
Examples

0. Getting started

0.1 Installation using pip

Getting started with pText is easy.

1. Create a virtual environment (if you have not done so already)

python3 -m venv venv

2. Activate your virtual environment

source venv/bin/activate

3. Install pText using pip

pip install ptext-joris-schellekens

4. Done You are all ready to go.
Try out some of the examples to get to know pText .

0.2 About AGPLv3

The AGPL license differs from the other GNU licenses in that it was built for network software.
You can distribute modified versions if you keep track of the changes and the date you made them.
As per usual with GNU licenses, you must license derivatives under AGPL.

It provides the same restrictions and freedoms as the GPLv3 but with an additional clause which makes it so that
source code must be distributed along with web publication.
Since web sites and services are never distributed in the traditional sense, the AGPL is the GPL of the web.

CAN CAN NOT MUST

Commercial Use Sublicense Include Copyright

Modify Hold Liable Include License

Distribute State changes

Place Warranty Disclose Source

Include Install Instructions

1. Working with existing PDFs

1.1 Extracting text from a Document using SimpleTextExtraction

Let's start by reading the PDF Document .

 with open("input.pdf", "rb") as pdf_file_handle:
 l = SimpleTextExtraction()
 doc = PDF.loads(pdf_file_handle, [l])

Notice that we are passing an EventListener instance to the PDF.loads method. This EventListener will be notified every time a
rendering instruction takes place. SimpleTextExtraction processes those rendering instructions related to displaying text, and attempts
to build the resulting text on the Page using some (simple) heuristics.

Now that we've processed the Page , we can get the resulting text and store it.

 # export txt
 with open("output.txt", "w") as txt_file_handle:
 txt_file_handle.write(l.get_text(0))

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.2 Working with ligatures using SimpleNonLigatureTextExtraction

In writing and typography, a ligature occurs where two or more graphemes or letters are joined as a single glyph. An example is the
character æ as used in English, in which the letters a and e are joined. The common ampersand (&) developed from a ligature in which
the handwritten Latin letters e and t (spelling et, Latin for and) were combined.

Dealing with ligatures can make text-parsing challenging. You never know whether your PDF Document is going to contain "fi" (ligature)
or "fi" (two separate characters).

And although these characters might look the same, a regular expression that matches "fi" (two separate characters) will not match "fi"
(ligature).

Hence SimpleNonLigatureTextExtraction , it works much like SimpleTextExtraction , replacing every ligature in the resultant text with
its separate characters, ensuring text that is easy to process afterwards.

Let's start by reading the PDF Document .

 with open("input.pdf", "rb") as pdf_file_handle:
 l = SimpleNonLigatureTextExtraction()
 doc = PDF.loads(pdf_file_handle, [l])

Once the Document is done processing, we can easily obtain and store the text:

 # export txt
 with open("output.txt", "w") as txt_file_handle:
 txt_file_handle.write(l.get_text(0))

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.3 Looking for a regular expression in a Document using RegularExpressionTextExtraction

We start by reading the PDF:

 doc = None
 l = RegularExpressionTextExtraction("[sS]orbitol")
 with open("input.pdf", "rb") as in_file_handle:
 doc = PDF.loads(in_file_handle, [l])

Notice that we are passing an EventListener instance to the PDF.loads method. This EventListener will be notified every time a
rendering instruction takes place. The RegularExpressionTextExtraction implementation will use these instructions to determine
whether a given regular expression has been matched.

We can access this information in the following manner:

 # export matches
 with open("sorbitol_matches.json", "w") as json_file_handle:
 obj = [
 {
 "text": x.get_text(),
 "x": int(x.get_baseline().x),
 "y": int(x.get_baseline().y),
 "width": int(x.get_baseline().width),
 "height": int(x.get_baseline().height),
 }
 for x in l.get_matched_chunk_of_text_render_events_per_page(0)
]
 json_file_handle.write(json.dumps(obj, indent=4))

This should store the coordinates of the individual letters that matched the regular expression.
In the example Document , this was the output:

[
{
 "text": "S",
 "x0": 73,
 "y0": 265,
 "width": 5,
 "height": 9
},
{
 "text": "o",
 "x0": 78,
 "y0": 265,
 "width": 5,
 "height": 9

},
{
 "text": "r",
 "x0": 84,
 "y0": 265,
 "width": 3,
 "height": 9
},
...

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.4 Extracting keywords from a Document using TFIDFKeywordExtraction

We can easily extract all likely keywords from the Document using TFIDFKeywordExtraction . This class acts like a regular
EventListener and will keep track of all text being parsed. Optionally, you can give this class a List of stop words (which it will then

ignore).

 with open("input.pdf", "rb") as pdf_file_handle:
 l = TFIDFKeywordExtraction(ENGLISH_STOP_WORDS)
 doc = PDF.loads(pdf_file_handle, [l])

Now let's export the keywords in json format:

 # export txt
 with open("output.json", "w") as json_file_handle:
 json_file_handle.write(
 json.dumps(
 [x.__dict__ for x in l.get_keywords_per_page(0, 5)], indent=4

)
)

For the document I picked, this gives me the following output:

[
{
 "text": "CONSTIPATION",
 "page_number": 0,
 "words_on_page": 120,
 "term_frequency": 5,
 "occurs_on_pages": [
 0,
 1
],
 "number_of_pages": 2
},
...

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.5 Meta-Information

1.5.1 Using the \Info dictionary in a Document

1.5.1.1 Getting the author of an existing PDF

A PDF Document can have an \Info dictionary entry, containing meta-information. Because this entry is optional, we need to check at
every step of the way whether the path we attempt to navigate exists.

We start by opening the Document :

 with open("input.pdf", "rb") as pdf_file_handle:
 doc = PDF.loads(pdf_file_handle)

Then we check whether the Document has an XRef table (it should, unless the Document is corrupt)

 if "XRef" not in doc:
 return False

Next we check whether the XRef table has a \Trailer (it should).

 if "Trailer" not in doc["XRef"]:
 return False

In the \Trailer dictionary, we may find an \Info dictionary. This dictionary could contain an entry for \Author .

 if (
 "Info" in doc["XRef"]["Trailer"]
 and "Author" in doc["XRef"]["Trailer"]["Info"]
):
 author = doc["XRef"]["Trailer"]["Info"]["Author"]
 print("The author of this PDF is %s" % author)

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.5.1.2 Getting all meta-information of an existing PDF using DocumentInfo

DocumentInfo represents a convenience class to easily extract all meta-information in the Document catalog's \Info dictionary. You
can use it to quickly query the meta-information.

 with open("input.pdf", "rb") as pdf_file_handle:
 doc = PDF.loads(pdf_file_handle)
 doc_info = doc.get_document_info()
 print("title : %s" % doc_info.get_title())
 print("author : %s" % doc_info.get_author())
 print("creator : %s" % doc_info.get_creator())
 print("producer : %s" % doc_info.get_producer())
 print("ids : %s" % doc_info.get_ids())
 print("language : %s" % doc_info.get_language())

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.5.1.3 Changing the author of an existing PDF

Let's start by reading the PDF Document .

 doc = None
 with open("input.pdf", "rb") as pdf_file_handle:
 doc = PDF.loads(pdf_file_handle)

Now we check whether the PDF has an XRef, containing a \Trailer

 if "XRef" not in doc:
 return False
 if "Trailer" not in doc["XRef"]:
 return False

If there is no \Info dictionary in the \Trailer , we create it

 if "Info" not in doc["XRef"]["Trailer"]:
 doc["XRef"]["Trailer"][Name("Info")] = Dictionary()

Let's set the \Author entry in the \Info dictionary

 # change author
 doc["XRef"]["Trailer"]["Info"]["Author"] = String("Joris Schellekens")

Now we can store the PDF Document again:

 with open("output.pdf", "wb") as out_file_handle:
 PDF.dumps(out_file_handle, doc)

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.5.1.4 Changing the producer of an existing PDF

Let's start by reading the PDF Document .

 doc = None
 with open("input.pdf", "rb") as pdf_file_handle:
 doc = PDF.loads(pdf_file_handle)

Now we check whether the PDF has an XRef, containing a \Trailer

 if "XRef" not in doc:
 return False
 if "Trailer" not in doc["XRef"]:
 return False

If there is no \Info dictionary in the \Trailer , we create it

 if "Info" not in doc["XRef"]["Trailer"]:
 doc["XRef"]["Trailer"][Name("Info")] = Dictionary()

Let's set the \Producer entry in the \Info dictionary

 # change author
 doc["XRef"]["Trailer"]["Info"]["Producer"] = String("pText")

Now we can store the PDF Document again:

 with open("output.pdf", "wb") as out_file_handle:
 PDF.dumps(out_file_handle, doc)

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.5.2 Using the XMP metadata in a Document

1.5.2.1 Reading the XMP metadata of an existing PDF

This example is similar to the earlier example involving DocumentInfo . But in stead, we will use XMPDocumentInfo . This class offers
even more methods to get information from a PDF Document . Keep in mind that XMP is not a requirement for a PDF Document to be
valid. So you may find these methods return None when you test them on a Document that does not have embedded XMP data.

 with open(file, "rb") as pdf_file_handle:
 doc = PDF.loads(pdf_file_handle)
 doc_info = doc.get_xmp_document_info()
 print("title : %s" % doc_info.get_title())
 print("author : %s" % doc_info.get_author())
 print("creator : %s" % doc_info.get_creator())
 print("producer : %s" % doc_info.get_producer())
 print("ids : %s" % doc_info.get_ids())
 print("language : %s" % doc_info.get_language())
 print("document-ID : %s" % doc_info.get_document_id())
 print("original document-ID : %s" % doc_info.get_original_document_id())
 print("creation date : %s" % doc_info.get_creation_date())
 print("modification date : %s" % doc_info.get_modification_date())
 print("metadata date : %s" % doc_info.get_metadata_date())
 print("")

I tried this on a Document with XMP meta-data, and it printed the following:

title : None
author : None
creator : None
producer : Adobe PDF Library 15.0
ids : ['0952B683A7F340E48FD2F5409F3E6D08', 'AF7A23737C7A664D93DF2CBE97397150']
language : en-GB
document-ID : xmp.id:54e5adca-494c-4c10-983a-daa03cdae65a

original document-ID : xmp.did:b857e947-9e0d-4cd3-aff9-40a81c991e7a
creation date : 2017-12-15T15:38:40+01:00
modification date : 2017-12-15T16:23:53+01:00
metadata date : 2017-12-15T16:23:53+01:00

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.6 Images

1.6.1 Extracting Images from a Document using SimpleImageExtraction

Like in the previous examples, we'll use an implementation of EventListener :

 with open(file, "rb") as pdf_file_handle:
 l = SimpleImageExtraction()
 doc = PDF.loads(pdf_file_handle, [l])

In this case SimpleImageExtraction will listen to all PDF parser commands that tell the reader to display an Image .

Once the Document is parsed, we can extract all Image objects from the SimpleImageExtraction

 for i, img in enumerate(l.get_images_per_page(0)):
 output_file = self.output_dir / (file.stem + str(i) + ".jpg")
 with open(output_file, "wb") as image_file_handle:
 img.save(image_file_handle)

1.7 Annotations

An annotation associates an object such as a note, sound, or movie with a location on a page of a PDF
document, or provides a way to interact with the user by means of the mouse and keyboard. PDF includes a
wide variety of standard annotation types, described in detail in 12.5.6, “Annotation Types.”

1.7.1 Adding a rubber stamp annotation to an existing PDF

A rubber stamp annotation (PDF 1.3) displays text or graphics intended to look as if they were stamped on the
page with a rubber stamp. When opened, it shall display a pop-up window containing the text of the associated
note. Table 181 shows the annotation dictionary entries specific to this type of annotation.

We start by reading the Document :

 # attempt to read PDF
 doc = None
 with open("input.pdf", "rb") as in_file_handle:
 doc = PDF.loads(in_file_handle)

Then we add the annotation:

 # add annotation
 doc.get_page(0).append_stamp_annotation(
 name=RubberStampAnnotationIconType.CONFIDENTIAL,
 contents="Approved by Joris Schellekens",
 color=X11Color("White"),
 rectangle=(Decimal(128), Decimal(128), Decimal(32), Decimal(64)),
)

There are various parameters we can set here;

name : conforming readers should support at least the following values for the name parameter: Approved, Experimental,
NotApproved, AsIs, Expired, NotForPublicRelease, Confidential, Final, Sold, Departmental, ForComment, TopSecret, Draft,
ForPublicRelease

contents : is the text that should appear in the pop-up window when the stamp annotation is clicked

color : is the Color of the pop-up window

rectangle : denotes the coordinates of the rubber stamp annotation

Finally, we store the output:

 # attempt to store PDF
 with open("output.pdf", "wb") as out_file_handle:
 PDF.dumps(out_file_handle, doc)

The result should be something like this (keep in mind the rendering of the rubber stamp is the responsability of the PDF reader you
happen to be using. Your result may differ accordingly.):

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.7.2 Adding all possible rubber stamp annotations to an existing PDF

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_rubber_stamp_annotation_to_an_existing_pdf.png

A rubber stamp annotation (PDF 1.3) displays text or graphics intended to look as if they were stamped on the
page with a rubber stamp. When opened, it shall display a pop-up window containing the text of the associated
note. Table 181 shows the annotation dictionary entries specific to this type of annotation.

Let's have a look how our PDF reader renders all possible rubber stamp annotations.
We start by reading an existing PDF:

 doc = None
 with open("input.pdf", "rb") as in_file_handle:
 doc = PDF.loads(in_file_handle)

We now define a List[str] to hold all valid types of rubber stamp annotations, we iterate over it, and add them to the Document one at
a time:

 # add annotation
 for index, name in enumerate(RubberStampAnnotationIconType):
 doc.get_page(0).append_stamp_annotation(
 name=name,
 contents="Approved by Joris Schellekens",
 color=X11Color("White"),
 rectangle=Rectangle(
 Decimal(128), Decimal(128 + index * 34), Decimal(64), Decimal(32)
),
)

There are some parameters we can set here:

name : indicates the kind of stamp (e.g. 'Approved' or 'Draft' etc)

contents : this is the text shown when the annotation is clicked in a PDF reader

color : this is the Color of the pop-up that displays the aforementioned text

rectangle : this is where the annotation is to be placed

Note that you do not have control over the appearance of this particular annotation. The specific appearance is down to the
implementation of the PDF reader (e.g. Adobe Acrobat Reader).

Now we can store the PDF Document again:

 with open("output.pdf", "wb") as out_file_handle:
 PDF.dumps(out_file_handle, doc)

The end result (at least the annotations) should look something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.7.3 Adding a circle annotation to an existing PDF

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_all_rubber_stamp_annotations_to_an_existing_pdf.png

We start by reading the PDF:

 doc = None
 with open("input.pdf", "rb") as in_file_handle:
 doc = PDF.loads(in_file_handle)

Now we can add the annotation:

 # add annotation
 doc.get_page(0).append_circle_annotation(
 rectangle=Rectangle(Decimal(128), Decimal(128), Decimal(64), Decimal(64)),
 stroke_color=X11Color("Plum"),
 fill_color=X11Color("Crimson"),
)

Now we can store the PDF Document again:

 with open("output.pdf", "wb") as out_file_handle:
 PDF.dumps(out_file_handle, doc)

The end result (at least the annotations) should look something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.7.4 Adding a square annotation to an existing PDF

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_circle_annotation_to_an_existing_pdf.png

We start by reading the PDF:

 doc = None
 with open("input.pdf", "rb") as in_file_handle:
 doc = PDF.loads(in_file_handle)

Now we can add the annotation:

 # add annotation
 doc.get_page(0).append_square_annotation(
 rectangle=Rectangle(Decimal(128), Decimal(128), Decimal(64), Decimal(64)),
 stroke_color=X11Color("Plum"),
 fill_color=X11Color("Crimson"),
)

Now we can store the PDF Document again:

 with open("output.pdf", "wb") as out_file_handle:
 PDF.dumps(out_file_handle, doc)

The end result (at least the annotations) should look something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.7.5 Adding a polygon annotation to an existing PDF

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_square_annotation_to_an_existing_pdf.png

We start by reading the PDF:

 doc = None
 with open("input.pdf", "rb") as in_file_handle:
 doc = PDF.loads(in_file_handle)

Next we add the annotation:

 doc.get_page(0).append_polygon_annotation(
 points=[
 (Decimal(72), Decimal(390)),
 (Decimal(242), Decimal(500)),
 (Decimal(156), Decimal(390)),
],
 color=X11Color("Crimson"),
)

Now we can store the PDF Document again:

 with open("output.pdf", "wb") as out_file_handle:
 PDF.dumps(out_file_handle, doc)

The end result (at least the annotations) should look something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.7.6 Adding a polyline annotation to an existing PDF

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_polygon_annotation_to_an_existing_pdf.png

We start by reading the PDF:

 doc = None
 with open("input.pdf", "rb") as in_file_handle:
 doc = PDF.loads(in_file_handle)

Next we add the annotation:

 doc.get_page(0).append_polyline_annotation(
 points=[
 (Decimal(72), Decimal(390)),
 (Decimal(242), Decimal(500)),
 (Decimal(156), Decimal(390)),
],
 color=X11Color("Crimson"),
)

Now we can store the PDF Document again:

 with open("output.pdf", "wb") as out_file_handle:
 PDF.dumps(out_file_handle, doc)

The end result (at least the annotations) should look something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.7.7 Adding an annotation using a shape from the LineArtFactory to an existing PDF

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_polyline_annotation.png

The LineArtFactory class allows you to easily create shapes (defined as List[Tuple[Decimal,Decimal]]), it contains everything you
need to render:

triangles (right sided triangle, isoceles triangles)

stars (with convenience methods for 4-sided stars, 5-sided stars, 6-sided stars)

4-gons (paralellogram, trapezoid, diamond)

regular n-gons (with convenience methods for pentagon, hexagon, heptagon, octagon)

fractions of circles (with convenience methods for half a circle and three quarters of a circle)

arrows (left, right, up, down)

misc. (droplet, sticky note, etc)

We start by reading the PDF:

 doc = None
 with open("input.pdf", "rb") as in_file_handle:
 doc = PDF.loads(in_file_handle)

Now we can add the annotation:

 # get the shape
 shape = LineArtFactory.droplet(
 Rectangle(Decimal(100), Decimal(100), Decimal(100), Decimal(100))
)

 # add annotation
 doc.get_page(0).append_polyline_annotation(
 points=shape,

 stroke_color=X11Color("Salmon"),
)

Now we can store the PDF Document again:

 with open("output.pdf", "wb") as out_file_handle:
 PDF.dumps(out_file_handle, doc)

The end result (at least the annotations) should look something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.7.8 Adding a highlight annotation to an existing PDF

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_polyline_annotation_using_line_art_factory.png

We start by reading the PDF:

 doc = None
 with open("input.pdf", "rb") as in_file_handle:
 doc = PDF.loads(in_file_handle)

Next we add the annotation:

 # add annotation
 doc.get_page(0).append_highlight_annotation(
 rectangle=Rectangle(
 Decimal(72.86), Decimal(486.82), Decimal(129), Decimal(13)
),
 contents="Lorem Ipsum Dolor Sit Amet",
 color=X11Color("Yellow"),
)

Now we can store the PDF Document again:

 with open("output.pdf", "wb") as out_file_handle:
 PDF.dumps(out_file_handle, doc)

The end result (at least the annotations) should look something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.7.9 Adding a link annotation to an existing PDF

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_highlight_annotation_to_an_existing_pdf.png

We start by reading the PDF:

 doc = None
 with open("input.pdf", "rb") as in_file_handle:
 doc = PDF.loads(in_file_handle)

Next we add the annotation:

 doc.get_page(0).append_link_annotation(
 page=Decimal(0),
 destination_type=DestinationType.FIT,
 color=X11Color("Red"),
 rectangle=Rectangle(Decimal(128), Decimal(128), Decimal(64), Decimal(64)),
)

There are some parameters we can set here:

page : indicates the page number of the Page you would like to link to

destination_type : In this case 'Fit' means 'show the entire Page , and force the viewer to zoom until it fits'

Now we can store the PDF Document again:

 with open("output.pdf", "wb") as out_file_handle:
 PDF.dumps(out_file_handle, doc)

The end result (at least the annotations) should look something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.7.10 Adding a text annotation to an existing PDF

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_link_annotation.png

We start by reading the PDF:

 doc = None
 with open("input.pdf", "rb") as in_file_handle:
 doc = PDF.loads(in_file_handle)

Now we can add the annotation:

 # add annotation
 doc.get_page(0).append_text_annotation(
 contents="The quick brown fox ate the lazy mouse",
 rectangle=Rectangle(Decimal(128), Decimal(128), Decimal(64), Decimal(64)),
 name_of_icon="Key",
 open=True,
 color=X11Color("Orange"),
)

Finally, we need to store the resulting PDF Document .

 with open("output.pdf", "wb") as out_file_handle:
 PDF.dumps(out_file_handle, doc)

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.7.11 Adding a square annotation around a regular expression match to an existing PDF

Let's combine what we saw earlier, about finding the coordinates of a regular expression with our new understanding of annotations.

In this example, we'll just draw a rectangle around each letter of a matching text-snippet. But we would easily expand this example to
include a text annotation. Imagine automatically tagging documents such that hard-to-understand terms have an annotation the end-user
can click open for more explanation.

We start by reading the PDF:

 doc = None
 l = RegularExpressionTextExtraction("[sS]orbitol")
 with open("input.pdf", "rb") as in_file_handle:
 doc = PDF.loads(in_file_handle, [l])

Notice that we are passing an EventListener instance to the PDF.loads method. This EventListener will be notified every time a
rendering instruction takes place. The RegularExpressionTextExtraction implementation will use these instructions to determine
whether a given regular expression has been matched.

Next we are going to add annotations (in this case square annotations) around every ChunkOfTextRenderEvent that belongs to a regular
expression match.

 for e in l.get_matched_chunk_of_text_render_events_per_page(0):
 doc.get_page(0).append_square_annotation(
 rectangle=e.get_baseline(),
 stroke_color=X11Color("Firebrick"),
)

Now we can store the PDF Document again:

 with open("output.pdf", "wb") as out_file_handle:
 PDF.dumps(out_file_handle, doc)

The end result (at least the annotations) should look something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_an_annotation_around_a_regular_expression_match_to_an_existing_pdf.png

1.7.12 Adding a square annotation in the free space of a page to an existing PDF

Sometimes the position of the annotation does not matter that much, as long as it does not block any other visible content.

Finding the available free space on a Page can be tricky, it would involve re-parsing all the content to figure out where existing content
intersects with the desired location of the annotation. That is why pText comes with FreeSpaceFinder , this class searches for an
Rectangle of a given size, nearest to a given point (in Euclidean space).

Let's see it in action. We start by reading the PDF:

 doc = None
 with open("input.pdf", "rb") as in_file_handle:
 doc = PDF.loads(in_file_handle)

Next we instantiate the FreeSpaceFinder with a given Page as argument.

 # determine free space
 space_finder = FreeSpaceFinder(doc.get_page(0))

Now we can attempt to add the annotation. We call the method find_free_space passing it the ideal Rectangle where we would like to
place the annotation (or any other object really). find_free_space returns an Optional[Rectangle] (sometimes the Page is full).

 # add annotation
 w, h = doc.get_page(0).get_page_info().get_size()
 free_rect = space_finder.find_free_space(
 Rectangle(
 Decimal(w / Decimal(2)),
 Decimal(h * Decimal(0.1)),
 Decimal(64),

 Decimal(64),
)
)

If there is room on the Page for the annotation, we can now add it. Notice that we wanted to add the annotation to the bottom center of
the Page .

 if free_rect is not None:
 doc.get_page(0).append_square_annotation(
 rectangle=free_rect,
 stroke_color=HexColor("#F75C03"),
 fill_color=HexColor("#04A777"),
)

Now we can store the PDF Document again:

 with open("output.pdf", "wb") as out_file_handle:
 PDF.dumps(out_file_handle, doc)

The end result (at least the annotations) should look something like this: Notice how our use of FreeSpaceFinder meant that the
annotation did not collide with the existing page-number on the bottom of the Page .

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.7.13 Getting all annotations from a PDF

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_square_annotation_in_free_space_to_an_existing_pdf.png

Getting all annotations from a PDF is easy, if you know where to look. Let's start by opening the PDF Document :

 with open("input.pdf", "rb") as pdf_file_handle:
 doc = PDF.loads(pdf_file_handle)
 page = doc.get_page(0)

Annotations are defined in the \Page dictionary of whatever page the annotation appears at. Let's check the first Page .

 if "Annots" in page:
 print("%s has %d annotations" % ("input.pdf", len(page["Annots"])))

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.7.14 Showcase : Adding a collection of annotations shaped like super mario to an existing PDF

From the spec:

An annotation associates an object such as a note, sound, or movie with a location on a page of a PDF
document, or provides a way to interact with the user by means of the mouse and keyboard. PDF includes a
wide variety of standard annotation types, described in detail in 12.5.6, “Annotation Types.”

[...]

A link annotation represents either a hypertext link to a destination elsewhere in the document (see 12.3.2,
“Destinations”) or an action to be performed (12.6, “Actions”). Table 173 shows the annotation dictionary
entries specific to this type of annotation.

Let's add a few annotations to an existing PDF, shaped like super-mario.

First we start by defining the pixel-art grid, and the colors:

 m = [
 [0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
 [0, 0, 0, 2, 2, 2, 3, 3, 2, 3, 0, 0, 0, 0],
 [0, 0, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 0, 0],
 [0, 0, 2, 3, 2, 2, 3, 3, 3, 2, 3, 3, 3, 0],
 [0, 0, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 0, 0],
 [0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0],
 [0, 0, 0, 1, 1, 4, 1, 1, 1, 1, 1, 0, 0, 0],
 [0, 0, 1, 1, 1, 4, 1, 1, 4, 1, 1, 1, 0, 0],
 [0, 1, 1, 1, 1, 4, 4, 4, 4, 1, 1, 1, 1, 0],
 [0, 3, 3, 1, 4, 5, 4, 4, 5, 4, 1, 3, 3, 0],
 [0, 3, 3, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 0],
 [0, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 0],
 [0, 0, 0, 4, 4, 4, 0, 0, 4, 4, 4, 0, 0, 0],
 [0, 0, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 0, 0],
 [0, 2, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 2, 0],
]
 c = [
 None,
 X11Color("Red"),
 X11Color("Black"),
 X11Color("Tan"),
 X11Color("Blue"),
 X11Color("White"),
]

Next we need to read an existing PDF Document :

 doc = None
 with open('input.pdf', "rb") as in_file_handle:
 doc = PDF.loads(in_file_handle)

Now we can simply add all the annotations by calling the appropriate method on the Page object

 # add annotation
 pixel_size = 2
 for i in range(0, len(m)):
 for j in range(0, len(m[i])):
 if m[i][j] == 0:
 continue
 x = pixel_size * j
 y = pixel_size * (len(m) - i)
 doc.get_page(0).append_link_annotation(
 page=Decimal(0),
 color=c[m[i][j]],
 destination_type=DestinationType.FIT,
 rectangle=(
 Decimal(x),
 Decimal(y),
 Decimal(x + pixel_size),
 Decimal(y + pixel_size),
),
)

When adding a link annotation, we need to specify some arguments related to what we are linking to. In this case we specify that we want
the annotation to link to Page 0, and to force the pdf-viewer (e.g. Adobe Reader) to fit the Page (potentially zooming in/out).

We also specify a Rectangle (this is where the user would click to activate the link), and a Color (this is the color of the aforementioned
rectangle).

In our case, we calculate the Color and position based on our earlier grid of super-mario.

As a final step we need to store the resulting PDF Document .

 with open("output.pdf", "wb") as out_file_handle:
 PDF.dumps(out_file_handle, doc)

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.8 Exporting a PDF

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_multiple_annotations_shaped_like_super_mario_to_an_existing_pdf.png

1.8.1 Exporting a PDF as JSON

This scenario is particularly useful when debugging. It enables you to see the PDF Document in the same way pText sees it.

We'll start by opening and reading the Document :

with open("input.pdf", "rb") as pdf_file_handle:
 doc = PDF.loads(pdf_file_handle)
 output_file = self.output_dir / (file.stem + ".json")

And that's all there is to it. Now we can call the method to_json_serializable on Document which will give you access to a json like
structure.

 # export to json
 with open("output.json", "w") as json_file_handle:
 json_file_handle.write(
 json.dumps(doc.to_json_serializable(doc), indent=4)
)

On my example input document, this yielded the following output:

{
"null": {
 "Trailer": {
 "ID": [
 "5e670a36ab70bb047b6c9eeed6ee3892",
 "5e670a36ab70bb047b6c9eeed6ee3892"
],
 "Info": {

 "CreationDate": "D:20190409213301+02'00'",
 "ModDate": "D:20190409213301+02'00'",
 "Producer": "iText\u00ae 7.1.5 \u00a92000-2019 iText Group NV \\(AGPL-version\\)"
 },
 "Root": {
 "Pages": {
 "Count": 1.0,
 "Kids": [
 {
 "Type": "Page",
 "MediaBox": [
 0.0,
 0.0,
 878.221,
 637.276
],
...

Here we can clearly see the xref table being persisted. This table acts as the starting point of the document, it contains references to other
data-structures that contain meta-information, information about each page, etc.

1.8.2 Exporting a PDF as SVG

Sometimes, all you need is an image. With pText you can easily convert any Page of a Document into an SVG image.

As usual, we start by reading the Document :

 with open("input.pdf", "rb") as pdf_file_handle:
 l = PDFToSVG()
 doc = PDF.loads(pdf_file_handle, [l])

Here we are using PDFToSVG which acts like an EventListener . EventListener implementations are notified every time a rendering
instruction is parsed. PDFToSVG uses that knowledge to convert the pdf-syntax rendering instructions to svg-syntax.

 with open("output.svg", "wb") as svg_file_handle:
 svg_file_handle.write(ET.tostring(l.get_svg_per_page(0)))

The result turned something like this:

This was the input document:

https://github.com/jorisschellekens/ptext/blob/master/readme_img/export_a_pdf_to_svg.png

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

1.8.2 Exporting a PDF as MP3

https://github.com/jorisschellekens/ptext/blob/master/readme_img/export_a_pdf_to_svg_original.png

For those with hearing-impairments, it can be very useful to be able to convert a PDF Document to an MP3 file. This is perfectly possible
with pText .

with open("input.pdf", "rb") as pdf_file_handle:
 l = PDFToMP3()
 doc = PDF.loads(pdf_file_handle, [l])

PDFToMP3 then allows you to store an mp3 file for each page.
For this, you can use the get_audio_file_per_page method. You need to provide it with a page_number and path .

 l.get_audio_file_per_page(0, "output.mp3")

The constructor of PDFToMP3 has some arguments that allow us to tweak the export.

include_position : This should be set to True if you want the position of each Paragraph to be spoken as well. This results in
output such as "page 1, paragraph 1, top left; once upon a time"

language : This is the 2-letter abbreviation of the language you expect the text to be in. Default is en

slow : This indicates whether you want the speaking-voice to go (extra) slow, or not

1.9 Concatenating PDFs, and other page-manipulations

A common scenario, when working with existing PDF Document objects is concatenation. Let's look at how you can concatenate two or
more existing Document objects:

1.9.1 Concatenating entire PDF Documents

 # attempt to read PDF
 doc_a = None
 with open("input_a.pdf", "rb") as in_file_handle:
 doc_a = PDF.loads(in_file_handle)

 # attempt to read PDF
 doc_b = None
 with open("input_b.pdf", "rb") as in_file_handle_b:
 doc_b = PDF.loads(in_file_handle_b)

Now we can simply call append_document on a new Document

 # concat all pages to same document
 doc_c = Document()
 doc_c.append_document(doc_a)
 doc_c.append_document(doc_b)

And finally store the merged PDF:

 # attempt to store PDF
 with open("output.pdf", "wb") as out_file_handle:
 PDF.dumps(out_file_handle, doc_c)

1.9.2 Concatenating parts of a Document

 # attempt to read PDF
 doc_a = None
 with open("input_a.pdf", "rb") as in_file_handle:

 doc_a = PDF.loads(in_file_handle)

 # attempt to read PDF
 doc_b = None
 with open("input_b.pdf", "rb") as in_file_handle_b:
 doc_b = PDF.loads(in_file_handle_b)

In stead of calling append_document , we can select Page objects, and call append_page . In fact append_document is just a shortcut for
repeatedly calling append_page

 # concat all pages to same document
 doc_c = Document()
 for i in range(0, int(doc_a.get_document_info().get_number_of_pages())):
 doc_c.append_page(doc_a.get_page(i))
 for i in range(0, int(doc_b.get_document_info().get_number_of_pages())):
 doc_c.append_page(doc_b.get_page(i))

And finally we can store the merged PDF:

 # attempt to store PDF
 with open("output.pdf", "wb") as out_file_handle:
 PDF.dumps(out_file_handle, doc_c)

1.9.3 Removing a Page from a Document

First, we open the Document

 doc = None
 with open("input.pdf", "rb") as in_file_handle:
 print("\treading (1) ..")
 doc = PDF.loads(in_file_handle)

Let's check the number of pages

 number_of_pages = int(doc.get_document_info().get_number_of_pages())
 print(number_of_pages)

Now we can remove the first Page

 # remove page
 doc.pop_page(0)

And finally we store the modified Document

 # attempt to store PDF
 with open("output.pdf", "wb") as out_file_handle:
 PDF.dumps(out_file_handle, doc)

2. PDF Creation

2.0 Creating an empty PDF

This basic example gives you an idea of how to create a Document using pText . Other examples will show you how to add rich content
to it.

 # create empty document
 pdf: Document = Document()

 # create empty page
 page: Page = Page()

 # add page to document
 pdf.append_page(page)

 # write
 with open("output.pdf", "wb") as pdf_file_handle:
 PDF.dumps(pdf_file_handle, pdf)

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.1 Adding text to a Document

https://github.com/jorisschellekens/ptext/blob/master/readme_img/write_empty_document.png

2.1.1 Adding text to a Document using low-level commands

This example describes how to create a PDF from scratch. This example focuses on giving the reader an understanding of the underlying
PDF syntax. This is definitely not the easiest way to write text in a PDF.

 # create document
 pdf = Document()

 # add page
 page = Page()
 pdf.append_page(page)

This is where the actual content generation begins. To get content on a Page we need to alter its content-stream. First we'll create a
content stream, and then we'll set its bytes to the appropriate operators to write 'Hello World!'

 # create content stream
 content_stream = Stream()
 content_stream[
 Name("DecodedBytes")
] = b"""
 q
 BT
 /F1 24 Tf
 100 742 Td
 (Hello World!) Tj
 ET
 Q
 """

The q and Q operator define a context in which we can work. these operators respectively push and pop the entire graphics state
unto/from a stack. By doing so, we can ensure our content will not interfere with other content that may exist on the page.

Next we have the BT (begin text) and ET (end text) operators. They set up everything to enable us to write text. Tf sets the font (in this
case F1) and font-size.

Td determines the position at which we will draw text. Tj writes a string (enclosed in round brackets) to the PDF.

Next we need to set the properties of the content-stream to match its content. In this example we'll encode the bytes using FlateDecode .
Thus we need to provide a Filter property (so the reader knows which decompression algorithm to use), and provide a Length (so the
reader knows how long our encoded byte-stream is).

 content_stream[Name("Bytes")] = zlib.compress(content_stream["DecodedBytes"], 9)
 content_stream[Name("Filter")] = Name("FlateDecode")
 content_stream[Name("Length")] = Decimal(len(content_stream["Bytes"]))

Next we can set this Stream to be the Contents of the Page

 # set content of page
 page[Name("Contents")] = content_stream

In the following code-snippet, we set every property related to the font we used. We need to specify the font used by the Tj operator in
the Resources dictionary of the Page .

 # set Font
 page[Name("Resources")] = Dictionary()
 page["Resources"][Name("Font")] = Dictionary()
 page["Resources"]["Font"][Name("F1")] = Dictionary()

 page["Resources"]["Font"]["F1"][Name("Type")] = Name("Font")
 page["Resources"]["Font"]["F1"][Name("Subtype")] = Name("Type1")
 page["Resources"]["Font"]["F1"][Name("Name")] = Name("F1")
 page["Resources"]["Font"]["F1"][Name("BaseFont")] = Name("Helvetica")
 page["Resources"]["Font"]["F1"][Name("Encoding")] = Name("MacRomanEncoding")

In this example I chose Helvetica, because the reader is supposed to know all the details of this font (width of every glyph, bouding box,
etc). That means we don't have to specify all the details. In the above code-snippet, we only really mentioned the name and character
encoding.

Next we store the PDF.

 # attempt to store PDF
 with open("output.pdf", "wb") as in_file_handle:
 PDF.dumps(in_file_handle, pdf)

The result should be something like this:

2.1.2 Adding text to a Document using ChunkOfText

Luckily, there is an easier way to get content on a PDF. Let's look at the convenience classes pText provides.

https://github.com/jorisschellekens/ptext/blob/master/readme_img/create_hello_world_using_low_level_commands.png

We'll start similar to our previous example, by creating an empty Document and Page .

 # create document
 pdf = Document()

 # add page
 page = Page()
 pdf.append_page(page)

Now instead of having to figure out all these instructions ourselves, we can let pText do the heavy lifting. Here we add a ChunkOfText
to the Page , but other classes allow you to add lines of text, paragraphs, tables, etc.

 ChunkOfText(
 "Hello World!", font_size=Decimal(24)
).layout(
 page, Rectangle(Decimal(100), Decimal(724), Decimal(100), Decimal(100))
)

ChunkOfText allows us to specify the font_size , Color and font . If not provided, ChunkOfText defaults to black Helvetica, size 12.
We then call layout on this object to have it put on the Page .

Finally, we can store the PDF.

 # attempt to store PDF
 with open("output.pdf", "wb") as in_file_handle:
 PDF.dumps(in_file_handle, pdf)

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.1.2 (ctd) Adding text to a Document using ChunkOfText

https://github.com/jorisschellekens/ptext/blob/master/readme_img/create_hello_world_using_low_level_commands.png

Let's add some color to the Document this time:

 # create document
 pdf = Document()

 # add page
 page = Page()
 pdf.append_page(page)

 for i, c in enumerate(
 [
 X11Color("Red"),
 X11Color("Orange"),
 X11Color("Yellow"),
 X11Color("YellowGreen"),
 X11Color("Blue"),
 X11Color("Purple"),
]
):
 ChunkOfText("Hello World!", font_size=Decimal(24), color=c).layout(
 page,
 Rectangle(
 Decimal(100 + i * 30), Decimal(724 - i * 30), Decimal(100), Decimal(100)
),
)

 # attempt to store PDF
 with open("output.pdf", "wb") as in_file_handle:
 PDF.dumps(in_file_handle, pdf)

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.1.3 Adding text to a Document using LineOfText

https://github.com/jorisschellekens/ptext/blob/master/readme_img/creating_a_colorful_hello_world.png

By using LineOfText we can add Alignment.(left, center, right, full) to our text. We start by creating an empty Document (just like the
other examples).

 # create document
 pdf = Document()

 # add page
 page = Page()
 pdf.append_page(page)

Here we're going to add 4 lines of text, all of them will be justified RIGHT That means we're going to give them all the same bounding box
(apart from the y-coordinate), and have pText work out where to start the text to achieve the correct Alignment.

 for i, s in enumerate(
 [
 "Once upon a midnight dreary,",
 "while I pondered weak and weary,",
 "over many a quaint and curious",
 "volume of forgotten lore",
]
):
 LineOfText(
 s,
 font_size=Decimal(20),
 horizontal_alignment=Alignment.RIGHT,
).layout(
 page,
 Rectangle(
 Decimal(20), Decimal(724 - 24 * i), Decimal(500), Decimal(124)
),
)

We are also going to add a rectangle annotation, to give us a rough idea of the bounding box of the text.

 # add rectangle annotation
 page.append_square_annotation(
 stroke_color=X11Color("Red"),
 rectangle=Rectangle(
 Decimal(20), Decimal(724 - 24 * 4), Decimal(500), Decimal(24 * 4)
),
)

Finally, we can store the Document

 # attempt to store PDF
 with open("output.pdf", "wb") as in_file_handle:
 PDF.dumps(in_file_handle, pdf)

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.1.3 Adding text to a Document using Paragraph

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_lines_of_text_justified_right.png

2.1.3.1 Basic example

This is by far the easiest way to add text to a page. Let's start by creating an empty Document .

 # create document
 pdf = Document()

 # add page
 page = Page()
 pdf.append_page(page)

Next we define the text we want to add.

 s = "Once upon a midnight dreary, while I pondered weak and weary, over many a quaint and curious volume of
forgotten lore"

And now we construct a Paragraph object from that text, we are also going to set its color , Alignment. and font_size`.

 Paragraph(
 s,
 font_size=Decimal(20),
).layout(
 page,
 Rectangle(Decimal(20), Decimal(724), Decimal(400), Decimal(124)),
)

We are also going to add a rectangle annotation, to visually mark the boundaries of the box that we want our paragraph to be in.

 # add rectangle annotation
 page.append_square_annotation(
 stroke_color=X11Color("Red"),
 rectangle=Rectangle(
 Decimal(20), Decimal(724 - 124), Decimal(400), Decimal(124)
),
)

Lastly, we write the Document .

 # attempt to store PDF
 with open("output.pdf", "wb") as in_file_handle:
 PDF.dumps(in_file_handle, pdf)

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.1.3.2 Setting justification

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_paragraph.png

Let's change the code we wrote earlier to have the Paragraph alignment CENTERED

 Paragraph(
 "Once upon a midnight dreary, while I pondered weak and weary, over many a quaint and curious volume of
forgotten lore",
 font_size=Decimal(20),
 font_color=X11Color("YellowGreen"),
 horizontal_alignment=Alignment.CENTERED,
).layout(
 page,
 Rectangle(Decimal(20), Decimal(600), Decimal(500), Decimal(124)),
)

The result should be something like this:

We can do the same for alignment FULL

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_paragraph_justified_center.png

 Paragraph(
 "Once upon a midnight dreary, while I pondered weak and weary, over many a quaint and curious volume of
forgotten lore",
 font_size=Decimal(20),
 font_color=X11Color("YellowGreen"),
 horizontal_alignment=Alignment.JUSTIFIED,
).layout(
 page,
 Rectangle(Decimal(20), Decimal(600), Decimal(500), Decimal(124)),
)

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.1.3.3 Setting padding

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_paragraph_justified_full.png

Let's change the code we wrote earlier to have the Paragraph alignment CENTERED . This time, we're also going to set some padding.
This will ensure the Paragraph stays away from its bounding box.

 padding: Decimal = Decimal(5)
 Paragraph(
 "Once upon a midnight dreary, while I pondered weak and weary, over many a quaint and curious volume of
forgotten lore",
 font_size=Decimal(20),
 font_color=X11Color("YellowGreen"),
 horizontal_alignment=Alignment.CENTERED,
 padding_top=padding,
 padding_right=padding,
 padding_bottom=padding,
 padding_left=padding,
).layout(
 page,
 Rectangle(Decimal(20), Decimal(600), Decimal(500), Decimal(124)),
)

We're going to add a rectangle annotation around the result of the layout method. Typically the layout method returns the bounding
box that was occupied after having performed layout of a given LayoutElement .

 # add rectangle annotation
 page.append_square_annotation(
 stroke_color=X11Color("Red"), rectangle=layout_rect
)

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.1.3.4 Setting borders

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_paragraph_justified_center_with_padding.png

pText also allows you to set borders on any LayoutElement Let's try that:

 padding = Decimal(5)
 layout_rect = Paragraph(
 "Once upon a midnight dreary,\nwhile I pondered weak and weary,\nover many a quaint and curious\nvolume of
forgotten lore",
 font_size=Decimal(20),
 horizontal_alignment=Alignment.CENTERED,
 respect_newlines_in_text=True,
 padding_top=padding,
 padding_right=padding,
 padding_bottom=padding,
 padding_left=padding,
 border_right=True,
 border_top=True,
 border_color=X11Color("Green")
).layout(
 page,
 Rectangle(Decimal(20), Decimal(600), Decimal(500), Decimal(124)),
)

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.1.3.5 Setting color

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_paragraph_justified_center_with_padding_and_border.png

Black is boring. Let's set the font_color to salmon for a change:

 padding = Decimal(5)
 layout_rect = Paragraph(
 "Once upon a midnight dreary,\nwhile I pondered weak and weary,\nover many a quaint and curious\nvolume of
forgotten lore",
 font_size=Decimal(20),
 horizontal_alignment=Alignment.CENTERED,
 respect_newlines_in_text=True,
 padding_top=padding,
 padding_right=padding,
 padding_bottom=padding,
 padding_left=padding,
 border_right=True,
 border_top=True,
 border_color=X11Color("Green"),
 font_color=X11Color("Salmon")
).layout(
 page,
 Rectangle(Decimal(20), Decimal(600), Decimal(500), Decimal(124)),
)

The result should be something like this (maybe salmon was not the greatest colour in the world):

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.1.3.6 Forcing a split

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_paragraph_justified_center_with_padding_and_border_salmon.png

Sometimes you'd like to force a certain split on a Paragraph . The default behaviour for Paragraph is to ignore whitespaces, and decide
(based on the bounding box of the layout) where to start a new line.

But, by tweaking the setting respect_newlines_in_text we can tell the Paragraph to respect newlines.

We'll start by creating a new Document :

 # create document
 pdf = Document()

 # add page
 page = Page()
 pdf.append_page(page)

Now we can add the title Paragraph

 layout = MultiColumnLayout(page, number_of_columns=2)
 layout.add(Paragraph("The Raven", font_size=Decimal(20), font="Helvetica-Oblique",
font_color=HexColor("708090")))

Finally, we add the Paragraph

 layout.add(Paragraph("""Once upon a midnight dreary, while I pondered, weak and weary,
 Over many a quaint and curious volume of forgotten lore-
 While I nodded, nearly napping, suddenly there came a tapping,
 As of some one gently rapping, rapping at my chamber door.
 'Tis some visitor,' I muttered, 'tapping at my chamber door-
 Only this and nothing more.'""",
 horizontal_alignment=Alignment.CENTERED,

 font_size=Decimal(8),
 respect_newlines_in_text=True))

Now we can store the Document

 # attempt to store PDF
 with open("output.pdf", "wb") as in_file_handle:
 PDF.dumps(in_file_handle, pdf)

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.1.4 Adding text to a Document using Heading

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_paragraph_forcing_split.png

A Heading acts like any other Paragraph object, at least visually it does.
So what's the big deal then?

Heading objects also modify the \Outlines dictionary of the Document . This dictionary is responsible for the side-menu you might see
in Adobe Reader, displaying titles, and allowing you to quickly navigate a Document .

Let's create an example. We'll start by creating an empty Document .

 pdf = Document()
 page = Page()
 pdf.append_page(page)
 layout = MultiColumnLayout(page, number_of_columns=2)

We're going to add our first Heading . Heading accepts the same arguments as Paragraph , and its layout works exactly the same.
Heading also takes a few (optional) extra arguments. outline_text allows you to set a text to be used in the side-menu. If you don't

specify anything, the text in the Paragraph will be used. outline_level allows you to go deeper in the tree-hierarchy (or return to a
parent). The default (Document) level is 0.

 layout.add(Heading("The Raven", font_size=Decimal(20)))
 layout.add(
 Paragraph(
 "Edgar Allen Poe",
 font="Helvetica-Oblique",
 font_size=Decimal(8),
 font_color=X11Color("SteelBlue"),
)
)

Next we're going to add 100 Heading objects, followed by a random number of Paragraph objects.

 for i in range(0, 100):
 layout.add(Heading("Heading %d" % i, font_size=Decimal(20), outline_level=1))

Notice that I have set the outline_level to 1 here.

 for _ in range(0, random.choice([10,20,3])):
 layout.add(
 Paragraph(
 "Once upon a midnight dreary, while I pondered, weak and weary, Over many a quaint and curious
volume of forgotten lore- While I nodded, nearly napping, suddenly there came a tapping, As of some one gently
rapping, rapping at my chamber door. Tis some visitor, I muttered, tapping at my chamber door- Only this and
nothing more.",
 font_size=Decimal(12),
 font_color=X11Color("SlateGray"),
 horizontal_alignment=Alignment.LEFT,
)
)

Finally we're going to store the Document

 with open("output.pdf", "wb") as in_file_handle:
 PDF.dumps(in_file_handle, pdf)

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.2 Using a PageLayout

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_headings_to_a_document.png

So far we've used absolute positioning whenever we wanted to add something to a Page . Although this gives us precise control over
where the content needs to go, it makes it harder to add multiple LayoutElement objects.

Luckily, pText comes with various PageLayout classes. These keep track of what parts of a Page are free, and where to flow content
to.

2.2.1 Using SingleColumnLayout

 # create document
 pdf = Document()

 # add page
 page = Page()
 pdf.append_page(page)

We'll use SingleColumnLayout which takes into account top-, bottom-, left- and right-margins and lays out the content of the Page by
adding each LayoutElement from top to bottom. It adds leading between every 2 elements, based on the LayoutElement . For text-
based elements, this is typically a multiplied leading of 1.3 (meaning the leading after a Paragraph with font_size 10 will be 13).

 layout = SingleColumnLayout(page)

Now that we've created a PageLayout we can simply call its add method. It will keep track of where each LayoutElement is, and will
calculate the next available Rectangle whenever a new LayoutElement is added.

 layout.add(Paragraph(
 "Once upon a midnight dreary, while I pondered weak and weary, over many a quaint and curious volume of
forgotten lore.",
 font_size=Decimal(20),

 horizontal_alignment=Alignment.RIGHT,
))
 layout.add(Paragraph(
 "While I nodded, nearly napping, suddenly there came a tapping. As of someone gently rapping, rapping at my
chamberdoor.",
 font_size=Decimal(20),
 horizontal_alignment=Alignment.RIGHT,
))

Let's store the PDF

 # attempt to store PDF
 with open("output.pdf", "wb") as in_file_handle:
 PDF.dumps(in_file_handle, pdf)

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.2.2 Using MultiColumnLayout

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_paragraphs_using_single_column_layout.png

pText also comes with MultiColumnLayout , which enables you to create a Document with multiple columns on each page.

Most of our previous code will stay the same. We will need to change the PageLayout we used. Now we're using MultiColumnLayout .

 layout = MultiColumnLayout(page, number_of_columns=2)

We're also going to add a lot more content, so you can really see the effect.

 layout.add(Paragraph("The Raven", font_size=Decimal(20)))
 layout.add(
 Paragraph(
 "Edgar Allen Poe",
 font="Helvetica-Oblique",
 font_size=Decimal(8),
 font_color=X11Color("SteelBlue"),
)
)
 for _ in range(0, 20):
 layout.add(
 Paragraph(
 "Once upon a midnight dreary, while I pondered, weak and weary, Over many a quaint and curious
volume of forgotten lore- While I nodded, nearly napping, suddenly there came a tapping, As of some one gently
rapping, rapping at my chamber door. Tis some visitor, I muttered, tapping at my chamber door- Only this and
nothing more.",
 font_size=Decimal(12),
 font_color=X11Color("SlateGray"),
 horizontal_alignment=Alignment.LEFT,
)
)

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_paragraphs_using_multi_column_layout.png

2.2.3 Mixing various PageLayout instances

Each PageLayout acts independently of any other PageLayout objects that may be defined for a given Page . This allows us to do a
layout in layers. For instance render the background using a SingleColumnLayout , and then rendering the foreground using
MultiColumnLayout . We can even define some components at absolute positions, to mix and match.

2.2.5 Showcase : Making a copy of The Raven by Edgar Allen Poe

This example showcases using multiple layout-layers. We'll start by creating an empty Document :

 # create document
 pdf = Document()

 # add page
 page = Page()
 pdf.append_page(page)

On the first layer (the background), we'll just put an Image

 # first layer, displaying a raven
 layout = SingleColumnLayout(page)
 for _ in range(0, 12):
 layout.add(Paragraph(" "))
 layout.add(Image("https://cdn3.vectorstock.com/i/1000x1000/03/47/black-raven-on-white-background-vector-
4780347.jpg"))

Then we'll create a new PageLayout , and start layout on Paragraph objects

 # second layer, displaying the poem
 layout = MultiColumnLayout(page, number_of_columns=2)
 layout.add(
 Paragraph(
 "The Raven",
 font_size=Decimal(20),
 font="Helvetica-Oblique",
 font_color=HexColor("708090"),
)
)
 layout.add(
 Paragraph(
 """Once upon a midnight dreary, while I pondered, weak and weary,
 Over many a quaint and curious volume of forgotten lore-
 While I nodded, nearly napping, suddenly there came a tapping,
 As of some one gently rapping, rapping at my chamber door.
 'Tis some visitor,' I muttered, 'tapping at my chamber door-
 Only this and nothing more.'""",
 horizontal_alignment=Alignment.CENTERED,
 font_size=Decimal(8),
 respect_newlines_in_text=True,
)
)
 layout.add(
 Paragraph(
 """Ah, distinctly I remember it was in the bleak December;
 And each separate dying ember wrought its ghost upon the floor.
 Eagerly I wished the morrow;-vainly I had sought to borrow
 From my books surcease of sorrow-sorrow for the lost Lenore-
 For the rare and radiant maiden whom the angels name Lenore-
 Nameless here for evermore.""",
 horizontal_alignment=Alignment.CENTERED,
 font_size=Decimal(8),

 respect_newlines_in_text=True,
)
)
 layout.add(
 Paragraph(
 """And the silken, sad, uncertain rustling of each purple curtain
 Thrilled me-filled me with fantastic terrors never felt before;
 So that now, to still the beating of my heart, I stood repeating
 'Tis some visitor entreating entrance at my chamber door-
 Some late visitor entreating entrance at my chamber door;-
 This it is and nothing more.'""",
 horizontal_alignment=Alignment.CENTERED,
 font_size=Decimal(8),
 respect_newlines_in_text=True,
)
)
 layout.add(
 Paragraph(
 """Presently my soul grew stronger; hesitating then no longer,
 'Sir,' said I, 'or Madam, truly your forgiveness I implore;
 But the fact is I was napping, and so gently you came rapping,
 And so faintly you came tapping, tapping at my chamber door,
 That I scarce was sure I heard you'-here I opened wide the door;-
 Darkness there and nothing more.""",
 horizontal_alignment=Alignment.CENTERED,
 font_size=Decimal(8),
 respect_newlines_in_text=True,
)
)
 layout.switch_to_next_column()
 layout.add(
 Paragraph(
 """Deep into that darkness peering, long I stood there wondering, fearing,
 Doubting, dreaming dreams no mortal ever dared to dream before;

 But the silence was unbroken, and the stillness gave no token,
 And the only word there spoken was the whispered word, 'Lenore?'
 This I whispered, and an echo murmured back the word, 'Lenore!'-
 Merely this and nothing more.""",
 horizontal_alignment=Alignment.CENTERED,
 font_size=Decimal(8),
 respect_newlines_in_text=True,
)
)
 layout.add(
 Paragraph(
 """Back into the chamber turning, all my soul within me burning,
 Soon again I heard a tapping somewhat louder than before.
 'Surely,' said I, 'surely that is something at my window lattice;
 Let me see, then, what thereat is, and this mystery explore-
 Let my heart be still a moment and this mystery explore;-
 'Tis the wind and nothing more!'""",
 horizontal_alignment=Alignment.CENTERED,
 font_size=Decimal(8),
 respect_newlines_in_text=True,
)
)
 layout.add(
 Paragraph(
 """Open here I flung the shutter, when, with many a flirt and flutter,
 In there stepped a stately Raven of the saintly days of yore;
 Not the least obeisance made he; not a minute stopped or stayed he;
 But, with mien of lord or lady, perched above my chamber door-
 Perched upon a bust of Pallas just above my chamber door-
 Perched, and sat, and nothing more.""",
 horizontal_alignment=Alignment.CENTERED,
 font_size=Decimal(8),
 respect_newlines_in_text=True,
)

)
 layout.add(
 Paragraph(
 """Then this ebony bird beguiling my sad fancy into smiling,
 By the grave and stern decorum of the countenance it wore,
 'Though thy crest be shorn and shaven, thou,' I said, 'art sure no craven,
 Ghastly grim and ancient Raven wandering from the Nightly shore-
 Tell me what thy lordly name is on the Night's Plutonian shore!'
 Quoth the Raven 'Nevermore.'""",
 horizontal_alignment=Alignment.CENTERED,
 font_size=Decimal(8),
 respect_newlines_in_text=True,
)
)
 layout.add(
 Paragraph(
 """Much I marvelled this ungainly fowl to hear discourse so plainly,
 Though its answer little meaning-little relevancy bore;
 For we cannot help agreeing that no living human being
 Ever yet was blessed with seeing bird above his chamber door-
 Bird or beast upon the sculptured bust above his chamber door,
 With such name as 'Nevermore.'""",
 horizontal_alignment=Alignment.CENTERED,
 font_size=Decimal(8),
 respect_newlines_in_text=True,
)
)
 layout.add(
 Paragraph(
 """But the Raven, sitting lonely on the placid bust, spoke only
 That one word, as if his soul in that one word he did outpour.
 Nothing farther then he uttered-not a feather then he fluttered-
 Till I scarcely more than muttered 'Other friends have flown before-
 On the morrow he will leave me, as my Hopes have flown before.'

 Then the bird said 'Nevermore.'""",
 horizontal_alignment=Alignment.CENTERED,
 font_size=Decimal(8),
 respect_newlines_in_text=True,
)
)

Finally, we can store the Document .

 # attempt to store PDF
 with open("output.pdf", "wb") as in_file_handle:
 PDF.dumps(in_file_handle, pdf)

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.3 Using Table

https://github.com/jorisschellekens/ptext/blob/master/readme_img/showcase_writing_the_raven_document.png

2.3.1 Basic Example

Let's start by creating an empty Document

 # create document
 pdf = Document()

 # add page
 page = Page()
 pdf.append_page(page)

Now we're going to create a simple Table . By simple I mean; no row-span, no col-span.

 t = Table(number_of_rows=5, number_of_columns=2)
 t.add(Paragraph("Language", color=X11Color("SteelBlue"), font_size=Decimal(20),
horizontal_alignment=Alignment.CENTERED))
 t.add(Paragraph("Nof. Questions", color=X11Color("SteelBlue"), font_size=Decimal(20),
horizontal_alignment=Alignment.CENTERED))

 t.add(Paragraph("Javascript"))
 t.add(Paragraph("2,167,178"))

 t.add(Paragraph("Php"))
 t.add(Paragraph("1,391,524"))

 t.add(Paragraph("C++"))
 t.add(Paragraph("711,944"))

 t.add(Paragraph("Java"))
 t.add(Paragraph("1,752,877"))
 t.set_border_width_on_all_cells(Decimal(0.2))

 t.set_padding_on_all_cells(Decimal(5), Decimal(5), Decimal(5), Decimal(5))

 table_rect = t.layout(
 page,
 bounding_box=Rectangle(
 Decimal(20), Decimal(600), Decimal(500), Decimal(200)
),
)

We're also going to add a Paragraph underneath the Table .

 Paragraph(text="**Data gathered from Stackoverflow.com on 10th of february 2021", font_size=Decimal(8),
color=X11Color("Gray"))\
 .layout(page, bounding_box=Rectangle(Decimal(20), table_rect.y - 40, table_rect.width, Decimal(20)))

Finally, we can store the Document .

 # attempt to store PDF
 with open("output.pdf", "wb") as in_file_handle:
 PDF.dumps(in_file_handle, pdf)

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.3.2 Using row_span

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_simple_table.png

Let's start by creating an empty Document

 # create document
 pdf = Document()

 # add page
 page = Page()
 pdf.append_page(page)

Like in the other Table examples, we'll start by building a Table object.

 t = Table(number_of_rows=5, number_of_columns=3)
 t.add(Paragraph(" "))
 t.add(Paragraph("Language", color=X11Color("SteelBlue"), font_size=Decimal(20)))
 t.add(Paragraph("Nof. Questions", color=X11Color("SteelBlue"), font_size=Decimal(20)))

Table allows us to add LayoutElement implementations directly (such as Paragraph) but also supports adding TableCell elements,
wich optionally allow you to define row_span and col_span .

 t.add(TableCell(Paragraph("front-end", color=X11Color("SteelBlue")), row_span=2))
 t.add(Paragraph("Javascript"))
 t.add(Paragraph("2,167,178"))

 t.add(Paragraph("Php"))
 t.add(Paragraph("1,391,524"))

 t.add(TableCell(Paragraph("back-end", color=X11Color("SteelBlue")), row_span=2))
 t.add(Paragraph("C++"))
 t.add(Paragraph("711,944"))

 t.add(Paragraph("Java"))
 t.add(Paragraph("1,752,877"))
 t.set_border_width_on_all_cells(Decimal(0.2))
 t.set_padding_on_all_cells(Decimal(5), Decimal(5), Decimal(5), Decimal(5))

 table_rect = t.layout(
 page,
 bounding_box=Rectangle(
 Decimal(20), Decimal(600), Decimal(500), Decimal(200)
),
)

 Paragraph(text="**Data gathered from Stackoverflow.com on 10th of february 2021", font_size=Decimal(8),
color=X11Color("Gray"))\
 .layout(page, bounding_box=Rectangle(Decimal(20), table_rect.y - 40, table_rect.width, Decimal(20)))

Finally, we can store the Document .

 # attempt to store PDF
 with open("output.pdf", "wb") as in_file_handle:
 PDF.dumps(in_file_handle, pdf)

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.3.3 Using col_span

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_table_with_row_span.png

We're going to change the previous example a bit, to include some col_span

We'll start by re-defining the Table to include one extra row (we'll show the total in that row):

 t = Table(number_of_rows=6, number_of_columns=3)

And lastly, we add this last row:

 t.add(Paragraph("Total"))
 t.add(TableCell(Paragraph("6,023,523"), col_span=2))

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.3.4 Using other LayoutElement objects in a Table

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_table_with_col_span.png

Let's start by defining a convenience method for adding an Image to a Table . This method will accept the URL of the Image , and a
Table as arguments:

def _add_image_to_table(self, url: str, table: Table):
 im = PILImage.open(
 requests.get(
 url,
 stream=True,
).raw
)
 table.add(Image(im, width=Decimal(128), height=Decimal(128)))

In order to keep pText Image separate from PIL Image I use the following import statement:

from PIL import Image as PILImage

Now we can get to work. We'll begin by creating an empty Document with an empty Page

 pdf = Document()
 page = Page()
 pdf.append_page(page)

I want to add a Table with 3 rows (2 rows for data, 1 header):

 t = Table(number_of_rows=3, number_of_columns=3)

I'm going to start the Table by writing the header

 t.add(Paragraph(" "))
 t.add(
 Paragraph(
 "Close-up",
 font_color=X11Color("SteelBlue"),
 font_size=Decimal(20),
 horizontal_alignment=Alignment.CENTERED,
)
)
 t.add(
 Paragraph(
 "Panoramic",
 font_color=X11Color("SteelBlue"),
 font_size=Decimal(20),
 horizontal_alignment=Alignment.CENTERED,
)
)

The first entry in this row is the row header, followed by two Image objects, which we'll add using our utility method

 t.add(Paragraph("Nature"))
 self._add_image_to_table("https://images.unsplash.com/photo-1520860560195-0f14c411476e?
ixid=MXwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHw", t)
 self._add_image_to_table("https://images.unsplash.com/photo-1613480123595-c5582aa551b9?
ixid=MXwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHw", t)

Same for the second row:

 t.add(Paragraph("Architecture"))
 self._add_image_to_table("https://images.unsplash.com/photo-1611321569296-1305a38ebd74?

ixid=MXwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHw", t)
 self._add_image_to_table("https://images.unsplash.com/photo-1613262666714-acebcc37f11e?
ixid=MXwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHw", t)

Finally, I want to set padding and borders:

 t.set_border_width_on_all_cells(Decimal(0.2))
 t.set_padding_on_all_cells(Decimal(5), Decimal(5), Decimal(5), Decimal(5))

And use a PageLayout to add everything to a Page

 layout = SingleColumnLayout(page)
 layout.add(t)

And now we can store the Document

 with open("output.pdf", "wb") as in_file_handle:
 PDF.dumps(in_file_handle, pdf)

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.3.5 Showcase : displaying a Table that doubles as a heatmap-plot

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_image_objects_to_a_table.png

We'll start by creating an empty Document :

 # create document
 pdf = Document()

 # add page
 page = Page()
 pdf.append_page(page)

We'll use a layout manager to make things easy on ourselves:

 # set layout
 layout = SingleColumnLayout(page)

This data comes from a StackOverflow question. The author of the question wanted to display this data in a Table and use colors on
each TableCell depending on the value.

 my_dict= {' ': ['A Error', 'B Error', 'C Error', 'D Error'],
 'lab1': [0.34, 0.23, 0.80, 0.79],
 'lab2': [0.53, 0.38, 0.96, 1.25],
 'lab3': [0.40, 0.27, 0.68, 0.93]}

 colors = {0: X11Color("Green"),
 0.25: X11Color("Yellow"),
 0.5: X11Color("Orange"),
 0.75: X11Color("Red")}

Now we can start building the Table :

 table = Table(number_of_rows=4, number_of_columns=5)

First we'll add the header row:

 table.add(Paragraph(" "))
 for h in my_dict[" "]:
 table.add(Paragraph(text=h, font="Helvetica-Bold", font_size=Decimal(12)))

Now we can add the data-rows:

 for name, row in [(k,v) for k,v in my_dict.items() if k != " "]:
 table.add(Paragraph(name))
 for v in row:
 c = X11Color("Green")
 for b,bc in colors.items():
 if v > b:
 c = bc
 table.add(Paragraph(str(v),
 font_color=c,
 horizontal_alignment=Alignment.CENTERED))

We're going to make the border on each cell a bit thinner than the default:

 # set border
 table.set_border_width_on_all_cells(Decimal(0.2))

Padding can make a Table a lot more legible. Let's have a look at how you'd set the padding on a Table in pText Just like with
borders, we could set them on each TableCell individually. But Table offers a convenience-method to set the padding on each of its
TableCell objects:

 # set padding
 table.set_padding_on_all_cells(Decimal(5), Decimal(5), Decimal(5), Decimal(5))

Finally we add an explanatory Paragraph and the Table

 # add to layout
 layout.add(Paragraph("This table contains all measurands for 3 lab-sessions:"))
 layout.add(table)

Now we can store the PDF

 # attempt to store PDF
 with open("output.pdf", "wb") as in_file_handle:
 PDF.dumps(in_file_handle, pdf)

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.4 Using OrderedList and UnorderedList

https://github.com/jorisschellekens/ptext/blob/master/readme_img/using_padding_on_a_table.png

2.4.1 Using OrderedList

 # create document
 pdf = Document()

 # add page
 page = Page()
 pdf.append_page(page)

 ul = OrderedList()
 ul.add(Paragraph(text="Lorem Ipsum Dolor Sit Amet Consectetur Nunc"))
 ul.add(Paragraph(text="Ipsum"))
 ul.add(Paragraph(text="Dolor"))
 ul.add(Paragraph(text="Sit"))
 ul.add(Paragraph(text="Amet"))

 layout = SingleColumnLayout(page)
 layout.add(ul)

Finally, we can store the Document .

 # attempt to store PDF
 with open("output.pdf", "wb") as in_file_handle:
 PDF.dumps(in_file_handle, pdf)

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.4.2 Using UnorderedList

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_an_ordered_list.png

 # create document
 pdf = Document()

 # add page
 page = Page()
 pdf.append_page(page)

 ul = UnorderedList()
 ul.add(Paragraph(text="Lorem Ipsum Dolor Sit Amet Consectetur Nunc"))
 ul.add(Paragraph(text="Ipsum"))
 ul.add(Paragraph(text="Dolor"))
 ul.add(Paragraph(text="Sit"))
 ul.add(Paragraph(text="Amet"))

 layout = SingleColumnLayout(page)
 layout.add(ul)

Finally, we can store the Document .

 # attempt to store PDF
 with open("output.pdf", "wb") as in_file_handle:
 PDF.dumps(in_file_handle, pdf)

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.4.3 Nested lists

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_an_unordered_list.png

 # create document
 pdf = Document()

 # add page
 page = Page()
 pdf.append_page(page)

 ul0 = UnorderedList()
 ul0.add(Paragraph(text="Ipsum"))
 ul0.add(Paragraph(text="Dolor"))

 ul1 = UnorderedList()
 ul1.add(Paragraph(text="Ipsum"))
 ul1.add(Paragraph(text="Dolor"))
 ul1.add(Paragraph(text="Sit"))
 ul1.add(ul0)

 ul2 = UnorderedList()
 ul2.add(Paragraph(text="Lorem"))
 ul2.add(Paragraph(text="Ipsum"))
 ul2.add(Paragraph(text="Dolor"))
 ul2.add(ul1)

 layout = SingleColumnLayout(page)
 layout.add(ul2)

Finally, we can store the Document .

 # attempt to store PDF
 with open("output.pdf", "wb") as in_file_handle:
 PDF.dumps(in_file_handle, pdf)

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_nested_unordered_list.png

2.4.4 Showcase : Recreating a Wikipedia article

This example is going to re-create the basics of a Wikipedia article. It is not an attempt to copy the style and look/feel of Wikipedia. Merely
a way of showcasing everything you can do with the examples and code in this section.

As usual, we start by creating an empty Document

 # create empty document
 pdf: Document = Document()

 # create empty page
 page: Page = Page()

 # add page to document
 pdf.append_page(page)

We set the PageLayout

 # add Image
 layout = MultiColumnLayout(page)

We're going to add a Paragraph to serve as the title:

 layout.add(
 Paragraph(
 "Rose",
 font_color=X11Color("MistyRose"),
 font_size=Decimal(20),
 font="Helvetica-Bold",

)
)

Now comes the actual content:

 layout.add(
 Paragraph(
 "A rose is a woody perennial flowering plant of the genus Rosa, in the family Rosaceae, or the flower
it bears. "
 "There are over three hundred species and tens of thousands of cultivars. "
)
)
 layout.add(
 Paragraph(
 "They form a group of plants that can be erect shrubs, climbing, or trailing, with stems that are often
armed with sharp prickles. "
 "Flowers vary in size and shape and are usually large and showy, "
 "in colours ranging from white through yellows and reds."
)
)
 layout.add(
 Paragraph(
 "Most species are native to Asia, with smaller numbers native to Europe, North America, and
northwestern Africa. "
 "Species, cultivars and hybrids are all widely grown for their beauty and often are fragrant. "
)
)
 layout.add(
 Paragraph("Roses have acquired cultural significance in many societies. ")
)
 layout.add(
 Paragraph(

 "Rose plants range in size from compact, miniature roses, to climbers that can reach seven meters in
height. "
 "Different species hybridize easily, and this has been used in the development of the wide range of
garden roses."
)
)

Next we'll add an Image of a rose:

 # add image
 im = PILImage.open(
 requests.get(
 "https://images.unsplash.com/photo-1597826368522-9f4cb5a6ba48?
ixid=MXwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHw",
 stream=True,
).raw
)
 layout.add(Image(im, width=Decimal(256)))

And lastly some information on the genus Rosa, presented as a nested list:

 # add UnorderedList
 layout.add(Paragraph("The genus Rosa is subdivided into four subgenera:"))
 layout.add(
 UnorderedList()
 .add(Paragraph("Hulthemia", padding_bottom=Decimal(2)))
 .add(Paragraph("Hesperrhodos", padding_bottom=Decimal(2)))
 .add(Paragraph("Platyrhodon", padding_bottom=Decimal(2)))
 .add(Paragraph("Rosa", padding_bottom=Decimal(2)))
 .add(

 UnorderedList()
 .add(Paragraph("Banksianae"))
 .add(Paragraph("Bracteatae"))
 .add(Paragraph("Caninae"))
 .add(Paragraph("Carolinae"))
 .add(Paragraph("Chinensis"))
 .add(Paragraph("Gallicanae"))
 .add(Paragraph("Gymnocarpae"))
 .add(Paragraph("Laevigatae"))
 .add(Paragraph("Pimpinellifoliae"))
 .add(Paragraph("Rosa"))
 .add(Paragraph("Synstylae"))
)
)

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.5 Using Image

https://github.com/jorisschellekens/ptext/blob/master/readme_img/showcase_creating_a_wikipedia_article.png

2.5.1 Using a PIL Image

As you have seen in earlier examples, pText also handles Image objects. They act like any other LayoutElement . The most versatile
way of constructing them is by passing a PIL Image to the constructor.

 # add image
 im = PILImage.open(
 requests.get(
 "https://images.unsplash.com/photo-1597826368522-9f4cb5a6ba48?
ixid=MXwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHw",
 stream=True,
).raw
)
 layout.add(Image(im, width=Decimal(256)))

You can specify a width and height for the Image . If you don't specify anything, pText will use the original width and height of the
Image . If you specify only one, pText will derive the missing parameter by scaling the original width/height by the same ratio. If you

specify both, pText will stick to the dimensions you've given.

2.5.2 Using a URL to create an Image

You can however, also pass a URL directly to the Image constructor, in which case it will use the requests library and PIL to fetch the
bytes for you.

 # add image
 layout.add(Image("https://images.unsplash.com/photo-1597826368522-9f4cb5a6ba48?
ixid=MXwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHw", width=Decimal(256)))

2.5.3 Showcase : Making a PDF to thank the first 100 stars on GitHub

I'm going to start by defining two convenience methods:

def _write_footer(page: Page):
 rectangle_box = Rectangle(
 Decimal(0),
 Decimal(0),
 page.get_page_info().get_width(),
 page.get_page_info().get_height() * Decimal(0.1),
)
 Shape(
 LineArtFactory.rectangle(rectangle_box),
 fill_color=self.ACCENT_COLOR_1,
 stroke_color=self.ACCENT_COLOR_1,
 line_width=Decimal(1),
).layout(page, rectangle_box)

 rectangle_box = Rectangle(
 Decimal(0),
 page.get_page_info().get_height() * Decimal(0.1),
 page.get_page_info().get_width(),
 Decimal(2),
)
 Shape(
 LineArtFactory.rectangle(rectangle_box),
 fill_color=self.ACCENT_COLOR_2,
 stroke_color=self.ACCENT_COLOR_2,
 line_width=Decimal(1),
).layout(page, rectangle_box)

The second utility method will add a nice background with geometric stars:

def _write_background(self, page: Page):
 layout = SingleColumnLayout(page)
 t = Table(number_of_columns=10, number_of_rows=25)
 for i in range(0, 25):
 for j in range(0, 10):
 put_star = random.choice([x <= 3 for x in range(0, 10)])
 if i < 11 and j >= 5:
 t.add(Paragraph(" "))
 continue
 if put_star:
 c = random.choice(
 [
 self.ACCENT_COLOR_1,
 self.ACCENT_COLOR_2,
 self.ACCENT_COLOR_3,
 self.ACCENT_COLOR_4,
 self.ACCENT_COLOR_5,
]
)
 t.add(
 Shape(
 LineArtFactory.n_pointed_star(
 bounding_box=Rectangle(
 Decimal(0), Decimal(0), Decimal(16), Decimal(16)
),
 n=random.choice([3, 5, 7, 12]),
),
 fill_color=c,
 stroke_color=c,
 line_width=Decimal(1),
)
)
 else:

 t.add(Paragraph(" "))
 t.no_borders()
 t.set_padding_on_all_cells(Decimal(5), Decimal(5), Decimal(5), Decimal(5))
 layout.add(t)

Now we should be ready to define our main method:

 # create document
 pdf = Document()

 # add page
 page = Page()
 pdf.append_page(page)

 layout = MultiColumnLayout(page)

 # background
 self._write_background(page)

To see the full table of GitHub ids I would recommend you check out this test. It seems a bit redundant to repeat that here.

 # table
 avatar_urls = [
 "https://avatars.githubusercontent.com/u/" + str(x)
 for x in self.FIRST_100_STARS
]
 t = Table(number_of_columns=4, number_of_rows=25)
 for s in avatar_urls[0 : (4 * 25)]:
 im = PILImage.open(requests.get(s, stream=True).raw)
 t.add(Image(im, width=Decimal(20), height=Decimal(20)))

 t.set_padding_on_all_cells(Decimal(2), Decimal(2), Decimal(2), Decimal(2))
 t.no_borders()
 layout.add(t)

 layout.add(
 Paragraph(
 "100 stars!",
 font="Helvetica-Bold",
 font_size=Decimal(20),
 font_color=self.ACCENT_COLOR_1,
 horizontal_alignment=Alignment.CENTERED,
)
)

 # next column
 layout.switch_to_next_column()

 # paragraph
 layout.add(
 Paragraph(
 "Thank you,",
 font="Helvetica-Bold",
 font_size=Decimal(20),
 font_color=self.ACCENT_COLOR_1,
)
)
 layout.add(
 Paragraph(
 "Your support and encouragement have always been the driving factors in the development of pText. "
 "I want you to know that I value your appreciation immensely!"
)
)
 layout.add(
 Paragraph(

 "-- Joris Schellekens",
 font="Helvetica-Oblique",
 font_size=Decimal(8),
 font_color=self.ACCENT_COLOR_2,
)
)

 layout.add(
 Barcode(
 data="https://github.com/jorisschellekens/ptext-release/stargazers",
 type=BarcodeType.QR,
 width=Decimal(128),
 stroke_color=self.ACCENT_COLOR_1,
)
)

Lastly, we can store the Document

 # attempt to store PDF
 with open("output.pdf", "wb") as in_file_handle:
 PDF.dumps(in_file_handle, pdf)

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.6 Using Barcode

https://github.com/jorisschellekens/ptext/blob/master/readme_img/showcase_100_stars_document.png

2.6.1 Basic Example

pText also supports most barcode formats. Let's create an example Document :

 pdf: Document = Document()
 page: Page = Page()
 pdf.append_page(page)

 # set layout
 layout = SingleColumnLayout(page)

Next we'll add a single Barcode

 # add barcode
 layout.add(Barcode(
 data="123456789128",
 type=BarcodeType.CODE_128,
 width=Decimal(128),
 stroke_color=HexColor("#080708"),
)
)

Finally, we can write the Document :

 with open("output.pdf", "wb") as pdf_file_handle:
 PDF.dumps(pdf_file_handle, pdf)

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.6.2 Using Color on Barcode objects

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_barcode_to_a_document.png

Like most LayoutElement implementations, Barcode objects can be colored. Use the stroke_color to set the foreground color of a
Barcode . Use fill_color to set the background color.

In this example, we're going to show some more BarcodeTypes , and give each one some color:

 # set layout
 layout = SingleColumnLayout(page)

 # add barcode
 layout.add(
 Table(number_of_rows=5, number_of_columns=2)
 .add(Paragraph("CODE 128"))
 .add(
 Barcode(
 data="123456789128",
 type=BarcodeType.CODE_128,
 width=Decimal(128),
 stroke_color=HexColor("#080708"),
)
)
 .add(Paragraph("CODE 39"))
 .add(
 Barcode(
 data="123456789128",
 type=BarcodeType.CODE_39,
 width=Decimal(128),
 stroke_color=HexColor("#3772FF"),
)
)
 .add(Paragraph("EAN 13"))
 .add(
 Barcode(

 data="123456789128",
 type=BarcodeType.EAN_13,
 width=Decimal(128),
 stroke_color=HexColor("#DF2935"),
)
)
 .add(Paragraph("EAN 14"))
 .add(
 Barcode(
 data="1234567891280",
 type=BarcodeType.EAN_14,
 width=Decimal(128),
 stroke_color=HexColor("#FDCA40"),
)
)
 .add(Paragraph("QR"))
 .add(
 Barcode(
 data="1234567891280",
 type=BarcodeType.QR,
 width=Decimal(128),
 stroke_color=HexColor("#E6E8E6"),
 fill_color=HexColor("#DF2935"),
)
)
 .set_padding_on_all_cells(Decimal(5), Decimal(5), Decimal(5), Decimal(5))
)

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.6.3 Showcase : Outputting the results of a Jenkins run

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_table_of_barcodes_to_a_document.png

In this showcase, we're going to convert jUnit output results to a PDF. That should make them a lot more easy to digest.

We'll start by defining two convenience methods: The first method draws the company logo at the corner of a given Page

def _write_logo(self, page: Page):
 image_url = "https://icons.iconarchive.com/icons/thesquid.ink/free-flat-sample/256/rubber-duck-icon.png"
 im = PILImage.open(requests.get(image_url, stream=True).raw)
 Image(im).layout(
 page,
 bounding_box=Rectangle(Decimal(20), Decimal(800), Decimal(49), Decimal(18)),
)

The second method adds a colorful footer to a given Page

def _write_footer(self, page: Page):
 # footer
 rectangle_box = Rectangle(
 Decimal(0),
 Decimal(0),
 page.get_page_info().get_width(),
 page.get_page_info().get_height() * Decimal(0.05),
)
 Shape(
 LineArtFactory.rectangle(rectangle_box),
 fill_color=HexColor("5dbb46"),
 stroke_color=HexColor("5dbb46"),
 line_width=Decimal(1),
).layout(page, rectangle_box)

 rectangle_box = Rectangle(
 Decimal(0),

 page.get_page_info().get_height() * Decimal(0.05),
 page.get_page_info().get_width(),
 Decimal(2),
)
 Shape(
 LineArtFactory.rectangle(rectangle_box),
 fill_color=X11Color("SlateGray"),
 stroke_color=X11Color("SlateGray"),
 line_width=Decimal(1),
).layout(page, rectangle_box)

Next we're going to create a method that writes 1 page of results:

def _write_page(self, doc: Document, results, from_index: int, to_index: int):
 page = Page()
 doc.append_page(page)

 # set layout manager
 layout = SingleColumnLayout(page)

 # create Table
 N = to_index - from_index
 table = Table(
 number_of_rows=N + 1,
 number_of_columns=5,
 column_widths=[Decimal(1), Decimal(2), Decimal(3), Decimal(2), Decimal(2)],
)

 # logo
 self._write_logo(page)

 # header

 table.add(
 Paragraph("Nr.", font_color=HexColor("#5dbb46"), font_size=Decimal(20))
)
 table.add(
 Paragraph("Category", font_color=HexColor("#5dbb46"), font_size=Decimal(20))
)
 table.add(
 Paragraph("Name", font_color=HexColor("#5dbb46"), font_size=Decimal(20))
)
 table.add(
 Paragraph("Time", font_color=HexColor("#5dbb46"), font_size=Decimal(20))
)
 table.add(
 Paragraph("Status", font_color=HexColor("#5dbb46"), font_size=Decimal(20))
)

 # iterate over results
 annotation_positions: typing.Dict[Paragraph, str] = {}
 for i, testcase in enumerate(results[from_index:to_index]):
 class_name = testcase.attrib.get("classname", "")
 name = testcase.attrib.get("name", "")
 time = round(Decimal(testcase.attrib.get("time", "0")), 2)
 fail = any([x.tag == "failure" for x in testcase])
 fail_message = next(
 iter(
 [
 x.attrib.get("message", "")
 for x in testcase
 if x.tag == "failure"
]
),
 "",
)

 table.add(Paragraph(str(i + from_index), font_size=Decimal(8)))
 table.add(Paragraph(class_name, font_size=Decimal(8)))
 table.add(Paragraph(name, font_size=Decimal(8)))
 table.add(
 Paragraph(
 str(time),
 font_size=Decimal(8),
 horizontal_alignment=Alignment.CENTERED,
)
)

If the test passes, we'll print a green 'V', else a red 'X'

 status_para = None
 if fail:
 status_para = Paragraph(
 "X",
 font_color=X11Color("Red"),
 horizontal_alignment=Alignment.CENTERED,
)
 else:
 status_para = Paragraph(
 "V",
 font_color=X11Color("Green"),
 horizontal_alignment=Alignment.CENTERED,
)
 table.add(status_para)
 annotation_positions[status_para] = fail_message

 table.set_padding_on_all_cells(Decimal(5), Decimal(5), Decimal(5), Decimal(5))
 table.set_border_width_on_all_cells(Decimal(0.5))
 layout.add(table)

During the building of Table we also kept track of each status Paragraph . Now that layout is completed, all those LayoutElement
objects should have a bounding box. We can now add annotations right next to them wherever more details (for instance reasons why the
test failed) are needed.

 # add text annotations for failed tests
 for p, s in annotation_positions.items():
 if s == "":
 continue
 page.append_text_annotation(
 rectangle=Rectangle(
 p.get_bounding_box().x + Decimal(64),
 p.get_bounding_box().y,
 Decimal(16),
 Decimal(16),
),
 contents=s,
)

Lastly, we add the footer on the Page

 # add footer
 self._write_footer(page)

Now we can work on the main program:

 # create empty Document
 doc = Document()

 # add page
 tree = ET.parse("/home/joris/Downloads/testsuite.xml")
 testsuite = tree.getroot()
 for i in range(0, len(testsuite), 30):
 self._write_page(doc, [x for x in testsuite], i, i + 30)

Finally, we'll add a QR code to the last page:

 # last page, containing QR code
 page: Page = Page()
 doc.append_page(page)
 layout = MultiColumnLayout(page)

 # add paragraph
 layout.add(
 Paragraph(
 "For more information go to jenkins.com, or scan the following qr code:",
 font="Helvetica-Bold",
)
)

 # add qr code
 layout.add(
 Barcode(
 data="https://jenkins.com",
 type=BarcodeType.QR,
 stroke_color=HexColor("#5dbb46"),
 width=Decimal(128),
)
)

 # footer
 self._write_footer(page)

And finally, we can store the PDF

 # attempt to store PDF
 with open("output.pdf", "wb") as in_file_handle:
 PDF.dumps(in_file_handle, doc)

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.7 Using Chart

https://github.com/jorisschellekens/ptext/blob/master/readme_img/showcase_converting_junit_results_to_pdf.png

Chart objects can be used to integrate MatPlotLib graphics into a PDF Document .

First we'll define a utility method that generates the chart:

import pandas as pd
import numpy as np
import matplotlib.pyplot as MatPlotLibPlot

def _create_plot(self) -> None:
 # Dataset
 df = pd.DataFrame(
 {
 "X": range(1, 101),
 "Y": np.random.randn(100) * 15 + range(1, 101),
 "Z": (np.random.randn(100) * 15 + range(1, 101)) * 2,
 }
)

 # plot
 fig = MatPlotLibPlot.figure()
 ax = fig.add_subplot(111, projection="3d")
 ax.scatter(df["X"], df["Y"], df["Z"], c="skyblue", s=60)
 ax.view_init(30, 185)

 return MatPlotLibPlot.gcf()

Next we'll go about creating a Document , as we usually do, starting with the empty Document

 # create empty document
 pdf: Document = Document()
 page: Page = Page()

 pdf.append_page(page)

 # set layout
 layout = MultiColumnLayout(page)

Next we're going to add the Chart itself. The constructor of Chart takes a matplotlib.pyplot as input. Optionally, you can specify a
width and height . These work the same as when specifying width and height on Image objects.

 # add chart
 layout.add(Chart(self._create_plot()))

We're going to force the MultiColumnLayout to go to the next column:

 layout.switch_to_next_column()

We'll add some title and text, giving the reader some details about the plot:

 # add Heading
 layout.add(
 Heading(
 "3D Density Chart",
 font_color=X11Color("YellowGreen"),
 font_size=Decimal(20),
)
)
 layout.add(
 Paragraph(
 "The mplot3D toolkit of Matplotlib allows to easily create 3D scatterplots. "

 "Note that most of the customisations presented in the Scatterplot section will work in 3D as well. "
 "The result can be a bit disappointing since each marker is represented as a dot, not as a sphere.."
)
)

Finally, because I did re-use an existing example, I am going to add some acknowledgements, and links:

 layout.add(Paragraph("Check out https://python-graph-gallery.com/ for more wonderful examples of plots in
Python."))
 layout.add(Barcode(data="https://python-graph-gallery.com/", type=BarcodeType.QR,
stroke_color=X11Color("YellowGreen")))

Now we're ready to write the Document

 # attempt to store PDF
 with open("output.pdf", "wb") as in_file_handle:
 PDF.dumps(in_file_handle, pdf)

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

2.8 Using Shape

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_chart_to_a_pdf.png

Shape and DisjointShape allow you to draw geometric objects on a Document . Use Shape if you want to display a continuguous
figure (a path representing a figure that can be closed by connecting the first and last point), use DisjointShape if you have a collection
of lines (that are not connected).

2.8.1 Using Shape to display a figure from LineArtFactory

We'll start by creating an empty Document

pdf = Document()
page = Page()
pdf.append_page(page)
layout = SingleColumnLayout(page)

Next we get width and height to be able to scale our figure properly

w = page.get_page_info().get_width()
h = page.get_page_info().get_height()
assert w is not None
assert h is not None

Note that the asserts aren't strictly needed. But the method get_width and get_height return a typing.Optional[Decimal] so, to
appease my static typechecker I included the asserts.

layout.add(
 Shape(
 LineArtFactory.dragon_curve(
 bounding_box=Rectangle(Decimal(0), Decimal(0), w, h),
 number_of_iterations=10,

),
 stroke_color=HexColor("64B6AC"),
 line_width=Decimal(1),
 fill_color=None,
)
)

So, what's happening here?

1. First we construct a typing.List[typing.Tuple[Decimal, Decimal]] (a list of points). In this case we're using the
LineArtFactory to generate them. LineArtFactory has a number of methods that generate all kinds of figures (geometric, arrows,

stars, etc). For this example, I picked the dragon curve. You can find more information about this curve here:
https://en.wikipedia.org/wiki/Dragon_curve.

2. Next we are feeding these points into the constructor of Shape . Shape takes a few other arguments as well, including
stroke_color (the color in which to draw, default= X11Color('black')), fill_color , and line_width .

So why do we take the long route? Why not directly paint on the pdf Canvas ? Shape plays nicely with our layout algorithms. If the
content needs to be resized or translated during the layout process, `Shape will do so.

It also means we don't have to worry about the precise coordinates when we're building our Shape . We can just pretend our figure starts
at (0, 0) and have Shape do the heavy lifting.

Back to our tutorial. We need to store the PDF:

attempt to store PDF
with open("output.pdf", "wb") as in_file_handle:
 PDF.dumps(in_file_handle, pdf)

https://en.wikipedia.org/wiki/Dragon_curve

The result should be something like this:

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_shape.png

2.8.2 Using DisjointShape to display a maze

Let's put DisjointShape to the test by generating a maze and adding it to a PDF. First we'll need some code to generate a Maze:

class Maze:

 def __init__(self, width: int, height: int):
 assert width > 0
 assert height > 0
 self.width: int = width
 self.height: int = height
 self.cells = [
 [210 for _ in range(0, self.height)] for _ in range(0, self.width)
]
 # build the maze
 self._build_maze()
 # pick a start
 self._make_gap()
 # pick an exit
 self._make_gap(reverse_scan_order=True)

Each cell of the Maze has 4 walls. Each wall is represented by a prime (north=2, east=3, south=5, west=7). Each cell can therefor be
represented using 1 number, which is 210 initially.

This algorithm is based on https://en.wikipedia.org/wiki/Maze_generation_algorithm

 def _unvisited_neighbours(self, x: int, y: int):
 nbs: typing.List[typing.Tuple[int, int]] = []
 for i in range(-1, 2):
 for j in range(-1, 2):
 # self is not a valid neighbour

https://en.wikipedia.org/wiki/Maze_generation_algorithm

 if i == 0 and j == 0:
 continue
 if abs(i) == abs(j) == 1:
 continue
 # check out-of-bounds
 if x + i >= self.width or x + i < 0:
 continue
 if y + j >= self.height or y + j < 0:
 continue
 if self.cells[x + i][y + j] == 210:
 nbs.append((x + i, y + j))
 return nbs

This function returns the walls representing the Maze

 def get_walls(self, cell_size: int) -> typing.List[typing.Tuple[typing.Tuple[Decimal, Decimal],
typing.Tuple[Decimal, Decimal]]]:
 walls: typing.List[typing.Tuple[typing.Tuple[Decimal, Decimal], typing.Tuple[Decimal, Decimal]]] = []
 for i in range(0, self.width):
 for j in range(0, self.height):
 c = self.cells[i][j]
 if c % 2 == 0:
 walls.append([[i * cell_size, j * cell_size], [(i + 1) * cell_size, j * cell_size]])
 if c % 3 == 0:
 walls.append([[(i + 1) * cell_size, j * cell_size], [(i + 1) * cell_size, (j + 1) * cell_size]])
 if c % 5 == 0:
 walls.append([[i * cell_size, (j + 1) * cell_size], [(i + 1) * cell_size, (j + 1) * cell_size]])
 if c % 7 == 0:
 walls.append([[i * cell_size, j * cell_size], [i * cell_size, (j + 1) * cell_size]])
 return walls

This function actually generates the Maze :

 def _build_maze(self) -> None:

 # find first cell
 stk: typing.List[typing.Tuple[int, int]] = []
 for i in range(0, self.width):
 for j in range(0, self.height):
 if self.cells[i][j] == 210:
 stk.append((i, j))
 break
 if len(stk) > 0:
 break

 while len(stk) > 0:
 # pop a cell from the stack and make it the current cell
 current_cell: typing.Tuple[int, int] = stk[-1]
 stk.pop(-1)
 # If the current cell has any neighbours which have not been visited
 nbs = self._unvisited_neighbours(current_cell[0], current_cell[1])
 if len(nbs) > 0:
 # Push the current cell to the stack
 stk.append(current_cell)
 # Choose one of the unvisited neighbours
 nb = random.choice(nbs)
 # Remove the wall between the current cell and the chosen cell
 if current_cell[0] == nb[0]:
 if current_cell[1] > nb[1]:
 self.cells[current_cell[0]][current_cell[1]] /= 2
 self.cells[nb[0]][nb[1]] /= 5
 elif nb[1] > current_cell[1]:
 self.cells[current_cell[0]][current_cell[1]] /= 5
 self.cells[nb[0]][nb[1]] /= 2

 elif current_cell[1] == nb[1]:
 if current_cell[0] > nb[0]:
 self.cells[current_cell[0]][current_cell[1]] /= 7
 self.cells[nb[0]][nb[1]] /= 3
 elif nb[0] > current_cell[0]:
 self.cells[current_cell[0]][current_cell[1]] /= 3
 self.cells[nb[0]][nb[1]] /= 7
 # Mark the chosen cell as visited and push it to the stack
 stk.append((nb[0], nb[1]))

This function creates a gap in the Maze wall on an edge (representing the start or exit):

def _make_gap(self, reverse_scan_order: bool = False):
 xs = ([x for x in reversed(range(0, self.width))] if reverse_scan_order else [x for x in range(0, self.width)])
 ys = ([x for x in reversed(range(0, self.height))] if reverse_scan_order else [x for x in range(0,
self.height)])
 for i in xs:
 for j in ys:
 if i == 0 or i == self.width - 1 or j == 0 or j == self.height - 1:
 if self.cells[i][j] != -1:
 # mark as start
 if i == 0:
 self.cells[i][j] /= 7
 return
 if i == self.width - 1:
 self.cells[i][j] /= 3
 return
 if j == 0:
 self.cells[i][j] /= 2
 return
 if j == self.height - 1:
 self.cells[i][j] /= 5

 return
 elif self.cells[i][j] != -1 and (
 self.cells[i - 1][j] == -1
 or self.cells[i + 1][j] == -1
 or self.cells[i][j - 1] == -1
 or self.cells[i][j + 1] == -1
):
 if self.cells[i - 1][j] == -1:
 self.cells[i][j] /= 7
 return
 if self.cells[i + 1][j] == -1:
 self.cells[i][j] /= 3
 return
 if self.cells[i][j - 1] == -1:
 self.cells[i][j] /= 2
 return
 if self.cells[i][j + 1] == -1:
 self.cells[i][j] /= 5
 return

Finally, with all of that out of the way, let's get to PDF:

 # create document
 pdf = Document()

 # add page
 page = Page()
 pdf.append_page(page)

 # set layout
 layout = SingleColumnLayout(page)

 # add title
 layout.add(
 Paragraph(
 "AMAZING MAZES",
 font="TimesRoman",
 font_size=Decimal(20),
 font_color=HexColor("274029"),
)
)

 # add subtitle
 layout.add(
 Paragraph(
 """
 Can you solve this maze?
 Try going from (lower) left to (upper) right.
 Good luck
 """,
 respect_newlines_in_text=True,
)
)

 # generate maze
 m = Maze(20, 20)

 # add maze
 layout.add(
 DisjointShape(
 m.get_walls(Decimal(10)),
 stroke_color=HexColor("315C2B"),
 line_width=Decimal(1),
)
)

The end result should be something like this (keeping in mind the maze is generated randomly, so it might be different on your machine):

Check out the tests directory to find more tests like this one, and discover what you can do with pText .

https://github.com/jorisschellekens/ptext/blob/master/readme_img/adding_a_disjointshape.png

