HPIPM reference guide

Gianluca Frison

June 26, 2018

Contents

1 Introduction
2 Dense QP

3 OCP QP

Chapter 1

Introduction

HPIPM, which stands for High-Performance Interior Point Method, is a library providing a collec-
tion of quadratic programs (QP) and routines to manage them. Aim of the library is to provide
both stand-alone IPM solvers for the QPs and the building blocks for more complex optimization
algorithms.

At the moment, three QPs types are provided: dense QPs, optimal control problem (OCP) QPs,
and tree-structured OCP QPs. These QPs are defined using C structures. HPIPM provides
routines to manage the QPs, and to convert between them.

HPIPM is written entirely in C, and it builds on top of BLASFEO [1], that provides high-
performance implementations of basic linear algebra (LA) routines, optimized for matrices of
moderate size (as common in embedded optimization).

Chapter 2

Dense QP

The dense QP is a QP in the form

1T l l
‘ 1 Tw T H 4] [v 1 su A Ou zu ’
min = |, T ol |11 + 30° 0 Z z s
K g 1 (zl)T (Z")T 0 1
s.t. Av =b,
v Jb,v Jowl| 1
< [el)

where v are the primal variables, s' (s*) are the slack variables of the soft lower (upper) constraints.
The matrices J . are made of rows from identity matrices. Furthermore, note that the constraint

matrix with respect to v is the same for the upper and the lower constraints.

Chapter 3

OCP QP

The OCP QP is a QP in the form

T

N 1 |Un R, S, 7| |un 1 sﬁz Zﬁl 0
min Z 5 [ST Qn qu| |zn| + 3 |5 0 z
Eal= R N e
s.t
Tpy1 = Apnty + By + by, n=20,...
Tﬁn J@unL 0 u J&um
L, < 0 Jb,m,n |:xn:| + Js,z,n Sil, n=0
_dn l)n C%/ " J@gm
_J@um, 0 u J&um/ Up,
0 Jb,m,n |:In:| - Js,:c,n S% < ?n s n=0
L [hl CLL " J&%n dn
l l
S'n. Z §/’L7 =
Sn 2 S =0..

CANES
zol | sh
0 1
7N_]-7
N,
'7N7
'7N7

N

where u,, are the control inputs, z,, are the states, s/, (s*) are the slack variables of the soft lower
(upper) constraints and s!, and s” are the lower bounds on lower and upper slacks, respectively.
The matrices J_, are made of rows from identity matrices. Note that all quantities can vary
stage-wise. Furthermore, note that the constraint matrix with respect to v and x is the same for

the upper and the lower constraints.
int d_memsize_ocp_qgp(int N, int *nx, int *nu, int *nb, int

void d_create_ocp_gp(int N, int *nx, int *nu, int *nb, int
struct d_ocp_gp *qp, void *memory);

void d_cvt_colmaj_to_ocp_qp(double **A, double **B, double
double **Q, double **S, double **R, double **q, double
int **idxb, double **1b, double **ub,
double **C, double **D, double **lg, double **ug,

*ng,

*ng,

**b,
*kT

int *ns);

int *ns,

double **Z1, double **Zu, double **zl, double **zu, int **idxs,

double **1s, double *x*us,
struct d_ocp_qp *q_p);

Bibliography

[1] G. Frison, D. Kouzoupis, T. Sartor, A. Zanelli, and M. Diehl. BLASFEO: Basic linear al-
gebra subroutines for embedded optimization. ACM Transactions on Mathematical Software
(TOMS), 2018. (accepted).

