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Chapter 1

Introduction

HPIPM, which stands for High-Performance Interior Point Method, is a library providing a collec-
tion of quadratic programs (QP) and routines to manage them. Aim of the library is to provide
both stand-alone IPM solvers for the QPs and the building blocks for more complex optimization
algorithms.

At the moment, three QPs types are provided: dense QPs, optimal control problem (OCP) QPs,
and tree-structured OCP QPs. These QPs are defined using C structures. HPIPM provides
routines to manage the QPs, and to convert between them.

HPIPM is written entirely in C, and it builds on top of BLASFEO [1], that provides high-
performance implementations of basic linear algebra (LA) routines, optimized for matrices of
moderate size (as common in embedded optimization).



Chapter 2

Dense QP

The dense QP is a QP in the form
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where v are the primal variables, s' (s*) are the slack variables of the soft lower (upper) constraints.
The matrices J . are made of rows from identity matrices. Furthermore, note that the constraint

matrix with respect to v is the same for the upper and the lower constraints.
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OCP QP

The OCP QP is a QP in the form
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where u,, are the control inputs, z,, are the states, s/, (s*) are the slack variables of the soft lower
(upper) constraints and s!, and s” are the lower bounds on lower and upper slacks, respectively.
The matrices J_, are made of rows from identity matrices. Note that all quantities can vary
stage-wise. Furthermore, note that the constraint matrix with respect to v and x is the same for

the upper and the lower constraints.
int d_memsize_ocp_qgp(int N, int *nx, int *nu, int *nb, int

void d_create_ocp_gp(int N, int *nx, int *nu, int *nb, int
struct d_ocp_gp *qp, void *memory);

void d_cvt_colmaj_to_ocp_qp(double **A, double **B, double
double **Q, double **S, double **R, double **q, double
int **idxb, double **1b, double **ub,
double **C, double **D, double **lg, double **ug,

*ng,

*ng,

**b,
*kT

int *ns);

int *ns,

double **Z1, double **Zu, double **zl, double **zu, int **idxs,

double **1s, double *x*us,
struct d_ocp_qp *q_p);
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