max(p, q) / min(p, q)
        if ratio < 1.1:
            return 'highly_balanced'
        elif ratio < 2.0:
            return 'moderately_balanced'
        elif ratio < 10.0:
            return 'moderately_unbalanced'
        else:
            return 'highly_unbalanced'
    
    def analyze_phase_effectiveness(self, semiprime_type: str, test_cases: list):
        """Analyze which phases work best for semiprime type"""
        # Phase 0: Small prime effectiveness
        # Phase 1: Balanced search effectiveness
        # Phase 2: Hierarchical search effectiveness
        # Phase 3: Adaptive resonance effectiveness
        # Phase 4: Advanced algorithm effectiveness
        pass
    
    def identify_optimization_opportunities(self, analysis_results: dict):
        """Identify optimization strategies for each type"""
        # Parameter tuning recommendations
        # Phase timeout adjustments
        # Algorithm selection strategies
        # Learning pattern adaptations
        pass

3. 08_case_studies/03_failure_analysis_and_learning.ipynb

  • Systematic Failure Analysis: When and why RFH3 fails
  • Failure Mode Classification: Different types of failure patterns
  • Learning from Failures: How the system improves from failed attempts
  • Mitigation Strategies: Approaches to reduce failure rates
class FailureAnalyzer:
    def classify_failure_mode(self, factorization_attempt: dict) -> str:
        """Classify the type of failure"""
        # Timeout failures
        # Resonance field navigation failures
        # Memory/resource failures
        # Algorithm convergence failures
        # Edge case failures
        pass
    
    def analyze_failure_patterns(self, failure_log: list):
        """Identify patterns in failures"""
        # Number size correlation
        # Factor structure correlation
        # Algorithm phase correlation
        # Resource constraint correlation
        pass
    
    def evaluate_learning_effectiveness(self, before_after_data: dict):
        """Measure improvement after learning from failures"""
        # Success rate improvement
        # Time to solution improvement
        # Resource efficiency improvement
        # Pattern recognition accuracy
        pass

4. 08_case_studies/04_scaling_behavior_analysis.ipynb

  • Empirical Scaling Analysis: How performance scales with bit length
  • Resource Usage Scaling: Memory and CPU requirements vs problem size
  • Success Rate Scaling: How success rate changes with number size
  • Theoretical vs Empirical: Comparison with theoretical predictions
class ScalingAnalyzer:
    def measure_time_complexity(self, bit_sizes: list, sample_sizes: list):
        """Empirical time complexity measurement"""
        # Generate test cases for each bit size
        # Measure factorization times
        # Fit complexity models
        # Compare with theoretical predictions
        pass
    
    def measure_space_complexity(self, bit_sizes: list):
        """Empirical space complexity measurement"""
        # Memory usage profiling
        # Cache size requirements
        # Working set analysis
        # Scalability bottlenecks
        pass
    
    def analyze_success_rate_scaling(self, performance_data: dict):
        """Analyze how success rate changes with scale"""
        # Success rate by bit size
        # Failure mode distribution
        # Phase effectiveness scaling
        # Learning curve analysis
        pass

Interactive Analysis Tools:

Performance Comparison Dashboard:

  • Historical vs RFH3 performance visualization
  • Interactive timeline projections
  • Security impact assessment tools
  • Risk analysis calculators

Semiprime Type Explorer:

  • Interactive semiprime generation and classification
  • Real-time performance prediction
  • Optimization recommendation engine
  • Comparative analysis tools

Failure Pattern Visualizer:

  • Failure mode distribution charts
  • Pattern correlation heatmaps
  • Learning effectiveness tracking
  • Mitigation strategy recommendations

Scaling Behavior Plots:

  • Log-log scaling plots with confidence intervals
  • Resource usage projections
  • Performance envelope analysis
  • Theoretical vs empirical comparisons

Real-World Data Integration:

Historical Datasets:

  • RSA challenge factorization records
  • Academic benchmark results
  • Cryptographic competition data
  • Performance benchmarking studies

Live Data Sources:

  • Current factorization challenges
  • Hardware performance trends
  • Algorithm advancement tracking
  • Security vulnerability reports

Validation Data:

  • Independent verification of results
  • Cross-validation with other tools
  • Reproducibility confirmation
  • External benchmark comparisons

Professional Analysis Standards:

Statistical Rigor:

  • Confidence intervals for all measurements
  • Statistical significance testing
  • Multiple hypothesis correction
  • Effect size reporting

Reproducibility:

  • Complete methodology documentation
  • Seed and environment specification
  • Data provenance tracking
  • Result verification procedures

Industry Standards:

  • Cryptographic security evaluation standards
  • Performance benchmarking protocols
  • Risk assessment methodologies
  • Regulatory compliance considerations

Acceptance Criteria

  • Real historical data and comparisons
  • Systematic performance analysis across number types
  • Failure mode identification and mitigation
  • Scaling behavior validation with data
  • Professional-quality case study reports
  • Interactive analysis tools functional
  • Statistical rigor in all analyses
  • Reproducible results with proper documentation

Files to Create

notebooks/
├── 08_case_studies/
│   ├── 01_rsa_challenge_numbers.ipynb
│   ├── 02_balanced_vs_unbalanced_semiprimes.ipynb
│   ├── 03_failure_analysis_and_learning.ipynb
│   └── 04_scaling_behavior_analysis.ipynb
├── data/
│   ├── rsa_challenges/
│   │   ├── challenge_database.json
│   │   ├── historical_performance.csv
│   │   └── security_timeline.json
│   ├── semiprime_datasets/
│   │   ├── balanced_semiprimes.json
│   │   ├── unbalanced_semiprimes.json
│   │   └── performance_by_type.csv
│   ├── failure_analysis/
│   │   ├── failure_logs.json
│   │   ├── pattern_analysis.csv
│   │   └── learning_curves.json
│   └── scaling_studies/
│       ├── performance_measurements.csv
│       ├── resource_usage.json
│       └── theoretical_predictions.json
└── shared/
    └── case_studies/
        ├── rsa_analyzer.py
        ├── semiprime_analyzer.py
        ├── failure_analyzer.py
        ├── scaling_analyzer.py
        └── report_generator.py

Implementation Notes

  • Use real RSA challenge data with proper attribution
  • Include confidence intervals and statistical significance
  • Provide interactive widgets for parameter exploration
  • Generate publication-ready figures and tables
  • Include regulatory and compliance considerations
  • Support export to multiple report formats
  • Integrate with external benchmarking tools
  • Maintain data provenance and version control

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions

      0