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What is a kernel?

A feature map transforms the input space to a feature space:

ϕ :

Input space︷︸︸︷
Rn →

Feature space︷︸︸︷
Rm (1)

A kernel function k is a real-valued function with two inputs:

k : Ω× Ω→ R (2)

Kernel functions generalize the notion of inner products to feature maps:

k(x, y) = ϕ(x)ᵀϕ(y) (3)

Gives us ϕ(x)ᵀϕ(y) without directly computing ϕ(x) or ϕ(y).
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What is a kernel?

Consider the univariate polynomial regression algorithm:

f̂ (x ;β) = βϕ(x) = β0 + β1x + β2x
2 + · · ·+ βmx

m =
m∑
j=0

βjx
j (4)

Where ϕ(x) = [1, x , x2, x3, . . . , xm]. We seek β minimizing the error:

β∗ = argmin
β
||Y − f̂(X;β)||2 (5)

Can solve for β∗ using the normal equation or gradient descent:

β∗ = (XᵀX)−1XᵀY (6)

β′ ← β − α∇β||Y − f̂(X;β)||2 (7)

What happens if we want to approximate a multivariate polynomial?

z(x , y) = 1 + βxx + βyy + βxyxy + βx2x2 + βy2y2 + βxy2xy2 + . . . (8)
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What is a kernel?

Consider the polynomial kernel k(x, y) = (1 + xTy)2 with x, y ∈ R2.

k(x, y) = (1 + xTy)2 = (1 + x1 y1 + x2 y2)2 (9)

= 1 + x2
1y

2
1 + x2

2y
2
2 + 2x1y1 + 2x2y2 + 2x1x2y1y2 (10)

This gives us the same result as computing the 6 dimensional feature map:

k(x, y) = ϕ(x)ᵀϕ(y) (11)

= [1, x2
1 , x

2
2 ,
√
2x1,
√
2x2,
√
2x1x2]ᵀ



1
y2
1
y2
2√
2y1√
2y2√
2y1y2

 (12)

But does not require computing ϕ(x) or ϕ(y).
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Examples of common kernels

Popular kernels

Polynomial k(x, y) := (xTy + r)n x, y ∈ Rd , n ∈ N, r ≥ 0

Laplacian k(x, y) := exp
(
−‖x−y‖

σ

)
x, y ∈ Rd , σ > 0

Gaussian RBF k(x, y) := exp
(
−‖x−y‖2

2σ2

)
x, y ∈ Rd , σ > 0

Popular Graph Kernels

RW k×(G ,H) :=
|V×|∑
i ,j=1

[
∞∑
n=1

λnAn
×]ij = eᵀ(I− λA×)−1e O(n6)

SP kSP(G ,H) :=
∑

s1∈SD(G)

∑
s2∈SD(H)

k(s1, s2) O(n4)

WL
l(i)(G ) :=

{
degv ,∀v ∈ G i = 1
HASH({{l(i−1)(u),∀u ∈ N (v)}}) i > 1

kWL(G ,H) := 〈ψWL(G ), ψWL(H)〉
O(hm)

https://people.mpi-inf.mpg.de/~mehlhorn/ftp/genWLpaper.pdf
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Positive definite kernels

Positive Definite Matrix

A symmetric matrix K ∈ RN2
is positive definite if xᵀKx > 0, ∀x ∈ RN \0.

Positive Definite Kernel
A symmetric kernel k is called positive definite on Ω if its associated kernel
matrix K = [k(xi , xj)]Ni ,j=0 is positive definite ∀N ∈ N,∀{x1, . . . , xN} ⊂ Ω.

http://www.math.iit.edu/~fass/PDKernels.pdf
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What is an inner product space?

Linear function
Let X be a vector space over R. A function f : X → R is linear iff
f (αx) = αf (x) and f (x + z) = f (x) + f (z) for all α ∈ R, x , z ∈ X .

Inner product space
X is an inner product space if there exists a symmetric bilinear map
〈·, ·〉 : X × X → R if ∀x ∈ X , 〈x, x〉 > 0 (i.e. is positive definite).

Cauchy-Schwartz Inequality
If X is an inner product space, then ∀u, v ∈ X , |〈u, v〉|2 ≤ 〈u,u〉 · 〈v, v〉.

Scalar Product Vector Dot Product Random Variable

〈x , y〉 := xy

〈x1
...
xn

,
y1
...
yn

〉 := xTy 〈X ,Y 〉 := E(XY )
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What is a Hilbert space?

Let d : X × X → R≥0 be a metric on the space X .

Cauchy sequence
A sequence {xn} is called a Cauchy sequence if
∀ε > 0, ∃N ∈ N, such that ∀n,m ≥ N, d(xn, xm) ≤ ε.

Completeness
X is called complete if every Cauchy sequence converges to a point in X .

Separability
X is called separable if there exists a sequence {xn}∞n=1 ∈ X s.t. every
nonempty open subset of X contains at least one element of the sequence.

Hilbert space
A Hilbert space H is an inner product space that is complete and separable.
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Properties of Hilbert Spaces

Hilbert space inner products are kernels
The inner product 〈·, ·〉H : H×H → R is a positive definite kernel:
n∑

i ,j=1
cicj(xi , xj)H =

(∑n
i=1 cixi ,

n∑
j=1

cjxj

)
H

=

∥∥∥∥ n∑
i=1

cixi

∥∥∥∥2

H
≥ 0

Reproducing Kernel Hilbert Space (RKHS)
Any continuous, symmetric, positive definite kernel k : X × X → R has a
corresponding Hilbert space, which induces a feature map ϕ : X → H
satisfying k(x , y) = 〈ϕ(x), ϕ(y)〉H.
http://jmlr.csail.mit.edu/papers/volume11/vishwanathan10a/vishwanathan10a.pdf
https://marcocuturi.net/Papers/pdk_in_ml.pdf
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Hilbert Space Embedding of Distributions

Maps distributions into potentially infinite dimensional feature spaces:

µX := EX [φ(X )] =

∫
X
φ(x)p(x)dx : P 7→ F (13)

By choosing the right kernel, we can make this mapping injective.

f (p(x)) = f̃ (µx), f : P 7→ R (14)

T ◦ p(x) = T̃ ◦ µx , T̃ : F 7→ Rd (15)

Breandan Considine (McGill) Discriminative Embeddings March 12, 2020 10 / 20



Hilbert Space Embedding of Distributions

Maps distributions into potentially infinite dimensional feature spaces:

µX := EX [φ(X )] =

∫
X
φ(x)p(x)dx : P 7→ F (16)

By choosing the right kernel, we can make this mapping injective.

f (p(x)) = f̃ (µx), f : P 7→ R (17)

T ◦ p(x) = T̃ ◦ µx , T̃ : F 7→ Rd (18)

Breandan Considine (McGill) Discriminative Embeddings March 12, 2020 11 / 20



Belief Networks

Belief network is a distribution of the form:

P(x1, . . . , xD) =
D∏
i=1

P(xi |pa(xi )) (19)

z

x y

z

x y

P(X ,Y |Z ) ∝ P(Z |X ,Y )P(X )P(Y ) P(X ,Y |Z ) = P(X |Z )P(Y |Z )
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Latent Variable Models
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Embedded mean field
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Embedded loopy belief propagation
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Discriminative Embedding
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Graph Dataset Results
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Harvard Clean Energy Project (CEP)
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CEP Results
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