8000 GitHub · Where software is built
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content
Notebook Task 5: Visualization Infrastructure #22
Open
@afflom

Description

@afflom

Task 5: Visualization Infrastructure

Problem

No reusable visualization components across notebooks.

Implementation Plan

Create comprehensive visualization infrastructure with high-performance, interactive components:

Core Visualization Components:

1. notebooks/shared/visualization/resonance_plotter.py

class ResonanceFieldPlotter:
    """High-performance 3D resonance field visualization"""
    
    def __init__(self, backend='plotly'):
        self.backend = backend
        self.cache = {}  # Cache expensive computations
        self.color_schemes = {
            'viridis': px.colors.sequential.Viridis,
            'plasma': px.colors.sequential.Plasma,
            'thermal': px.colors.sequential.thermal
        }
    
    def plot_field_3d(self, n: int, resolution: int = 100, color_scheme: str = 'viridis')
    def plot_convergence_path(self, search_history: list)
    def plot_learning_curves(self, pattern_data: dict)
    def plot_performance_comparison(self, benchmark_results: dict)

2. notebooks/shared/widgets/parameter_controllers.py

class RFH3_ParameterWidget:
    """Interactive parameter control widget"""
    
    def create_resonance_controls(self):
        """Sliders for resonance function parameters"""
        # Real-time field updates
        # Parameter sensitivity analysis
        # Preset configurations
        
    def create_algorithm_race_widget(self):
        """Widget for comparing different algorithms"""
        # Algorithm selection
        # Performance monitoring
        # Results visualization

Key Features:

  • 3D Interactive Plots: Plotly-based with zoom/rotate/slice controls
  • Real-time Updates: Parameter changes trigger live visualization updates
  • Performance Optimization: Adaptive sampling and GPU acceleration where possible
  • Export Capabilities: High-quality PNG/PDF/SVG export for publications
  • Mobile Responsive: Works on tablets and mobile devices
  • Color Accessibility: Colorblind-friendly palettes and alternatives

Visualization Types:

  1. 3D Resonance Field Landscapes: Surface plots showing resonance values across candidate space
  2. Algorithm Convergence Paths: Animated traces through the search space
  3. Performance Dashboards: Real-time metrics and comparisons
  4. Learning Curve Analytics: Pattern recognition improvement over time
  5. Parameter Sensitivity Heatmaps: Impact of parameter changes on performance
  6. Benchmark Comparison Charts: Algorithm performance across different problem sizes

Interactive Elements:

  • Dynamic Parameter Sliders: Real-time resonance function adjustment
  • Algorithm Race Controls: Start/stop/reset racing interface
  • Zoom and Navigation: Detailed exploration of resonance peaks
  • Annotation Tools: Add notes and highlights to visualizations
  • Data Export: Download results in multiple formats

Technical Implementation:

  • Backend: Plotly for interactive 3D graphics
  • Widgets: ipywidgets for parameter controls
  • Performance: Adaptive sampling based on computational budget
  • Caching: Intelligent caching of expensive resonance computations
  • Memory Management: Efficient handling of large datasets

Acceptance Criteria

  • High-performance visualization for large numbers (up to 512-bit)
  • Consistent visual style across all notebooks
  • Interactive widgets with real-time updates (<100ms response)
  • Export capabilities for all visualizations
  • Mobile-friendly responsive design
  • Colorblind accessibility compliance
  • Memory usage under 1GB for typical visualizations
  • GPU acceleration where available

Dependencies

  • plotly >= 5.0
  • ipywidgets >= 8.0
  • numpy, scipy for numerical computations
  • matplotlib for fallback rendering
  • PIL for image processing

Files to Create

notebooks/
└── shared/
    ├── visualization/
    │   ├── __init__.py
    │   ├── resonance_plotter.py
    │   ├── performance_dashboard.py
    │   ├── convergence_analyzer.py
    │   └── export_utilities.py
    ├── widgets/
    │   ├── __init__.py
    │   ├── parameter_controllers.py
    │   ├── algorithm_race_widget.py
    │   ├── field_explorer_widget.py
    │   └── benchmark_widget.py
    ├── themes/
    │   ├── notebook_style.css
    │   ├── color_schemes.py
    │   └── accessibility_themes.py
    └── utils/
        ├── performance_profiler.py
        ├── data_preprocessor.py
        └── cache_manager.py

Performance Requirements

  • Real-time interaction: <100ms response for parameter changes
  • Large number support: Handle 512-bit numbers efficiently
  • Memory efficiency: Stay under 1GB for typical use cases
  • Scalable resolution: Adaptive detail based on available resources
  • Cross-platform compatibility: Works on Windows/Mac/Linux

Implementation Notes

  • Use Plotly for primary 3D visualizations with fallback to matplotlib
  • Implement progressive rendering for large datasets
  • Include WebGL acceleration where supported
  • Provide both light and dark themes
  • Support multiple export formats (PNG, PDF, SVG, HTML)
  • Include comprehensive accessibility features
  • Optimize for Jupyter notebook and JupyterLab environments

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions

      0