8000 ValueError: You have to specify either input_ids or inputs_embeds · Issue #10 · cardiffnlp/xlm-t · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content
ValueError: You have to specify either input_ids or inputs_embeds #10
Open
@longshared

Description

@longshared

ubuntu16.04
adapter-transformers==1.1.1
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 465.19.01 Driver Version: 465.19.01 CUDA Version: 11.3 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Uti 6809 l Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 NVIDIA GeForce ... Off | 00000000:81:00.0 Off | N/A |
| 41% 26C P8 20W / 250W | 0MiB / 11019MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+

when I run adapter_fintuning.py I got this error:

root@ubuntu:/home/project/xlm-t-main# python src/adapter_finetuning.py
Some weights of the model checkpoint at cardiffnlp/twitter-xlm-roberta-base were not used when initializing XLMRobertaModelWithHeads: ['lm_head.bias', 'lm_head.dense.weight', 'lm_head.dense.bias', 'lm_head.layer_norm.weight', 'lm_head.layer_norm.bias', 'lm_head.decoder.weight', 'lm_head.decoder.bias']

  • This IS expected if you are initializing XLMRobertaModelWithHeads from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
  • This IS NOT expected if you are initializing XLMRobertaModelWithHeads from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
    Some weights of XLMRobertaModelWithHeads were not initialized from the model checkpoint at cardiffnlp/twitter-xlm-roberta-base and are newly initialized: ['roberta.pooler.dense.weight', 'roberta.pooler.dense.bias']
    You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
    0%| | 0/200 [00:00<?, ?it/s]Traceback (most recent call last):
    File "src/adapter_finetuning.py", line 157, in
    trainer.train()
    File "/root/anaconda3/envs/train_cpu/lib/python3.7/site-packages/transformers/trainer.py", line 787, in train
    tr_loss += self.training_step(model, inputs)
    File "/root/anaconda3/envs/train_cpu/lib/python3.7/site-packages/transformers/trainer.py", line 1138, in training_step
    loss = self.compute_loss(model, inputs)
    File "/root/anaconda3/envs/train_cpu/lib/python3.7/site-packages/transformers/trainer.py", line 1162, in compute_loss
    outputs = model(**inputs)
    File "/root/anaconda3/envs/train_cpu/lib/python3.7/site-packages/torch/nn/modules/module.py", line 722, in _call_impl
    result = self.forward(*input, **kwargs)
    File "/root/anaconda3/envs/train_cpu/lib/python3.7/site-packages/transformers/modeling_roberta.py", line 805, in forward
    return_dict=return_dict,
    File "/root/anaconda3/envs/train_cpu/lib/python3.7/site-packages/torch/nn/modules/module.py", line 722, in _call_impl
    result = self.forward(*input, **kwargs)
    File "/root/anaconda3/envs/train_cpu/lib/python3.7/site-packages/transformers/modeling_roberta.py", line 685, in forward
    raise ValueError("You have to specify either input_ids or inputs_embeds")
    ValueError: You have to specify either input_ids or inputs_embeds
    0%| | 0/200 [00:00<?, ?it/s]
    (train_cpu) root@ubuntu:/home/project/xlm-t-main# python src/adapter_finetuning.py
    Some weights of the model checkpoint at cardiffnlp/twitter-xlm-roberta-base were not used when initializing XLMRobertaModelWithHeads: ['lm_head.bias', 'lm_head.dense.weight', 'lm_head.dense.bias', 'lm_head.layer_norm.weight', 'lm_head.layer_norm.bias', 'lm_head.decoder.weight', 'lm_head.decoder.bias']
  • This IS expected if you are initializing XLMRobertaModelWithHeads from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
  • This IS NOT expected if you are initializing XLMRobertaModelWithHeads from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
    Some weights of XLMRobertaModelWithHeads were not initialized from the model checkpoint at cardiffnlp/twitter-xlm-roberta-base and are newly initialized: ['roberta.pooler.dense.weight', 'roberta.pooler.dense.bias']
    You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
    0%| | 0/200 [00:00<?, ?it/s]Traceback (most recent call last):
    File "src/adapter_finetuning.py", line 157, in
    trainer.train()
    File "/root/anaconda3/envs/train_cpu/lib/python3.7/site-packages/transformers/trainer.py", line 787, in train
    tr_loss += self.training_step(model, inputs)
    File "/root/anaconda3/envs/train_cpu/lib/python3.7/site-packages/transformers/trainer.py", line 1138, in training_step
    loss = self.compute_loss(model, inputs)
    File "/root/anaconda3/envs/train_cpu/lib/python3.7/site-packages/transformers/trainer.py", line 1162, in compute_loss
    outputs = model(**inputs)
    File "/root/anaconda3/envs/train_cpu/lib/python3.7/site-packages/torch/nn/modules/module.py", line 722, in _call_impl
    result = self.forward(*input, **kwargs)
    File "/root/anaconda3/envs/train_cpu/lib/python3.7/site-packages/transformers/modeling_roberta.py", line 805, in forward
    return_dict=return_dict,
    File "/root/anaconda3/envs/train_cpu/lib/python3.7/site-packages/torch/nn/modules/module.py", line 722, in _call_impl
    result = self.forward(*input, **kwargs)
    File "/root/anaconda3/envs/train_cpu/lib/python3.7/site-packages/transformers/modeling_roberta.py", line 685, in forward
    raise ValueError("You have to specify either input_ids or inputs_embeds")
    ValueError: You have to specify either input_ids or inputs_embeds
    0%| | 0/200 [00:00<?, ?it/s]

anybody can help?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions

      0