Examples

0. Getting started

0.1 Installation using pip
Getting started with pText is easy.
1. Create a virtual environment (if you have not done so already)
python3 -m venv venv
2. Activate your virtual environment
source venv/bin/activate
3. Install pText using pip
pip install ptext-joris-schellekens

4. Done A< You are all ready to go.
Try out some of the examples to get to know pText .

0.2 About AGPLvV3

The AGPL license differs from the other GNU licenses in that it was built for network software.
You can distribute modified versions if you keep track of the changes and the date you made them.
As per usual with GNU licenses, you must license derivatives under AGPL.

It provides the same restrictions and freedoms as the GPLv3 but with an additional clause which makes it so that
source code must be distributed along with web publication.
Since web sites and services are never distributed in the traditional sense, the AGPL is the GPL of the web.

CAN CAN NOT MUST

Commercial Use Sublicense Include Copyright

Modify Hold Liable Include License
Distribute State changes
Place Warranty Disclose Source

Include Install Instructions

1. Working with existing PDFs

1.1 Extracting text from a Document using SimpleTextExtraction

Let's start by reading the PDF Document .

with open("input.pdf", "rb") as pdf_file_handle:
1 = SimpleTextExtraction()
doc = PDF.loads(pdf_file_handle, [1])

Notice that we are passing an EventListener instance to the PDF.loads method. This EventListener will be notified every time a
rendering instruction takes place. simpleTextExtraction processes those rendering instructions related to displaying text, and attempts
to build the resulting text on the Page using some (simple) heuristics.

Now that we've processed the Page , we can get the resulting text and store it.

export txt
with open("output.txt", "w") as txt_file_handle:
txt_file_handle.write(l.get_text(0))

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.2 Working with ligatures using SimpleNonLigatureTextExtraction

In writing and typography, a ligature occurs where two or more graphemes or letters are joined as a single glyph. An example is the
character & as used in English, in which the letters a and e are joined. The common ampersand (&) developed from a ligature in which
the handwritten Latin letters e and t (spelling et, Latin for and) were combined.

Dealing with ligatures can make text-parsing challenging. You never know whether your PDF Document is going to contain "fi" (ligature)
or "fi" (two separate characters).

And although these characters might look the same, a regular expression that matches "fi" (two separate characters) will not match "fi"
(ligature).

Hence sSimpleNonLigatureTextExtraction , it works much like SimpleTextExtraction , replacing every ligature in the resultant text with
its separate characters, ensuring text that is easy to process afterwards.

Let's start by reading the PDF Document .

with open("input.pdf", "rb") as pdf_file_handle:
1 = SimpleNonLigatureTextExtraction()
doc = PDF.loads(pdf_file_handle, [1])

Once the Document is done processing, we can easily obtain and store the text:

export txt
with open("output.txt", "w") as txt_file_handle:
txt_file_handle.write(l.get_text(0))

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.3 Looking for a regular expression in a Document using RegularExpressionTextExtraction

We start by reading the PDF:

doc = None

1 = RegularExpressionTextExtraction("[sS]orbitol")

with open("input.pdf", "rb") as in_file_handle:
doc = PDF.loads(in_file_handle, [1])

Notice that we are passing an EventListener instance to the PDF.loads method. This EventListener will be notified every time a
rendering instruction takes place. The RegularExpressionTextExtraction implementation will use these instructions to determine
whether a given regular expression has been matched.

We can access this information in the following manner:

export matches
with open("sorbitol_matches.json", "w") as json_file_handle:
obj = [
{
"text": x.get_text(),
"x": int(x.get_baseline().x),
"y'": int(x.get_baseline().y),
"width": int(x.get_baseline().width),
"height": int(x.get_baseline().height),
}

for x in 1l.get_matched_chunk_of_text_render_events_per_page(0)

]

json_file_handle.write(json.dumps(obj, indent=4))

This should store the coordinates of the individual letters that matched the regular expression.
In the example Document , this was the output:

[

{
"text": "S",
"x0": 73,
"yo": 265,
"width": 5,
"height": 9

+

{
"text": "o",
"x0": 78,
"yo": 265,
"width": 5,

"height": 9

{
"text": "r",
"x0": 84,
"ye": 265,
"width": 3,
"height": 9
3

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.4 Extracting keywords from a Document using TFIDFKeywordExtraction

We can easily extract all likely keywords from the Document using TFIDFKeywordExtraction . This class acts like a regular
EventListener and will keep track of all text being parsed. Optionally, you can give this class a List of stop words (which it will then
ignore).

with open("input.pdf", "rb") as pdf_file_handle:
1 = TFIDFKeywordExtraction(ENGLISH_STOP_WORDS)
doc = PDF.loads(pdf_file_handle, [1])

Now let's export the keywords in json format:

export txt
with open("output.json", "w") as json_file_handle:
json_file_handle.write(
json.dumps(
[x.__dict__ for x in l.get_keywords_per_page(0, 5)], indent=4

For the document | picked, this gives me the following output:

[
{
"text": "CONSTIPATION",
"page_number": 0,
"words_on_page": 120,
"term_frequency": 5,
"occurs_on_pages": [
0/
1
1
"number_of_pages": 2
+

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.5 Meta-Information

1.5.1 Using the \Info dictionary in a Document

1.5.1.1 Getting the author of an existing PDF

A PDF Document can have an \Info dictionary entry, containing meta-information. Because this entry is optional, we need to check at
every step of the way whether the path we attempt to navigate exists.

We start by opening the Document :

with open("input.pdf", "rb") as pdf_file_handle:
doc = PDF.loads(pdf_file_handle)

Then we check whether the Document has an XRef table (it should, unless the Document is corrupt)

if "XRef" not in doc:
return False

Next we check whether the XRef table has a \Trailer (it should).

if "Trailer" not in doc["XRef"]:
return False

In the \Trailer dictionary, we may find an \Info dictionary. This dictionary could contain an entry for \Author .

if (
"Info" in doc["XRef"]["Trailer"]
and "Author" in doc["XRef"]["Trailer"]["Info"]

author = doc["XRef"]["Trailer"]["Info"]["Author"]
print("The author of this PDF is %s" % author)

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.5.1.2 Getting all meta-information of an existing PDF using DocumentInfo

DocumentInfo represents a convenience class to easily extract all meta-information in the Document catalog's \Info dictionary. You
can use it to quickly query the meta-information.

with open("input.pdf", "rb") as pdf_file_handle:
doc = PDF.loads(pdf_file_handle)
doc_info = doc.get_document_info()

print("title : %s" % doc_info.get_title())
print("author : %s" % doc_info.get_author())
print("creator : %s" % doc_info.get_creator())
print("producer : %s" % doc_info.get_producer())
print("ids i %s" % doc_info.get_ids())

print("language : %s" % doc_info.get_language())

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.5.1.3 Changing the author of an existing PDF

Let's start by reading the PDF Document .

doc = None
with open("input.pdf", "rb") as pdf_file_handle:
doc = PDF.loads(pdf_file_handle)

Now we check whether the PDF has an XRef, containing a \Trailer

if "XRef" not in doc:
return False

if "Trailer" not in doc["XRef"]:
return False

If there is no \Info dictionary inthe \Trailer , we create it

if "Info" not in doc["XRef"]["Trailer"]:
doc["XRef"]["Trailer"][Name("Info")] = Dictionary()

Let's set the \Author entry inthe \Info dictionary

change author
doc["XRef"]["Trailer"]["Info"]["Author"]

String("Joris Schellekens")

Now we can store the PDF Document again:

with open("output.pdf", "wb") as out_file_handle:
PDF.dumps(out_file_handle, doc)

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.5.1.4 Changing the producer of an existing PDF
Let's start by reading the PDF Document .
doc = None

with open("input.pdf", "rb") as pdf_file_handle:
doc = PDF.loads(pdf_file_handle)

Now we check whether the PDF has an XRef, containing a \Trailer

if "XRef" not in doc:
return False

if "Trailer" not in doc["XRef"]:
return False

If there is no \Info dictionary in the \Trailer , we create it

if "Info" not in doc["XRef"]["Trailer"]:
doc["XRef"]["Trailer"][Name("Info")] = Dictionary()

Let's set the \Producer entryinthe \Info dictionary

change author
doc["XRef"]["Trailer"]["Info"]["Producer"] = String("pText")

Now we can store the PDF Document again:

with open("output.pdf", "wb") as out_file_handle:
PDF.dumps(out_file_handle, doc)

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.5.2 Using the XMP metadata in a Document

1.5.2.1 Reading the XMP metadata of an existing PDF

This example is similar to the earlier example involving DocumentInfo . Butin stead, we will use XMPDocumentInfo . This class offers
even more methods to get information from a PDF Document . Keep in mind that XMP is not a requirement for a PDF Document to be
valid. So you may find these methods return None when you test them on a Document that does not have embedded XMP data.

with open(file, "rb") as pdf_file_handle:
doc = PDF.loads(pdf_file_handle)
doc_info = doc.get_xmp_document_info()

print("title : %s" % doc_info.get_title())
print("author i %s" % doc_info.get_author())
print("creator : %s" % doc_info.get_creator())
print("producer i %s" % doc_info.get_producer())
print("ids : %s" % doc_info.get_ids())
print("language : %s" % doc_info.get_language())
print("document-ID i %s" % doc_info.get_document_id())
print("original document-ID : %s" % doc_info.get_original_document_id())
print("creation date i %s" % doc_info.get_creation_date())
print("modification date : %s" % doc_info.get_modification_date())
print("metadata date i %s" % doc_info.get_metadata_date())
print("")

| tried this on a Document with XMP meta-data, and it printed the following:

title : None

author : None

creator : None

producer : Adobe PDF Library 15.0

ids : ['0952B683A7F340E48FD2F5409F3E6DO8', 'AF7A23737C7A664D93DF2CBE97397150"']
language : en-GB

document-ID : xmp.id:54e5adca-494c-4c10-983a-daad3cdaeb5a

original document-ID : xmp.did:b857e947-9e0d-4cd3-aff9-40a81c991e7a

creation date 1 2017-12-15T15:38:40+01:00
modification date 1 2017-12-15T16:23:53+01:00
metadata date 1 2017-12-15T16:23:53+01:00

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.6 Images

1.6.1 Extracting Images from a Document using SimpleImageExtraction

Like in the previous examples, we'll use an implementation of EventListener :

with open(file, "rb") as pdf_file_handle:
1 = SimpleImageExtraction()
doc = PDF.loads(pdf_file_handle, [1])

In this case SimpleImageExtraction will listen to all PDF parser commands that tell the reader to display an Image .

Once the Document is parsed, we can extract all Image objects from the SimpleImageExtraction

for i, img in enumerate(l.get_images_per_page(0)):
output_file = self.output_dir / (file.stem + str(i) + ".jpg")
with open(output_file, "wb") as image_file_handle:
img.save(image_file_handle)

1.7 Annotations

An annotation associates an object such as a note, sound, or movie with a location on a page of a PDF
document, or provides a way to interact with the user by means of the mouse and keyboard. PDF includes a
wide variety of standard annotation types, described in detail in 12.5.6, “Annotation Types.”

1.7.1 Adding a rubber stamp annotation to an existing PDF

A rubber stamp annotation (PDF 1.3) displays text or graphics intended to look as if they were stamped on the
page with a rubber stamp. When opened, it shall display a pop-up window containing the text of the associated
note. Table 181 shows the annotation dictionary entries specific to this type of annotation.

We start by reading the Document :

attempt to read PDF

doc = None

with open("input.pdf", "rb") as in_file_handle:
doc = PDF.loads(in_file_handle)

Then we add the annotation:

add annotation

doc.get_page(0).append_stamp_annotation(
name=RubberStampAnnotationIconType.CONFIDENTIAL,
contents="Approved by Joris Schellekens",
color=x11Color("white"),
rectangle=(Decimal(128), Decimal(128), Decimal(32), Decimal(64)),

There are various parameters we can set here;

name : conforming readers should support at least the following values for the name parameter: Approved, Experimental,
NotApproved, Asls, Expired, NotForPublicRelease, Confidential, Final, Sold, Departmental, ForComment, TopSecret, Draft,
ForPublicRelease

e contents : is the text that should appear in the pop-up window when the stamp annotation is clicked
e color :isthe color of the pop-up window

¢ rectangle : denotes the coordinates of the rubber stamp annotation

Finally, we store the output:

attempt to store PDF
with open("output.pdf", "wb") as out_file_handle:
PDF.dumps(out_file_handle, doc)

The result should be something like this (keep in mind the rendering of the rubber stamp is the responsability of the PDF reader you
happen to be using. Your result may differ accordingly.):

File View Edit Go Bookmarks Tools Settings Help

< Previous > Next 100% ~ '7_| Zoom Out u” Zoom In @ Browse EI;E Zoom AI Text Selection

R Thumbnails
= Search.. Huisgemaakte Tiramisu

Contents Of
0 Panna cota met rode vruchten
of

Thumbnails Assortiment kazen (+ 5 EUH)

& 36,00 EUR

Reviews

al Kreeftenmenu

Bookmarks

Huisgemaakte Tiramisu
Of
Panna Cotta met rode vruchten
Of
Assortiment kazen (+ 5 EUR)

45,00 EUR
ent broodje 0,50 EUR/Per stuk

(i

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.7.2 Adding all possible rubber stamp annotations to an existing PDF

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_rubber_stamp_annotation_to_an_existing_pdf.png

A rubber stamp annotation (PDF 1.3) displays text or graphics intended to look as if they were stamped on the
page with a rubber stamp. When opened, it shall display a pop-up window containing the text of the associated
note. Table 181 shows the annotation dictionary entries specific to this type of annotation.

Let's have a look how our PDF reader renders all possible rubber stamp annotations.
We start by reading an existing PDF:

doc = None
with open("input.pdf", "rb") as in_file_handle:
doc = PDF.loads(in_file_handle)

We now define a List[str] to hold all valid types of rubber stamp annotations, we iterate over it, and add them to the Document one at
a time:

add annotation
for index, name in enumerate(RubberStampAnnotationIconType):
doc.get_page(0).append_stamp_annotation(
name=name,
contents="Approved by Joris Schellekens",
color=X11Color("white"),
rectangle=Rectangle(
Decimal(128), Decimal(128 + index * 34), Decimal(64), Decimal(32)
)

There are some parameters we can set here:

e name : indicates the kind of stamp (e.g. '‘Approved' or 'Draft’ etc)

e contents : this is the text shown when the annotation is clicked in a PDF reader
e color : thisis the color of the pop-up that displays the aforementioned text

e rectangle : this is where the annotation is to be placed

Note that you do not have control over the appearance of this particular annotation. The specific appearance is down to the
implementation of the PDF reader (e.g. Adobe Acrobat Reader).

Now we can store the PDF Document again:

with open("output.pdf", "wb") as out_file_handle:
PDF.dumps(out_file_handle, doc)

The end result (at least the annotations) should look something like this:

File View Edit Go Bookmarks Tools Settings Help

< Previous) Next || Fit Page V‘ 'T_| Zoom Out u" Zoom In

Thumbnails

{T] Browse EI;E Zoom

AI Text Selection

‘ Search...

| @

Contents

39

Thumbnails

®

Reviews

[]

Bookmarks

BEFORE SETTING OFF, READ THIS

really want £ put your lfe at

10 pat o i 1 ik
e g the ErssiTurkish

Buy 3 life vest and supplies

©are snough ile wests an board for everylbad Yoy can
& for 5a Tuskish Lia [%4] Pt B a5 5500 25 yous

Fo Pl e

‘L&-an Sea:

—_———

— A
G ;

This information Leaf lLEigpllrec

]e who are considering to cross the Aegean

Sea between Greec o ————
offence both in Gree| o ASL y..

e undocumented crossing constitutes an
and is aboue all very dangerous. This docu-

mentaims neitherto e

==courage peopleto attemptthe crossing but

seeks to provide obj¢
sures to take at sea.

yfifion about risks, rights and vital safety mea-
_he information contained in this document

For twenty years, tl

denying uisas for most applicants. At the

can saue your life b :Eiw o ..J-Lt,a:[now it will not make the crossing safer.
E [

il

same time Wars, CO M

rty are forcing out of their countries many

people who wish to :AHWGVEdC nin Europe. Despite the lack of legal ways
10 reach EUropean | e—cspite life-threatening dangers, many of

you decide to emigrate anyway and cross the sea-border.*

* Although this leaflet focuses specifically on the situation at the sea-barder, some infarmation
can still be useful also for those who might decide ta cross the land-border in the Euros region.

Alarm Phone Nr.:

@ + 334 86 517161

—
/\|1‘0f7\/

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.7.3 Adding a circle annotation to an existing PDF

148 x 210 mm (Portrait A5)

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_all_rubber_stamp_annotations_to_an_existing_pdf.png

We start by reading the PDF:

doc = None
with open("input.pdf", "rb") as in_file_handle:
doc = PDF.loads(in_file_handle)

Now we can add the annotation:

add annotation

doc.get_page(0).append_circle_annotation(
rectangle=Rectangle(Decimal(128), Decimal(128), Decimal(64), Decimal(64)),
stroke_color=X11Color ("Plum"),
fill_color=x11Color("Crimson"),

Now we can store the PDF Document again:

with open("output.pdf", "wb") as out_file_handle:
PDF.dumps(out_file_handle, doc)

The end result (at least the annotations) should look something like this:

File View

Edit Go Bookmarks Tools Settings Help

< Previous > Next 75% ~ '7_| Zoom Out u” Zoom In ﬂ Browse EI;E Zoom AI Text Selection

Contents

Thumbnails

Bookmarks

Thumbnails

Search

Verantwoord werken

Verantwoord werken met machines die op een duurzame wijze geproduceerd worden.
Machines met een lange levensduur, die weinig onderhoud nodig hebben en daardoor
garant staan voor een lang en probleemloos leven. Bij Conver ziin de maaiverzamelboten
speciaal ontwikkeld om waterplanten en/of driffvuil uit watergangen en meren te verwijderen.
Niet alleen drijvende aten als Lemna (kroos) en Waterhyacinth (Eichhornia Crassipes), maar

aterpest (Elodea) en vele andere soorten kunnen worden geoogst.

ook wortelende p

Ontdek a< nieuwe MC101 maaiverzamelboot

e —
CONVER HET ZIT IN ONZE NATUUR
r—— ———

Compacte maaiverzamelboot
De MC101 is een zeer compacte, lichte en handzame maaiverzamelboot
voor het verwijderen van drijvende waterplanten uit kleine meren, plassen
en grote vijvers. Een constructie met viakke laadvloer. Eigen, beproefde,
voortstuwing aan de achterzijde en een dubbele messenbalk aan de

A1 fof 20 v

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.7.4 Adding a square annotation to an existing PDF

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_circle_annotation_to_an_existing_pdf.png

We start by reading the PDF:

doc = None
with open("input.pdf", "rb") as in_file_handle:
doc = PDF.loads(in_file_handle)

Now we can add the annotation:

add annotation

doc.get_page(0).append_square_annotation(
rectangle=Rectangle(Decimal(128), Decimal(128), Decimal(64), Decimal(64)),
stroke_color=X11Color ("Plum"),
fill_color=x11Color("Crimson"),

Now we can store the PDF Document again:

with open("output.pdf", "wb") as out_file_handle:
PDF.dumps(out_file_handle, doc)

The end result (at least the annotations) should look something like this:

File View

< Previous) Next ||75%

Thumbnails

Bookmarks

Edit Go Bookmarks Tools

Settings

~ ‘ 'T_| Zoom Out

AJ] Text Selection v

Contents

‘ Search...
~ Contents 7
v~ Rules of Procedure of the Eur... 5
Article 1Notice and venue ... 5
Article 2Preparation for an... 5
Article 3Agenda and prepa. 4
Article 4Composition of th... 3
Article 5SRepresentation be... 2
Article 6Adoption of positi.. 2
Article 7Written procedure 1
Article 8Minutes 1
Article 9Deliberations and ... 1
Article 10Making publicv... 15
Article 11Professional sec... 15
Article 12Decisions of the... 15
Article 13Secretariat, bud... 14
Article 14Correspondenc... 14
“ Rules of Procedure of the Co... 12
Article 1General provision... 12
Article 2Configurations of... 11
Article 3 (10)Agenda 19
Article 4Representation o... 17
Article SMeetings 17
Article 6Professional secr... 16
Article 7Legislative proce... 16
Article 80ther cases of C.. 25
Article 9Making votes, ex... 24
Article 10Public access to... 24
Article 11Voting arrange... 23
Article 120rdinary writte... 23
Article 13Minutes 22
Article 14Deliberations a... 21
Article 15Signing of acts 21
Article 16 (16)Absence of ... 30
Article 17Publication of a... 30
Article 18Notification of a... 29
Article 19 (18)Coreper, co... 28
Article 20The Presidency ... 26
Article 21 (21)(22)Reports ... 35
Article 22Quality of drafti... 35
Article 23The Secretary-G... 34
Article 24 34
Article 25Duties as depos... 33
Article 26Representation ... 33
Article 27Provisions conc... 33
Article 28Correspondenc... 33
ANNEX IList of Council confi.. 32
ANNEX IISpecific provisions ... 31
ANNEX IlIDetailed rules for 36
ANNEX IVReferred to in Article 44
ANNEX VCouncil working me... 42
ANNEY i i nrarni Ltal

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.7.5 Adding a polygon annotation to an existing PDF

Rules of Procedure of the European Council 9

Article 7
‘Written procedure
Decisions of the European Council on an urgent matter may be adopted by a written vote where the

President of the European Council proposes to use that procedure. Written votes may be used where
all members of the European Council having the right to vote agree to that procedure.

A summary of acts adopted by the written procedure shall be drawn up periodically by the General
Secretariat of the Council.

Article 8

Minutes
Minutes of each meeting shall be drawn up; a draft of those minutes shall be prepared by the General

Secretariat of the Council within 15 days. The draft shall be submitted to the European Council for
approval, and then signed by the Secretary-General of the Council.

The minutes shall contain:

— areference to the documents submitted to the European Council,

a reference to the conclusions approved,

— the decisions taken,

the statements made by the European Council and those whose entry has been requested by a
member of the European Council.

Article 9
Deliberations and decisions on the basis of documents and drafts drawn up

in the languages provided for by the language rules in force

1. Except as otherwise decided unanimously by the European Council on grounds of urgency, the
European Council shall deliberate and take decisions only on the basis of documents and drafts drawn
up in the languages specified in the rules in force governing languages.

2. Any member of uncil may oppose discussion where the texts of any proposed
amendments are not h of the languages referred to in paragraph 1 as he or she may
specify.

/\|1|Of5IJV

176 x 250 mm (Portrait B5)

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_square_annotation_to_an_existing_pdf.png

We start by reading the PDF:

doc = None

with open("input.pdf", "rb") as in_file_handle:
doc = PDF.loads(in_file_handle)

Next we add the annotation:

doc.get_page(0).append_polygon_annotation(
points=[
(Decimal(72), Decimal(390)),
(Decimal(242), Decimal(500)),
(Decimal(156), Decimal(390)),
1

color=X11Color("Crimson"),

Now we can store the PDF Document again:

with open("output.pdf", "wb") as out_file_handle:
PDF.dumps(out_file_handle, doc)

The end result (at least the annotations) should look something like this:

File View

< Previous > Next ||Fitwidth V‘ T¥] zoom Out

Contents

Bookmarks

Edit

Go Bookmarks

Thumbnails

Tools

Settings Help

{Tj' Browse EI;E Zoom

AJ] Text Selection v

‘ Search...

| @

What is comstipation?
Coasmpation s camman. sl
Syemptoes. nchde iooks ([asess oo
metora) Eacaming lard, and drteuk or
B2 . T e tsen alt
g incrsases with

o o i fost b and

What causes eanstipation?

+ Mot aating ssough ibes (roughaga)
;.mmams-.m

« Mot drishing anugh 5 ook

ranawwamahlvlmmxnllrd
acly i 558 B

Toal ik f yo
Bristol Stacl Chart

Py

P T ——

g0 1, 3 0r 3 0nthe Bissad izal chirs

e G0 e e conER0tIn, Wil
Tyos 1 e st sévers.

Mte: theed i 3 s rangs o1 sl

i kit S 33 Sovas e kg

1033 S par vack 15 changa
el aen i he:

n o pasing 1ha socks

thir deknga constipatan.

congspsian 2 asid-affoi.

Frannacst

iy s T S 7k e
L o stk

e . et 5
Sl 00 1 i 5 UGG o Tk

Wit tan | do 4o redur
constipstion? (Lifesyle advica

o il 0 ki your 3.t mening
i wal Ao that &
e magitty

16 a1 e R 10 04t
corsticated

Tdutngseutivas Do ot igocs th

e e

263 s, it bt 0 3y g 0 the
obat fst ihingin tha memicn 0

s bt The mcasment ot ook
thrinsgh the wse boml & gitzhastin
the mesrings and afer maak.
How o it the todec i s
portan. . sl Sctstosd wler
6T 3wl B The P of s0cks

7

Lifestyle advice continued...

Eat foods containing plenty of fibre.
Fibre from food stays in your gut and
adds bulk and softness to the stools.

You may have some bloating
and wind at first, and it can ta
up to four weeks to helg

High-fibre foods include:

« Fruit and vegetables. Aim to
eat at least five portions of
different fruit and vegetables
each day

+ Qats, nuts and seeds

+ Wholegrain cereals, bran and
wholemeal pasta, bread etc *

Sorbitol is a sugar, which soften

the stools and acts like a natural
laxative. Sorbitol is found in fruits
(and juices) such as apples, apricots,
gooseberries, grapes (and raisins),
peaches, pears, plums, prunes,
raspberries and strawberries

The amount of sorbitol is about
5-10 times higher in dried fruit.

* Sometimes bran and wholemeal
may cause more bloating and cramps
and worsen constipation in patients
with IBS

Check out the tests directory to find more tests like this one, and discover what you can do with pText

1.7.6 Adding a polyline annotation to an existing PDF

More information available at:

wwwwy patient.co.uk/ealth/constipation-in-adults-leaflet!

v nihs uk/Conditions/Constipation
vaww.bladderandbowelfoundation.org

Produced by:

Medicines Management Team
Rotherham CCG

Oak House

Bramley

Rotherham

S66 1YY

Supported by:
Rotherham bladder and bowel
patient group

February 2014

/\|1‘0f2\/

INHS |
Rotherham

Clinical Commissioning Group

Rotherham
Clinical Commissioning Group

Patient
Information leaflet
Constipation

Your life, Your health

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_polygon_annotation_to_an_existing_pdf.png

We start by reading the PDF:

doc = None

with open("input.pdf", "rb") as in_file_handle:
doc = PDF.loads(in_file_handle)

Next we add the annotation:

doc.get_page(0).append_polyline_annotation(
points=[
(Decimal(72), Decimal(390)),
(Decimal(242), Decimal(500)),
(Decimal(156), Decimal(390)),
1

color=X11Color("Crimson"),

Now we can store the PDF Document again:

with open("output.pdf", "wb") as out_file_handle:
PDF.dumps(out_file_handle, doc)

The end result (at least the annotations) should look something like this:

File Vview Edit Go

< Previous > Next

Thumbnails

Search..

Contents

Bookmarks

Bookmarks

Fit Width

Tools Settings

'7_| Zoom Out

Help

o’} Zoom In

@ Browse

L} zoom A] Text Selection

y /4

Lifestyle advice continued...

Eat foods containing plenty of fibre.
Fibre from food stays in your gut and
adds bulk and softness to the stools.

You may have some bloating
and wind at first, and it can t

High-fibre foods include:

* Fruit and vegetables. Aim to
eat at least five portions of
different fruit and vegetables
each day

* Oats, nuts and seeds

* Wholegrain cereals, bran and
wholemeal pasta, bread etc *

Sorbitol is a sugar, which soften

the stools and acts like a natural
laxative. Sorbitol is found in fruits
(and juices) such as apples, apricots,
gooseberries, grapes (and raisins),
peaches, pears, plums, prunes,
raspberries and strawberries.

The amount of sorbitol is about
5-10 times higher in dried fruit.

* Sometimes bran and wholemeal
may cause more bloating and cramps
and worsen constipation in patients
with IBS

INHS

Rotherham

More information available at: .. oL
Clinical Commissioning Group

www.patient.co.uk/health/constipation-in-adults-leaflet!
www.nhs.uk/Conditions/Constipation
www.bladderandbowelfoundation.org

Produced by:
Medicines Management Team

Rotherham CCG Patlent
Oak House
ramle i
Braey Informatlgn leaflet
566 1YY Constipation

Supported by:
Rotherham bladder and bowel
patient group

February 2014

Rotherham
Clinical Commissioning Group

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.7.7 Adding an annotation using a shape from the LineArtFactory to an existing PDF

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_polyline_annotation.png

The LineArtFactory class allows you to easily create shapes (defined as List[Tuple[Decimal,Decimal]]), it contains everything you
need to render:

e triangles (right sided triangle, isoceles triangles)

o stars (with convenience methods for 4-sided stars, 5-sided stars, 6-sided stars)

e 4-gons (paralellogram, trapezoid, diamond)

e regular n-gons (with convenience methods for pentagon, hexagon, heptagon, octagon)

« fractions of circles (with convenience methods for half a circle and three quarters of a circle)
e arrows (left, right, up, down)

e misc. (droplet, sticky note, etc)

We start by reading the PDF:

doc = None
with open("input.pdf", "rb") as in_file_handle:
doc = PDF.loads(in_file_handle)

Now we can add the annotation:

get the shape
shape = LineArtFactory.droplet(
Rectangle(Decimal(100), Decimal(100), Decimal(100), Decimal(100))

)

add annotation
doc.get_page(0).append_polyline_annotation(
points=shape,

stroke_color=X11Color("Salmon"),

Now we can store the PDF Document again:

with open("output.pdf", "wb") as out_file_handle:
PDF.dumps(out_file_handle, doc)

The end result (at least the annotations) should look something like this:

File Vview Edit Go

< Previous > Next

Thumbnails

ot Search...

Contents

Thumbnails

Bookmarks

L} zoom A] Text Selection

Lifestyle advice continued...

Eat foods containing plenty of fibre.
Fibre from food stays in your gut and
adds bulk and softness to the stools.

You may have some bloating

and wind at first, and it can take

up to four weeks to help your
constipation. So it is best to increase
your fibre slowly and make it a long
term change. You will also need to
drink lots of water with your high
fibre foods.

High-fibre foods include:

* Fruit and vegetables. Aim to
eat at least five portions of
different fruit and vegetables
each day

* Oats, nuts and seeds

* Wholegrain cereals, bran and
wholemeal pasta, bread etc *

Sorbitol is a sugar, which soften
the stools and acts like a natural

laxative. Sorbitol is found in fruits
(and juices) such as apples, apricots,
gooseberries, grapes (and raisins),

INHS

Rotherham

More inf ti ilable at: .. oL
ore information avaffable Clinical Commissioning Group

www.patient.co.uk/health/constipation-in-adults-leaflet!
www.nhs.uk/Conditions/Constipation
www.bladderandbowelfoundation.org

Produced by:
Medicines Management Team

Rotherham CCG Patlent
Oak House
ramle i
Braey Informatlgn leaflet
566 1YY Constipation

Supported by:
Rotherham bladder and bowel
patient group

February 2014

Rotherham
Clinical Commissioning Group

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.7.8 Adding a highlight annotation to an existing PDF

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_polyline_annotation_using_line_art_factory.png

We start by reading the PDF:

doc = None
with open("input.pdf", "rb") as in_file_handle:
doc = PDF.loads(in_file_handle)

Next we add the annotation:

add annotation
doc.get_page(0).append_highlight_annotation(
rectangle=Rectangle(
Decimal(72.86), Decimal(486.82), Decimal(129), Decimal(13)
)
contents="Lorem Ipsum Dolor Sit Amet",
color=xX11Color("Yellow"),

Now we can store the PDF Document again:

with open("output.pdf", "wb") as out_file_handle:
PDF.dumps(out_file_handle, doc)

The end result (at least the annotations) should look something like this:

File Vview Edit Go

< Previous > Next ||Fitwidth V‘ T¥] zoom Out

— Thumbnails

Bookmarks

Tools

Settings Help

{Tj' Browse EI;E Zoom

AJ] Text Selection v

‘ Search...

| @

Contents

Bookmarks

What is comstipation?
Coasmpation s camman. sl
Syemptoes. nchde iooks ([asess oo

e, You may e fosl beated and
Toal ik f yo

metora) Eacaming lard, and drteuk or
B3 g, TP 1T it kit
g ncrsases comeaed with yous

What causes eanstipation?

+ Mot aating ssough ibes (roughaga)
s commnon caura (Seu below)

* Mot driaing naugh 5 o0
et waler 12 kavg tharm st and
a0l padsed (560 Balval

Bristol Stacl Chart

Py

g0 1, 3 0r 3 0nthe Bissad izal chirs
e G0 e e conER0tIn, Wil
Tyos 1 e st sévers.

Mte: theed i 3 s rangs o1 sl
sl ki, 3.3 S g

thir deknga constipatan.

P T ——

congspsian 2 asid-affoi.

e s 20 moeprins diew

v e gt s, a0y

may nverd sz sart £ murdng
13 chack th

Frannacst

Lty push
@l for the stocks t mene.

id
s = g cer, drick 4 o uf
Sl 00 1 i 5 UGG o Tk

Whisk can | do o reduce my
constipation? (Lifestyle advice)

o il 0 ki your 3.t mening
i wal Ao that posgla wih

16 a1 e R 10 04t
corsticated

Tdutngseutivas Do ot igocs th

ey s o Nl 8 e
S dock b & SVt 10 ok
[——
Loka s i 1 i

s bt The mcasment ot ook
thrinsgh the wse boml & gitzhastin
the mesrings and afer maak.
How o it the todec i s
portan. . sl Sctstosd wler
6T 3wl B The P of s0cks

Check out the tests directory to find more tests like this one, and discover what you can do with pText

7

Lifestyle advice continued...

Eat foods containing plenty of fibre.
Fibre from food stays in your gut and
adds bulk and softness to the stools.

You may have some bloating

and wind at first, and it can take

up to four weeks to help your
constipation. So it is best to increase
your fibre slowly and make it a long
term change. You will also need to
drink lots of water with your high
fibre foods.

High-fibre foods include:

« Fruit and vegetables. Aim to
eat at least five portions of
different fruit and vegetables
each day

+ Qats, nuts and seeds

+ Wholegrain cereals, bran and
wholemeal pasta, bread etc *

Sorbitol is a sugar, which soften

the stools and acts like a natural
laxative. Sorbitol is found in fruits
(and juices) such as apples, apricots,
gooseberries, grapes (and raisins),
peaches, pears, plums, prunes,
raspberries and strawberries

The amount of sorbitol is about
5-10 times higher in dried fruit.

* Sometimes bran and wholemeal
may cause more bloating and cramps
and worsen constipation in patients
with IBS

1.7.9 Adding a link annotation to an existing PDF

More information available at:

wwwwy patient.co.uk/ealth/constipation-in-adults-leaflet!
v nihs uk/Conditions/Constipation
vaww.bladderandbowelfoundation.org

Produced by:

Medicines Management Team
Rotherham CCG

Oak House

Bramley

Rotherham

S66 1YY

Supported by:
Rotherham bladder and bowel
patient group

February 2014

INHS |
Rotherham
Clinical Commissioning Group

/\|1‘0f2\/

Rotherham
Clinical Commissioning Group

Patient
Information leaflet
Constipation

Your life, Your health

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_highlight_annotation_to_an_existing_pdf.png

We start by reading the PDF:

doc = None
with open("input.pdf", "rb") as in_file_handle:
doc = PDF.loads(in_file_handle)

Next we add the annotation:

doc.get_page(0).append_link_annotation(
page=Decimal(0),
destination_type=DestinationType.FIT,
color=x11Color("Red"),

rectangle=Rectangle(Decimal(128), Decimal(128), Decimal(64), Decimal(64)),

There are some parameters we can set here:

e page : indicates the page number of the Page you would like to link to

e destination_type : In this case 'Fit' means 'show the entire Page , and force the viewer to zoom until it fits'

Now we can store the PDF Document again:

with open("output.pdf", "wb") as out_file_handle:
PDF.dumps(out_file_handle, doc)

The end result (at least the annotations) should look something like this:

File Vview Edit Go

< Previous > Next

Thumbnails

ot Search...

Contents

Thumbnails

Bookmarks

Bookmarks Tools Settings Help

Fitwidth ~ [¥] Zoomout 5*} ZoomIn

@ Browse

L} zoom A] Text Selection

S ke st

y /4

Lifestyle advice continued...

Eat foods containing plenty of fibre.
Fibre from food stays in your gut and
adds bulk and softness to the stools.

You may have some bloating

and wind at first, and it can take

up to four weeks to help your
constipation. So it is best to increase
your fibre slowly and make it a long
term change. You will also need to
drink lots of water with your high
fibre foods.

High-fibre foods include:

* Fruit and vegetables. Aim to
eat at least five portions of
different fruit and vegetables
each day

* Oats, nuts and seeds

* Wholegrain cereals, bran and
wholemeal pasta, bread etc *

Sorbitol is a sugar, which soften

the stools and acts like a natural
laxative. Sorbitol is found in fruits
(and juices) such as apples, apricots,
gooseberries, grapes (and raisins),
peaches, pears, plums, prunes,

raspberries

nd strawherr]

5.

The amount]
5-10 times H

* Sometime!
may cause

of sorbitol is ¢
igher in dried

bran and wh|
ore bloating 4

bout
ffruit.

blemeal
nd cramps

and worsen CONSTPAaton T

with IBS

patients

INHS

Rotherham

More inf ti ilable at: .. oL
ore information avaffable Clinical Commissioning Group

www.patient.co.uk/health/constipation-in-adults-leaflet!
www.nhs.uk/Conditions/Constipation
www.bladderandbowelfoundation.org

Produced by:

Medicines Management Team
Rotherham CCG

Oak House

Bramley

Rotherham

S66 1YY

Supported by:
Rotherham bladder and bowel
patient group

Patient
Information leaflet
Constipation

February 2014

Rotherham
Clinical Commissioning Group

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.7.10 Adding a text annotation to an existing PDF

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_link_annotation.png

We start by reading the PDF:

doc = None
with open("input.pdf", "rb") as in_file_handle:
doc = PDF.loads(in_file_handle)

Now we can add the annotation:

add annotation

doc.get_page(0).append_text_annotation(
contents="The quick brown fox ate the lazy mouse",
rectangle=Rectangle(Decimal(128), Decimal(128), Decimal(64), Decimal(64)),
name_of_icon="Key",
open=True,
color=xX11Color("Orange"),

Finally, we need to store the resulting PDF Document .

with open("output.pdf", "wb") as out_file_handle:
PDF.dumps(out_file_handle, doc)

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.7.11 Adding a square annotation around a regular expression match to an existing PDF

Let's combine what we saw earlier, about finding the coordinates of a regular expression with our new understanding of annotations.

In this example, we'll just draw a rectangle around each letter of a matching text-snippet. But we would easily expand this example to
include a text annotation. Imagine automatically tagging documents such that hard-to-understand terms have an annotation the end-user

can click open for more explanation.

We start by reading the PDF:

doc = None

1 = RegularExpressionTextExtraction("[sS]orbitol")

with open("input.pdf", "rb") as in_file_handle:
doc = PDF.loads(in_file_handle, [1])

Notice that we are passing an EventListener instance tothe PDF.loads method. This EventListener will be notified every time a
rendering instruction takes place. The RegularExpressionTextExtraction implementation will use these instructions to determine
whether a given regular expression has been matched.

Next we are going to add annotations (in this case square annotations) around every chunkOfTextRenderEvent that belongs to a regular
expression match.

for e in l.get_matched_chunk_of_text_render_events_per_page(0):
doc.get_page(0).append_square_annotation(
rectangle=e.get_baseline(),
stroke_color=X11Color("Firebrick"),

Now we can store the PDF Document again:

with open("output.pdf", "wb") as out_file_handle:
PDF.dumps(out_file_handle, doc)

The end result (at least the annotations) should look something like this:

File View

< Previous

Contents

Edit Go

> Next
Thumbnails

Search..

Bookmarks

Fit Width ~

Tools Settings

'7_| Zoom Out

Thumbnails

Bookmarks

Check out the tests directory to find more tests like this one, and discover what you can do with

Help

u" Zoom In

@ Browse

I3 zoom ! Area Selection

y /4

Lifestyle advice continued...

Eat foods containing plenty of fibre.
Fibre from food stays in your gut and
adds bulk and softness to the stools.

You may have some bloating

and wind at first, and it can take

up to four weeks to help your
constipation. So it is best to increase
your fibre slowly and make it a long
term change. You will also need to
drink lots of water with your high
fibre foods.

High-fibre foods include:

* Fruit and vegetables. Aim to
eat at least five portions of
different fruit and vegetables
each day

* Qats, nuts and seeds

* Wholegrain cereals, bran and
wholemeal pasta, bread etc *

SRR is a sugar, which soften

the stools and acts like a natural
laxative. is found in fruits
(and juices) such as apples, apricots,
gooseberries, grapes (and raisins),
peaches, pears, plums, prunes,
raspberries and strawberries.

The amount of ofEH is about
5-10 times higher in dried fruit.

* Sometimes bran and wholemeal
may cause more bloating and cramps
and worsen constipation in patients
with IBS

N

More information available at:

www.patient.co.uk/health/constipation-in-adults-leafletl
www.nhs.uk/Conditions/Constipation
www.bladderandbowelfoundation.org

Produced by:

Medicines Management Team
Rotherham CCG

0Oak House

Bramley

Rotherham

S66 1YY

Supported by:
Rotherham bladder and bowel
patient group

February 2014

.

Rotherham
Clinical Commissioning Group

NHS
Rotherham
Clinical Commissioning Group

Patient
Information leaflet
Constipation

Your life, Your health

pText .

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_an_annotation_around_a_regular_expression_match_to_an_existing_pdf.png

1.7.12 Adding a square annotation in the free space of a page to an existing PDF

Sometimes the position of the annotation does not matter that much, as long as it does not block any other visible content.

Finding the available free space on a Page can be tricky, it would involve re-parsing all the content to figure out where existing content
intersects with the desired location of the annotation. That is why pText comes with FreeSpaceFinder , this class searches for an
Rectangle of a given size, nearest to a given point (in Euclidean space).

Let's see it in action. We start by reading the PDF:

doc = None
with open("input.pdf", "rb") as in_file_handle:
doc = PDF.loads(in_file_handle)

Next we instantiate the FreeSpaceFinder with a given Page as argument.

determine free space
space_finder = FreeSpaceFinder(doc.get_page(0))

Now we can attempt to add the annotation. We call the method find_free_space passing it the ideal Rectangle where we would like to
place the annotation (or any other object really). find_free_space returns an Optional[Rectangle] (sometimes the Page is full).

add annotation
w, h = doc.get_page(0).get_page_info().get_size()
free_rect = space_finder.find_free_space(
Rectangle(
Decimal(w / Decimal(2)),
Decimal(h * Decimal(0.1)),
Decimal(64),

Decimal(64),

If there is room on the Page for the annotation, we can now add it. Notice that we wanted to add the annotation to the bottom center of

the Page .

if free_rect is not None:
doc.get_page(0).append_square_annotation(
rectangle=free_rect,
stroke_color=HexColor ("#F75C03"),
fill_color=HexColor ("#04A777"),

Now we can store the PDF Document again:

with open("output.pdf", "wb") as out_file_handle:
PDF.dumps(out_file_handle, doc)

The end result (at least the annotations) should look something like this: Notice how our use of FreeSpaceFinder meant that the
annotation did not collide with the existing page-number on the bottom of the Page .

File View Edit Go Bookmarks Tools Settings Help

< > Next | Fitwidth ~ [¥] ZoomoOut 57 ZoomIn {7 Browse [Zoom A] TextSelection v

Thumbnails Evern db Il Mmost creduve, Felx s limnaginauon someumes stiruggies ana pecoires
= [searcn 7 simply incapable of overcoming the horror and brutality with which it is continually
confronted. At times like this, his stories cannot help him - yet he always comes back
to them. As the novel draws to a close, Felix and the reader are left wondering what
the future holds, ‘I don’t know what the rest of my story will be’ (p.150). But the love
of stories and incredible resilience we have witnessed throughout Felix's journey
create a sense of hope and optimism for us - enough to believe he may one day
share his ultimate story, one of survival.

Morris Gleitzman has created a wonderful character and vehicle in Felix. Through
the eyes of this central character the reader will witness humanity’'s capacity for
inhumanity. The events and experiences endured by Felix (and many other
characters) are extremely difficult and complex to comprehend, if comprehensible at
all. The reader for whom this is an introduction to the Holocaust may experience the
same terrible dawning realization of what was truly happening at that time. A study
of Felix (his history, personality, actions & impact) should encourage this reader, and
those with a greater depth of knowledge about the Holocaust, to spend time thinking,
reflecting and sharing questions or views in an attempt to find some understanding.

10

AN 1 of 15 v 216 x 279 mm (Portrait Letter / ANSI A)

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.7.13 Getting all annotations from a PDF

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_square_annotation_in_free_space_to_an_existing_pdf.png

Getting all annotations from a PDF is easy, if you know where to look. Let's start by opening the PDF Document :

with open("input.pdf", "rb") as pdf_file_handle:
doc = PDF.loads(pdf_file_handle)
page = doc.get_page(0)

Annotations are defined in the \Page dictionary of whatever page the annotation appears at. Let's check the first Page .

if "Annots" in page:
print("%s has %d annotations" % ("input.pdf", len(page["Annots"])))

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.7.14 Showcase : Adding a collection of annotations shaped like super mario to an existing PDF
From the spec:
An annotation associates an object such as a note, sound, or movie with a location on a page of a PDF

document, or provides a way to interact with the user by means of the mouse and keyboard. PDF includes a
wide variety of standard annotation types, described in detail in 12.5.6, “Annotation Types.”

A link annotation represents either a hypertext link to a destination elsewhere in the document (see 12.3.2,
“Destinations”) or an action to be performed (12.6, “Actions”). Table 173 shows the annotation dictionary
entries specific to this type of annotation.

Let's add a few annotations to an existing PDF, shaped like super-mario.

First we start by defining the pixel-art grid, and the colors:

[

m =

(e, o, ¢, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],

[o,

0, 0],

OI 1/ 1’ 1/ 1’ 1/ 1’ 1/ 1’ 1/

9,

(e, o, e, 2, 2, 2, 3, 3, 2, 3, 0, 6, 0, 0],

[o,

0, 0],

2, 3,2, 3,3, 3,2 3, 3,3

9,

[GI 0’ 2’ 3’ 2’ 2’ 3’ 3’ 3’ 2/ 3’ 3/ 3’ O]I
(e, o, 2, 2, 3, 3, 3, 8, 2, 2, 2, 2, 6, 0],

[OI OI OI OI 3’ 3/ 3/ 3/ 3/ 3/ 3/ 0/ 0/ 0]I

(e, o, ¢, 1, 1, 4,1, 1, 1, 1, 1, o, 0, 0],

[o,

0, 0],

i, 1,1, 4,1, 1, 4,1, 1, 1,

9,

[OI 1/ 1/ 1/ 1/ 4’ 4I 4’ 4I 1/ 1/ 1’ 1/ 0]/

[, 3, 3, 1, 4, 5, 4, 4, 5, 4, 1, 3, 3, 0],
[OI 3/ 3’ 3/ 4/ 4/ 4/ 4/ 4/ 4/ 3/ 3/ 3/ 0]I

[0, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 0],

[o,

0, 0],

OI 4/ 4’ 4/ OI 0I 4’ 4/ 4’ 0I

0,

(e, e, 2, 2, 2, 6, 0, 0, ©, 2, 2, 2, 0, 0],

[o,

2, 0],

2, 2, 2,06, 0,0 0, 0, 2, 2, 2

2,

[

]
c =

None,

X11Color ("Red"),

X11Color("Black"),

X11Color("Tan"),

X11Color("Blue"),

X11Color ("white"),

Next we need to read an existing PDF Document :

doc = None
with open('input.pdf', "rb") as in_file_handle:
doc = PDF.loads(in_file_handle)

Now we can simply add all the annotations by calling the appropriate method on the Page object

add annotation
pixel_size = 2
for i in range(0, len(m)):
for j in range(0, len(m[i])):
if m{i][j] == e:
continue
X = pixel_size * j
y = pixel_size * (len(m) - 1i)
doc.get_page(0).append_link_annotation(
page=Decimal(0),
color=c[m[i][]j]],
destination_type=DestinationType.FIT,
rectangle=(
Decimal(x),
Decimal(y),
Decimal(x + pixel_size),
Decimal(y + pixel_size),

),

When adding a link annotation, we need to specify some arguments related to what we are linking to. In this case we specify that we want
the annotation to link to Page 0, and to force the pdf-viewer (e.g. Adobe Reader) to fit the Page (potentially zooming in/out).

We also specify a Rectangle (this is where the user would click to activate the link), and a color (this is the color of the aforementioned
rectangle).

In our case, we calculate the color and position based on our earlier grid of super-mario.

As a final step we need to store the resulting PDF Document .

with open("output.pdf", "wb") as out_file_handle:
PDF.dumps(out_file_handle, doc)

The result should be something like this:

File View Edit Go Bookmarks Tools Settings Help

< Previous > Mext “ 66% V| <] Zoomout 5* ZoomIn M Browse 11 Zoom = A] Text Selection
m b il l\l; diounie Ul A L'JJ..i:llE.CLl i lC:l_‘lCLﬁl Ul ldadoic BUUU!: U1 SCLVILCS \IJCIIUHI Ld&, LA Ldas,
= LI SN integrated tax, Union territory tax or cess);
=- ‘ Search... (m} place of supply along with the name of State, in case of a supply in the course of inter-State
Eontents trade or commerce;
5 S . (n) address of delivery where the same is different from the place of supply;
i W e e e e)
N . ' St — (o) whether the tax is payable on reverse charge basis; and
P —
Thumbnails T et e e p) signature or digital signature of the supplier or his authorized representative:
roslrpeleh
) '::"‘i:, o Provided that the Commuissioner may, on the recommendations of the Council, by notification,
[P ERLT T R ST :
& Sl specify -
—_— |..a:.d.‘:::.:..a. T U ——
) i e ey e (1) the number of digits of HSN code for goods or the Accounting Code for services, that a
Reviews > s s class of registered persons shall be required to mention, for such period as may be specified in the
gt p q p Y p
said notification, and
D (11) the class of registered persons that would not be required to mention the HSN code for
goods or the Accounting Code lor services, for such period as may be specified in the said
Bookmarks notification:

Provided further that where an invoice is required to be issued under clause () of sub-section (3) of
section 31, it shall bear the signature or digital signature of the recipient or his authorized
representative:

R adris o Bl by sl
Vi s o i oy o o
Prosided abs ot o eghoirad poruan oy rmd i 1o ek b ecalance i the ko of
e
(b T bmagarion () of o 1 byl ki Pl g oo, g b
P T T T pre——p—)
e e e o v e o, i sl e o somsalifted i ks i
o o e o sl gy o o g

o o sl oy o e, sl ensed i i o
i

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.8 Exporting a PDF

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_multiple_annotations_shaped_like_super_mario_to_an_existing_pdf.png

1.8.1 Exporting a PDF as JSON

This scenario is particularly useful when debugging. It enables you to see the PDF Document in the same way pText Sees it.

We'll start by opening and reading the Document :

with open("input.pdf", "rb") as pdf_file_handle:
doc = PDF.loads(pdf_file_handle)
output_file = self.output_dir / (file.stem + ".json")

And that's all there is to it. Now we can call the method to_json_serializable on Document which will give you accessto a json like
structure.

export to json
with open("output.json", "w") as json_file_handle:
json_file_handle.write(
json.dumps(doc.to_json_serializable(doc), indent=4)

On my example input document, this yielded the following output:

{
"null": {
"Trailer": {
IIIDII : [
"5e670a36ab70bb047b6c9eeed6eel3892",
"5e670a36ab70bb047b6c9eeed6ee3892"

I
"Info": {

"CreationDate": "D:20190409213301+02'00'",
"ModDate": "D:20190409213301+02'00'",
"Producer": "iText\u@@ae 7.1.5 \u00a92000-2019 iText Group NV \\(AGPL-version\\)"

3
"Root": {
"Pages": {
"Count": 1.0,
"Kids": [
{

"Type": "Page",
"MediaBox": [
0.0,
0.0,
878.221,
637.276

1

Here we can clearly see the xref table being persisted. This table acts as the starting point of the document, it contains references to other
data-structures that contain meta-information, information about each page, etc.

1.8.2 Exporting a PDF as SVG
Sometimes, all you need is an image. With pText you can easily convert any Page of a Document into an SVG image.

As usual, we start by reading the Document :

with open("input.pdf", "rb") as pdf_file_handle:
1 = PDFTOSVG()
doc = PDF.loads(pdf_file_handle, [1])

Here we are using PDFToSVG which acts like an EventListener . EventListener implementations are notified every time a rendering
instruction is parsed. PDFToSVG uses that knowledge to convert the pdf-syntax rendering instructions to svg-syntax.

with open("output.svg", "wb") as svg_file_handle:
svg_file_handle.write(ET.tostring(l.get_svg_per_page(0)))

The result turned something like this:

File Edit Select View Image Layer Colors Tools Filters Windows Help

x

Highligh

This was the input document:

Click-Drag to create

West Suffolk

MHS Foundation Trust

Health and Safety Information for New Employees.

The West Suffok NHSFoundation Trus wekomesyouandhopesyou
erjoy your empbyment here. All workershave a right to work in phees
whefe Tisls to ther health and sdetyare poperlycortrolled Health ard
safetyis about siopping you getting hurt atwork or ill throughwok.

Underthe Health & Safety atWork Act 1974the Trust has duties to
ensure,sofar asis reasonably pracicable, thehealth, sderyann weffare
atworlk of all its empbyees, and other persors nd in the Tru:

empbymert (visitors, patients and cortraciors) who coud neaﬁectedny
its activities

To ersure this happers the Trust must:

1) provideand mainiain plant and systemsof work tha are, s&e ard
withoutrisks to heath

have inplacearmngements forensurirg, safety andabserce of
risksto healh in connetion with the use, handing, storage ard
trarsport of articles andsubstances
provide suchinformation, instudion training ard s#emsiun asis
necessay to ersure, the heath andsafety atwork orall
empbyees and ohers presentonsite
ersure as regards any place of work under the employers corntrol
the mantenarce of it in a condiiontha is safe and without risks to
health andthe provision and maintenarce of means of accessto
and egressfromit thal are saie and without suchrisks
provde and maintan a working envirorment tha is, safe, without
risks to healh, andadequate as regards faciiiesandwelfare
arrangements for their wefare ai work
To emable e Trust to ensure it compies with heserequirements there
area number of policies and pocedures inplacewhichcanbefoundon
theintraret

election

The Trust has alegal duy to hawein pacea Hedth, Safety and Welfare
Poli

Theqrusls Health, Safety and WeffarePolicy (PP018), givesdetaied
information on the Truds and employees resporsibiiities owards health
andsafety and itis therefore paramountthat every empbyee has read,
urdersinod and abiles by the policy corterts.

The folowingis an extract from the policy tha details empbyee
resporsbiities these ae notexhausive and ober responsibiities may
beapplicable within specific areas/depatments.

35 Employees Responsibilities

It shalbetheduty ofeveryempbyee whieatworkiotake
reasorablecareforthehealthand safetyof themsevesandof
othes whomay beaffected by ther acts or omisiors. ER;:I s
arerequiredto co-operate with the empbyeron health as sagy
matters Wher anempbyeefeelsa healthandsafetymeasue
needdchemprowedheyshoulrasethswititheadine

marager intially.

Iwilbehaesporsibiitoflempbyeescbringathe
empbyer'satiertionany defective equipmenbrpdertialhazard
they hareidentifed which might presen aseriaisandimminent
?mgermhe.atharnsafey ofthemsevesandotheswithi nthe
Tust

Everyempbyee whohas been made aware of the hazrdsrekted
totheir tasks shall use anymaclinery, workplce equpment
dangerols sutstiances, trarspart equipment, clinical safety
daices and pesorel protecive equipmentprovided 1o themby
the Trust in accadance with the information, instructim and
training provided, to ersurethe effediveress d corirol measures.

Empbyees must nat intertiorally or recklessly intedere with or
misUseal provided inthe intefests of health, sdety or
welfarein pursiance of any of the relevart statutory prousions.

https://github.com/jorisschellekens/ptext/blob/master/readme_img/export_a_pdf_to_svg.png

File View Edit Go Bookmarks Tools Settings Help
> Next Fitwidth ~ [¥] Zoomout 5*} ZoomIn

Thumbnails

= Search %

Thumbnails

®

Reviews

[]

Bookmarks

@ Browse EI;E Zoom

AJ Text Selection

NHS|

West Suffolk

NHS Foundation Trust
Health and Safety Information for New Employees.

The West Suffolk NHS Foundation Trust welcomes you and hopes you
enjoy your employment here. All workers have a right to work in places
where risks to their health and safety are properly controlled. Health and
safety is about stopping you getting hurt at work or ill through work.

Under the Health & Safety at Work Act 1974 the Trust has duties to
ensure, so far as is reasonably practicable, the health, safety and welfare
at work of all its employees, and other persons not in the Trusts
employment (visitors, patients and contractors) who could be affected by
its activities.

To ensure this happens the Trust must:

1) provide and maintain plant and systems of work that are, safe and
without risks to health

2) have in place arrangements for ensuring, safety and absence of
risks to health in connection with the use, handling, storage and
transport of articles and substances

3) provide such information, instruction, training and supervision as is
necessary to ensure, the health and safety at work of all
employees and others present on site

4) ensure as regards any place of work under the employer's control,
the maintenance of it in a condition that is safe and without risks to
health and the provision and maintenance of means of access to
and egress from it that are safe and without such risks

5) provide and maintain a working environment that is, safe, without
risks to health, and adequate as regards facilities and welfare
arrangements for their welfare at work

To enable the Trust to ensure it complies with these requirements there
are a number of policies and procedures in place which can be found on
the intranet.

The Trust has a legal duty to have in place a Health, Safety and Welfare
Policy.

The Trusts Health, Safety and Welfare Policy (PP018), gives detailed
information on the Trusts and employees responsibilities towards health
and safety and it is therefore paramount that every employee has read,
understood and abides by the policy contents.

The following is an extract from the policy that details employee
responsibilities, these are not exhaustive and other responsibilities may
be applicable within specific areas/departments.

3.5 Employees Responsibilities

It shall be the duty of every employee, while at work to take
reasonable care for the health and safety of themselves and of
others who may be affected by their acts or omissions. Employees
are required to co-operate with the employer on health and safety
matters. Where an employee feels a health and safety measure
needs to be improved they should raise this with their line
manager initially.

It will be the responsibility of all employees to bring to the
employer's attention any defective equipment or potential hazard
they have identified, which might present a serious and imminent
danger to health and safety of themselves and others within the
Trust.

Every employee who has been made aware of the hazards related
to their tasks shall use any machinery, workplace equipment,
dangerous substances, transport equipment, clinical safety
devices and personal protective equipment provided to them by
the Trust, in accordance with the information, instruction and
training provided, to ensure the effectiveness of control measures.

Employees must not intentionally or recklessly interfere with or
misuse anything provided in the interests of health, safety or
welfare in pursuance of any of the relevant statutory provisions.

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.8.2 Exporting a PDF as MP3

https://github.com/jorisschellekens/ptext/blob/master/readme_img/export_a_pdf_to_svg_original.png

For those with hearing-impairments, it can be very useful to be able to convert a PDF Document to an MP3 file. This is perfectly possible
with pText .

with open("input.pdf", "rb") as pdf_file_handle:
1 = PDFTOMP3()
doc = PDF.loads(pdf_file_handle, [1])

PDFToMP3 then allows you to store an mp3 file for each page.
For this, you can use the get_audio_file_per_page method. You need to provide it with a page_number and path .

l.get_audio_file_per_page(0, "output.mp3")

The constructor of PDFToMP3 has some arguments that allow us to tweak the export.

e include_position : This should be setto True if you want the position of each Paragraph to be spoken as well. This results in
output such as "page 1, paragraph 1, top left; once upon a time"

e language : This is the 2-letter abbreviation of the language you expect the text to be in. Defaultis en
e slow : This indicates whether you want the speaking-voice to go (extra) slow, or not

1.9 Concatenating PDFs, and other page-manipulations

A common scenario, when working with existing PDF Document objects is concatenation. Let's look at how you can concatenate two or
more existing Document objects:

1.9.1 Concatenating entire PDF Documents

attempt to read PDF

doc_a = None

with open("input_a.pdf", "rb") as in_file_handle:
doc_a = PDF.loads(in_file_handle)

attempt to read PDF

doc_b = None

with open("input_b.pdf", "rb") as in_file_handle_b:
doc_b = PDF.loads(in_file_handle_b)

Now we can simply call append_document On a new Document

concat all pages to same document
doc_c = Document()
doc_c.append_document (doc_a)
doc_c.append_document (doc_b)

And finally store the merged PDF:

attempt to store PDF
with open("output.pdf", "wb") as out_file_handle:
PDF.dumps(out_file_handle, doc_c)

1.9.2 Concatenating parts of a Document

attempt to read PDF
doc_a = None
with open("input_a.pdf", "rb") as in_file_handle:

doc_a = PDF.loads(in_file_handle)

attempt to read PDF

doc_b = None

with open("input_b.pdf", "rb") as in_file_handle_b:
doc_b = PDF.loads(in_file_handle_b)

In stead of calling append_document , we can select pPage objects, and call append_page . In fact append_document is just a shortcut for
repeatedly calling append_page

concat all pages to same document

doc_c = Document()

for i in range(0, int(doc_a.get_document_info().get_number_of_pages())):
doc_c.append_page(doc_a.get_page(1i))

for i in range(0, int(doc_b.get_document_info().get_number_of_pages())):
doc_c.append_page(doc_b.get_page(i))

And finally we can store the merged PDF:

attempt to store PDF
with open("output.pdf", "wb") as out_file_handle:
PDF.dumps(out_file_handle, doc_c)

1.9.3 Removing a Page from a Document

First, we open the Document

doc = None
with open("input.pdf",
print("\treading (1) ..")
doc = PDF.loads(in_file_handle)

"rb") as in_file_handle:

Let's check the number of pages

number_of_pages =
print(number_of_pages)

int(doc.get_document_info().get_number_of_pages())

Now we can remove the first Page

remove page
doc.pop_page(0)

And finally we store the modified Document

attempt to store PDF

with open("output.pdf",
PDF.dumps(out_file_handle, doc)

"wb") as out_file_handle:

2. PDF Creation

2.0 Creating an empty PDF

This basic example gives you an idea of how to create a Document using pText . Other examples will show you how to add rich content
to it.

create empty document
pdf: Document = Document()

create empty page
page: Page = Page()

add page to document
pdf.append_page(page)

write

with open("output.pdf", "wb") as pdf_file_handle:
PDF.dumps(pdf_file_handle, pdf)

The result should be something like this:

File Vview Edit Go

< Previous > Next

Thumbnails

Bookmarks Tools Settings Help

| Fit Width V‘ T¢] zoomout 57 ZoomIn

‘ Search...

|

Contents

]

Thumbnails

®

Reviews

[]

Bookmarks

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

{ﬂ Browse EI;E Zoom

2.1 Adding text to a Document

AJ] Text Selection v

/\‘1|Gf1 e

https://github.com/jorisschellekens/ptext/blob/master/readme_img/write_empty_document.png

2.1.1 Adding text to a Document using low-level commands

This example describes how to create a PDF from scratch. This example focuses on giving the reader an understanding of the underlying
PDF syntax. This is definitely not the easiest way to write text in a PDF.

create document
pdf = Document()

add page
page = Page()
pdf.append_page(page)

This is where the actual content generation begins. To get content on a Page we need to alter its content-stream. First we'll create a
content stream, and then we'll set its bytes to the appropriate operators to write 'Hello World"

create content stream
content_stream = Stream()
content_stream[

Name("DecodedBytes")
] = b"""

q

BT

/F1 24 Tf

100 742 Td

(Hello World!) Tj

ET

Q

The g and Q operator define a context in which we can work. these operators respectively push and pop the entire graphics state
unto/from a stack. By doing so, we can ensure our content will not interfere with other content that may exist on the page.

Next we have the BT (begin text) and ET (end text) operators. They set up everything to enable us to write text. Tf sets the font (in this
case F1) and font-size.

Td determines the position at which we will draw text. Tj writes a string (enclosed in round brackets) to the PDF.

Next we need to set the properties of the content-stream to match its content. In this example we'll encode the bytes using FlateDecode .
Thus we need to provide a Filter property (so the reader knows which decompression algorithm to use), and provide a Length (so the
reader knows how long our encoded byte-stream is).

content_stream[Name("Bytes")] = zlib.compress(content_stream["DecodedBytes"], 9)
content_stream[Name("Filter")] = Name("FlateDecode")
content_stream[Name("Length")] = Decimal(len(content_stream["Bytes"]))

Next we can set this Stream to be the contents of the Page

set content of page
page[Name("Contents")] = content_stream

In the following code-snippet, we set every property related to the font we used. We need to specify the font used by the Tj operator in
the Resources dictionary of the Page .

set Font

page[Name("Resources")] = Dictionary()
page["Resources"][Name("Font")] = Dictionary()
page["Resources"]["Font"][Name("F1")] = Dictionary()

page["Resources"]["Font"]["F1"][Name("Type")] = Name("Font")
page["Resources"]["Font"]["F1"][Name("Subtype")] = Name("Typel")
page["Resources"]["Font"]["F1"][Name('"Name")] = Name("F1")
page["Resources"]["Font"]["F1"][Name("BaseFont")] = Name("Helvetica")
page["Resources"]["Font"]["F1"][Name("Encoding")] = Name('"MacRomanEncoding")

In this example | chose Helvetica, because the reader is supposed to know all the details of this font (width of every glyph, bouding box,
etc). That means we don't have to specify all the details. In the above code-snippet, we only really mentioned the name and character

encoding.

Next we store the PDF.

attempt to store PDF
with open("output.pdf", "wb") as in_file_handle:
PDF.dumps(in_file_handle, pdf)

The result should be something like this:

File View Edit Go Bookmarks Tools Settings Help

< Previous > Next

| Fit Width V‘ T¢] zoomout 57 ZoomIn {7 Browse [Zoom A] TextSelection v

Thumbnails

‘ Search... ‘ v

Co

ntents

]

Thumbnails

Hello World!

N

Bookmarks

/\‘1|M1 e

2.1.2 Adding text to a Document using ChunkOfText

Luckily, there is an easier way to get content on a PDF. Let's look at the convenience classes pText provides.

https://github.com/jorisschellekens/ptext/blob/master/readme_img/create_hello_world_using_low_level_commands.png

We'll start similar to our previous example, by creating an empty Document and Page .

create document
pdf = Document()

add page
page = Page()
pdf.append_page(page)

Now instead of having to figure out all these instructions ourselves, we can let pText do the heavy lifting. Here we add a ChunkofText
to the Page , but other classes allow you to add lines of text, paragraphs, tables, etc.

ChunkOofText (

"Hello World!", font_size=Decimal(24)
) . layout(

page, Rectangle(Decimal(100), Decimal(724), Decimal(100), Decimal(100))
)

ChunkofText allows us to specify the font_size, Color and font . If not provided, chunkofText defaults to black Helvetica, size 12.
We then call 1ayout on this object to have it put on the Page .

Finally, we can store the PDF.

attempt to store PDF
with open("output.pdf", "wb") as in_file_handle:
PDF.dumps(in_file_handle, pdf)

The result should be something like this:

File View Edit Go Bookmarks Tools Settings Help

< Previous > Next | Fit Width V‘ T¢] zoomout 57 ZoomIn {7 Browse [Zoom A] TextSelection v

Thumbnails

‘ Search... ‘ v

Contents

]

Thumbnails

Hello World!

N

Bookmarks

/\‘1|M1 e

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.1.2 (ctd) Adding text to a Document using ChunkOfText

https://github.com/jorisschellekens/ptext/blob/master/readme_img/create_hello_world_using_low_level_commands.png

Let's add some color to the Document this time:

create document
pdf = Document()

add page
page = Page()
pdf.append_page(page)

for i, c¢ in enumerate(
[

X11Color("Red"),
X11Color("Orange"),
X11Color("Yellow"),
X11Color("YellowGreen"),
X11Color("Blue"),
X11Color ("Purple"),

ChunkOfText("Hello World!", font_size=Decimal(24), color=c).layout(

page,
Rectangle(
Decimal(100 + i * 30), Decimal(724 - i * 30), Decimal(100), Decimal(100)

),

attempt to store PDF
with open("output.pdf", "wb") as in_file_handle:
PDF.dumps(in_file_handle, pdf)

The result should be something like this:

File View Edit Go Bookmarks Tools Settings Help

< Previous > Next || Fit Width V‘ T¢] zoomout 57 ZoomIn 47 Browse [Zoom A] TextSelection

— Thumbnails

‘ Search... ‘ %

Hello World!
Hello World!

Hello World!
Hello World!
Hello World!

/\‘1|of1 A

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.1.3 Adding text to a Document using LineOfText

https://github.com/jorisschellekens/ptext/blob/master/readme_img/creating_a_colorful_hello_world.png

By using LineofText we can add Alignment.(left, center, right, full) to our text. We start by creating an empty Document (just like the
other examples).

create document
pdf = Document()

add page

page = Page()
pdf.append_page(page)

Here we're going to add 4 lines of text, all of them will be justified RIGHT That means we're going to give them all the same bounding box
(apart from the y-coordinate), and have pText work out where to start the text to achieve the correct Alignment.

for i, s in enumerate(

[
"Once upon a midnight dreary,",
"while I pondered weak and weary,",
"over many a quaint and curious",
"volume of forgotten lore",

]

):

LineOfText(
SI
font_size=Decimal(20),
horizontal_alignment=Alignment.RIGHT,

) . layout (
page,
Rectangle(

Decimal(20), Decimal(724 - 24 * i), Decimal(500), Decimal(124)
)

We are also going to add a rectangle annotation, to give us a rough idea of the bounding box of the text.

add rectangle annotation
page.append_square_annotation(
stroke_color=X11Color ("Red"),
rectangle=Rectangle(
Decimal(20), Decimal(724 - 24 * 4), Decimal(500), Decimal(24 * 4)

)

Finally, we can store the Document

attempt to store PDF
with open("output.pdf", "wb") as in_file_handle:
PDF.dumps(in_file_handle, pdf)

The result should be something like this:

File View Edit Go Bookmarks Tools Settings Help

< Previous > Next Fitwidth ~ [¥] Zoomout 5*} ZoomIn

Thumbnails

{7 Browse [Zoom A] TextSelection v

v

Once upon a midnight dreary,
while | pondered weak and weary,
over many a quaint and curious
volume of forgotten lore

A1 of 1 v

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.1.3 Adding text to a Document using Paragraph

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_lines_of_text_justified_right.png

2.1.3.1 Basic example

This is by far the easiest way to add text to a page. Let's start by creating an empty Document .

create document
pdf = Document()

add page
page = Page()
pdf.append_page(page)

Next we define the text we want to add.

s = "Once upon a midnight dreary, while I pondered weak and weary, over many a quaint and curious volume of
forgotten lore"

And now we construct a Paragraph object from that text, we are also going to setits color , Alignment. and font_size'.

Paragraph(
SI
font_size=Decimal(20),
) . layout(
page,
Rectangle(Decimal(20), Decimal(724), Decimal(400), Decimal(124)),

We are also going to add a rectangle annotation, to visually mark the boundaries of the box that we want our paragraph to be in.

add rectangle annotation
page.append_square_annotation(
stroke_color=X11Color("Red"),
rectangle=Rectangle(
Decimal(20), Decimal(724 - 124), Decimal(400), Decimal(124)

)

Lastly, we write the Document .

attempt to store PDF
with open("output.pdf", "wb") as in_file_handle:
PDF.dumps(in_file_handle, pdf)

The result should be something like this:

File View Edit Go Bookmarks Tools Settings Help

< Previous > Next Fitwidth ~ [¥] Zoomout 5*} ZoomIn {7 Browse [Zoom A] TextSelection v

— Thumbnails
= Search %
Contents
[¢]
Thumbnails
EA

P

[=]
=l

Once upon a midnight dreary, while | pondered weak
and weary, over many a quaint and curious volume of
forgotten lore

A1 of 1 v

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.1.3.2 Setting justification

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_paragraph.png

Let's change the code we wrote earlier to have the Paragraph alignment CENTERED

Paragraph(
"Once upon a midnight dreary, while I pondered weak and weary, over many a quaint and curious volume of
forgotten lore",
font_size=Decimal(20),
font_color=X11Color("YellowGreen"),
horizontal_alignment=Alignment.CENTERED,
) . layout(
page,
Rectangle(Decimal(20), Decimal(600), Decimal(500), Decimal(124)),

The result should be something like this:

File View Edit Go Bookmarks Tools Settings Help

Previous Next Fitwidth ~ | [¥] Zoomout 57 ZoomIn Browse LI Zoom = A] TextSelection
o o =1

Thumbnails

v

Once upon a midnight dreary, while | pondered weak
and weary, over many a quaint and curious volume of
forgotten lore

N 1 |of 1

We can do the same for alignment FULL

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_paragraph_justified_center.png

Paragraph(
"Once upon a midnight dreary, while I pondered weak and weary, over many a quaint and curious volume of
forgotten lore",
font_size=Decimal(20),
font_color=X11Color("YellowGreen"),
horizontal_alignment=Alignment.JUSTIFIED,
) . layout(
page,
Rectangle(Decimal(20), Decimal(600), Decimal(500), Decimal(124)),

The result should be something like this:

File View Edit Go Bookmarks Tools Settings Help

< Previous > Next Fitwidth ~ [¥] Zoomout 5*} ZoomIn {7 Browse [Zoom A] TextSelection v

&,

D [[l]

Once upon a midnight dreary, while | pondered weak
and weary, over many a quaint and curious volume of
forgotten lore

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.1.3.3 Setting padding

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_paragraph_justified_full.png

Let's change the code we wrote earlier to have the paragraph alignment CENTERED . This time, we're also going to set some padding.
This will ensure the Paragraph stays away from its bounding box.

padding: Decimal = Decimal(5)
Paragraph(
"Once upon a midnight dreary, while I pondered weak and weary, over many a quaint and curious volume of
forgotten lore",
font_size=Decimal(20),
font_color=X11Color("YellowGreen"),
horizontal_alignment=Alignment.CENTERED,
padding_top=padding,
padding_right=padding,
padding_bottom=padding,
padding_left=padding,
) . layout (
page,
Rectangle(Decimal(20), Decimal(600), Decimal(500), Decimal(124)),

We're going to add a rectangle annotation around the result of the 1layout method. Typically the layout method returns the bounding
box that was occupied after having performed layout of a given LayoutElement .

add rectangle annotation
page.append_square_annotation(
stroke_color=X11Color("Red"), rectangle=layout_rect

The result should be something like this:

File View Edit Go Bookmarks Tools Settings Help

< Previous > Next Fitwidth ~ [¥] Zoomout 5*} ZoomIn {7 Browse [Zoom A] TextSelection v

Thumbnails

v

Once upon a midnight dreary,
while | pondered weak and weary,
over many a quaint and curious
volume of forgotten lore

A1 of 1 v

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.1.3.4 Setting borders

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_paragraph_justified_center_with_padding.png

pText also allows you to set borders on any LayoutElement Let's try that:

padding = Decimal(5)
layout_rect = Paragraph(
"Once upon a midnight dreary,\nwhile I pondered weak and weary,\nover many a quaint and curious\nvolume of
forgotten lore",
font_size=Decimal(20),
horizontal_alignment=Alignment.CENTERED,
respect_newlines_in_text=True,
padding_top=padding,
padding_right=padding,
padding_bottom=padding,
padding_left=padding,
border_right=True,
border_top=True,
border_color=X11Color("Green")
) . layout (
page,
Rectangle(Decimal(20), Decimal(600), Decimal(500), Decimal(124)),

The result should be something like this:

File View Edit Go Bookmarks Tools Settings Help

< Previous > Next Fitwidth ~ [¥] Zoomout 5*} ZoomIn {7 Browse [Zoom A] TextSelection v

Thumbnails

v

Once upon a midnight dreary,
while | pondered weak and weary,
over many a quaint and curious
volume of forgotten lore

A1 of 1 v

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.1.3.5 Setting color

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_paragraph_justified_center_with_padding_and_border.png

Black is boring. Let's set the font_color to salmon for a change:

padding = Decimal(5)
layout_rect = Paragraph(
"Once upon a midnight dreary,\nwhile I pondered weak and weary, \nover many a quaint and curious\nvolume of
forgotten lore",
font_size=Decimal(20),
horizontal_alignment=Alignment.CENTERED,
respect_newlines_in_text=True,
padding_top=padding,
padding_right=padding,
padding_bottom=padding,
padding_left=padding,
border_right=True,
border_top=True,
border_color=X11Color("Green"),
font_color=X11Color("Salmon")
) . layout(
page,
Rectangle(Decimal(20), Decimal(600), Decimal(500), Decimal(124)),

The result should be something like this (maybe salmon was not the greatest colour in the world):

File View Edit Go Bookmarks Tools Settings Help

47 Browse LI Zoom = A] Text Selection

| 66% V‘ 'T_| Zoom Out u" Zoom In

< Previous > Next

Thumbnails

‘ Search... ‘ %

Contents

39

Thumbnails
$ Once upon a midnight dreary,
R:)m while | pondered weak and weary,

over many a quaint and curious
volume of forgotten lore

[]

Bookmarks

/\‘1|cf1 A

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.1.3.6 Forcing a split

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_paragraph_justified_center_with_padding_and_border_salmon.png

Sometimes you'd like to force a certain split on a Paragraph . The default behaviour for Paragraph is to ignore whitespaces, and decide
(based on the bounding box of the layout) where to start a new line.

But, by tweaking the setting respect_newlines_in_text we can tell the Paragraph to respect newlines.

We'll start by creating a new Document :

create document
pdf = Document()

add page
page = Page()
pdf.append_page(page)

Now we can add the title Paragraph

layout = MultiColumnLayout(page, number_of_columns=2)

layout.add(Paragraph("The Raven", font_size=Decimal(20), font="Helvetica-Oblique",
font_color=HexColor ("708090")))

Finally, we add the Paragraph

layout.add(Paragraph("""Once upon a midnight dreary, while I pondered, weak and weary,
Over many a quaint and curious volume of forgotten lore-
While I nodded, nearly napping, suddenly there came a tapping,
As of some one gently rapping, rapping at my chamber door.
'Tis some visitor,' I muttered, 'tapping at my chamber door -
Only this and nothing more.'""",
horizontal_alignment=Alignment.CENTERED,

font_size=Decimal(8),
respect_newlines_in_text=True))

Now we can store the Document

attempt to store PDF
with open("output.pdf", "wb") as in_file_handle:
PDF.dumps(in_file_handle, pdf)

The result should be something like this:

File View Edit Go Bookmarks Tools Settings Help

| Fitwidth ~ [¥] Zoomout 5*} ZoomIn

< Previous > Next

Thumbnails

v

‘ Search...

Contents

bS

Thumbnails

®

Reviews

[]

Bookmarks

{T] Browse

L} zoom A] Text Selection

The Raven

Once upon a midnight dreary, while | pondered, weak and weary,
QOver many a quaint and curious volume of forgotten lore-
While | nodded, nearly napping, suddenly there came a tapping,
As of some one gently rapping, rapping at my chamber door.
'Tis some visitor,” | muttered, 'tapping at my chamber door-
Only this and nothing more.’

/\‘1|of1 A

Check out the tests directory to find more tests like this one, and discover what you can do with

2.1.4 Adding text to a Document using Heading

pText .

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_paragraph_forcing_split.png

A Heading acts like any other paragraph object, at least visually it does.
So what's the big deal then?

Heading objects also modify the \outlines dictionary of the Document . This dictionary is responsible for the side-menu you might see
in Adobe Reader, displaying titles, and allowing you to quickly navigate a Document .

Let's create an example. We'll start by creating an empty Document .

pdf = Document()

page = Page()

pdf.append_page(page)

layout = MultiColumnLayout(page, number_of_columns=2)

We're going to add our first Heading . Heading accepts the same arguments as Paragraph , and its layout works exactly the same.
Heading also takes a few (optional) extra arguments. outline_text allows you to set a text to be used in the side-menu. If you don't

specify anything, the text in the paragraph will be used. outline_level allows you to go deeper in the tree-hierarchy (or return to a
parent). The default (bocument) level is O.

layout.add(Heading("The Raven", font_size=Decimal(20)))
layout.add(
Paragraph(
"Edgar Allen Poe",
font="Helvetica-0Oblique",
font_size=Decimal(8),
font_color=X11Color("SteelBlue"),

Next we're going to add 100 Heading objects, followed by a random number of Paragraph objects.

for i in range(0, 100):
layout.add(Heading("Heading %d" % i, font_size=Decimal(20), outline_level=1))

Notice that | have set the outline_level to 1 here.

for _ in range(0®, random.choice([10,20,3])):
layout.add(
Paragraph(
"Once upon a midnight dreary, while I pondered, weak and weary, Over many a quaint and curious
volume of forgotten lore- While I nodded, nearly napping, suddenly there came a tapping, As of some one gently

rapping, rapping at my chamber door. Tis some visitor, I muttered, tapping at my chamber door- Only this and
nothing more.",

font_size=Decimal(12),
font_color=X11Color("SlateGray"),
horizontal_alignment=Alignment.LEFT,

Finally we're going to store the Document

with open("output.pdf", "wb") as in_file_handle:
PDF.dumps(in_file_handle, pdf)

The result should be something like this:

File View Edit Go Bookmarks Tools Settings Help

L} zoom A] Text Selection

< Previous) Next || 66% V‘ 'T_| Zoom Out 57 Zoom In
Contents
‘ Search...

Heading 23 34
Heading 24 36
Heading 25 36
Heading 26 37
Heading 27 38
Heading 28 38
Heading 29 38
Heading 30 40
Heading 31 40
Heading 32 40
Heading 33 41
Heading 34 42
Heading 35 43
Bookmarks Heading 36 45
Heading 37 47
Heading 38 48
Heading 39 48
Heading 40 50
Heading 41 51
Heading 42 53
Heading 43 56
Heading 44 58
Heading 45 59
Heading 46 60
Heading 47 62
Heading 48 63
Heading 49 64
Heading 50 67
Heading 51 68
Heading 52 68
Heading 53 69
Heading 54 70
Heading 55 70
Heading 56 71
Heading 57 72
Heading 58 74
Heading 59 77
Heading 60 79
Heading 61 80
Heading 62 81
Heading 63 82
Heading 64 a3
Heading 65 84
Heading 66 86
Heading 67 a8
Heading 68 90
Heading 69 90
Heading 70 a1
Heading 71 92
Heading 72 95
Haardi 72 as

Once upon a midnight dreary, while |
pondered, weak and weary, Over many a
quaint and curious volume of forgotten
lore- While | nodded, nearly napping,
suddenly there came a tapping, As of
some one gently rapping, rapping at my
chamber door. Tis some visitor, |
muttered, tapping at my chamber door-
Only this and nothing more.

Once upon a midnight dreary, while |
pondered, weak and weary, Over many a
quaint and curious volume of forgotten
lore- While | nodded, nearly napping,
suddenly there came a tapping, As of
some one gently rapping, rapping at my
chamber doar. Tis some visitor, |
muttered, tapping at my chamber door-
Only this and nothing more.

Heading 45

Once upon a midnight dreary, while |
pondered, weak and weary, Over many a
quaint and curious volume of forgotten
lore- While | nodded, nearly napping,
suddenly there came a tapping, As of
some one gently rapping, rapping at my
chamber door. Tis some visitor, |
muttered, tapping at my chamber door-
Only this and nothing more.

Once upon a midnight dreary, while |
pondered, weak and weary, Over many a
quaint and curious volume of forgotten
lore- While | nodded, nearly napping.
suddenly there came a tapping, As of
some one gently rapping, rapping at my
chamber door. Tis some visitor, |
muttered, tapping at my chamber door-

Ninle thie and nathina mara

Once upon a midnight dreary, while |
pondered, weak and weary, Over many a
quaint and curious volume of forgotten
lore- While | nodded, nearly napping,
suddenly there came a tapping, As of
some one gently rapping, rapping at my
chamber door. Tis some visitor, |
muttered, tapping at my chamber door-
Only this and nothing more.

Once upon a midnight dreary, while |
pondered, weak and weary, Over many a
quaint and curious volume of forgotten
lore- While | nodded, nearly napping,
suddenly there came a tapping, As of
some one gently rapping, rapping at my
chamber door. Tis some visitor, |
muttered, tapping at my chamber door-
Only this and nothing more.

Once upon a midnight dreary, while |
pondered, weak and weary, Over many a
quaint and curious volume of forgotten
lore- While | nodded, nearly napping,
suddenly there came a tapping, As of
some one gently rapping, rapping at my
chamber door. Tis some visitor, |
muttered, tapping at my chamber door-
Only this and nothing more.

Once upon a midnight dreary, while |
pondered, weak and weary, Over many a
quaint and curious volume of forgotten
lore- While | nodded, nearly napping,
suddenly there came a tapping, As of
some one gently rapping, rapping at my
chamber door. Tis some visitor, |
muttered, tapping at my chamber door-
Only this and nothing more.

/\‘ 59 ‘of 139 W

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.2 Using a PagelLayout

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_headings_to_a_document.png

So far we've used absolute positioning whenever we wanted to add something to a Page . Although this gives us precise control over
where the content needs to go, it makes it harder to add multiple LayoutElement objects.

Luckily, pText comes with various PageLayout classes. These keep track of what parts of a Page are free, and where to flow content
to.

2.2.1 Using SingleColumnLayout

create document
pdf = Document()

add page
page = Page()
pdf.append_page(page)

We'll use singleColumnLayout which takes into account top-, bottom-, left- and right-margins and lays out the content of the pPage by
adding each LayoutElement from top to bottom. It adds leading between every 2 elements, based on the LayoutElement . For text-
based elements, this is typically a multiplied leading of 1.3 (meaning the leading after a paragraph with font_size 10 will be 13).

layout = SingleColumnLayout (page)

Now that we've created a PageLayout we can simply call its add method. It will keep track of where each LayoutElement is, and will
calculate the next available Rectangle whenever a new LayoutElement is added.

layout.add(Paragraph(

"Once upon a midnight dreary, while I pondered weak and weary, over many a quaint and curious volume of
forgotten lore.",

font_size=Decimal(20),

horizontal_alignment=Alignment.RIGHT,
))
layout.add(Paragraph(
"While I nodded, nearly napping, suddenly there came a tapping. As of someone gently rapping, rapping at my
chamberdoor.",
font_size=Decimal(20),
horizontal_alignment=Alignment.RIGHT,

))

Let's store the PDF

attempt to store PDF
with open("output.pdf", "wb") as in_file_handle:
PDF.dumps(in_file_handle, pdf)

The result should be something like this:

File View Edit Go Bookmarks Tools Settings Help

< Previous > Next Fitwidth ~ [¥] Zoomout 5*} ZoomIn {7 Browse [Zoom A] TextSelection v

Thumbnails

Search %

P

Once upon a midnight dreary, while | pondered weak
and weary, over many a quaint and curious volume of
forgotten lore.

©
=1
&
=
o
T

While | nodded, nearly napping, suddenly there came

a tapping. As of someone gently rapping, rapping at
A — my chamberdoor.

A1 of 1 v

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.2.2 Using MultiColumnLayout

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_paragraphs_using_single_column_layout.png

pText also comes with MultiColumnLayout , which enables you to create a Document with multiple columns on each page.

Most of our previous code will stay the same. We will need to change the PageLayout we used. Now we're using MultiColumnLayout .

layout = MultiColumnLayout(page, number_of_columns=2)

We're also going to add a lot more content, so you can really see the effect.

layout.add(Paragraph("The Raven", font_size=Decimal(20)))
layout.add(
Paragraph(
"Edgar Allen Poe",
font="Helvetica-0Oblique",
font_size=Decimal(8),
font_color=xX11Color("SteelBlue"),

)
for _ in range(0, 20):
layout.add(
Paragraph(

"Once upon a midnight dreary, while I pondered, weak and weary, Over many a quaint and curious
volume of forgotten lore- While I nodded, nearly napping, suddenly there came a tapping, As of some one gently
rapping, rapping at my chamber door. Tis some visitor, I muttered, tapping at my chamber door- Only this and
nothing more.",

font_size=Decimal(12),

font_color=X11Color("SlateGray"),

horizontal_alignment=Alignment.LEFT,

The result should be something like this:

File View

< Previous > Next

Contents

]

Thumbnails

®

Reviews

[]

Bookmarks

Edit Go Bookmarks Tools Settings Help

|Fitwidth ~

'T_| Zoom Out u" Zoom In

{7 Browse [zoom A TextSelection v

Thumbnails

‘ Search... ‘ v

Check out the

The Raven

Edgar Allen Poe

Once upon a midnight dreary, while |
pondered, weak and weary, Over many a
quaint and curious volume of forgotien
lore- While | nodded, nearly napping,
suddenly there came a tapping, As of
some one gently rapping, rapping at my
chamber door. Tis some visitor, |
muttered, tapping at my chamber door-
Only this and nothing more.

Once upon a midnight dreary, while |
pondered, weak and weary, Over many a
quaint and curious volume of forgotten
lore- While | nodded, nearly napping,
suddenly there came a tapping, As of
some one gently rapping, rapping at my

Once upon a midnight dreary, while |
pondered, weak and weary, Over many a
quaint and curious volume of forgotten
lore- While | nodded, nearly napping,
suddenly there came a tapping, As of
some one gently rapping, rapping at my
chamber door. Tis some visitor, |
muttered, tapping at my chamber door-
Only this and nothing more.

Once upon a midnight dreary, while |
pondered, weak and weary, Over many a
quaint and curious volume of forgotten
lore- While | nodded, nearly napping,
suddenly there came a tapping, As of
some one gently rapping, rapping at my
chamber door. Tis some visitor, |
muttered, tapping at my chamber door-
Only this and nothing more.

~ LI T R TR | [T]

/\‘1|Of3\/

tests directory to find more tests like this one, and discover what you can do with pText .

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_paragraphs_using_multi_column_layout.png

2.2.3 Mixing various PagelLayout instances

Each PageLayout acts independently of any other PageLayout objects that may be defined for a given Page . This allows us to do a
layout in layers. For instance render the background using a SingleColumnLayout , and then rendering the foreground using
MultiColumnLayout . We can even define some components at absolute positions, to mix and match.

2.2.5 Showcase : Making a copy of The Raven by Edgar Allen Poe

This example showcases using multiple layout-layers. We'll start by creating an empty Document :

create document
pdf = Document()

add page
page = Page()
pdf.append_page(page)

On the first layer (the background), we'll just put an Image

first layer, displaying a raven

layout = SingleColumnLayout (page)

for _ in range(0, 12):
layout.add(Paragraph(" "))

layout.add(Image("https://cdn3.vectorstock.com/i/1000x1000/03/47/black-raven-on-white-background-vector-
4780347.jpg"))

Then we'll create a new PageLayout , and start layout on Paragraph objects

second layer, displaying the poem
layout = MultiColumnLayout(page, number_of_columns=2)
layout.add(
Paragraph(
"The Raven",
font_size=Decimal(20),
font="Helvetica-0Oblique",
font_color=HexColor ("708090"),

)
layout.add(

Paragraph(

"""Once upon a midnight dreary, while I pondered, weak and weary,
Over many a quaint and curious volume of forgotten lore-
While I nodded, nearly napping, suddenly there came a tapping,
As of some one gently rapping, rapping at my chamber door.
'Tis some visitor,' I muttered, 'tapping at my chamber door -
Only this and nothing more.'""",

horizontal_alignment=Alignment.CENTERED,

font_size=Decimal(8),

respect_newlines_in_text=True,

)
layout.add(

Paragraph(

"""Ah, distinctly I remember it was in the bleak December;
And each separate dying ember wrought its ghost upon the floor.
Eagerly I wished the morrow;-vainly I had sought to borrow
From my books surcease of sorrow-sorrow for the lost Lenore-
For the rare and radiant maiden whom the angels name Lenore-
Nameless here for evermore.""",

horizontal_alignment=Alignment.CENTERED,

font_size=Decimal(8),

respect_newlines_in_text=True,

)
layout.add(

Paragraph(

"""And the silken, sad, uncertain rustling of each purple curtain
Thrilled me-filled me with fantastic terrors never felt before;
So that now, to still the beating of my heart, I stood repeating
'Tis some visitor entreating entrance at my chamber door-
Some late visitor entreating entrance at my chamber door; -
This it is and nothing more.'""",

horizontal_alignment=Alignment.CENTERED,

font_size=Decimal(8),

respect_newlines_in_text=True,

)
)
layout.add(
Paragraph(
"""pPresently my soul grew stronger; hesitating then no longer,
'Sir,' said I, 'or Madam, truly your forgiveness I implore;
But the fact is I was napping, and so gently you came rapping,
And so faintly you came tapping, tapping at my chamber door,
That I scarce was sure I heard you'-here I opened wide the door; -
Darkness there and nothing more.""",
horizontal_alignment=Alignment.CENTERED,
font_size=Decimal(8),
respect_newlines_in_text=True,
)
)

layout.switch_to_next_column()
layout.add(
Paragraph(
"""Deep into that darkness peering, long I stood there wondering, fearing,
Doubting, dreaming dreams no mortal ever dared to dream before;

But the silence was unbroken, and the stillness gave no token,
And the only word there spoken was the whispered word, 'Lenore?'
This I whispered, and an echo murmured back the word, 'Lenore!'-
Merely this and nothing more.""",

horizontal_alignment=Alignment.CENTERED,

font_size=Decimal(8),

respect_newlines_in_text=True,

)
)
layout.add(
Paragraph(
"""Back into the chamber turning, all my soul within me burning,
Soon again I heard a tapping somewhat louder than before.
'Surely,' said I, 'surely that is something at my window lattice;
Let me see, then, what thereat is, and this mystery explore-
Let my heart be still a moment and this mystery explore; -
'Tis the wind and nothing more!'""",
horizontal_alignment=Alignment.CENTERED,
font_size=Decimal(8),
respect_newlines_in_text=True,
)

)
layout.add(

Paragraph(

"""Open here I flung the shutter, when, with many a flirt and flutter,
In there stepped a stately Raven of the saintly days of yore;
Not the least obeisance made he; not a minute stopped or stayed he;
But, with mien of lord or lady, perched above my chamber door-
Perched upon a bust of Pallas just above my chamber door-
Perched, and sat, and nothing more.""",

horizontal_alignment=Alignment.CENTERED,

font_size=Decimal(8),

respect_newlines_in_text=True,

)
layout.add(
Paragraph(
"""Then this ebony bird beguiling my sad fancy into smiling,
By the grave and stern decorum of the countenance it wore,

'"Though thy crest be shorn and shaven, thou,' I said, 'art sure no craven,

Ghastly grim and ancient Raven wandering from the Nightly shore-
Tell me what thy lordly name is on the Night's Plutonian shore!'
Quoth the Raven 'Nevermore.'""",

horizontal_alignment=Alignment.CENTERED,

font_size=Decimal(8),

respect_newlines_in_text=True,

)
)
layout.add(
Paragraph(
"""Much I marvelled this ungainly fowl to hear discourse so plainly,
Though its answer 1little meaning-little relevancy bore;
For we cannot help agreeing that no living human being
Ever yet was blessed with seeing bird above his chamber door-
Bird or beast upon the sculptured bust above his chamber door,
wWith such name as 'Nevermore.'""",
horizontal_alignment=Alignment.CENTERED,
font_size=Decimal(8),
respect_newlines_in_text=True,
)

)
layout.add(

Paragraph(
"""But the Raven, sitting lonely on the placid bust, spoke only
That one word, as if his soul in that one word he did outpour.
Nothing farther then he uttered-not a feather then he fluttered-
Till I scarcely more than muttered 'Other friends have flown before-
On the morrow he will leave me, as my Hopes have flown before.'

Then the bird said 'Nevermore.'""",
horizontal_alignment=Alignment.CENTERED,
font_size=Decimal(8),
respect_newlines_in_text=True,

Finally, we can store the Document .

attempt to store PDF
with open("output.pdf", "wb") as in_file_handle:
PDF.dumps(in_file_handle, pdf)

The result should be something like this:

File View

< Previous

Contents

Thumbnails

&,

Reviews

[]

Bookmarks

Edit Go Bookmarks Tools Settings Help

> Next || 75% v~ T¥] Zoomout 57} ZoomiIn 47 Browse LI Zoom = A] Text Selection
Thumbnails
Search..

The Raven

Once upon a midnight dreary, while | pondered, weak and weary,
Over many a quaint and curious volume of forgotten lore-
While | nodded, nearly napping, suddenly there came a tapping.
As of some one gently rapping. rapping at my chamber door.
"Tis some visitor,” | muttered, 'tapping at my chamber door-
Only this and nothing more."

Ah, distinctly | remember it was in the bleak December;
And each separate dying ember wraught its ghost upon the floor.
Eagerly | wished the morrow -vainly | had sought to bomrow
From my books surcease of sarrow-sorrow for the lost Lenore-
For the rare and radiant maiden whom the angels name Lenore-
Nameless here for evermore.

And the silken, sad, uncertain rustling of each purple curtain
Thrilled me-filled me with fantastic terrors never felt before;
So that now, to still the beating of my heart, | stood repeating
"Tis some visitor entreating entrance at my chamber door-
Some late visitor entreating entrance at my chamber door;-
This it is and nothing more.”

Presently my soul grew stronger; hesitating then no longer,
'Sir," said |, 'or Madam, truly your forgiveness | implare;
But the fact is | was napping, and so gently you came rapping,
And so faintly you came tapping, tapping at my chamber door,
That | scarce was sure | heard you'™-here | opened wide the door;-
Darkness there and nothing more.

Deep into that darkness peering, long | stood there wondering, fearing.

Doubting, dreaming dreams no mortal ever dared to dream before;

But the silence was unbroken, and the stillness gave no token,

And the only word there spoken was the whispered word, 'Lenore?

This | whispered, and an echo murmured back the word, "Lencre!'-
Merely this and nothing more.

Back into the chamber turning, all my soul within me burning,
Soon again | heard a tapping somewhat louder than before.
"Surely," said |, "surely that is something at my window lattice;
Let me see, then, what thereat is, and this mystery explore-
Let my heart be still a moment and this mystery explare;-
'Tis the wind and nothing more!"

Open here | flung the shutter, when, with many a flirt and flutter,
In there stepped a stately Raven of the saintly days of yore;
Mot the least obeisance made he; not a minute stopped or stayed he;
But, with mien of lord or lady, perched abave my chamber door-
Perched upon a bust of Pallas just above my chamber door-
Perched, and sat, and nothing more.

Then this ebony bird beguiling my sad fancy into smiling,
By the grave and stern decorum of the countenance it ware,
"Though thy crest be shorn and shaven, thou,’ | said, "art sure no craven,
Ghastly grim and ancient Raven wandering from the Nightly share-
Tell me what thy lordly name is an the Night's Plutonian shaore!"
Quoth the Raven 'Nevermore.”

Much | marvelled this ungainly fow! to hear discourse so plainly,
Though its answer little meaning-little relevancy bore;

For we cannot help agreeing that no living human being
Ever yet was blessed with seeing bird above his chamber door-
Bird or beast upon the sculptured bust above his chamber door,

With such name as ‘Nevermaore.'

But the Raven, sitting lonely on the placid bust, spoke only
That one word, as if his soul in that one word he did outpour.
Nothing farther then he uttered-not a feather then he fluttered-
Till I scarcely more than muttered 'Other friends have flown before-
On the momrow he will leave me, as my Hopes have flown before.
Then the bird said 'Nevermore.'

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.3

Using Table

https://github.com/jorisschellekens/ptext/blob/master/readme_img/showcase_writing_the_raven_document.png

2.3.1 Basic Example

Let's start by creating an empty Document

create document
pdf = Document()

add page

page = Page()
pdf.append_page(page)

Now we're going to create a simple Table . By simple | mean; no row-span, no col-span.

t = Table(number_of_rows=5, number_of_columns=2)

t.add(Paragraph("Language", color=X11lColor("SteelBlue"), font_size=Decimal(20),
horizontal_alignment=Alignment.CENTERED))

t.add(Paragraph("Nof. Questions", color=X1l1Color("SteelBlue"), font_size=Decimal(20),
horizontal_alignment=Alignment.CENTERED))

t.add(Paragraph("Javascript"))
t.add(Paragraph("2,167,178"))

t.add(Paragraph("Php"))
t.add(Paragraph("1,391,524"))

t.add(Paragraph("C++"))
t.add(Paragraph("711,944"))

t.add(Paragraph("Java"))
t.add(Paragraph("1,752,877"))
t.set_border_width_on_all_cells(Decimal(0.2))

t.set_padding_on_all_cells(Decimal(5), Decimal(5), Decimal(5), Decimal(5))

table_rect = t.layout(

page,
bounding_box=Rectangle(
Decimal(20), Decimal(600), Decimal(500), Decimal(200)

)

We're also going to add a Paragraph underneath the Table .

Paragraph(text="**Data gathered from Stackoverflow.com on 10th of february 2021", font_size=Decimal(8),
color=x11Color("Gray"))\
. layout (page, bounding_box=Rectangle(Decimal(20), table_rect.y - 40, table_rect.width, Decimal(20)))

Finally, we can store the Document .

attempt to store PDF
with open("output.pdf", "wb") as in_file_handle:
PDF.dumps(in_file_handle, pdf)

The result should be something like this:

File View Edit Go Bookmarks Tools Settings Help

< Previous > Next Fitwidth ~ [¥] Zoomout 5*} ZoomIn

Thumbnails

Search...

Con

Thumbnails

&,

Reviews

[]

Bookmarks

g

nts

{7 Browse [Zoom A] TextSelection v

Language Nof. Questions
Javascript 2,167,178
Php 1,391,524
C++ 711,944
Java 1,752,877

**Data gathered from Stackoverflow.com on 10th of february 2021

A1 of 1 v

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.3.2 Using row_span

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_simple_table.png

Let's start by creating an empty Document

create document
pdf = Document()

add page
page = Page()
pdf.append_page(page)

Like in the other Table examples, we'll start by building a Table object.

t = Table(number_of_rows=5, number_of_columns=3)

t.add(Paragraph(" "))

t.add(Paragraph("Language", color=X1l1Color("SteelBlue"), font_size=Decimal(20)))
t.add(Paragraph("Nof. Questions", color=X11Color("SteelBlue"), font_size=Decimal(20)))

Table allows usto add LayoutElement implementations directly (such as Paragraph) but also supports adding TableCell elements,
wich optionally allow you to define row_span and col_span .

t.add(TableCell(Paragraph("front-end", color=X11Color("SteelBlue")), row_span=2))
t.add(Paragraph("Javascript"))
t.add(Paragraph("2,167,178"))

t.add(Paragraph("Php"))
t.add(Paragraph("1,391,524"))

t.add(TableCell(Paragraph("back-end", color=X11Color("SteelBlue")), row_span=2))
t.add(Paragraph("C++"))
t.add(Paragraph("711,944"))

.add(Paragraph("Java"))

.add(Paragraph("1,752,877"))

.set_border_width_on_all_cells(Decimal(0.2))
.set_padding_on_all_cells(Decimal(5), Decimal(5), Decimal(5), Decimal(5))

~+ t t t

table_rect = t.layout(
page,
bounding_box=Rectangle(
Decimal(20), Decimal(600), Decimal(500), Decimal(200)

)

Paragraph(text="**Data gathered from Stackoverflow.com on 10th of february 2021", font_size=Decimal(8),
color=x11Color("Gray"))\
. layout (page, bounding_box=Rectangle(Decimal(20), table_rect.y - 40, table_rect.width, Decimal(20)))

Finally, we can store the Document .

attempt to store PDF
with open("output.pdf", "wb") as in_file_handle:
PDF.dumps(in_file_handle, pdf)

The result should be something like this:

File View Edit Go Bookmarks Tools Settings Help
< Previous > Next Fitwidth ~ [¥] Zoomout 5*} ZoomIn

Thumbnails

Search... %
Con

Thumbnails

&,

Reviews

[]

Bookmarks

B

nts

{7 Browse [Zoom A] TextSelection v

Language Nof. Questions
front-end Javascript 2,167,178

Php 1,391,524
back-end C++ 711,944

Java 1,752,877

**Data gathered from Stackoverflow.com on 10th of february 2021

A1 of 1 v

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.3.3 Using col_span

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_table_with_row_span.png

We're going to change the previous example a bit, to include some col_span

We'll start by re-defining the Table to include one extra row (we'll show the total in that row):

t = Table(number_of_rows=6, number_of_columns=3)

And lastly, we add this last row:

t.add(Paragraph("Total"))
t.add(TableCell(Paragraph("6,023,523"), col_span=2))

The result should be something like this:

File View Edit Go Bookmarks Tools Settings Help

< Previous

q
g

59 ;

Thumbnails

&,

Reviews

[]

Bookmarks

> Next

Thumbnails

Search

Fit width

~

'7_| Zoom Out u” Zoom In

v

47 Browse LI Zoom = A] Text Selection

Language Nof. Questions
front-end Javascript 2,167,178

Php 1,391,524
back-end C++ 711,944

Java 1,752,877
Total 6,023,523

**Data gathered from Stackoverflow.com on 10th of february 2021

A1 of 1 v

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.3.4 Using other LayoutElement objectsina Table

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_table_with_col_span.png

Let's start by defining a convenience method for adding an Image to a Table . This method will accept the URL of the Image , and a
Table as arguments:

def _add_image_to_table(self, url: str, table: Table):
im = PILImage.open(
requests.get(
url,
stream=True,
).raw

)
table.add(Image(im, width=Decimal(128), height=Decimal(128)))

In order to keep pText Image separate from PIL Image | use the following import statement:

from PIL import Image as PILImage

Now we can get to work. We'll begin by creating an empty Document with an empty Page

pdf = Document()
page = Page()
pdf.append_page(page)

| want to add a Table with 3 rows (2 rows for data, 1 header):

t = Table(number_of_rows=3, number_of_columns=3)

I'm going to start the Table by writing the header

t.add(Paragraph(" "))

t.add(
Paragraph(
"Close-up",
font_color=X11Color("SteelBlue"),
font_size=Decimal(20),
horizontal_alignment=Alignment.CENTERED,
)
)
t.add(
Paragraph(
"Panoramic",
font_color=xX11Color("SteelBlue"),
font_size=Decimal(20),
horizontal_alignment=Alignment.CENTERED,
)

The first entry in this row is the row header, followed by two Image objects, which we'll add using our utility method

t.add(Paragraph("Nature"))

self._add_image_to_table("https://images.unsplash.com/photo-1520860560195-0f14c411476e?
ixid=MXwxMjA3fDB8MHxwaG90bylwYWd LfHX8fGVufDB8fHwW", t)

self._add_image_to_table("https://images.unsplash.com/photo-1613480123595-c5582aa551b9?
ixid=MXwxMjA3fDB8MHxwaG90bylwYWdLfHx8fGVuUfDB8fHW", t)

Same for the second row:

t.add(Paragraph("Architecture"))
self._add_image_to_table("https://images.unsplash.com/photo-1611321569296-1305a38ebd74?

ixid=MXwxMjA3fDB8MHxwaG90bylwYWd LfHX8fGVuUfDB8fHwW", t)
self._add_image_to_table("https://images.unsplash.com/photo-1613262666714-acebcc37f1le?
ixid=MXwxMjA3fDB8MHxwaG90bylwYWd LfHx8fGVUfDB8fHW", t)

Finally, | want to set padding and borders:

t.set_border_width_on_all_cells(Decimal(0.2))
t.set_padding_on_all_cells(Decimal(5), Decimal(5), Decimal(5), Decimal(5))

And use a PageLayout to add everything to a Page

layout = SingleColumnLayout(page)
layout.add(t)

And now we can store the Document

with open("output.pdf", "wb") as in_file_handle:
PDF.dumps(in_file_handle, pdf)

The result should be something like this:

File View Edit Go Bookmarks Tools Settings Help
<-*rewou5 > Next 100% ~ EZDumOut u” Zoom In @Brﬂwse EI;E Zoom AI Text Selection

Thumbnails

Search.. v
Contents

39

Thumbnails

&,

Panoramic

Nature

Reviews

[]

Bookmarks

Close-up

Architecture

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.3.5 Showcase : displaying a Table that doubles as a heatmap-plot

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_image_objects_to_a_table.png

We'll start by creating an empty Document :

create document
pdf = Document()

add page
page = Page()
pdf.append_page(page)

We'll use a layout manager to make things easy on ourselves:

set layout
layout = SingleColumnLayout(page)

This data comes from a StackOverflow question. The author of the question wanted to display this data in a Table and use colors on
each Tablecell depending on the value.

my_dict= {' ': ['A Error', 'B Error', 'C Error', 'D Error'],
'"lab1': [0.34, 0.23, 0.80, 0.79],
'"lab2': [0.53, 0.38, 0.96, 1.25],
'lab3': [0.40, 0.27, 0.68, 0.93]}

colors = {0: X1i1Color("Green"),
0.25: X1i1Color("Yellow"),
0.5: X1i1Color("Orange"),
0.75: X11Color("Red")}

Now we can start building the Table :

table = Table(number_of_rows=4, number_of_columns=5)

First we'll add the header row:

table.add(Paragraph(" "))
for h in my_dict[" "]:

table.add(Paragraph(text=h, font="Helvetica-Bold", font_size=Decimal(12)))

Now we can add the data-rows:

for name, row in [(k,v) for k,v in my_dict.items() if k != " "]:

table.add(Paragraph(name))
for v in row:

c = X11Color("Green")

for b,bc in colors.items():
if v > b:

c = bc
table.add(Paragraph(str(v),
font_color=c,

horizontal_alignment=Alignment.CENTERED))
We're going to make the border on each cell a bit thinner than the default:

set border

table.set_border_width_on_all_cells(Decimal(0.2))

Padding can make a Table a lot more legible. Let's have a look at how you'd set the padding on a Table in pText Just like with
borders, we could set them on each Tablecell individually. But Table offers a convenience-method to set the padding on each of its
TableCell objects:

set padding
table.set_padding_on_all_cells(Decimal(5), Decimal(5), Decimal(5), Decimal(5))

Finally we add an explanatory Paragraph and the Table

add to layout
layout.add(Paragraph("This table contains all measurands for 3 lab-sessions:"))
layout.add(table)

Now we can store the PDF

attempt to store PDF
with open("output.pdf", "wb") as in_file_handle:
PDF.dumps(in_file_handle, pdf)

The result should be something like this:

File View Edit Go Bookmarks Tools Settings Help

< Previous > Next Fitwidth ~ [¥] Zoomout 5*} ZoomIn 47 Browse LI Zoom = A] Text Selection
— Thumbnails
—- Search kvs
Contents
Thumbnails
&,
Reviews This table contains all measurands for 3 lab-sessions:
Bookmarks A Error B Error C Error D Error
lab1 0.23 0.8 0.79
lab2 0.53 0.96 1.25
lab3 0.68 0.93
I
Ea 1 of 1 v

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.4 Using OrderedList and UnorderedList

https://github.com/jorisschellekens/ptext/blob/master/readme_img/using_padding_on_a_table.png

2.4.1 Using OrderedList

create document
pdf = Document()

add page
page = Page()
pdf.append_page(page)

ul = OrderedList()

ul.add(Paragraph(text="Lorem Ipsum Dolor Sit Amet Consectetur Nunc"))
ul.add(Paragraph(text="Ipsum"))

ul.add(Paragraph(text="Dolor"))

ul.add(Paragraph(text="sit"))

ul.add(Paragraph(text="Amet"))

layout = SingleColumnLayout(page)
layout.add(ul)

Finally, we can store the Document .

attempt to store PDF
with open("output.pdf", "wb") as in_file_handle:
PDF.dumps(in_file_handle, pdf)

The result should be something like this:

File View Edit Go Bookmarks Tools Settings Help

< Previous > Next

| Fit Width V‘ T¢] zoomout 57 ZoomIn 47 Browse LI Zoom = A] Text Selection

== Thumbnails
= ‘Search‘.‘ ‘ A
Thumbnails
&,
e 1. Lorem Ipsum Dolor Sit Amet Consectetur Nunc
2. Ilpsum
L] 3. Dolor
Bookmarks 4 Slt
5. Amet

/\‘1|of1 A

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.4.2 Using UnorderedList

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_an_ordered_list.png

create document
pdf = Document()

add page
page = Page()
pdf.append_page(page)

ul = UnorderedList()

ul.add(Paragraph(text="Lorem Ipsum Dolor Sit Amet Consectetur Nunc"))
ul.add(Paragraph(text="Ipsum"))

ul.add(Paragraph(text="Dolor"))

ul.add(Paragraph(text="Sit"))

ul.add(Paragraph(text="Amet"))

layout = SingleColumnLayout (page)
layout.add(ul)

Finally, we can store the Document .

attempt to store PDF
with open("output.pdf", "wb") as in_file_handle:
PDF.dumps(in_file_handle, pdf)

The result should be something like this:

File View Edit Go Bookmarks Tools Settings Help

< Previous > Next |Fitwidth V‘ T¢] zoomout 57 ZoomIn

Thumbnails

‘ Search... ‘ %

nts

fef

C s

<]

39

Thumbnails

i I\

Bookmarks

{T] Browse EI;E Zoom

AI Text Selection

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.4.3 Nested lists

Lorem Ipsum Dolor Sit Amet Consectetur Nunc

lpsum
Dolor
Sit
Amet

/\‘1|of1 A

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_an_unordered_list.png

create document
pdf = Document()

add page
page = Page()
pdf.append_page(page)

ul® = UnorderedList()
ule.add(Paragraph(text="Ipsum"))
ule.add(Paragraph(text="Dolor"))

ull = UnorderedList()
ull.add(Paragraph(text="Ipsum"))
ull.add(Paragraph(text="Dolor"))
ull.add(Paragraph(text="Ssit"))
ull.add(ulo)

ul2 = UnorderedList()
ul2.add(Paragraph(text="Lorem"))
ul2.add(Paragraph(text="Ipsum"))
ul2.add(Paragraph(text="Dolor"))
ul2.add(ull)

layout = SingleColumnLayout(page)
layout.add(ul2)

Finally, we can store the Document .

attempt to store PDF
with open("output.pdf", "wb") as in_file_handle:
PDF.dumps(in_file_handle, pdf)

The result should be something like this:

File View

Edit Go

¢ Previous > Next

Contents

39

Thumbnails

®

Reviews

[

Bookmarks

Thumbnails

Bookmarks Tools

Settings

Help

| Fit Width V‘ T¥] Zoomout 57 ZoomIn

‘ Search...

v

I Browse IJ Zoom

AJ Text Selection

Ceewe

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

Lorem
lpsum

Dolor

lpsum
olor
Sit

" |psum
u olor

B QOOC

/\‘1|M1 e

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_nested_unordered_list.png

2.4.4 Showcase : Recreating a Wikipedia article

This example is going to re-create the basics of a Wikipedia article. It is not an attempt to copy the style and look/feel of Wikipedia. Merely
a way of showcasing everything you can do with the examples and code in this section.

As usual, we start by creating an empty Document

create empty document
pdf: Document = Document()

create empty page
page: Page = Page()

add page to document
pdf.append_page(page)

We set the PageLayout

add Image
layout = MultiColumnLayout(page)

We're going to add a Paragraph to serve as the title:

layout.add(
Paragraph(
"Rose",
font_color=xX11Color("MistyRose"),
font_size=Decimal(20),
font="Helvetica-Bold",

Now comes the actual content:

layout.add(
Paragraph(
"A rose is a woody perennial flowering plant of the genus Rosa, in the family Rosaceae, or the flower

it bears.
1]

"There are over three hundred species and tens of thousands of cultivars.

)
layout.add(
Paragraph(
"They form a group of plants that can be erect shrubs, climbing, or trailing, with stems that are often

armed with sharp prickles.
"Flowers vary in size and shape and are usually large and showy,
"in colours ranging from white through yellows and reds."

)
layout.add(
Paragraph(
"Most species are native to Asia, with smaller numbers native to Europe, North America, and

northwestern Africa.
"Species, cultivars and hybrids are all widely grown for their beauty and often are fragrant.

)
layout.add(
Paragraph("Roses have acquired cultural significance in many societies. ")

)
layout.add(
Paragraph(

"Rose plants range in size from compact, miniature roses, to climbers that can reach seven meters in
height. "

"Different species hybridize easily, and this has been used in the development of the wide range of
garden roses."

)

Next we'll add an Image of arose:

add image
im = PILImage.open(
requests.get(
"https://images.unsplash.com/photo-1597826368522-9f4cb5a6ba48?
ixid=MXwxMjA3fDB8MHxwaG90bylwYWd LfHx8fGVufDB8fHW",
stream=True,
).raw

)
layout.add(Image(im, width=Decimal(256)))

And lastly some information on the genus Rosa, presented as a nested list:

add UnorderedList
layout.add(Paragraph("The genus Rosa is subdivided into four subgenera:"))
layout.add(
UnorderedList()
.add(Paragraph("Hulthemia", padding_bottom=Decimal(2)))
.add(Paragraph("Hesperrhodos", padding_bottom=Decimal(2)))
.add(Paragraph("Platyrhodon", padding_bottom=Decimal(2)))
.add(Paragraph("Rosa", padding_bottom=Decimal(2)))
.add(

UnorderedList()
.add(Paragraph("Banksianae"))
.add(Paragraph("Bracteatae"))
.add(Paragraph("Caninae"))
.add(Paragraph("Carolinae"))
.add(Paragraph("Chinensis"))
.add(Paragraph("Gallicanae"))
.add(Paragraph("Gymnocarpae"))
.add(Paragraph("Laevigatae"))
.add(Paragraph("Pimpinellifoliae"))
.add(Paragraph("Rosa"))
.add(Paragraph("Synstylae"))

The result should be something like this:

File View Edit Go Bookmarks Tools Settings Help

47 Browse LI Zoom = A] Text Selection

< Previous > Next ||66% V‘ EZDumout u" Zoom In

Thumbnails

‘ Search... ‘ %

Contents

39

The genus Rosa is subdivided into four

Thumbnails subgenera:
& Arose is a woody perennial flowering : Hulthemia
= plant of the genus Rosa, in the family . EIQSP;”';Q‘JOS
Reviews Rosaceae, or the flower it bears. There . n:g odon
are over three hundred species and tens 5 O Barksianae
D of thousands of cultivars. 2 Bracteatae
2 Caninae
Bookmarks They form a group of plants that can be 8 Carolinae
erect shrubs, climbing, or trailing, with S g';mg;gge
stems that are often armed with sharp o Gymnocarpae
prickles. Flowers vary in size and shape 2 Laevigatae
and are usually large and showy, in o Eggmellrlohae
colours ranging from white through 2 Synstylae

yellows and reds.

Most species are native to Asia, with
smaller numbers native to Europe, North
America, and northwestern Africa.
Species, cultivars and hybrids are all
widely grown for their beauty and often
are fragrant.

Roses have acquired cultural significance
in many societies.

Rose plants range in size from compact,
miniature roses, to climbers that can
reach seven meters in height. Different
species hybridize easily, and this has
been used in the development of the wide
range of garden roses.

/\‘1|Of1\/

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.5 Using Image

https://github.com/jorisschellekens/ptext/blob/master/readme_img/showcase_creating_a_wikipedia_article.png

2.5.1Usinga PIL Image

As you have seen in earlier examples, pText also handles Image objects. They act like any other LayoutElement . The most versatile
way of constructing them is by passing a PIL 1Image to the constructor.

add image
im = PILImage.open(
requests.get(
"https://images.unsplash.com/photo-1597826368522-9f4cbh5a6ba48?
ixid=MXwxMjA3fDB8MHxwaG90bylwYWd LfHx8fGVufDB8fHW",
stream=True,
).raw

)
layout.add(Image(im, width=Decimal(256)))

You can specify a width and height for the Image . If you don't specify anything, pText will use the original width and height of the
Image . If you specify only one, pText will derive the missing parameter by scaling the original width/height by the same ratio. If you
specify both, pText will stick to the dimensions you've given.

2.5.2 Using a URL to create an Image

You can however, also pass a URL directly to the Image constructor, in which case it will use the requests library and PIL to fetch the
bytes for you.

add image
layout.add(Image("https://images.unsplash.com/photo-1597826368522-9f4ch5a6ba48?
ixid=MXwxMjA3TDB8MHxwaG90bylwYWd 1fHx8fGVufDB8fHwW", width=Decimal(256)))

2.5.3 Showcase : Making a PDF to thank the first 100 stars on GitHub

I'm going to start by defining two convenience methods:

def _write_footer(page: Page):
rectangle_box = Rectangle(
Decimal(0),
Decimal(0),
page.get_page_info().get_width(),
page.get_page_info().get_height() * Decimal(0.1),

)

Shape (
LineArtFactory.rectangle(rectangle_box),
fill_color=self.ACCENT_COLOR_1,
stroke_color=self.ACCENT_COLOR_1,
line_width=Decimal(1),

) . layout(page, rectangle_box)

rectangle_box = Rectangle(
Decimal(Q@),
page.get_page_info().get_height() * Decimal(0.1),
page.get_page_info().get_width(),
Decimal(2),

)

Shape (
LineArtFactory.rectangle(rectangle_box),
fill_color=self.ACCENT_COLOR_2,
stroke_color=self.ACCENT_COLOR_2,
line_width=Decimal(1),

). layout (page, rectangle_box)

The second utility method will add a nice background with geometric stars:

def _write_background(self, page: Page):
layout = SingleColumnLayout(page)
t = Table(number_of_columns=10, number_of_rows=25)
for i in range(0, 25):
for j in range(0, 10):
put_star = random.choice([x <= 3 for x in range(0, 10)])
if i <11 and j >= 5:
t.add(Paragraph(" "))
continue
if put_star:
¢ = random.choice(
[
self.ACCENT_COLOR_1,
self.ACCENT_COLOR_2,
self.ACCENT_COLOR_3,
self.ACCENT_COLOR_4,
self.ACCENT_COLOR_5,

)
t.add(

Shape (
LineArtFactory.n_pointed_star(
bounding_box=Rectangle(
Decimal(®), Decimal(©@), Decimal(16), Decimal(16)
),
n=random.choice([3, 5, 7, 12]),
)
fill_color=c,
stroke_color=c,
line_width=Decimal(1),

else:

t.add(Paragraph(" "))
t.no_borders()

t.set_padding_on_all_cells(Decimal(5), Decimal(5), Decimal(5), Decimal(5))
layout.add(t)

Now we should be ready to define our main method:

create document
pdf = Document()

add page
page = Page()
pdf.append_page(page)

layout = MultiColumnLayout(page)

background
self._write_background(page)

To see the full table of GitHub ids | would recommend you check out this test. It seems a bit redundant to repeat that here.

table
avatar_urls = [
"https://avatars.githubusercontent.com/u/" + str(x)
for x in self.FIRST_100_STARS
1
t = Table(number_of_columns=4, number_of_rows=25)
for s in avatar_urls[0 : (4 * 25)]:
im = PILImage.open(requests.get(s, stream=True).raw)
t.add(Image(im, width=Decimal(20), height=Decimal(20)))

t.set_padding_on_all _cells(Decimal(2), Decimal(2), Decimal(2), Decimal(2))
t.no_borders()
layout.add(t)

layout.add(
Paragraph(
"100 stars!",
font="Helvetica-Bold",
font_size=Decimal(20),
font_color=self.ACCENT_COLOR_1,
horizontal_alignment=Alignment.CENTERED,

next column
layout.switch_to_next_column()

paragraph
layout.add(
Paragraph(
"Thank you, ",
font="Helvetica-Bold",
font_size=Decimal(20),
font_color=self.ACCENT_COLOR_1,

)
layout.add(

Paragraph(
"Your support and encouragement have always been the driving factors in the development of pText. "
"I want you to know that I value your appreciation immensely!"

)
layout.add(

Paragraph(

"-- Joris Schellekens",
font="Helvetica-0Oblique",
font_size=Decimal(8),
font_color=self.ACCENT_COLOR_2,

layout.add(

Barcode(
data="https://github.com/jorisschellekens/ptext-release/stargazers",
type=BarcodeType.QR,
width=Decimal(128),
stroke_color=self.ACCENT_COLOR_1,

Lastly, we can store the Document

attempt to store PDF
with open("output.pdf", "wb") as in_file_handle:
PDF.dumps(in_file_handle, pdf)

The result should be something like this:

File View Edit Go Bookmarks Tools Settings Help

< Previous > Next ||1uo% V‘ T¢] zoomout 57 ZoomIn | 47 Browse LI Zoom = A] Text Selection

Thumbnails

v

Thank you,

Your support and encouragement have
always been the driving factors in the

@a 0

i.-:' development of pText. | want you to know
- that | value your appreciation immensely!

%

ez opRHED -Nallx
Bl F=08

»*

v AEe IcEEDD IEFEs S

]

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.6 Using Barcode

https://github.com/jorisschellekens/ptext/blob/master/readme_img/showcase_100_stars_document.png

2.6.1 Basic Example

pText also supports most barcode formats. Let's create an example Document :

pdf: Document = Document()
page: Page = Page()
pdf.append_page(page)

set layout
layout = SingleColumnLayout (page)

Next we'll add a single Barcode

add barcode

layout.add(Barcode(
data="123456789128",
type=BarcodeType.CODE_128,
width=Decimal(128),
stroke_color=HexColor ("#080708"),

Finally, we can write the Document :

with open("output.pdf", "wb") as pdf_file_handle:
PDF.dumps(pdf_file_handle, pdf)

The result should be something like this:

File View Edit Go Bookmarks Tools Settings Help

< Previous > Next Fitwidth ~ [¥] Zoomout 5*} ZoomIn 47 Browse LI Zoom = A] Text Selection

Thumbnails

Search %

g

) :

Thumbnails

&,

Reviews

[]

Bookmarks

123456789128

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.6.2 Using Color on Barcode objects

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_barcode_to_a_document.png

Like most LayoutElement implementations, Barcode objects can be colored. Use the stroke_color to set the foreground color of a
Barcode . Use fill_color to setthe background color.

In this example, we're going to show some more BarcodeTypes , and give each one some color:

set layout
layout = SingleColumnLayout(page)

add barcode

layout.add(
Table(number_of_rows=5, number_of_columns=2)
.add(Paragraph("CODE 128"))

.add(
Barcode(
data="123456789128",
type=BarcodeType.CODE_128,
width=Decimal(128),
stroke_color=HexColor ("#080708"),
)
)
.add(Paragraph("CODE 39"))
.add(
Barcode(
data="123456789128",
type=BarcodeType.CODE_39,
width=Decimal(128),
stroke_color=HexColor ("#3772FF"),
)

)
.add(Paragraph("EAN 13"))
.add(

Barcode(

data="123456789128",
type=BarcodeType.EAN_13,
width=Decimal(128),
stroke_color=HexColor ("#DF2935"),

)
.add(Paragraph("EAN 14"))

.add(
Barcode(
data="1234567891280",
type=BarcodeType.EAN_14,
width=Decimal(128),
stroke_color=HexColor ("#FDCA40"),

)

.add(Paragraph("QR"))

.add(

Barcode(

data="1234567891280",
type=BarcodeType.QR,
width=Decimal(128),
stroke_color=HexColor ("#EGEBE6"),
fill_color=HexColor ("#DF2935"),

)
.set_padding_on_all_cells(Decimal(5), Decimal(5), Decimal(5), Decimal(5))

The result should be something like this:

File Vview Edit Go

< Previous > Next

Thumbnails

Search...
Con

Thumbnails

&,

Reviews

[]

Bookmarks

g

nts

Bookmarks Tools Settings Help

100% v~ [¥] Zoomout 57} Zoomin

@ Browse

ren
L Zoom

AI Text Selection

o HN H“ “ “ “ “ H
123456789128
o0z 3 JCAEROTINE
T
EAN 14 M
_ e
=

of 1

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.6.3 Showcase : Outputting the results of a Jenkins run

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_table_of_barcodes_to_a_document.png

In this showcase, we're going to convert jUnit output results to a PDF. That should make them a lot more easy to digest.

We'll start by defining two convenience methods: The first method draws the company logo at the corner of a given Page

def _write_logo(self, page: Page):
image_url = "https://icons.iconarchive.com/icons/thesquid.ink/free-flat-sample/256/rubber-duck-icon.png"
stream=True).raw)

im = PILImage.open(requests.get(image_url,
Image(im). layout(

page,

bounding_box=Rectangle(Decimal(20), Decimal(800), Decimal(49), Decimal(18)),

The second method adds a colorful footer to a given Page

def _write_footer(self, page: Page):

footer
rectangle_box
Decimal(0),

Decimal(@),
page.get_page_info().get_width(),
page.get_page_info().get_height() * Decimal(0.05),

= Rectangle(

)

Shape (
LineArtFactory.rectangle(rectangle_box),

fill_color=HexColor("5dbb46"),
stroke_color=HexColor("5dbb46"),
line_width=Decimal(1),

) . layout(page, rectangle_box)

rectangle_box = Rectangle(

Decimal(@),

page.get_page_info().get_height() * Decimal(0.05),
page.get_page_info().get_width(),
Decimal(2),

)

Shape (
LineArtFactory.rectangle(rectangle_box),
fill_color=xX11Color("SlateGray"),
stroke_color=X11Color("SlateGray"),
line_width=Decimal(1),

) . layout (page, rectangle_box)

Next we're going to create a method that writes 1 page of results:

def _write_page(self, doc: Document, results, from_index: int, to_index: int):
page = Page()
doc.append_page(page)

set layout manager
layout = SingleColumnLayout(page)

create Table
N = to_index - from_index
table = Table(
number_of_rows=N + 1,
number_of_columns=5,
column_widths=[Decimal(1), Decimal(2), Decimal(3), Decimal(2), Decimal(2)],

logo
self._write_logo(page)

header

table.add(
Paragraph("Nr.", font_color=HexColor ("#5dbb46"), font_size=Decimal(20))
)
table.add(
Paragraph("Category", font_color=HexColor ("#5dbb46"), font_size=Decimal(20))
)
table.add(
Paragraph("Name", font_color=HexColor ("#5dbb46"), font_size=Decimal(20))
)
table.add(
Paragraph("Time", font_color=HexColor("#5dbb46"), font_size=Decimal(20))
)
table.add(
Paragraph("Status", font_color=HexColor("#5dbb46"), font_size=Decimal(20))

iterate over results

annotation_positions: typing.Dict[Paragraph, str] = {}

for i, testcase in enumerate(results[from_index:to_index]):
class_name = testcase.attrib.get("classname", "")
name = testcase.attrib.get("name", "")

time = round(Decimal(testcase.attrib.get("time", "0")), 2)
fail = any([x.tag == "failure" for x in testcase])
fail_message = next(
iter(
[
x.attrib.get("message", "")
for x in testcase
if x.tag == "failure"
]
)

table.add(Paragraph(str(i + from_index), font_size=Decimal(8)))
table.add(Paragraph(class_name, font_size=Decimal(8)))
table.add(Paragraph(name, font_size=Decimal(8)))
table.add(
Paragraph(
str(time),
font_size=Decimal(8),
horizontal_alignment=Alignment.CENTERED,

If the test passes, we'll print a green 'V, else a red ‘X'

status_para = None
if fail:
status_para = Paragraph(
"X",
font_color=X11Color("Red"),
horizontal_alignment=Alignment.CENTERED,

)

else:
status_para = Paragraph(
o
font_color=X11Color("Green"),
horizontal_alignment=Alignment.CENTERED,
)

table.add(status_para)
annotation_positions[status_para] = fail_message

table.set_padding_on_all_cells(Decimal(5), Decimal(5), Decimal(5), Decimal(5))
table.set_border_width_on_all_cells(Decimal(0.5))
layout.add(table)

During the building of Table we also kept track of each status Paragraph . Now that layout is completed, all those LayoutElement
objects should have a bounding box. We can now add annotations right next to them wherever more details (for instance reasons why the
test failed) are needed.

add text annotations for failed tests
for p, s in annotation_positions.items():
if s == "":
continue
page.append_text_annotation(
rectangle=Rectangle(
p.get_bounding_box().x + Decimal(64),
p.get_bounding_box().y,
Decimal(16),
Decimal(16),
),

contents=s,

Lastly, we add the footer on the Page

add footer
self._write_footer(page)

Now we can work on the main program:

create empty Document
doc = Document()

add page
tree = ET.parse("/home/joris/Downloads/testsuite.xml")
testsuite = tree.getroot()
for i in range(0, len(testsuite), 30):
self._write_page(doc, [x for x in testsuite], i, 1 + 30)

Finally, we'll add a QR code to the last page:

last page, containing QR code
page: Page = Page()
doc.append_page(page)

layout = MultiColumnLayout (page)

add paragraph
layout.add(
Paragraph(
"For more information go to jenkins.com, or scan the following qr code:",
font="Helvetica-Bold",

add qr code
layout.add(
Barcode(
data="https://jenkins.com",
type=BarcodeType.QR,
stroke_color=HexColor ("#5dbb46"),
width=Decimal(128),

footer
self._write_footer(page)

And finally, we can store the PDF

attempt to store PDF
with open("output.pdf", "wb") as in_file_handle:
PDF.dumps(in_file_handle, doc)

The result should be something like this:

File View

< bre

39

Thumbnails

®

Reviews

[]

Bookmarks

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

Edit Go

> Next

Thumbnails

Search

Bookmarks Tools Settings Help

Fitwidth ~ [¥] Zoomout 5*} ZoomIn

FlE[E|E] F

BEEREEEBEEE

2.7 Using Chart

@ Browse EI;E Zoom

AJ Text Selection

¥i

Nr. |Category [Name Time Status
0 actions GetlLock 1.01 vV
1 actions LoadConnect 25.15

2 gprs GoToEth 147.69 vV
3 actions SetConfigProfile 1872.64 1Y
4 performance TestFactorLargePrime 1.46 vV
5 performance KeysPerMinute 101.10 vV
6 smoke CheckEVCCVersion 6.53 vV
7 smoke CheckJavaVersion 2.05 vV
8 performance CheckOverloaded 1.98 v
9 smoke CheckLinuxVersion 1.42 v
10 gprs SignalQuality 6.24 \Y
11 smoke TestConfigProfile 11.29 vV
12 aprs GetSimOperator 6.32 v

N of

https://github.com/jorisschellekens/ptext/blob/master/readme_img/showcase_converting_junit_results_to_pdf.png

Chart objects can be used to integrate MatPlotLib graphics into a PDF Document .

First we'll define a utility method that generates the chart:

import pandas as pd
import numpy as np
import matplotlib.pyplot as MatPlotLibPlot

def _create_plot(self) -> None:
Dataset
df = pd.DataFrame(
{
"X": range(1, 101),
"Y": np.random.randn(100) * 15 + range(1, 101),
"Z": (np.random.randn(100) * 15 + range(1, 101)) * 2,

plot

fig = MatPlotLibPlot.figure()

ax = fig.add_subplot(111, projection="3d")
ax.scatter(df["X"], df["Y"], df["Z"], c="skyblue", s=60)
ax.view_init (30, 185)

return MatPlotLibPlot.gcf()

Next we'll go about creating a Document , as we usually do, starting with the empty Document

create empty document
pdf: Document = Document()
page: Page = Page()

pdf.append_page(page)

set layout
layout = MultiColumnLayout (page)

Next we're going to add the chart itself. The constructor of chart takes a matplotlib.pyplot as input. Optionally, you can specify a
width and height . These work the same as when specifying width and height on Image objects.

add chart
layout.add(Chart(self._create_plot()))

We're going to force the MultiColumnLayout to go to the next column:

layout.switch_to_next_column()

We'll add some title and text, giving the reader some details about the plot:

add Heading
layout.add(
Heading(
"3D Density Chart",
font_color=xX11Color("YellowGreen"),
font_size=Decimal(20),

)
layout.add(

Paragraph(
"The mplot3D toolkit of Matplotlib allows to easily create 3D scatterplots. "

"Note that most of the customisations presented in the Scatterplot section will work in 3D as well. "
"The result can be a bit disappointing since each marker is represented as a dot, not as a sphere.."

Finally, because | did re-use an existing example, | am going to add some acknowledgements, and links:

layout.add(Paragraph("Check out https://python-graph-gallery.com/ for more wonderful examples of plots in
Python."))

layout.add(Barcode(data="https://python-graph-gallery.com/", type=BarcodeType.QR,
stroke_color=X11Color("YellowGreen")))

Now we're ready to write the Document

attempt to store PDF
with open("output.pdf", "wb") as in_file_handle:
PDF.dumps(in_file_handle, pdf)

The result should be something like this:

File View Edit Go Bookmarks Tools Settings Help

< Previous > Next

{T] Browse

| 100% v‘ T¢] zoomout 57 ZoomIn

Contents

‘ Search...

Contents

> 3D Density Chart

39

Thumbnails

R

Reviews

[]

Bookmarks

ren
L Zoom

AI Text Selection

o
135100 75 0 25 p _as

3D Density Chart

The mplot3D toolkit of Matplotlib allows to
easily create 3D scatterplots. Note that
most of the customisations presented in
the Scatterplot section will work in 3D as
well. The result can be a bit disappointing
since each marker is represented as a
dot, not as a sphere..

Check out
https://python-graph-gallery.com/ for
more wonderful examples of plots in
Python.

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.8 Using Shape

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_chart_to_a_pdf.png

Shape and DisjointShape allow you to draw geometric objects on a Document . Use Shape if you want to display a continuguous
figure (a path representing a figure that can be closed by connecting the first and last point), use DisjointShape if you have a collection
of lines (that are not connected).

2.8.1 Using Shape to display a figure from LineArtFactory

We'll start by creating an empty Document

pdf = Document()

page = Page()
pdf.append_page(page)

layout = SingleColumnLayout(page)

Next we get width and height to be able to scale our figure properly

w page.get_page_info().get_width()
h page.get_page_info().get_height()
assert w is not None

assert h is not None

Note that the asserts aren't strictly needed. But the method get_width and get_height returna typing.Optional[Decimal] SO, to
appease my static typechecker | included the asserts.

layout.add(
Shape (
LineArtFactory.dragon_curve(
bounding_box=Rectangle(Decimal(©®), Decimal(®), w, h),
number_of_iterations=10,

),
stroke_color=HexColor ("64B6AC"),

line_width=Decimal(1),
fill_color=None,

So, what's happening here?

1. First we construct a typing.List[typing.Tuple[Decimal, Decimal]] (a list of points). In this case we're using the
LineArtFactory to generate them. LineArtFactory has a number of methods that generate all kinds of figures (geometric, arrows,
stars, etc). For this example, | picked the dragon curve. You can find more information about this curve here:
https://en.wikipedia.org/wiki/Dragon_curve.

2. Next we are feeding these points into the constructor of sShape . Shape takes a few other arguments as well, including
stroke_color (the color in which to draw, default= x11Color('black')), fill_color ,and line_width .

So why do we take the long route? Why not directly paint on the pdf canvas ? Shape plays nicely with our layout algorithms. If the
content needs to be resized or translated during the layout process, “Shape will do so.

It also means we don't have to worry about the precise coordinates when we're building our shape . We can just pretend our figure starts
at (0, 0) and have shape do the heavy lifting.

Back to our tutorial. We need to store the PDF:

attempt to store PDF
with open("output.pdf", "wb") as in_file_handle:
PDF.dumps(in_file_handle, pdf)

https://en.wikipedia.org/wiki/Dragon_curve

The result should be something like this:

File View Edit Go Bookmarks Tools Settings Help

< Previous > Next {7 Browse I zoom = A] Text Selection

| 66% V‘ 'T_| Zoom Out u' Zoom In

Thumbnails

‘ Search... | v

Contents

X

New shapes in o &
Thumbnails) .0 0.0
LineArtFactory.. I . I
g) o | ::_]
o P oF AR o oF
I:] | unalpgm O LA
u| O EgN
Bookmarks E_I I l ’_||_|rJ |_||_I HE
0 N O 10
hdhp POt o
| I 0O n
|
0 0 o
O s
[MM
| !
0
I EEEpEEE N I_lu
O O O |
[. 1
| 0
. LY Emmm
o o ot - - ?Fl.."'!. -
L0 - .
Vlen 2K
0
ol N I_Iu
O

]Eéﬁ
1.1
1T
g
[1
£ 4
[.
=

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_shape.png

2.8.2 Using DisjointShape to display a maze

Let's put DisjointShape to the test by generating a maze and adding it to a PDF. First we'll need some code to generate a Maze:

class Maze:

def _ init_ (self, width: int, height: int):
assert width > 0
assert height > 0
self.width: int = width
self.height: int = height
self.cells = [
[210 for

in range(0, self.height)] for in range(0, self.width)

]
build the maze

self._build_maze()

pick a start

self._make_gap()

pick an exit
self._make_gap(reverse_scan_order=True)

Each cell of the Maze has 4 walls. Each wall is represented by a prime (north=2, east=3, south=5, west=7). Each cell can therefor be
represented using 1 number, which is 210 initially.

This algorithm is based on https://en.wikipedia.org/wiki/Maze _generation_algorithm

def _unvisited_neighbours(self, x: int, y: int):
nbs: typing.List[typing.Tuple[int, int]] = []
for 1 in range(-1, 2):
for j in range(-1, 2):
self is not a valid neighbour

https://en.wikipedia.org/wiki/Maze_generation_algorithm

if i == 0 and j ==
continue

if abs(i) == abs(j) == 1:
continue

check out-of-bounds

if x + 1 >= self.width or x + i < 0:
continue

if y + j >= self.height or y + j < 0:
continue

if self.cells[x + i][y + j] == 210:
nbs.append((x + i, y + j))

return nbs

This function returns the walls representing the Maze

def get_walls(self, cell_size: int) -> typing.List[typing.Tuple[typing.Tuple[Decimal, Decimal],
typing.Tuple[Decimal, Decimal]]]:
walls: typing.List[typing.Tuple[typing.Tuple[Decimal, Decimal], typing.Tuple[Decimal, Decimal]]] = []
for i in range(0, self.width):
for j in range(0, self.height):
c = self.cells[i][]]
if ¢ % 2 ==
walls.append([[1i * cell_size, j * cell_size], [(i + 1) * cell_size, j * cell_size]])
if ¢ % 3 == 0:
walls.append([[(1 + 1) * cell_size, j * cell_size], [(i + 1) * cell_size, (j + 1) * cell_size]])
if ¢ % 5 ==
walls.append([[1i * cell_size, (j + 1) * cell_size], [(i + 1) * cell_size, (j + 1) * cell_size]])
if ¢ % 7 == 0:
walls.append([[i * cell_size, j * cell_size], [1i * cell_size, (j + 1) * cell_size]])
return walls

This function actually generates the Maze :

def _build_maze(self) -> None:

find first cell
stk: typing.List[typing.Tuple[int, int]] = []
for i in range(0, self.width):
for j in range(0, self.height):
if self.cells[i][]j] == 210:
stk.append((i, j))
break
if len(stk) > 0:
break

while len(stk) > 0:
pop a cell from the stack and make it the current cell
current_cell: typing.Tuple[int, int] = stk[-1]
stk.pop(-1)
If the current cell has any neighbours which have not been visited
nbs = self._unvisited_neighbours(current_cell[0], current_cell[1])
if len(nbs) > 0:
Push the current cell to the stack
stk.append(current_cell)
Choose one of the unvisited neighbours
nb = random.choice(nbs)
Remove the wall between the current cell and the chosen cell
if current_cell[0] == nb[0]:
if current_cell[1] > nb[1]:
self.cells[current_cell[@]][current_cell[1]] /= 2
self.cells[nb[O@]][nb[1]] /=5
elif nb[1] > current_cell[1]:
self.cells[current_cell[0]][current_cell[1]] /= 5
self.cells[nb[O@]][nb[1]] /= 2

elif current_cell[1] == nb[1]:
if current_cell[0] > nb[0]:
self.cells[current_cell[@]][current_cell[1]] /=7
self.cells[nb[O@]][nb[1]] /= 3
elif nb[@] > current_cell[0]:
self.cells[current_cell[0]][current_cell[1]] /= 3
self.cells[nb[@]][nb[1]] /= 7
Mark the chosen cell as visited and push it to the stack
stk.append((nb[0], nb[1]))

This function creates a gap in the Maze wall on an edge (representing the start or exit):

def _make_gap(self, reverse_scan_order: bool = False):
xs = ([x for x in reversed(range(0, self.width))] if reverse_scan_order else [x for x in range(0, self.width)])
ys ([x for x in reversed(range(0, self.height))] if reverse_scan_order else [x for x in range(0,
self.height)])
for i in xs:
for j in ys:
if 1 == 0 or i == self.width - 1 or j == 0 or j == self.height - 1:
if self.cells[i][]j] !'= -1:
mark as start
if i ==
self.cells[i][]j] /=7
return
if i == self.width - 1:
self.cells[i][]j] /= 3
return
if j ==
self.cells[i][]j] /= 2
return
if j == self.height - 1:
self.cells[i][]j] /= 5

elif self.cells[i][]]

return

-1

self.cells[i - 1][]] ==

or

or

or

if

if

if

if

self.cells[i + 1][]j]
self.cells[i][] - 1]
self.cells[i][]j + 1]

self.cells[i - 1][7]
self.cells[i][]] /=
return

self.cells[i + 1][]]
self.cells[i][]] /=
return

self.cells[i][j - 1]
self.cells[i][]] /=
return

self.cells[i][]j + 1]
self.cells[i][]] /=
return

and (
-1

== -1
== -1
== -1
== -1:
7

== -1:
3

= -1:
2

== -1:
5

Finally, with all of that out of the way, let's get to PDF:

create document
pdf = Document()

add page
page = Page()

pdf.append_page(page)

set layout

layout = SingleColumnLayout(page)

add title
layout.add(
Paragraph(
"AMAZING MAZES",
font="TimesRoman",
font_size=Decimal(20),
font_color=HexColor ("274029"),

add subtitle
layout.add(
Paragraph(
Can you solve this maze?
Try going from (lower) left to (upper) right.
Good luck

mmn
4

respect_newlines_in_text=True,

generate maze
m = Maze(20, 20)

add maze
layout.add(

DisjointShape(
m.get_walls(Decimal(10)),
stroke_color=HexColor("315C2B"),
line_width=Decimal(1),

The end result should be something like this (keeping in mind the maze is generated randomly, so it might be different on your machine):

File View Edit Go Bookmarks Tools Settings Help

| Fit Width V‘ %] ZoomOut 57} Zoom In

< Previous > Next

{7 Browse L Zoom = A] Text Selection

K AMAZING MAZES

Can you solve this maze?
Try going from (lower) left to (upper) right.
Good luck

Bookmarks |l ri_}T_l
M

/\|1‘0f‘!\/

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_disjointshape.png

