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What is a kernel?

A feature map transforms the input space to a feature space:

Input space Feature space
n m
v: R - R (1)

A kernel function k is a real-valued function with two inputs:
k:QxQ—=R (2)
Kernel functions generalize the notion of inner products to feature maps:
k(x,y) = e(x)Te(y) (3)

Gives us ¢(x)To(y) without directly computing ¢(x) or ¢(y).
12 P P
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What is a kernel?

Consider the univariate polynomial regression algorithm:
m .
F(xiB) = Bp(x) = Bo + Bix + Box® + -+ Bx™ =D _Bixl  (4)
Jj=0

Where p(x) = [1,x,x2,x3,...,x™]. We seek 3 minimizing the error:

B = arggﬁinHY —f(x: 8)I1? (5)

Can solve for 3* using the normal equation or gradient descent:
B = (XTX)IXTY (6)
B B - aVp|lY - F(X; 8)| (7)
What happens if we want to approximate a multivariate polynomial?

2(x,y) = 1+ Bux + Byy + Buyxy + Bax® + B2y® + By2xy® + ... (8)
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What is a kernel?

Consider the polynomial kernel k(x,y) = (1 +x"y)? with x,y € R?.

(9)

k(x,y) = (1+x"y)? = (1+xy1 +xy)?
(10)

= 1+ x2y? + X3y3 + 2xay1 + 2xy2 + 2x1x0y12

This gives us the same result as computing the 6 dimensional feature map:

k(x,y) = o(x)Teo(y) (11)
C -

= [1,x2, X3, V2x1, V2x0, V2x1 0]
[ y X1, X0 X1 X2, X1X2] \/§y1
_\@}/1)/2_

But does not require computing ¢ (x) or ¢(y).
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Examples of common kernels

Popular kernels

Polynomial k(x,y) = (xTy +r)" x,y R ncNr>0
Laplacian k(x,y) := exp (—@) x,y€RY o>0
Gaussian RBF | k(x,y) := exp (—%) x,y R o >0

Popular Graph Kernels

RW | kx(G, H) := Z [Z A"AL]; = eT(1— AAL )~ O(n°)
ij=1 n=1

P [ kep(G H) = 5 S k(s1, %) o
S1€SD(G) SzESD(H)
deg,,Vv € G i=1

(i) —
we | (6= HASH({{I"D(u),Yu e N(v)}}) i>1 | O(hm)
kwi (G, H) := (Ywi(G), vwi(H))

https://people.mpi-inf.mpg.de/~mehlhorn/ftp/genWLpaper.pdf

Breandan Considine (McGill) Discriminative Embeddings March 12, 2020 5/20


https://people.mpi-inf.mpg.de/~mehlhorn/ftp/genWLpaper.pdf

Positive definite kernels

Positive Definite Matrix
A symmetric matrix K € RN is positive definite if xTKx > 0,¥x € RV\ 0.

Positive Definite Kernel

A symmetric kernel k is called positive definite on Q if its associated kernel
matrix K = [k(x;,xj)]?fj:o is positive definite YN € N, V{xq,...,xy} C Q.

http://www.math.iit.edu/~fass/PDKernels.pdf
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What is an inner product space?

Linear function

Let X be a vector space over R. A function f : X — R is linear iff
f(ax) = af(x) and f(x + z) = f(x) + f(z) for all « € R, x,z € X.

| \

Inner product space

X is an inner product space if there exists a symmetric bilinear map
(,) : X x X = Rif ¥x € X, (x,x) > 0 (i.e. is positive definite).

Cauchy-Schwartz Inequality

If X is an inner product space, then Yu,v € X, |(u,v)[2 < (u,u) - (v, v).

Scalar Product Vector Dot Product Random Variable

X1 n
(x,y) = xy < ANE >::xTy (X, Y) == E(XY)

Xn Yn
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What is a Hilbert space?

Let d : X x X — RZ0 be a metric on the space X.

Cauchy sequence

A sequence {x,} is called a Cauchy sequence if
Ve > 0,3N € N, such that Vn,m > N, d(xp, xm) < €.

Completeness

X is called complete if every Cauchy sequence converges to a point in X.

Separability

X is called separable if there exists a sequence {x,}°°; € X s.t. every
nonempty open subset of X contains at least one element of the sequence.

Hilbert space

A Hilbert space # is an inner product space that is complete and separable.
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Properties of Hilbert Spaces

Hilbert space inner products are kernels

The inner product (-, )3 : H x H — R is a positive definite kernel:

I 2
Z CiXi
i=1

n

n
> cici(xig)w = | Sy cixi 3 Gx | =
ij=1 J=1 H

>0
H

Reproducing Kernel Hilbert Space (RKHS)
Any continuous, symmetric, positive definite kernel k : X x X — R has a
corresponding Hilbert space, which induces a feature map ¢ : X — H
satisfying k(x,y) = (#(x), (y))#-

http://jmlr.csail.mit.edu/papers/volumell/vishwanathanl@a/vishwanathani0a.pdf
https://marcocuturi.net/Papers/pdk_in_ml.pdf
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https://marcocuturi.net/Papers/pdk_in_ml.pdf

Hilbert Space Embedding of Distributions

Maps distributions into potentially infinite dimensional feature spaces:
px = Bxlo(0] = [ o()p(dc: P F (13)

By choosing the right kernel, we can make this mapping injective.

F(p(x) = Fux), f: PR (14)
Top(x)="Topux, T : F—R? (15)
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Hilbert Space Embedding of Distributions

Maps distributions into potentially infinite dimensional feature spaces:
px = Bxlo(0] = [ o()p(dc: P F (16)

By choosing the right kernel, we can make this mapping injective.

F(p(x) = Fux), f: PR (17)
Top(x)="Topux, T : F—R? (18)
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Belief Networks

Belief network is a distribution of the form:

D
P(x1,...,xp) = | | P(xilpa(x)) (19)
=1

P(X,Y|Z) x P(Z|X,Y)P(X)P(Y) P(X,Y|Z)=P(X|Z)P(Y|Z)
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Latent Variable Models

Y = active/inactive
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Embedded mean field

Algorithm 1 Embedded Mean Field

: Input: parameter W in T
: Initialize u( ) = =0, forallieV
: fort=1to T do
for : € V do -
li = ZJEN(Z) M( )
[Lg ) = O'(Wlili'l + Wzlz)
end for
end for{fixed point equation update}
return {g! }icy

© % N> g w2
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Embedded loopy belief propagation

Algorithm 2 Embedding Loopy BP

1: Input: parameter W in ’7~] and 7’2
2: Initialize 171-(;)) =0, for all (i,j) € &

3: fort=1to T do

4: for (i,j) € £ do

5: Dltj = U(Wlxi + Wy ZkEN(z’)\j ﬁliz_l))
6: end for

7: end for

8 for 1€V do

9: ﬁl = O'(ngi + Wy Zke./\/(l)\j ;é?))
10: end for

11: return {f; }iey
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Discriminative Embedding

Algorithm 3 Discriminative Embedding

Input: Dataset D = {xn,¥yn}2_;, loss function I(f(x), ).
Initialize U = {W° u"} randomly.
fort=1to T do
Sample {x¢,y:} uniform randomly from D.
Construct latent variable model p({H}|x») as (p).
Embed p({H{}|xn) as {i}'};c,, by Algorithm [1jor E'with wi-L,
Update Ut = U1 + \, Ve l(f (5™ UL, y,).
end for
return U7 = {W7T uT}
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Graph Dataset Results
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Harvard Clean Energy Project (CEP)
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(a) PCE distribution (b) Sample molecules
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CEP Results

CEP test error
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Figure 4: Details of training and prediction results for DE-MF and DE-LBP with different number of fixed

point iterations.

test MAE | test RMSE | # params
Mean Predictor 1.9864 2.4062 1
WL Iv-3 0.1431 0.2040 1.6m
WL lv-6 0.0962 0.1367 1378m
DE-MF 0.0914 0.1250 0.1m
DE-LBP 0.0850 0.1174 0.1m

Table 3: Test prediction performance on CEP dataset. WL lv-k stands for Weisfeiler-lehman with degree k.
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