8000 Notebook Task 3: Hands-On Laboratory Infrastructure · Issue #20 · UOR-Foundation/factorizer · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content
Notebook Task 3: Hands-On Laboratory Infrastructure #20
Open
@afflom

Description

@afflom

Task 3: Hands-On Laboratory Infrastructure

Problem

No standardized interactive environment for experimentation.

Implementation Plan

Create 5 laboratory notebooks with shared infrastructure for hands-on RFH3 experimentation:

Base Infrastructure:

class RFH3_Lab:
    """Base class for all laboratory notebooks"""
    
    def __init__(self):
        self.rfh3 = RFH3()  # Main factorizer instance
        self.visualizer = ResonanceVisualizer()
        self.benchmark_suite = BenchmarkSuite()
        self.data_collector = ExperimentDataCollector()
        self.export_manager = ResultExporter()
    
    def setup_experiment(self, name: str, parameters: dict)
    def run_experiment(self, test_cases: list)
    def visualize_results(self, results: dict)
    def export_findings(self, format: str = 'json')

Laboratory Notebooks:

1. 06_laboratories/01_resonance_field_visualizer.ipynb

  • Interactive 3D resonance field exploration
  • Real-time field computation and visualization
  • Parameter sliders for scale adjustments
  • Factor highlighting and path tracing
  • Export high-quality plots for publications

2. 06_laboratories/02_factorization_race_arena.ipynb

  • Algorithm comparison and racing
  • Side-by-side algorithm execution
  • Real-time performance monitoring
  • Statistical analysis of results
  • Custom algorithm implementation

3. 06_laboratories/03_parameter_tuning_playground.ipynb

  • Interactive parameter optimization
  • Grid search and random search
  • Bayesian optimization
  • Multi-objective optimization
  • Sensitivity analysis

4. 06_laboratories/04_algorithm_development_sandbox.ipynb

  • Custom algorithm development
  • Template-based algorithm creation
  • Component testing framework
  • Performance profiling tools
  • Integration with main RFH3 system

5. 06_laboratories/05_benchmark_reproduction_lab.ipynb

  • Reproduce published benchmarks
  • Historical RSA challenge recreations
  • Academic paper result reproduction
  • Performance comparison analysis
  • Verification of claimed improvements

Key Features

  • Real-time Computation: Interactive widgets with live updates
  • Export Capabilities: Results exportable in multiple formats (JSON, CSV, PNG, PDF)
  • Reproducible Results: Seed management and parameter tracking
  • Performance Monitoring: Resource usage tracking and optimization
  • Integration: Direct integration with RFH3 codebase

Interactive Elements

  • 3D plotly visualizations with zoom/rotate/slice controls
  • Parameter sliders with real-time field updates
  • Algorithm race leaderboards with live timing
  • Optimization progress visualizations
  • Custom algorithm code editors with syntax highlighting

Acceptance Criteria

  • Consistent UI/UX across all laboratory notebooks
  • Real-time computation and visualization
  • Export capabilities for all experiments
  • Reproducible results with seed management
  • Integration with actual RFH3 codebase
  • Performance monitoring and profiling
  • Mobile-friendly responsive design

Dependencies

  • Visualization infrastructure (Task 5)
  • Interactive widgets framework
  • Performance profiling tools
  • Export utilities

Files to Create

notebooks/
├── 06_laboratories/
│   ├── shared_infrastructure/
│   │   ├── lab_framework.py
│   │   ├── experiment_data_collector.py
│   │   ├── result_exporter.py
│   │   └── benchmark_suite.py
│   ├── 01_resonance_field_visualizer.ipynb
│   ├── 02_factorization_race_arena.ipynb
│   ├── 03_parameter_tuning_playground.ipynb
│   ├── 04_algorithm_development_sandbox.ipynb
│   └── 05_benchmark_reproduction_lab.ipynb
└── shared/
    └── laboratory/
        ├── widgets/
        ├── profiling/
        └── export/

Implementation Notes

  • Use Plotly for interactive 3D visualizations
  • Implement ipywidgets for parameter controls
  • Include performance profiling with memory/CPU monitoring
  • Support multiple export formats for research publication
  • Ensure compatibility with Google Colab and local Jupyter

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions

      0