
Dex Support for Soot

Michael Markert Frank Hartmann

May 9, 2012

1 Usage

To use the dex infrastructure you have to pass -src-prec dex at the commandline.

2 Dependencies

The dex support for Soot depends on smali’s dexlib (support is developed on version 1.3.2).
Smali can be found here https://code.google.com/p/smali/ and the dexlib.jar can be ob-
tained by building smali. Only the dexlib.jar is necessary, not the rest of smali.

3 Architecture

3.1 Finding classes

Unlike a .class file a .dex file can contain more than one class. To support the Soot class find
mechanisms DexClassProvider builds an index that maps the class names to the dex file that
contains the class definition. This index is built by searching all .dex and .apk (which contain a
classes.dex) in the load path and is saved in SourceLocator.

3.2 Sooti�cation

The resolution of a SootClass happens in DexResolver and profits from an architecture that
is highly symmetric to that of Soot. All elements of this architecture (with the exception of
DexClass because DexResolver does that) know how to turn themselves into the Soot equivalent.

3.3 Jimpli�cation

The Jimplification starts at DexBody.jimplify and is separated into 5 phases:

1. Adding this and parameter locals,

2. sequencially jimplifying instructions,

3. jimplifying deffered instructions,

4. trap processing

5. body transforming (splitting and typing of locals, and null treatment)

There is an instruction class for every group of Dalvik bytecodes (see InstructionFactory
for the mapping of opcodes to instructions) that knows how to turn itself into the equivalent
block of Jimple instructions. Those instructions are themselves grouped themselves under su-
per classes to share common code. For special cases which did not translate directly into Jimple,
see Pecularities in the Translation.

1

https://code.google.com/p/smali/


4 Restrictions of Dex Support

• Only instructions that are supported by dexlib are supported by us

• odex1 instructions are not supported, but they may be obsolete by now as the android
documentation shows no more trace of this

5 Pecularities in the Translation

5.1 DeferableInstruction

For a goto instruction (and by extension if and switch; fill-array-data as well) it is possible
to jump further into the method body (with a positive offset). As the Translation from dexlib
instructions to Jimple code happens sequentially, a jump with a positive offset cannot be turned
into a Jimple instruction because the target Unit has to be known for that. To support this, the
jimplification can be deferred until the rest of the method body has been translated. A deferred
instruction will then be jimplified by a call to deferredJimplify.

5.2 DanglingInstruction

An instruction is dangling if its Jimple meaning depends on the instruction that follows it.
This is the case with invocation instructions: If an invocation is followed by a move-result
instruction it will be a RValue else be turned into an invocation statement. Another case is
filled-new-array (in normal and in range flavor) it must be followed by a move-object instruc-
tion or it will be ignored. Only direct successors can resolve a dangling instruction.

5.3 not-int & not-long Bytecodes

Dalvik bytecode has other than Java bytecode (and Jimple) support for not-int and not-long
instructions. The semantics are to do a bitwise not operation and we solved it by using the
same technique as Java: number xor -1. This works because all integer numbers are two’s
complement. If unsigned integers would be introduced, this likely has to be changed.

5.4 �ll-array-data Instruction

Dalvik offers a native instruction in order to fill an array with a static table filled with a maxi-
mum of 5 values of primitive types. Since Jimple does not offer Byte, Short or Char constants,
those values of the static table have to be stored as a Integer type in Jimple.

5.5 Access modi�ers

Dalvik supports 3 additional modifiers: constructor, synthetic and declared synchronized. They
were added to soot.Modifier but not to its toString as Jasmin does not understand it.

5.6 Wide primitives in the method call

Dalvik has wide primitives which means that those primitives (long and double) occupy two
registers instead of one. The second register is the one that immediately follows the first one
(e.g. a wide occupies registers 23 and 24). We don’t make any distinction between wide and
normal primitives in the translation as Jimple does not know the difference. This leads to a
problem with method calls: Here we retrieve the values in the specified registers as argu-
ments for those calls. If a parameter is wide the next “register parameter” is not a param-
eter at all but the second part of the preceding parameter. To solve this we check if a pa-
rameter is wide and omit the next parameter in the conversion. The code for this resides in
soot.dex.instructions.MethodInvocationInstruction.buildParameters.

1odex files are ahead-of-time optimized dex file

2



5.7 Typing of exceptions

The type of an exception in the MoveExceptionInstruction is not known at the point when
the instruction is jimplified (only when traps are handled, after the instructions). Because
of this we insert an untyped IdentityStmt. To retype it correctly in the trap phase we pro-
vided a RetypeableInstruction interface, that offers setRealType(DexBody body, Type type)
and retype(). retype() is to be called after the locals have been split to avoid type spilling into
otherwise reused registers.

5.8 Inclusion of java.lang.System

We included java.lang.System as a signature level basic class because we ran into errors in the
test phase. System is only included with its shortname in the bytecode.

5.9 Const instructions

Const instructions introduce new primitive constants. There is a const-wide which may intro-
duce new long and double and a const which may introduce new int and float. Those con-
stants are introduced as byte patterns which smali transports as int respective long. There
is no type information whatsoever besides how this constant is used. We solve this problem
by looking for future instructions which use the register that is filled by the const instruc-
tion and infer if they expect a floating point number. If it is used as a floating point number
it will be decoded with Float.intBitsToFloat respective Double.longBitsToDouble. To sup-
port this, a DexlibAbstractInstruction has to override movesRegister (to keep track of copies)
overridesRegister (to determine when a copy is no longer used) and isUsedAsFloatingPoint
(to actually infer the type). The use of a BodyTransformer along with an UnitGraph would
have been a cleaner approach but on Jimple level we lack type information for likely uses of
float/double (such as arithmetic) that is available via typed instructions (such as add-float).

5.10 Splitting of Registers

We maintain an array for every body that holds the Soot Locals2 for the dex registers. To
keep the right associations (instructions that access the same register number share the same
Local object) we generate as many Locals as registers in a body exist. Because they are un-
typed we execute the TypeAssigner BodyTransformer at the end of a DexBody.jimplify and the
LocalSplitter to generate the right Locals.

5.11 null Comparisons

For null comparisons if-nez and if-eqz are relevant. Jimple/Java distinguishes between 0
and null, Dalvik does not. To generate the right expressions we need to detect if we deal
with objects (hence null) or with integers (hence 0). We do this with the BodyTransformer
DexNullTransformer that is to be called after locals are split and detects null candidates, exam-
ines their use and rewrites const, if-nez and if-eqz as needed.

2mostly untyped

3


	Usage
	Dependencies
	Architecture
	Finding classes
	Sootification
	Jimplification

	Restrictions of Dex Support
	Pecularities in the Translation
	DeferableInstruction
	DanglingInstruction
	not-int & not-long Bytecodes
	fill-array-data Instruction
	Access modifiers
	Wide primitives in the method call
	Typing of exceptions
	Inclusion of java.lang.System
	Const instructions
	Splitting of Registers
	null Comparisons


