8000 java tensorflow and maven version is org.tensorflow:libtensorflow:1.15.0 after session.runner.run() for many times, the memory grow higher and higher then oom · Issue #564 · tensorflow/java · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content
java tensorflow and maven version is org.tensorflow:libtensorflow:1.15.0 after session.runner.run() for many times, the memory grow higher and higher then oom #564
Open
@hanfengatonline

Description

@hanfengatonline

20241024-155157

my test code with language scala ,this is one predict, we will predict 100 QPS for a docker
val config = ConfigProto.newBuilder
.putDeviceCount("CPU", Runtime.getRuntime.availableProcessors)
.setInterOpParallelismThreads(8)
.setIntraOpParallelismThreads(8)
.setOperationTimeoutInMs(3000)
.build

val options = RunOptions.newBuilder
  .setTimeoutInMs(5000)
  .build 

val modelBundle = SavedModelBundle
  .loader(s"$path")
  .withTags("serve")
  .withConfigProto(config.toByteArray)
  .withRunOptions(options.toByteArray)
  .load

val kernel = modelBundle.session

val data = Map("tensor1" -> Seq(0.1f,0.122f),……)
val runner = kernel.runner()
val inputTensorList: util.ArrayList[Tensor[java.lang.Float]] = new util.ArrayList[Tensor[java.lang.Float]]()
data.map{
  case (tensorName, featureId) => {

    val dataInput:FloatBuffer = FloatBuffer.allocate(featureId.size)
    featureId.foreach(featureValue => {
      dataInput.put(featureValue)
    })
    dataInput.asInstanceOf[Buffer].flip()
    val tensorShape:Array[Long] = Array(1,featureId.size)
    val tensor = Tensor.create(tensorShape,dataInput)
    runner.feed(tensorName,tensor)
    inputTensorList.add(tensor)
  }
}

for(i <- 0 until 2 ){
  runner.fetch("StatefulPartitionedCall",i)
}

val output = runner.run.asScala
val scores:Array[Float] = output.map(ten => {
  val tensorData: Array[Array[Float]] = ten.copyTo(Array.ofDim[Float](ten.shape()(0).toInt, ten.shape()(1).toInt))
  tensorData(0).head
}).toArray
inputTensorList.asScala.foreach(_.close())
output.foreach(_.close())

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions

      0