From bbc6c89371a583a13f69570a232efa91ac585ca2 Mon Sep 17 00:00:00 2001 From: dominiquesydow Date: Fri, 3 Jun 2022 10:00:01 +0100 Subject: [PATCH 01/17] Empty commit From 2dfde1d3c3b51d44237043a06784efe32139d440 Mon Sep 17 00:00:00 2001 From: dominiquesydow Date: Fri, 3 Jun 2022 12:01:12 +0100 Subject: [PATCH 02/17] Add kissim to env --- devtools/test_env.yml | 1 + 1 file changed, 1 insertion(+) diff --git a/devtools/test_env.yml b/devtools/test_env.yml index 97329965..9434aa4f 100644 --- a/devtools/test_env.yml +++ b/devtools/test_env.yml @@ -42,6 +42,7 @@ dependencies: - pdbfixer - tqdm - lxml + - kissim ## CI tests # Workaround for https://github.com/computationalmodelling/nbval/issues/153 - pytest 5.* From 0f75db007a70047cd8fe96eee3c450d088467414 Mon Sep 17 00:00:00 2001 From: dominiquesydow Date: Fri, 3 Jun 2022 12:01:24 +0100 Subject: [PATCH 03/17] Add notebook mode config file --- .../T023_what_is_a_kinase/data/pipeline_configs.csv | 4 ++++ 1 file changed, 4 insertions(+) create mode 100644 teachopencadd/talktorials/T023_what_is_a_kinase/data/pipeline_configs.csv diff --git a/teachopencadd/talktorials/T023_what_is_a_kinase/data/pipeline_configs.csv b/teachopencadd/talktorials/T023_what_is_a_kinase/data/pipeline_configs.csv new file mode 100644 index 00000000..d6da2159 --- /dev/null +++ b/teachopencadd/talktorials/T023_what_is_a_kinase/data/pipeline_configs.csv @@ -0,0 +1,4 @@ +variable,default_value,description +DEMO,1,"Run the notebooks exactly as displayed online (default: 1) or set to 0 and run your own kinase set (as defined in `kinase_selection.csv`)" +N_STRUCTURES_PER_KINASE,-1,"Run structure-based notebooks on all structures per kinase (default: -1) or a subset of structures (replace -1 with e.g. 3)" +N_CORES,1,"Run T025 on one (default: 1) or more cores" \ No newline at end of file From 3b020ba170a6c5013d127c71a53efb6dbe71dfbc Mon Sep 17 00:00:00 2001 From: dominiquesydow Date: Fri, 3 Jun 2022 12:09:35 +0100 Subject: [PATCH 04/17] T023: Add section explaining config file --- .../T023_what_is_a_kinase/talktorial.ipynb | 119 +++++++++++++++--- 1 file changed, 102 insertions(+), 17 deletions(-) diff --git a/teachopencadd/talktorials/T023_what_is_a_kinase/talktorial.ipynb b/teachopencadd/talktorials/T023_what_is_a_kinase/talktorial.ipynb index 0fd3febe..d494ec54 100644 --- a/teachopencadd/talktorials/T023_what_is_a_kinase/talktorial.ipynb +++ b/teachopencadd/talktorials/T023_what_is_a_kinase/talktorial.ipynb @@ -326,7 +326,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We have collected information about these nine kinases in the CSV file `kinase_selection.csv`:\n", + "We have collected information about these nine kinases in the CSV file `T023_what_is_a_kinase/data/kinase_selection.csv`:\n", "\n", "- `kinase`: Kinase name as used in [Molecules (2021), 26(3), 629](https://www.mdpi.com/1420-3049/26/3/629)\n", "- `kinase_klifs`: Kinase name as used in the KLIFS database\n", @@ -335,13 +335,6 @@ "- `full_kinase_name`: Full kinase name as used in [Molecules (2021), 26(3), 629](https://www.mdpi.com/1420-3049/26/3/629)" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "_Note_: You can run the kinase similarity __Talktorials T024-T028__ with your own set of kinases. To do so, please update the CSV file with your kinases; the only mandatory columns are `kinase_klifs` and `uniprot_id`." - ] - }, { "cell_type": "code", "execution_count": 3, @@ -494,6 +487,98 @@ "We will load this dataset in all downstream talktorials to assess kinase similarity from different perspectives." ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "_Note_: You can run the kinase similarity __Talktorials T024-T028__ with your own set of kinases. To do so, please update the following files:\n", + "\n", + "- Update the `T023_what_is_a_kinase/data/kinase_selection.csv` file with your kinases; the only mandatory columns are `kinase_klifs` and `uniprot_id`.\n", + "- Update the `T023_what_is_a_kinase/data/pipeline_configs.csv` file with your configurations:\n", + " - Set \"DEMO\" to `False`.\n", + " - Choose the number of structures per kinases to be used in T025 (KiSSim) and T26 (IFP). If \"N_STRUCTURES_PER_KINASE\" is set to `None`, all structures are used; if set to a number (X), the best X structures are being used for the encoding and comparison. The latter makes sense for a test run of your data (running the notebook on all structures is time-consuming for the KiSSim approach).\n", + " - If you run the notebooks on all structures (see \"N_STRUCTURES_PER_KINASE\"), we recommend to increase the number of cores to be used in T025 (KiSSim) by redefining \"N_CORES\".\n", + " \n", + "Let's take a look at the currently set configurations:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
variabledefault_valuedescription
0DEMOTrueRun the notebooks exactly as displayed online (default) or run your own kinase set (as defined in `kinase_selection.csv`)
1N_STRUCTURES_PER_KINASENoneRun structure-based notebooks on all structures per kinase (default) or a subset of structures (replace `None` with a number, e.g. 3)
2N_CORES1Run T025 on one (default) or more cores
\n", + "
" + ], + "text/plain": [ + " variable default_value \\\n", + "0 DEMO True \n", + "1 N_STRUCTURES_PER_KINASE None \n", + "2 N_CORES 1 \n", + "\n", + " description \n", + "0 Run the notebooks exactly as displayed online (default) or run your own kinase set (as defined in `kinase_selection.csv`) \n", + "1 Run structure-based notebooks on all structures per kinase (default) or a subset of structures (replace `None` with a number, e.g. 3) \n", + "2 Run T025 on one (default) or more cores " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.options.display.max_colwidth = None\n", + "configs = pd.read_csv(DATA / \"pipeline_configs.csv\")\n", + "configs" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -519,7 +604,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -565,7 +650,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -600,7 +685,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -609,7 +694,7 @@ "('CDK2', 426)" ] }, - "execution_count": 6, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -638,7 +723,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -700,7 +785,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": { "tags": [] }, @@ -747,7 +832,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -756,7 +841,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 12, "metadata": { "tags": [ "nbsphinx-thumbnail" @@ -770,7 +855,7 @@ "" ] }, - "execution_count": 10, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } From 7f092248da13e23db682f2115d3adff118c4348b Mon Sep 17 00:00:00 2001 From: dominiquesydow Date: Fri, 3 Jun 2022 12:10:49 +0100 Subject: [PATCH 05/17] T025 and T026: Add demo mode --- .../talktorial.ipynb | 1009 +++++++++-------- .../talktorial.ipynb | 445 ++++---- 2 files changed, 805 insertions(+), 649 deletions(-) diff --git a/teachopencadd/talktorials/T025_kinase_similarity_kissim/talktorial.ipynb b/teachopencadd/talktorials/T025_kinase_similarity_kissim/talktorial.ipynb index 6d6fa977..7db01296 100644 --- a/teachopencadd/talktorials/T025_kinase_similarity_kissim/talktorial.ipynb +++ b/teachopencadd/talktorials/T025_kinase_similarity_kissim/talktorial.ipynb @@ -51,7 +51,7 @@ " * Fetch all structures describing these kinases\n", " * Filter structures\n", "* Show kinase coverage\n", - "* Load KiSSim fingerprints\n", + "* Calculate KiSSim fingerprints\n", "* Compare structures\n", "* Map structure to kinase distance matrix\n", "* Save kinase distance matrix" @@ -162,7 +162,8 @@ "from sklearn.metrics import pairwise\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", - "from opencadd.databases.klifs import setup_remote" + "from opencadd.databases.klifs import setup_remote\n", + "import kissim" ] }, { @@ -175,6 +176,38 @@ "DATA = HERE / \"data\"" ] }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Run in demo mode: True\n" + ] + } + ], + "source": [ + "configs = pd.read_csv(HERE / \"../T023_what_is_a_kinase/data/pipeline_configs.csv\")\n", + "configs = configs.set_index(\"variable\")[\"default_value\"]\n", + "\n", + "DEMO = bool(int(configs[\"DEMO\"]))\n", + "N_STRUCTURES_PER_KINASE = int(configs[\"N_STRUCTURES_PER_KINASE\"])\n", + "N_CORES = int(configs[\"N_CORES\"])\n", + "\n", + "print(f\"Run in demo mode: {DEMO}\")\n", + "if not DEMO:\n", + " if N_STRUCTURES_PER_KINASE > 0:\n", + " print(f\"Number of structures per kinase: {N_STRUCTURES_PER_KINASE}\")\n", + " else:\n", + " print(f\"Number of structures per kinase: all available structures\")\n", + " print(f\"Number of cores used: {N_CORES}\")\n", + " \n", + "# NBVAL_CHECK_OUTPUT" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -191,7 +224,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -323,7 +356,7 @@ "8 p38 mitogen activated protein kinase alpha " ] }, - "execution_count": 3, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -357,7 +390,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -366,7 +399,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -382,14 +415,14 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Number of structures: 2521\n", + "Number of structures: 2523\n", "Kinases: CDK2 p38a EGFR ErbB2 MET LCK KDR BRAF p110a\n" ] } @@ -413,7 +446,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -438,7 +471,7 @@ " dtype='object')" ] }, - "execution_count": 7, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -449,7 +482,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -499,9 +532,9 @@ " \n", " \n", " 0\n", - " 4304\n", - " 4bcp\n", - " B\n", + " 3978\n", + " 1gy3\n", + " -\n", " A\n", " Human\n", " 198\n", @@ -515,17 +548,17 @@ " False\n", " False\n", " False\n", - " 15.5676\n", - " 53.531101\n", - " 72.388298\n", + " 17.5289\n", + " 58.732300\n", + " 75.622704\n", " <NA>\n", " False\n", " \n", " \n", " 1\n", - " 4204\n", - " 3qqj\n", - " B\n", + " 4020\n", + " 4fkg\n", + " A\n", " A\n", " Human\n", " 198\n", @@ -539,17 +572,17 @@ " False\n", " False\n", " False\n", - " 12.3077\n", - " 42.122501\n", - " 61.961201\n", + " 14.3067\n", + " 49.563202\n", + " 70.460602\n", " <NA>\n", " False\n", " \n", " \n", " 2\n", - " 14136\n", - " 7vdu\n", - " A\n", + " 4021\n", + " 3ig7\n", + " -\n", " A\n", " Human\n", " 198\n", @@ -563,16 +596,16 @@ " False\n", " False\n", " False\n", - " 14.4634\n", - " 49.359100\n", - " 66.803703\n", + " 14.5012\n", + " 50.189201\n", + " 77.397400\n", " <NA>\n", " False\n", " \n", " \n", " 3\n", - " 14137\n", - " 7vdu\n", + " 4540\n", + " 1hcl\n", " B\n", " A\n", " Human\n", @@ -587,18 +620,18 @@ " False\n", " False\n", " False\n", - " 14.4634\n", - " 49.359100\n", - " 66.803703\n", + " 14.9689\n", + " 51.229698\n", + " 63.422600\n", " <NA>\n", " False\n", " \n", " \n", " 4\n", - " 6571\n", - " 5if1\n", - " B\n", + " 4022\n", + " 2r3k\n", " C\n", + " A\n", " Human\n", " 198\n", " CDK2\n", @@ -611,9 +644,9 @@ " False\n", " False\n", " False\n", - " 16.4771\n", - " 55.897099\n", - " 85.301102\n", + " 14.3124\n", + " 50.132500\n", + " 73.646698\n", " <NA>\n", " False\n", " \n", @@ -624,18 +657,18 @@ ], "text/plain": [ " structure.klifs_id structure.pdb_id structure.alternate_model \\\n", - "0 4304 4bcp B \n", - "1 4204 3qqj B \n", - "2 14136 7vdu A \n", - "3 14137 7vdu B \n", - "4 6571 5if1 B \n", + "0 3978 1gy3 - \n", + "1 4020 4fkg A \n", + "2 4021 3ig7 - \n", + "3 4540 1hcl B \n", + "4 4022 2r3k C \n", "\n", " structure.chain species.klifs kinase.klifs_id kinase.klifs_name \\\n", "0 A Human 198 CDK2 \n", "1 A Human 198 CDK2 \n", "2 A Human 198 CDK2 \n", "3 A Human 198 CDK2 \n", - "4 C Human 198 CDK2 \n", + "4 A Human 198 CDK2 \n", "\n", " kinase.names kinase.family kinase.group ... structure.bp_ii_out \\\n", "0 ... False \n", @@ -652,11 +685,11 @@ "4 False False False False \n", "\n", " structure.grich_distance structure.grich_angle structure.grich_rotation \\\n", - "0 15.5676 53.531101 72.388298 \n", - "1 12.3077 42.122501 61.961201 \n", - "2 14.4634 49.359100 66.803703 \n", - "3 14.4634 49.359100 66.803703 \n", - "4 16.4771 55.897099 85.301102 \n", + "0 17.5289 58.732300 75.622704 \n", + "1 14.3067 49.563202 70.460602 \n", + "2 14.5012 50.189201 77.397400 \n", + "3 14.9689 51.229698 63.422600 \n", + "4 14.3124 50.132500 73.646698 \n", "\n", " structure.filepath structure.curation_flag \n", "0 False \n", @@ -668,7 +701,7 @@ "[5 rows x 46 columns]" ] }, - "execution_count": 8, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -695,14 +728,14 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Number of structures: 1655\n", + "Number of structures: 1657\n", "Kinases: CDK2 p38a EGFR ErbB2 MET LCK KDR BRAF p110a\n" ] } @@ -727,14 +760,14 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Number of structures: 1655\n" + "Number of structures: 1657\n" ] } ], @@ -747,28 +780,49 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "To make it easier for us to maintain the talktorials, we will now load a set of frozen structure KLIFS IDs (2021-08-23) and continue to work with those. If you would like to work with the latest KLIFS data, please skip the cell below (or change cell type from \"Code\" > \"Raw\")." + "_Note for demo mode_: To make it easier for us to maintain the talktorials, we will now load a set of frozen structure KLIFS IDs (2021-08-23) and continue to work with those.\n", + "\n", + "_Note for non-demo mode_: Did you specify `N_STRUCTURES_PER_KINASE` in the configuration file? If you e.g. set a value of 3, we will select in the following the top 3 structures per kinase in terms of resolution and KLIFS quality score." ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ + "Notebook is run in demo mode - load frozen structure set.\n", "Number of structures: 1620\n" ] } ], "source": [ - "# Load frozen dataset\n", - "structure_klifs_ids = pd.read_csv(DATA / \"frozen_structure_klifs_ids.csv\")[\n", - " \"structure.klifs_id\"\n", - "].to_list()\n", - "structures_df = structures_df[structures_df[\"structure.klifs_id\"].isin(structure_klifs_ids)].copy()\n", + "if DEMO:\n", + " # Load frozen dataset\n", + " print(\"Notebook is run in demo mode - load frozen structure set.\")\n", + " structure_klifs_ids = pd.read_csv(DATA / \"frozen_structure_klifs_ids.csv\")[\n", + " \"structure.klifs_id\"\n", + " ].to_list()\n", + " structures_df = structures_df[structures_df[\"structure.klifs_id\"].isin(structure_klifs_ids)].copy()\n", + "else:\n", + " if N_STRUCTURES_PER_KINASE > 0:\n", + " print(f\"Select {N_STRUCTURES_PER_KINASE} structures per kinase for downstream analysis.\")\n", + " # Sort structures by kinase and quality\n", + " structures_df = structures_df.sort_values(\n", + " by=[\"kinase.klifs_name\", \"structure.resolution\", \"structure.qualityscore\"],\n", + " ascending=[True, True, False],\n", + " )\n", + " # Reduce number of structures per kinase\n", + " structures_df = structures_df.groupby(\n", + " \"kinase.klifs_name\"\n", + " ).head(N_STRUCTURES_PER_KINASE)\n", + " structure_klifs_ids = structures_df[\"structure.klifs_id\"].to_list()\n", + " else:\n", + " print(f\"Use all available structures per kinase for downstream analysis.\")\n", + "\n", "print(f\"Number of structures: {structures_df.shape[0]}\")\n", "# NBVAL_CHECK_OUTPUT" ] @@ -786,7 +840,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -805,7 +859,7 @@ "dtype: int64" ] }, - "execution_count": 12, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -826,7 +880,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "metadata": { "tags": [ "nbsphinx-thumbnail" @@ -867,51 +921,72 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Load KiSSim fingerprints" + "### Calculate KiSSim fingerprints" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "We will use in this notebook pre-calculated KiSSim fingerprints for our kinase set. If you wanted to calculate the fingerprints yourself, you could use the following `kissim` API: \n", + "We use the `kissim` API to encode our structures as KiSSim fingerprints and save the fingerprints as CSV file.\n", "\n", - "```python\n", - "# Generate fingerprints\n", - "from kissim.api import encode\n", - "kissim_fingerprints = encode(structure_klifs_ids, n_cores=1)\n", + "_Note for demo mode_: We use pre-calculated KiSSim fingerprints for our kinase set (i.e. the next code cell will be skipped)." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Notebook is run in demo mode - we will use pre-calculated fingerprints.\n" + ] + } + ], + "source": [ + "if DEMO:\n", + " print(\"Notebook is run in demo mode - we will use pre-calculated fingerprints.\")\n", + "else:\n", + " print(\"Calculate and save KiSSim fingerprints...\")\n", + " # Calculate fingerprints\n", + " from kissim.api import encode\n", + " kissim_fingerprints = encode(structure_klifs_ids, n_cores=N_CORES)\n", "\n", - "# Save fingerprints in csv file\n", - "structure_klifs_ids = list(kissim_fingerprints.data.keys())\n", - "kissim_fingerprints_array = [\n", - " fingerprint.values_array().tolist()\n", - " for structure_klifs_id, fingerprint\n", - " in kissim_fingerprints.data.items()\n", - "]\n", - "kissim_fingerprints_array = np.array(kissim_fingerprints_array)\n", - "kissim_fingerprints_df = pd.DataFrame(kissim_fingerprints_array, index=structure_klifs_ids)\n", - "kissim_fingerprints_df.to_csv(DATA / \"kissim_fingerprints.csv\")\n", - "```" + " # Save fingerprints in csv file\n", + " structure_klifs_ids = list(kissim_fingerprints.data.keys())\n", + " kissim_fingerprints_array = [\n", + " fingerprint.values_array().tolist()\n", + " for structure_klifs_id, fingerprint\n", + " in kissim_fingerprints.data.items()\n", + " ]\n", + " kissim_fingerprints_array = np.array(kissim_fingerprints_array)\n", + " kissim_fingerprints_df = pd.DataFrame(kissim_fingerprints_array, index=structure_klifs_ids)\n", + " kissim_fingerprints_df.to_csv(DATA / \"kissim_fingerprints.csv\")\n", + "\n", + "# NBVAL_CHECK_OUTPUT" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Let's load the pre-calculated KiSSim fingerprints!" + "Let's load the KiSSim fingerprints from the CSV file." ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Matrix shape: (1611, 1032)\n", - "Number of fingerprints: 1611\n", + "Matrix shape: (9, 1032)\n", + "Number of fingerprints: 9\n", "Number of fingerprint bits: 1032\n" ] } @@ -943,7 +1018,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -992,31 +1067,31 @@ " \n", " \n", " \n", - " 6285\n", + " 6940\n", " 2.0\n", + " 1.0\n", + " 1.0\n", " 0.0\n", - " 2.0\n", - " -1.0\n", " 0.0\n", " 0.0\n", - " 2.0\n", " 3.0\n", - " 2.0\n", - " 1.0\n", + " 3.0\n", + " 3.0\n", + " 3.0\n", " ...\n", - " 13.150351\n", - " 11.958837\n", - " 4.717011\n", - " 4.843444\n", - " 4.655707\n", - " 3.577213\n", - " 2.771821\n", - " 4.302192\n", - " 3.583341\n", - " 2.066700\n", + " 12.942128\n", + " 11.985044\n", + " 4.457572\n", + " 4.956582\n", + " 4.199447\n", + " 3.389494\n", + " 2.121078\n", + " 3.639504\n", + " 3.025491\n", + " -0.735870\n", " \n", " \n", - " 10568\n", + " 11214\n", " 2.0\n", " 0.0\n", " 2.0\n", @@ -1028,88 +1103,88 @@ " 2.0\n", " 1.0\n", " ...\n", - " 13.069152\n", - " 11.883944\n", - " 4.691527\n", - " 5.006221\n", - " 4.679352\n", - " 3.531177\n", - " 2.714736\n", - " 4.165350\n", - " 3.549843\n", - " 2.138838\n", + " 13.220558\n", + " 11.910293\n", + " 4.519495\n", + " 5.205553\n", + " 4.701987\n", + " 3.606066\n", + " 2.350237\n", + " 4.535347\n", + " 3.639106\n", + " 2.246397\n", " \n", " \n", - " 11187\n", + " 12827\n", " 2.0\n", + " 1.0\n", " 0.0\n", - " 2.0\n", - " -1.0\n", + " 1.0\n", " 0.0\n", " 0.0\n", " 2.0\n", " 3.0\n", - " 2.0\n", " 1.0\n", + " 0.0\n", " ...\n", - " 13.297023\n", - " 11.991511\n", - " 4.590040\n", - " 5.141397\n", - " 4.699467\n", - " 3.625989\n", - " 2.549692\n", - " 4.442117\n", - " 3.699695\n", - " 2.261646\n", + " 13.137809\n", + " 12.070367\n", + " 4.468091\n", + " 4.732294\n", + " 4.492335\n", + " 3.413136\n", + " 2.521082\n", + " 3.860944\n", + " 3.389642\n", + " 1.705861\n", " \n", " \n", - " 4060\n", + " 4815\n", " 2.0\n", + " 1.0\n", " 0.0\n", - " 2.0\n", - " -1.0\n", + " 1.0\n", " 0.0\n", " 0.0\n", " 2.0\n", " 3.0\n", - " 2.0\n", " 1.0\n", + " 0.0\n", " ...\n", - " 12.910837\n", - " 11.775556\n", - " 4.359330\n", - " 4.844833\n", - " 4.214195\n", - " 3.383812\n", - " 2.699580\n", - " 3.860920\n", - " 3.161863\n", - " 2.185979\n", + " 12.565927\n", + " 11.563268\n", + " 4.329979\n", + " 4.619996\n", + " 4.303767\n", + " 3.301969\n", + " 2.532475\n", + " 3.652125\n", + " 2.879959\n", + " 1.076340\n", " \n", " \n", - " 10566\n", + " 5325\n", " 2.0\n", + " 1.0\n", " 0.0\n", - " 2.0\n", - " -1.0\n", + " 1.0\n", " 0.0\n", " 0.0\n", " 2.0\n", " 3.0\n", - " 2.0\n", " 1.0\n", + " 0.0\n", " ...\n", - " 13.196581\n", - " 12.115342\n", - " 4.701176\n", - " 4.690081\n", - " 4.683674\n", - " 3.633418\n", - " 2.489983\n", - " 3.972552\n", - " 3.692501\n", - " 0.759234\n", + " 12.987014\n", + " 11.967419\n", + " 4.357804\n", + " 4.994864\n", + " 4.008406\n", + " 3.339058\n", + " 2.417556\n", + " 3.575011\n", + " 2.380876\n", + " 1.798392\n", " \n", " \n", "\n", @@ -1118,30 +1193,30 @@ ], "text/plain": [ " 0 1 2 3 4 5 6 7 8 9 ... 1022 \\\n", - "6285 2.0 0.0 2.0 -1.0 0.0 0.0 2.0 3.0 2.0 1.0 ... 13.150351 \n", - "10568 2.0 0.0 2.0 -1.0 0.0 0.0 2.0 3.0 2.0 1.0 ... 13.069152 \n", - "11187 2.0 0.0 2.0 -1.0 0.0 0.0 2.0 3.0 2.0 1.0 ... 13.297023 \n", - "4060 2.0 0.0 2.0 -1.0 0.0 0.0 2.0 3.0 2.0 1.0 ... 12.910837 \n", - "10566 2.0 0.0 2.0 -1.0 0.0 0.0 2.0 3.0 2.0 1.0 ... 13.196581 \n", + "6940 2.0 1.0 1.0 0.0 0.0 0.0 3.0 3.0 3.0 3.0 ... 12.942128 \n", + "11214 2.0 0.0 2.0 -1.0 0.0 0.0 2.0 3.0 2.0 1.0 ... 13.220558 \n", + "12827 2.0 1.0 0.0 1.0 0.0 0.0 2.0 3.0 1.0 0.0 ... 13.137809 \n", + "4815 2.0 1.0 0.0 1.0 0.0 0.0 2.0 3.0 1.0 0.0 ... 12.565927 \n", + "5325 2.0 1.0 0.0 1.0 0.0 0.0 2.0 3.0 1.0 0.0 ... 12.987014 \n", "\n", " 1023 1024 1025 1026 1027 1028 1029 \\\n", - "6285 11.958837 4.717011 4.843444 4.655707 3.577213 2.771821 4.302192 \n", - "10568 11.883944 4.691527 5.006221 4.679352 3.531177 2.714736 4.165350 \n", - "11187 11.991511 4.590040 5.141397 4.699467 3.625989 2.549692 4.442117 \n", - "4060 11.775556 4.359330 4.844833 4.214195 3.383812 2.699580 3.860920 \n", - "10566 12.115342 4.701176 4.690081 4.683674 3.633418 2.489983 3.972552 \n", + "6940 11.985044 4.457572 4.956582 4.199447 3.389494 2.121078 3.639504 \n", + "11214 11.910293 4.519495 5.205553 4.701987 3.606066 2.350237 4.535347 \n", + "12827 12.070367 4.468091 4.732294 4.492335 3.413136 2.521082 3.860944 \n", + "4815 11.563268 4.329979 4.619996 4.303767 3.301969 2.532475 3.652125 \n", + "5325 11.967419 4.357804 4.994864 4.008406 3.339058 2.417556 3.575011 \n", "\n", " 1030 1031 \n", - "6285 3.583341 2.066700 \n", - "10568 3.549843 2.138838 \n", - "11187 3.699695 2.261646 \n", - "4060 3.161863 2.185979 \n", - "10566 3.692501 0.759234 \n", + "6940 3.025491 -0.735870 \n", + "11214 3.639106 2.246397 \n", + "12827 3.389642 1.705861 \n", + "4815 2.879959 1.076340 \n", + "5325 2.380876 1.798392 \n", "\n", "[5 rows x 1032 columns]" ] }, - "execution_count": 15, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -1168,7 +1243,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -1177,14 +1252,14 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Structure distance matrix size: (1611, 1611)\n", + "Structure distance matrix size: (9, 9)\n", "Show matrix subset:\n" ] }, @@ -1209,52 +1284,52 @@ " \n", " \n", " \n", - " 6285\n", - " 10568\n", - " 11187\n", - " 4060\n", - " 10566\n", + " 6940\n", + " 11214\n", + " 12827\n", + " 4815\n", + " 5325\n", " \n", " \n", " \n", " \n", - " 6285\n", + " 6940\n", " 0.000000\n", - " 13.256941\n", - " 14.001474\n", - " 26.391543\n", - " 14.307291\n", + " 26.920292\n", + " 23.348573\n", + " 26.904703\n", + " 28.584015\n", " \n", " \n", - " 10568\n", - " 13.256941\n", + " 11214\n", + " 26.920292\n", " 0.000000\n", - " 10.379779\n", - " 27.882193\n", - " 16.833932\n", + " 24.320298\n", + " 31.941118\n", + " 35.606910\n", " \n", " \n", - " 11187\n", - " 14.001474\n", - " 10.379779\n", + " 12827\n", + " 23.348573\n", + " 24.320298\n", " 0.000000\n", - " 30.962221\n", - " 18.338492\n", + " 24.719913\n", + " 30.474484\n", " \n", " \n", - " 4060\n", - " 26.391543\n", - " 27.882193\n", - " 30.962221\n", + " 4815\n", + " 26.904703\n", + " 31.941118\n", + " 24.719913\n", " 0.000000\n", - " 28.905189\n", + " 27.387487\n", " \n", " \n", - " 10566\n", - " 14.307291\n", - " 16.833932\n", - " 18.338492\n", - " 28.905189\n", + " 5325\n", + " 28.584015\n", + " 35.606910\n", + " 30.474484\n", + " 27.387487\n", " 0.000000\n", " \n", " \n", @@ -1262,15 +1337,15 @@ "" ], "text/plain": [ - " 6285 10568 11187 4060 10566\n", - "6285 0.000000 13.256941 14.001474 26.391543 14.307291\n", - "10568 13.256941 0.000000 10.379779 27.882193 16.833932\n", - "11187 14.001474 10.379779 0.000000 30.962221 18.338492\n", - "4060 26.391543 27.882193 30.962221 0.000000 28.905189\n", - "10566 14.307291 16.833932 18.338492 28.905189 0.000000" + " 6940 11214 12827 4815 5325 \n", + "6940 0.000000 26.920292 23.348573 26.904703 28.584015\n", + "11214 26.920292 0.000000 24.320298 31.941118 35.606910\n", + "12827 23.348573 24.320298 0.000000 24.719913 30.474484\n", + "4815 26.904703 31.941118 24.719913 0.000000 27.387487\n", + "5325 28.584015 35.606910 30.474484 27.387487 0.000000" ] }, - "execution_count": 17, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -1302,7 +1377,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -1333,11 +1408,11 @@ " \n", " \n", " kinase.klifs_name\n", + " BRAF\n", " CDK2\n", - " CDK2\n", - " CDK2\n", - " CDK2\n", - " CDK2\n", + " EGFR\n", + " ErbB2\n", + " KDR\n", " \n", " \n", " kinase.klifs_name\n", @@ -1350,43 +1425,43 @@ " \n", " \n", " \n", - " CDK2\n", + " BRAF\n", " 0.000000\n", - " 13.256941\n", - " 14.001474\n", - " 26.391543\n", - " 14.307291\n", + " 26.920292\n", + " 23.348573\n", + " 26.904703\n", + " 28.584015\n", " \n", " \n", " CDK2\n", - " 13.256941\n", + " 26.920292\n", " 0.000000\n", - " 10.379779\n", - " 27.882193\n", - " 16.833932\n", + " 24.320298\n", + " 31.941118\n", + " 35.606910\n", " \n", " \n", - " CDK2\n", - " 14.001474\n", - " 10.379779\n", + " EGFR\n", + " 23.348573\n", + " 24.320298\n", " 0.000000\n", - " 30.962221\n", - " 18.338492\n", + " 24.719913\n", + " 30.474484\n", " \n", " \n", - " CDK2\n", - " 26.391543\n", - " 27.882193\n", - " 30.962221\n", + " ErbB2\n", + " 26.904703\n", + " 31.941118\n", + " 24.719913\n", " 0.000000\n", - " 28.905189\n", + " 27.387487\n", " \n", " \n", - " CDK2\n", - " 14.307291\n", - " 16.833932\n", - " 18.338492\n", - " 28.905189\n", + " KDR\n", + " 28.584015\n", + " 35.606910\n", + " 30.474484\n", + " 27.387487\n", " 0.000000\n", " \n", " \n", @@ -1394,16 +1469,16 @@ "" ], "text/plain": [ - "kinase.klifs_name CDK2 CDK2 CDK2 CDK2 CDK2\n", + "kinase.klifs_name BRAF CDK2 EGFR ErbB2 KDR \n", "kinase.klifs_name \n", - "CDK2 0.000000 13.256941 14.001474 26.391543 14.307291\n", - "CDK2 13.256941 0.000000 10.379779 27.882193 16.833932\n", - "CDK2 14.001474 10.379779 0.000000 30.962221 18.338492\n", - "CDK2 26.391543 27.882193 30.962221 0.000000 28.905189\n", - "CDK2 14.307291 16.833932 18.338492 28.905189 0.000000" + "BRAF 0.000000 26.920292 23.348573 26.904703 28.584015\n", + "CDK2 26.920292 0.000000 24.320298 31.941118 35.606910\n", + "EGFR 23.348573 24.320298 0.000000 24.719913 30.474484\n", + "ErbB2 26.904703 31.941118 24.719913 0.000000 27.387487\n", + "KDR 28.584015 35.606910 30.474484 27.387487 0.000000" ] }, - "execution_count": 18, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -1431,7 +1506,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -1449,14 +1524,14 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Structure matrix of shape (1611, 1611) reduced to kinase matrix of shape (9, 9).\n" + "Structure matrix of shape (9, 9) reduced to kinase matrix of shape (9, 9).\n" ] } ], @@ -1470,326 +1545,354 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 BRAFCDK2EGFRErbB2KDRLCKMETp110ap38aBRAFCDK2EGFRErbB2KDRLCKMETp110ap38a
BRAF0.00017.15619.51521.38321.08921.58320.29737.61121.731BRAF0.00026.92023.34926.90528.58432.09133.67446.11327.575
CDK217.1560.00018.14721.10619.88017.97318.30436.78019.481CDK226.9200.00024.32031.94135.60738.89728.81551.78431.632
EGFR19.51518.1470.00016.39217.28216.46717.49836.04622.128EGFR23.34924.3200.00024.72030.47431.78819.91349.78627.863
ErbB221.38321.10616.3920.00023.85123.88122.56341.27724.682ErbB226.90531.94124.7200.00027.38732.24331.44448.28930.704
KDR21.08919.88017.28223.8510.00019.25520.43141.10420.263KDR28.58435.60730.47427.3870.00022.42134.30243.51322.838
LCK21.58317.97316.46723.88119.2550.00019.22139.02222.457LCK32.09138.89731.78832.24322.4210.00035.08941.13324.987
MET20.29718.30417.49822.56320.43119.2210.00039.41421.983MET33.67428.81519.91331.44434.30235.0890.00051.84431.995
p110a37.61136.78036.04641.27741.10439.02239.4140.00038.530p110a46.11351.78449.78648.28943.51341.13351.8440.00042.557
p38a21.73119.48122.12824.68220.26322.45721.98338.5300.000p38a27.57531.63227.86330.70422.83824.98731.99542.5570.000
\n" ], "text/plain": [ - "" + "" ] }, - "execution_count": 21, + "execution_count": 23, "metadata": {}, "output_type": "execute_result" } @@ -1818,7 +1921,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -1874,7 +1977,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.12" + "version": "3.9.13" }, "toc-autonumbering": true, "widgets": { diff --git a/teachopencadd/talktorials/T026_kinase_similarity_ifp/talktorial.ipynb b/teachopencadd/talktorials/T026_kinase_similarity_ifp/talktorial.ipynb index 1bafff95..e68e7cec 100644 --- a/teachopencadd/talktorials/T026_kinase_similarity_ifp/talktorial.ipynb +++ b/teachopencadd/talktorials/T026_kinase_similarity_ifp/talktorial.ipynb @@ -192,6 +192,38 @@ "DATA = HERE / \"data\"" ] }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Run in demo mode: True\n" + ] + } + ], + "source": [ + "configs = pd.read_csv(HERE / \"../T023_what_is_a_kinase/data/pipeline_configs.csv\")\n", + "configs = configs.set_index(\"variable\")[\"default_value\"]\n", + "\n", + "DEMO = bool(int(configs[\"DEMO\"]))\n", + "N_STRUCTURES_PER_KINASE = int(configs[\"N_STRUCTURES_PER_KINASE\"])\n", + "N_CORES = int(configs[\"N_CORES\"])\n", + "\n", + "print(f\"Run in demo mode: {DEMO}\")\n", + "if not DEMO:\n", + " if N_STRUCTURES_PER_KINASE > 0:\n", + " print(f\"Number of structures per kinase: {N_STRUCTURES_PER_KINASE}\")\n", + " else:\n", + " print(f\"Number of structures per kinase: all available structures\")\n", + " print(f\"Number of cores used: {N_CORES}\")\n", + " \n", + "# NBVAL_CHECK_OUTPUT" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -208,7 +240,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -340,7 +372,7 @@ "8 p38 mitogen activated protein kinase alpha " ] }, - "execution_count": 3, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -374,7 +406,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -383,7 +415,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -399,14 +431,14 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Number of structures: 2521\n", + "Number of structures: 2523\n", "Kinases: CDK2 p38a EGFR ErbB2 MET LCK KDR BRAF p110a\n" ] } @@ -450,14 +482,14 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Number of structures: 1655\n", + "Number of structures: 1657\n", "Kinases: CDK2 p38a EGFR ErbB2 MET LCK KDR BRAF p110a\n" ] } @@ -482,14 +514,14 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Number of structures: 1655\n" + "Number of structures: 1657\n" ] } ], @@ -502,28 +534,49 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "To make it easier for us to maintain the talktorials, we will now load a set of frozen structure KLIFS IDs (2021-08-23) and continue to work with those. If you would like to work with the latest KLIFS data, please uncomment the cell below." + "_Note for demo mode_: To make it easier for us to maintain the talktorials, we will now load a set of frozen structure KLIFS IDs (2021-08-23) and continue to work with those.\n", + "\n", + "_Note for non-demo mode_: Did you specify `N_STRUCTURES_PER_KINASE` in the configuration file? If you e.g. set a value of 3, we will select in the following the top 3 structures per kinase in terms of resolution and KLIFS quality score." ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ + "Notebook is run in demo mode - load frozen structure set.\n", "Number of structures: 1620\n" ] } ], "source": [ - "# Load frozen dataset\n", - "structure_klifs_ids = pd.read_csv(DATA / \"frozen_structure_klifs_ids.csv\")[\n", - " \"structure.klifs_id\"\n", - "].to_list()\n", - "structures_df = structures_df[structures_df[\"structure.klifs_id\"].isin(structure_klifs_ids)].copy()\n", + "if DEMO:\n", + " # Load frozen dataset\n", + " print(\"Notebook is run in demo mode - load frozen structure set.\")\n", + " structure_klifs_ids = pd.read_csv(DATA / \"frozen_structure_klifs_ids.csv\")[\n", + " \"structure.klifs_id\"\n", + " ].to_list()\n", + " structures_df = structures_df[structures_df[\"structure.klifs_id\"].isin(structure_klifs_ids)].copy()\n", + "else:\n", + " if N_STRUCTURES_PER_KINASE > 0:\n", + " print(f\"Select {N_STRUCTURES_PER_KINASE} structures per kinase for downstream analysis.\")\n", + " # Sort structures by kinase and quality\n", + " structures_df = structures_df.sort_values(\n", + " by=[\"kinase.klifs_name\", \"structure.resolution\", \"structure.qualityscore\"],\n", + " ascending=[True, True, False],\n", + " )\n", + " # Reduce number of structures per kinase\n", + " structures_df = structures_df.groupby(\n", + " \"kinase.klifs_name\"\n", + " ).head(N_STRUCTURES_PER_KINASE)\n", + " structure_klifs_ids = structures_df[\"structure.klifs_id\"].to_list()\n", + " else:\n", + " print(f\"Use all available structures per kinase for downstream analysis.\")\n", + "\n", "print(f\"Number of structures: {structures_df.shape[0]}\")\n", "# NBVAL_CHECK_OUTPUT" ] @@ -541,7 +594,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -615,7 +668,7 @@ "4 782 0000000000000010000001000000000000000000000000..." ] }, - "execution_count": 10, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -635,7 +688,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -753,7 +806,7 @@ "4 8.0 " ] }, - "execution_count": 11, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -778,7 +831,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -797,7 +850,7 @@ "dtype: int64" ] }, - "execution_count": 12, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -818,7 +871,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -871,7 +924,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -886,7 +939,7 @@ "Name: interaction.fingerprint, dtype: string" ] }, - "execution_count": 14, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -902,7 +955,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -917,7 +970,7 @@ "Name: interaction.fingerprint, dtype: object" ] }, - "execution_count": 15, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -931,7 +984,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -946,7 +999,7 @@ " [False, False, False, ..., False, False, False]])" ] }, - "execution_count": 16, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -973,7 +1026,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -982,7 +1035,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -1084,7 +1137,7 @@ "782 0.483871 0.703704 0.411765 0.655172 0.000000" ] }, - "execution_count": 18, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -1116,7 +1169,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -1217,7 +1270,7 @@ "EGFR 0.483871 0.703704 0.411765 0.655172 0.000000" ] }, - "execution_count": 19, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -1243,7 +1296,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 21, "metadata": { "tags": [ "nbsphinx-thumbnail" @@ -1287,7 +1340,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ @@ -1304,7 +1357,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 23, "metadata": {}, "outputs": [ { @@ -1325,358 +1378,358 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 BRAFCDK2EGFRErbB2KDRLCKMETp110ap38aBRAFCDK2EGFRErbB2KDRLCKMETp110ap38a
BRAF0.0000.3000.2780.3940.3640.3200.3680.5000.333BRAF0.0000.3000.2780.3940.3640.3200.3680.5000.333
CDK20.3000.0000.1110.4520.2380.1900.1330.3480.278CDK20.3000.0000.1110.4520.2380.1900.1330.3480.278
EGFR0.2780.1110.0000.2580.2380.1670.2270.3810.174EGFR0.2780.1110.0000.2580.2380.1670.2270.3810.174
ErbB20.3940.4520.2580.0000.4060.4190.3820.5710.258ErbB20.3940.4520.2580.0000.4060.4190.3820.5710.258
KDR0.3640.2380.2380.4060.0000.0590.3330.5330.043KDR0.3640.2380.2380.4060.0000.0590.3330.5330.043
LCK0.3200.1900.1670.4190.0590.0000.2500.3750.190LCK0.3200.1900.1670.4190.0590.0000.2500.3750.190
MET0.3680.1330.2270.3820.3330.2500.0000.4290.353MET0.3680.1330.2270.3820.3330.2500.0000.4290.353
p110a0.5000.3480.3810.5710.5330.3750.4290.0000.474p110a0.5000.3480.3810.5710.5330.3750.4290.0000.474
p38a0.3330.2780.1740.2580.0430.1900.3530.4740.000p38a0.3330.2780.1740.2580.0430.1900.3530.4740.000
\n" ], "text/plain": [ - "" + "" ] }, - "execution_count": 23, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -1705,7 +1758,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -1759,7 +1812,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.12" + "version": "3.9.13" }, "toc-autonumbering": true, "widgets": { From d818fc75f9fb0d32af01641ea92030d884f6831d Mon Sep 17 00:00:00 2001 From: dominiquesydow Date: Fri, 3 Jun 2022 12:36:20 +0100 Subject: [PATCH 06/17] T028: Add Xiong kinase set to quiz (to rerun nb on new dataset) --- .../talktorial.ipynb | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) diff --git a/teachopencadd/talktorials/T028_kinase_similarity_compare_perspectives/talktorial.ipynb b/teachopencadd/talktorials/T028_kinase_similarity_compare_perspectives/talktorial.ipynb index a84b32f7..49c189fb 100644 --- a/teachopencadd/talktorials/T028_kinase_similarity_compare_perspectives/talktorial.ipynb +++ b/teachopencadd/talktorials/T028_kinase_similarity_compare_perspectives/talktorial.ipynb @@ -1330,7 +1330,10 @@ "2. Are there other methods to assess and visualize the similarities?\n", "3. Can you name at least one advantage and one disadvantage per perspective discussed here?\n", "4. Could the different methods be applied to other proteins in general?\n", - "5. What is the difference between the distances that we show in the heatmap and the dendrogram? " + "5. What is the difference between the distances that we show in the heatmap and the dendrogram? \n", + "6. Rerun the notebooks T023-T028 on another kinase dataset. \n", + " 1. If you need inspiration, you can use the kinases used by [Xiong et al.](https://doi.org/10.1371/journal.pcbi.1009302) to predict multi-targeting compounds for RET-driven cancers (see Table 1): RET, BRAF, SRC, RPS6KB1, MKNK1, TTK, PDK1, and PAK3 (notes: We are omitting ERK8 since this kinase has no structures; RPS6KB1 is listed as S6K in Table 1.). Update the `T023_what_is_a_kinase/data/kinase_selection.csv` file yourself with the mandatory columns `kinase_klifs` and `uniprot_id` (or copy-paste the data from `T023_what_is_a_kinase/data/kinase_selection_xiong.csv`).\n", + " 2. Update the configuration file `T023_what_is_a_kinase/data/pipeline_configs.csv` as follows: DEMO=0, N_STRUCTURES_PER_KINASE=2, and N_CORES as your system allows." ] }, { @@ -1703,7 +1706,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.12" + "version": "3.9.13" }, "toc-autonumbering": true, "widgets": { From 7f24cdb7affe8127f348045d62087a21b88afa1a Mon Sep 17 00:00:00 2001 From: dominiquesydow Date: Fri, 3 Jun 2022 12:36:33 +0100 Subject: [PATCH 07/17] Add Xiong dataset as separate CSV file --- .../T023_what_is_a_kinase/data/kinase_selection_quiz.csv | 9 +++++++++ 1 file changed, 9 insertions(+) create mode 100644 teachopencadd/talktorials/T023_what_is_a_kinase/data/kinase_selection_quiz.csv diff --git a/teachopencadd/talktorials/T023_what_is_a_kinase/data/kinase_selection_quiz.csv b/teachopencadd/talktorials/T023_what_is_a_kinase/data/kinase_selection_quiz.csv new file mode 100644 index 00000000..91af7cd7 --- /dev/null +++ b/teachopencadd/talktorials/T023_what_is_a_kinase/data/kinase_selection_quiz.csv @@ -0,0 +1,9 @@ +kinase,kinase_klifs,uniprot_id,group +RET,RET,P07949,TK +BRAF,BRAF,P15056,TKL +SRC,SRC,P12931,TK +RPS6KB1,S6K,P23443,AGC +MKNK1,MKNK1,Q9BUB5,CAMK +TTK,TTK,P33981,Other +PDK,PDK1,O15530,AGC +PAK3,PAK3,O75914,STE From 8629820aad8a423bedfa0cb05ce29b957975b2ef Mon Sep 17 00:00:00 2001 From: dominiquesydow Date: Fri, 3 Jun 2022 13:46:10 +0100 Subject: [PATCH 08/17] T024: Generalize examples (code/text) --- .../talktorial.ipynb | 136 +++++++++++------- 1 file changed, 82 insertions(+), 54 deletions(-) diff --git a/teachopencadd/talktorials/T024_kinase_similarity_sequence/talktorial.ipynb b/teachopencadd/talktorials/T024_kinase_similarity_sequence/talktorial.ipynb index e841531d..e7abd92e 100644 --- a/teachopencadd/talktorials/T024_kinase_similarity_sequence/talktorial.ipynb +++ b/teachopencadd/talktorials/T024_kinase_similarity_sequence/talktorial.ipynb @@ -316,6 +316,27 @@ "DATA = HERE / \"data\"" ] }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Run in demo mode: True\n" + ] + } + ], + "source": [ + "configs = pd.read_csv(HERE / \"../T023_what_is_a_kinase/data/pipeline_configs.csv\")\n", + "configs = configs.set_index(\"variable\")[\"default_value\"]\n", + "DEMO = bool(int(configs[\"DEMO\"]))\n", + "print(f\"Run in demo mode: {DEMO}\") \n", + "# NBVAL_CHECK_OUTPUT" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -332,7 +353,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -464,7 +485,7 @@ "8 p38 mitogen activated protein kinase alpha " ] }, - "execution_count": 3, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -488,7 +509,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": { "tags": [ "nbsphinx-thumbnail" @@ -502,7 +523,7 @@ "" ] }, - "execution_count": 4, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -527,7 +548,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -566,7 +587,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -626,7 +647,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -669,7 +690,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -719,7 +740,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -728,7 +749,7 @@ "True" ] }, - "execution_count": 9, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -747,7 +768,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -810,7 +831,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -1504,7 +1525,7 @@ "" ] }, - "execution_count": 11, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -1522,7 +1543,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -1575,7 +1596,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -1626,12 +1647,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Let's look at the sequence similarity between EGFR and MET:" + "Let's look at the sequence similarity between two kinases:" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -1646,15 +1667,22 @@ } ], "source": [ + "if DEMO:\n", + " example1 = \"EGFR\"\n", + " example2 = \"MET\"\n", + "else:\n", + " example1 = kinase_selection_df[\"kinase_klifs\"][0]\n", + " example2 = kinase_selection_df[\"kinase_klifs\"][1]\n", + "\n", "print(\"The sequences are:\\n\")\n", - "for key in (\"EGFR\", \"MET\"):\n", + "for key in (example1, example2):\n", " print(f\"{key:5s}: {kinase_sequences_dict[key]}\")\n", "# NBVAL_CHECK_OUTPUT" ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -1666,20 +1694,20 @@ } ], "source": [ - "egfr_met_seq_similarity = sequence_similarity(\n", - " kinase_sequences_dict[\"EGFR\"], kinase_sequences_dict[\"MET\"], \"identity\"\n", + "example_seq_similarity = sequence_similarity(\n", + " kinase_sequences_dict[example1], kinase_sequences_dict[example2], \"identity\"\n", ")\n", "\n", "print(\n", - " f\"Pocket sequence similarity between EGFR and MET kinases: \"\n", - " f\"{egfr_met_seq_similarity:.2f} using identity.\"\n", + " f\"Pocket sequence similarity between {example1} and {example2} kinases: \"\n", + " f\"{example_seq_similarity:.2f} using identity.\"\n", ")\n", "# NBVAL_CHECK_OUTPUT" ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -1691,12 +1719,12 @@ } ], "source": [ - "egfr_met_seq_similarity = sequence_similarity(\n", - " kinase_sequences_dict[\"EGFR\"], kinase_sequences_dict[\"MET\"], \"substitution\"\n", + "example_seq_similarity = sequence_similarity(\n", + " kinase_sequences_dict[example1], kinase_sequences_dict[example2], \"substitution\"\n", ")\n", "print(\n", - " f\"Pocket sequence similarity between EGFR and MET kinases: \"\n", - " f\"{egfr_met_seq_similarity:.2f} using substitution.\"\n", + " f\"Pocket sequence similarity between {example1} and {example2} kinases: \"\n", + " f\"{example_seq_similarity:.2f} using substitution.\"\n", ")\n", "# NBVAL_CHECK_OUTPUT" ] @@ -1710,7 +1738,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -1722,19 +1750,19 @@ } ], "source": [ - "egfr_seq_similarity = sequence_similarity(\n", - " kinase_sequences_dict[\"EGFR\"], kinase_sequences_dict[\"EGFR\"], type_=\"identity\"\n", + "example_seq_similarity = sequence_similarity(\n", + " kinase_sequences_dict[example1], kinase_sequences_dict[example1], type_=\"identity\"\n", ")\n", "print(\n", - " f\"Pocket sequence similarity between EGFR itself: \"\n", - " f\"{egfr_seq_similarity:.2f} using identity.\"\n", + " f\"Pocket sequence similarity between {example1} itself: \"\n", + " f\"{example_seq_similarity:.2f} using identity.\"\n", ")\n", "# NBVAL_CHECK_OUTPUT" ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 19, "metadata": {}, "outputs": [ { @@ -1746,12 +1774,12 @@ } ], "source": [ - "egfr_seq_similarity = sequence_similarity(\n", - " kinase_sequences_dict[\"EGFR\"], kinase_sequences_dict[\"EGFR\"], type_=\"substitution\"\n", + "example_seq_similarity = sequence_similarity(\n", + " kinase_sequences_dict[example1], kinase_sequences_dict[example1], type_=\"substitution\"\n", ")\n", "print(\n", - " f\"Pocket sequence similarity between EGFR itself: \"\n", - " f\"{egfr_seq_similarity:.2f} using substitution.\"\n", + " f\"Pocket sequence similarity between {example1} itself: \"\n", + " f\"{example_seq_similarity:.2f} using substitution.\"\n", ")\n", "# NBVAL_CHECK_OUTPUT" ] @@ -1772,7 +1800,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -1839,7 +1867,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 21, "metadata": {}, "outputs": [ { @@ -2011,7 +2039,7 @@ "p38a 0.364706 1.000000 " ] }, - "execution_count": 20, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -2026,7 +2054,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -2301,7 +2329,7 @@ "" ] }, - "execution_count": 21, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -2321,7 +2349,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 23, "metadata": {}, "outputs": [ { @@ -2493,7 +2521,7 @@ "p38a 0.629355 1.000000 " ] }, - "execution_count": 22, + "execution_count": 23, "metadata": {}, "output_type": "execute_result" } @@ -2508,7 +2536,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -2827,7 +2855,7 @@ "" ] }, - "execution_count": 23, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -2849,7 +2877,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -2865,7 +2893,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 26, "metadata": {}, "outputs": [], "source": [ @@ -2889,7 +2917,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -2911,7 +2939,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 28, "metadata": {}, "outputs": [], "source": [ @@ -2920,7 +2948,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 29, "metadata": {}, "outputs": [ { @@ -3239,7 +3267,7 @@ "" ] }, - "execution_count": 28, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -3257,7 +3285,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 30, "metadata": {}, "outputs": [], "source": [ From e8f6d2a061ae1b4a6264972723dbe1c85df6012a Mon Sep 17 00:00:00 2001 From: dominiquesydow Date: Fri, 3 Jun 2022 14:08:31 +0100 Subject: [PATCH 09/17] T027: Generalize examples (code/text) --- .../talktorial.ipynb | 203 +++++++++++------- 1 file changed, 127 insertions(+), 76 deletions(-) diff --git a/teachopencadd/talktorials/T027_kinase_similarity_ligand_profile/talktorial.ipynb b/teachopencadd/talktorials/T027_kinase_similarity_ligand_profile/talktorial.ipynb index 54c1a9a5..45b282ea 100644 --- a/teachopencadd/talktorials/T027_kinase_similarity_ligand_profile/talktorial.ipynb +++ b/teachopencadd/talktorials/T027_kinase_similarity_ligand_profile/talktorial.ipynb @@ -21,7 +21,7 @@ "source": [ "## Aim of this talktorial\n", "\n", - "The aim of this talktorial is to investigate kinase similarity through ligand profiling data. In the context of drug design, the following assumption is often made: if a compound was tested active on two different kinases, it is suspected that these two kinases may have some degree of similarity. We will use this assumption in this talktorial. The concept of kinase promiscuity is also covered." + "The aim of this talktorial is to investigate kinase similarity through ligand profiling data (ChEMBL29). In the context of drug design, the following assumption is often made: if a compound was tested active on two different kinases, it is suspected that these two kinases may have some degree of similarity. We will use this assumption in this talktorial. The concept of kinase promiscuity is also covered." ] }, { @@ -206,6 +206,27 @@ "DATA = HERE / \"data\"" ] }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Run in demo mode: True\n" + ] + } + ], + "source": [ + "configs = pd.read_csv(HERE / \"../T023_what_is_a_kinase/data/pipeline_configs.csv\")\n", + "configs = configs.set_index(\"variable\")[\"default_value\"]\n", + "DEMO = bool(int(configs[\"DEMO\"]))\n", + "print(f\"Run in demo mode: {DEMO}\") \n", + "# NBVAL_CHECK_OUTPUT" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -222,7 +243,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -354,7 +375,7 @@ "8 p38 mitogen activated protein kinase alpha " ] }, - "execution_count": 3, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -385,7 +406,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -592,7 +613,7 @@ "4 CHEMBL3639077 2014.0 NaN O75116 " ] }, - "execution_count": 4, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -623,7 +644,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -651,7 +672,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -660,7 +681,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -677,7 +698,7 @@ " dtype='object')" ] }, - "execution_count": 7, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -697,7 +718,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -712,7 +733,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -792,7 +813,7 @@ "4 CCCC(=O)Nc1cccc(-c2nc(Nc3ccc4[nH]ncc4c3)c3cc(O... 13.920819 O75116" ] }, - "execution_count": 9, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -812,7 +833,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -838,7 +859,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -918,7 +939,7 @@ "141 Brc1cccc(Nc2ncnc3cc4[nH]cnc4cc23)c1 11.096910 P00533" ] }, - "execution_count": 11, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -934,28 +955,41 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Let's look at EGFR data (which corresponds to the first row in the kinase selection DataFrame):" + "Let's look at example data (which corresponds to the first row in the kinase selection DataFrame):" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Example kinase: EGFR\n" + ] + } + ], "source": [ - "egfr_data = data[data[\"UniprotID\"] == kinase_selection_df[\"uniprot_id\"][0]]" + "example_kinase = kinase_selection_df[\"kinase_klifs\"][0]\n", + "example_uniprot = kinase_selection_df[\"uniprot_id\"][0]\n", + "\n", + "example_data = data[data[\"UniprotID\"] == example_uniprot]\n", + "\n", + "print(f\"Example kinase: {example_kinase}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Some compounds have been tested several times against EGFR, as shown below." + "Some compounds have been tested several times against a target, as shown below." ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -968,14 +1002,18 @@ " ('CS(=O)(=O)CCNCc1ccc(-c2ccc3ncnc(Nc4ccc(OCc5cccc(F)c5)c(Cl)c4)c3c2)o1', 8)]" ] }, - "execution_count": 13, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "measured_compounds = Counter(egfr_data[\"smiles\"])\n", - "measured_compounds.most_common()[0:5]\n", + "measured_compounds = Counter(example_data[\"smiles\"])\n", + "try:\n", + " top_measured_compounds = measured_compounds.most_common()[0:5]\n", + "except IndexError:\n", + " top_measured_compounds = measured_compounds.most_common()\n", + "top_measured_compounds\n", "# NBVAL_CHECK_OUTPUT" ] }, @@ -988,7 +1026,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "metadata": { "tags": [ "nbsphinx-thumbnail" @@ -997,19 +1035,19 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAADICAIAAAD0hVwYAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd1RUVxMA8NnC0psIYsGC2FsUO2osqKhgiRqNil3sxN4NdjE27BIrdrEDoogaBCtSBMQudukIIn135/vjkv2IEdwmb9H5nZwcXN+7Owi7O+++e2d4iAiEEEIIIYQQzcbnOgBCCCGEEELI11HiTgghhBBCSBlAiTshhBBCCCFlACXuhBBCCCGElAGUuBNCCCGEEFIGUOJOCCGEEEJIGUCJOyGEEEIIIWUAJe6EEEIIIYSUAZS4E0IIIYQQUgZQ4k4IIYQQQkgZQIk7IYQQQgghZQAl7oQQQgghhJQBlLgTQgghhBBSBlDiTgghhBBCSBlAiTshhBBCCCFlACXuhBBCCCGElAGUuBNCCCGEEFIGUOJOCCGEEEJIGUCJOyGEEEIIIWUAJe6EEEIIIYSUAZS4E0IIIYQQUgZQ4k4IIYQQQkgZQIk7IYQQQgghZQAl7oQQQgghhJQBlLgTQgghhBBSBlDiTgghhBBCSBlAiTshhBBCCCFlACXuhBBCCCGElAGUuBNCCCGEEFIGUOJOCCGEEEJIGUCJOyGEEEIIIWUAJe6EEEIIIYSUAZS4E0IIIYQQUgZQ4k4IIYQQQkgZQIk7IYQQQkgZ4OPjM2zYsLi4OK4DIZyhxJ0QQgghpAw4duzY4cOHfXx8uA6EcIYSd0IIIYSQMsDJyQkAfH19uQ6EcIaHiFzHQAghhBBCviIjI8Pc3BwRk5KSTE1NuQ6HcIBm3AkhhBBCygBjY+P27duLxeKLFy9yHQvhBiXuhBBCCCFlg5OTk5aW4P37m1wHQrhBS2UIIYQQQsqGtLQXr183B5A2aZLE42lxHQ4pbTTjTgghhBBSNpQrV0MkqiiRpH/6FCzXCZ8+QXAwvH//jeMipYQSd0IIIYSQMsPYuDcApKcXX1smPh7++gvmzYPsbJgyBXg82LgR7t4tvRDJN0NLZQghhBBCyoysrFuPHrUViao1avSy6OM5WVG6Hn5w7hyEhQEiCARw8iTk58Ovv0J6Ori7g7s7RyETtRFyHQAhhBBCCJGXvn4rLS3L/PxXOTn3dXTqZWXdysjwS08/k5v7pOnx2vyYJ6CnB127gpMTGBnBixcAAJmZoKfHdeBEDWjGnRBCCCGkLElMXItYYGTUMyFh1YcPJ9iDWloVbWLH6Bm2AmtrCAwEPz8oXx4sLaFyZXj2DBYvhsqVuQ2bqI5m3AkhhBBCyoC8vKfp6T7Z2RHVq+978WKIUGipq9soJyfWxMTJyKgnjyfNwmt6v86EJ08KTyhfHhISoKAAdHQ4DZyoDSXuhBBCCCGaSiKBW7fiq1xIyzqdm/uIPWZpOVcqzdXRsSlffrSOTv2MjHNxcb+IxamAvPJZlrxy5aBLF3B0hD59QCAAgYDb74CoES2VIYQQQgjRMNnZcOUK+PmBry/Ex7/f3Tz+pzChsJyRUQ8Tk96Ghp35fN2UlD0CgWFy8s6srFAA0NGpbWzc2zLrF6FNS0rWv1eUuBNCCCGEaIyPH0FfH6ZMgZ07Cx+xscldOrrAqY1AUO7jxwsZGb6IYjOzEQUF8To69QCkBQXvjY176+jU4TRuUhpoqQwhhBBCiGaYPh1q1ICHD6FJE7Czg969oVs3ePdO+2rAkwbDCsTv2FECgbGRUffMzMuZmZetrLby+brcRk1KDc24E0IIIWVbljRLn6/PdRREZQ8fwsWLMH06ZGfDggXQsiWcOAGBgZCVBQAvTtT9VCfbyMjBxMTRyKgbj6f96FHLrKy7Nja+xsaOXIdOSgnNuBNCCCFlT5Y0a1XCKhFP1EyvWVBm0Poq67mOiKisoABEIgAALS2QSODECTh7Fng8aN4ceve2at5bWL1J0cONjZ2ysu6mp1Pi/gOhxF1TxBfEV9SqyHUUhBBCyoa9qXv7GPdpqd+yAAuCMoO4DoeoQ4MGsHkz+PtDSAgMHgzZ2eDgAE5OUKkSfCljMzHp/f79HxkZvgA7AXilHy8pfZS4c+lezr19qft0eDpDTIcc+XBkTeU1XEdECCGkbHib/3ao6VAA0OJpcR0LUROBALZvh5gYmDYNKlT46uG6uk20tWvk5b3Iyrqrr9+yFAIknONzHcAPbWvS1nWV162pvKaBbgOuYyGEEFKWtNZvfSL9RD7mJ4mTEsWJ/eL63fh0g+ugiMpEIrC1lSdrZ4yNexUU6D54cO2bBkU0ByXuXOLxeDRTQgghRAn9TPpVEFb4M/HPt/lvBSA4m352ZcJKroMipS0p6ZcuXXhjxx7iOhBSSqiqDJdWJKxoqtu0lk4tQ76hR5IHLZUhhBCihDRxWvXY6pmSzLt17zbXa851OKT0FBQUWFhYpKenx8XF1ahRg+twyDdHM+5cWmi5MEuatT91/9uCt4NMB3EdDiGEgEQiuXHjRmJiIteBEAWUE5abVH4SAKxOWM11LKRUaWlpdevWDQD8/Py4joWUBkrcucQDXkxOzOqE1WfSzzTTa8Z1OISQH1dWVpavr+/48eOtrKzatWvn7e3NdUREMTMqzNDj651JPxOTE8N1LKRUOTk5AYCvry/XgZDSQFVlOGarZwsA4dnhXAdCCPkhPX8Ovr4BsbFOXl4FBQXssVq1auno6HAbF1GUhdBibPmxm5M2b3m75a9af3EdDik9PXv2FAqFQUFB6enpJiYmXIdDvi1K3DlGiTshpJQkJMC+fSAUwrhxEB0N58+Dry88fAgALczMeDyera2to6Ojk5OTra0t17ESZcyuMPvekXsHlh6YFTmrdu3aXIdDSsmTJ0+EQuGIESPoevtHQIk7x6xEVuZC82Rx8uv811VFVbkOhxDy/Vq0CDZuhJwcWLQIAgLg2TMAgHLlwMGhnJNTavfuBqamXIdIVFJFq0qdZ3WCs4PXrFmzZ88ersMhpSEqKqpHjx65ublisZgS9x8BrXHnHlvdrpZJ9wVxcbvj4/3T0lQfihCinKwsyMwEAEhN5TqUz2hpgaEhWFiARALjx8OsWRAUBImJcPgwDB5MWfv3Yd68eUKh8ODBgy9fvuQ6FvLNPXv2zMHBIT09vW/fvjt37uQ6HFIaKHHnnn2ifeszrR8cfqD6ULoCQXtj45aGhqoPRQhRzvnzMGIEAMDy5SqNEx//+Reqys8HqbTw/7Nmwdq18PPPIKT7rt8Va2vrwYMHFxQUrFu3jutYyLf19u3brl27JiQk2NvbHzt2TEiv5R8DJe7cq5FQ4/aK2zfOq9rxLk8qLUBMLCj4JJGoJTBCiEKkUrhzBwoKoEkTOH5c1dFWrSr8YqW6mupMmACLF8OyZTB7tppGJJpowYIFfD5/9+7dDx6oYT6IaKbk5ORu3bq9fPmydevWZ86c0dbW5joiooDLHz5sffduT3x8tlSq6Ll0fcY9tg8sLCxM6RGkiOvfvr2flVVPT6+DsbH6QiOEfF12Nly5An5+4OcH79/DvHnQty8cOgQ5OSoNm5MDBw4AAOTnqyVMgOnT4cMHOHECbGzUNCLRRPXq1WvTpk10dHSDBg34fL6ZmVm5cuVk/5d9Ub58efbHChUqVKhQgeuoiQI+fvzYo0ePhw8fNm7c2N/f38DAgOuIiGJSCwp6m5lZ6ejwFD+XEnfuVa9evXz58snJyW/fvq1SpYqip+dKpYtevAhKTxfxeIMsLL5FhISQ/3r58qWfn9+9e80OHWqbl1f4oLU1sK9nz4YePWDLFjA3h8GDlRlfWxs6dQIAuH1bHeHm5EBYGIjFULmyOoYjmis+Pv7BgwdZWVmGhoaZmZnJycnJycklHO/o6Dhp0qQePXqUWoREFTk5OU5OTuHh4TY2NgEBAaa0O6VsOpmSUkUk+lXxtI0Sd43QtGnTwMDA8PBwRRP3DLF45vPn9z59MhII1tWs2YxWtxPyLUml0sjISF9fXz8/v4iICERs335sQUFbW1twdAQnJ7C1hawsEApBWxs8PKB7d+DzITMTxo1T+Ln4fLCyKvxCDUJDIS8PmjYFuin3vRs3btyHDx+6du0aEBDw4cOHd+/eIWJmZmZaWlpqair7f2pqakpKSmpqalJSUmBg4NWrV1+8eGFBUz8ar6CgYMCAAcHBwVWqVAkMDLS0tOQ6IqKkAebmVZVa4KR84p6ZmXn37t22bdtS+SEVIWJubq6BgcG4ceNu3bo1YsSIevXqyXPiy5SU6QkJb/LyKolEm2rVqkE/CEK+pezs7KNHj44dO5b90djYuHv37v369TpzBszM/n+Yvn7hF127wurVMG8ejB8PGRkwa5ZiT9e5M7x/D5UqQc+e6og+JAQAoH17dYxFNNeePXvOnz9vYmKyZ88eHo+3Z8+eOXPmAICBgcFnK2Tq16/fv3//Jk2a9O3b99y5cx4eHqtk+yqIRpJKpc7Ozv7+/ubm5pcuXapevTrXERElWYpEKQUF5YVCPYFA4ZNRcWKxeOLEiXXr1uXxeHp6eo6Ojt7e3nl5eUoMRfLz80eOHAkARa9/GjduvHLlymfPnpVw4u3bty0qVBh26dLg2NjE/PxSC5iQH9bRo0cFAoGpqen06dMvX76c/7XXXVISHjqEO3Ygn48AOHeuYk83dSpOm4aIhf9XVffuCIDe3uoYi2ioN2/esMaZhw8fZo+sW7euYsWKIpHoiwnA0aNHETE8PJzH4xkZGaWlpXEaPimJVCp1cXEBACMjo/DwcK7DISpZ9/q1bVjYwYQEJc5V+Bbsp0+fnJycduzY8eLFi7p162ZnZ/v5+f3666+WlpajR48OCAgQi8UKXz38qD59+tSnT5/9+/fr6+sfO3YsJCTE1dXVwsIiOjp64cKFNjY2DRo0WLJkyTPWJ6WI06dPd+rUKSkx8eOOHXvr1rXQ0uIkfkJ+KCEhIRKJZM6cORs2bOjSpYtWia+7ggLo0QOcnSEjAw4eBKEQbtx4NnWqq/RrNQSSk2H/fpg5E0QiaNkSLlxQQ+QSieQuYnbdutCunRqGIxoJEceOHZuent6nT58hQ4awB2fOnPn+/fu8vLzMzMyXL1+Gh4cHBAQcOXJky5YtS5cubdq0KQA0a9asW7duHz9+3LJlC6ffASlJQUFBenq6SCTy9fVt1qwZ1+EQlbzPzweASsVcUX+FQml+fHw8K4FSrly5kJAQRHz16pWHh4ednZ1sQFNTU2dnZx8fn4KCAiWuJH4c7969Y2+aZmZmQUFB79+/Z4+LxeKQkBAXFxfjIktR69ev7+bmFhcXh4geHh58Ph8ARo8e/dU5v++BVMp1BIQgIjZq1AgAQkJC9uzZ8+DBg68e7+n5/7l2X99kXV19ABgzZoxYLP7vwc+fo4cH2tujUIgACIDjxiEiTpyIrq744YNKkYeHhwOAjY2NSqMQzbZp0yYAMDc3T1B8Gi8kJAQAWrbs/PHjtwiNqMHTp08BwMTEhJKr78BvsbG2YWEPsrKUOFeRxD02dnbnzuzd/+nTp5/95YsXLzw8PFhaz5iZmbEM/oufUj+4mJiYqlWrsn/MyMhIBwcHGxubpKSkosfk5uaePXv2t99+k1V64vP5NWrUAAAej7dq1SqugleLzMzMPn36DB8+fOrUqYsWLVq7du3J/fvR2xsDAvD2bXz4EN+/x6ws3L8fFyzAWbPQ15frkMkPLS0tjc/na2trsyS4SpUq8px15AhqaWGLFgmurjOuXLliaGgIAIMGDWKX3AUFBSEhIXPnzq1du3bVqk9Zvq6jgz174vbtuGEDIuLDh7hgAVasiOvXKx+8h4cHAIwaNUr5IYhme/78OfukOHnypHIjODuH8HhSd3f1xkXUqU6dOgAQFBTEdSBEVT9HRtqGhaUrdQ0md+L+999oaioxN5/i5PRZfvmZ+/fvL168uHbt2rIMfs+ePbm5uUoE9726fPkym01v06bNvXv32DSepaVldHT0F4/Pycnx8fFxdnY2MDAwNjbW09M7ePBgKcesdv9tx922UaPCmUbZfwMH4pgxhSeMHctpvORH5+vrCwAdOnTYsWMHAAwZMkTOE/39PxkbVwCAESNGXLt2jb32bW1te/fuXbT6spPTtnHj8OxZ/O8UzJ49yOMhAC5dqmTw/fv3B4C9e/cqeT7RbBKJpH379gAwfPhwpQcJCEAAtLD4wm8g0RCzZ88GgJkzZ3IdCFFJhlhsGxbWPjJSudPlS9xPnEAdHQTAvn3lf01HRETMmzfPxMRES0vr3LlzysX3/fHy8mJLY/v373/37l0rKyu2Eubly5dfPTczM7NcuXIAIM/BGi4rK+v06dP79u3z8PBYunTpjBkzNs6ZgwMHor09tmiBtWtjhQo4ZQqOH194guwLQrgwd+5cAFi4cOHQoUMBYPv27fKfe+XKFZajDxo0KCIiwtjYuFKlSrJVcHPnzmWr50sY4dChwiU0U6Yos3asYsWKAPDkyROFzySc8PfH5cvRwwPlWwy5evVqAKhUqZKKu0tbtEAA3LRJlTHINxQcHAwANWvW5DoQopIHL18O8fb+PThYudPlSNw9PArXabq6YokfLV/EPu3c3NyUCO774+7uzuPxAMDV1fXSpUts7q1t27bJyclfPVcqlX78+NHBwQEATp06VQrRaoTZs/HCBTx+HOkOLuFU27ZtAeDChQtskVtMTIxCp4eGhpYvX3737t2I2KFDBwBwcXF5+/at/COcOIEiEQLgrFkZJWf5RcXFxS1evJhtTFIoYMKZd+9wzhxExOvXcds2PHsWg4IwJgbfvcMv3buOjY3V0dHh8Xj+/v4qPvPZswiAVaogVYnTTGKxuHz58gDw6NFzrmMhyjtz5gwAODo6Knd68VVlYmPBxwcyMiA8HBDBzQ02bVKiEQjb+8xWhf7IxGLxhAkT5s2bx+fzt27d2rRp0169emVkZAwYMODKlSvspVgCPz8/U1PTCRMmsH/PiIiIUolaA7i7g54eWFoCnw/BwVxHowZeXrB5MwDA8uVch0LklpOTEx4eLhAIqlWr9vr1a1NT0/r16ys0QosWLZ48eTJmzBiJRBIVFQUAbm5ulRVpYjpgAFy4ALVqFRw50n3o0KEFBQXFHSmVSsPDw5csWdK8efOaNWsuX77c3Nz8w4cPGzduVChmwo2nT+GnnwAAWrWCmBjo1w86doRGjaByZdDReVOrVrVq1Zo1a9a1a9fffvtt4sSJPXr0yM3NdXFxUb31ae/e0LgxxMcXFv0nmkYgEIwZc9XKquDcOWuuYyHKY0uFlS7DX0wDJl9fePIE7O1h6lTYtg1GjIAuXZR7ArZdNSwsTLnTvxvbt2/39PTU09M7cuRIZGTklClTAMDV1XXjxo18OS6HKleunJGRER4eztaq/kAXQnw+dOgA69bBnDnQrt138HmSkQFRUfDqFaSmwooV8OkTmJiAsXHhf+XKPTQwEBsbGxsZGbF6zEQThIaG5uXlNW3alF0zt2vXTp6X7WdYZ/KoqKiMjAwbGxvZahn5de4Me/bcdXR8cOzY7ezs7OPHjxft/5CRkREQEODn53fhwoWUlBT2oImJiYODg46OzoEDB2bMmJGYmOju7q7o85JSVbs2nD8Pv/0Gd+5A3brQty+kpkJqKqSlQWpqklD4+tmz169fyw6vVq2aiYnJn3/+mZWVtW/fvjFjxujq6ir3zDwe/PUXnD8P7dtDQgK8fQvNm6vpmyJq0qJFozVrwNcX5szhOhQN8CD3gRSlNbRrhGeHdzDowHU48nr16hUAVKtWTbnTi0ncL1yAbduAxwM7O3j+XOmsHQCsra3LlSuXkJAQHx/P1ln+mAIDA0UikY+PT4sWLebMmSMQCLZu3TphwgQ5T2/YsKGOjs6TJ0/Yrt8f7kJowgT480+4fh2uXFHlt1FDTJ8Oa9eCUAj79kFc3L/+ql69FQ8fHpH90cTE5NChQ23btmU5H+EKK5bXvn172ReqD6Xc6e3bt7169aqDg4OPj4+Dg4Ovr29KSkpgYKCvr++lS5fy8/PZYdbW1vb29r169bK0tKxSpUqlSpW6dOkyatSoNWvWYJE1e0TjZGbC48fQqROsWAHGxjBpEvz+e9G/b5KZ+TItLTU1NSUlJS0tLTExcfny5enp6devX9+0adOlS5cAgE0MKadVK1izBjZtgu7dITqaEneN07076OjArVuQkgJfu1X/nVuXuM5QYKjL182F3FtZt8pQ4v5tZtz19ODjRzA2htRUKFJNXAk8Hq9jxx7v3mXHxGT/wHk7pKamss9UIyOjCxcuPHr0qKcifcy1tLQaNmwYFhaWlpZWvnz5lJSUt2/fVqlS5ZvFq2EMDGDaNFi4EP744ztI3A0N4eefwdMTFi+GhARIT4f0dMjIgIwMEAqN+fwGGRkZHz9+/PjxY3p6+q+//jpp0qS1a9dyHfUP7fr16wDQrl27JUuWAKeJOwDY2toGBQV17dr12rVr1apV+/DhA3tcKBR27NjR0dGxW7duiYmJvr6+U6ZMefPmzapVq+bPnz9s2DBDQ8NBgwb9+eefGRkZ27dvV+KmAfnmZs2CXbtgwwZYtOiLfy80NKxmaFh0rk4qlc6YMWP58uWzZ8++dOnSn3/+6eLiUlyrVHlYW0N29udzCkRDGBhAx45w8SKcPw8jRnAdDace5T7aXW03ACSJk7iORQGvXr1ic68WFhbKjVDMG/eUKbB4MSxbBlIp1KihdHyMtfWhO3dO375dU8VxyjS2ZIgtcbG2tlYoay86QkREBGvb9AOtlmFcXcHcHG7ehCtXuA5Fedu3g0gEZmYwcCDMng0jR8KQIfDqFQBAtWrQoQP06tVq/vz5O3bs8PPzS0tLCwoKysnJ2bFjR1KSJr4x5ebmbt26tYTF1t8HiURy+/ZtAGjQoMGjR490dXVVaVv45MnmNm2OtW/voEpIDRo0CAkJMTY21tLSMjU1HThwoJeXV3R09JAhQ4KDg1u3bt21a9fNmze/efOmSpUq2tra7Kw+ffqcPn1aV1fX09Nz2LBh3/0PruwJDIRdu0AkUmh6Yvz48RYWFrdv3zY2Nm7QoMGbN28OHjykYiCzZsGOHSqOQb4VJycAAF9fruPgmgQkXIegmOvXr//66682NjZv377V09MbO3ZsdHS0MgMVu201LQ2nTMHBg5Xb9FrU0aMIgL17qz5SGbZv3z4A+PXXX5UewdPTEwCGDRs2b948AFi8eLEawysbVq3Kqldv57BhXMehpJgY1NZGPh+L9ty8efNfleu1tPRkr83Lly8jYu/evQFg9uzZnMVdPFYz6rfffvu+m6zJ2o7m5eUFBQXt379f6aGePEEArFBBDVHFx8cDgKGhYV5eHutpLVv9wufzW7RosWzZsoiICOl/ikdeu3bNyMgIABwdHXNyctQQClGLDx/QygoB8M8/FT111apVANC5c+djx3w6drz500+KvSKjo3HPHkREqRQvXkQvL0TEixfx6lVFAyGl4fVrbNwYV67kOg6unfxwcsabGcveL4vIjnBP0Ny6cx8/fty6dWvdunXZ+7O2tnafPn1YLy09Pb19+/YpOmDxiXteXmGWoXIHZPZZVbmyisOUbayOhCotx9m9lXr16p04cQIAevXqpcbwyoScjx/Ny5cHgMDAQK5jUZhYXFgjeeLEfz2emIiHD+P27bh6Nc6fL50wYcJvv/3Ws2dPOzs7VnAwIiKCx+Pp6+snJiZyE3oxIiIitLS0+Hz+tWvXWrduPXfu3O+1z9rdu3dbtWpVrVq1jyq/Ge7ZgwA4YIAaojp+/DgAODg4IKJEIrG0tNTV1bW3t/fw8PhqlcmwsDBWyapjx46qf1NEPYYORQBs0wYVvwzOyMioXbvTzz+HBwdLatdGADx8WN5z8/Pxp58QALdtw82bEQAnTFD0+Ulpa9wY4+Lwzh308MAtWxAR9+3DYlo4frc8kz1/f/17aFYoIoqlmjh59OTJk7lz58q2qFWsWHHu3LkPHz5ExJycHFdXV/a4s7Pzp0+f5B+2xDrutrYIgMqWiJeRStHEBAEwPl7FkcowsVisp6fH4/E+fPig3Ah5eXna2tp8Pj8mJgYAKqhl1q6sYRNLbdu25ToQhbm7IwBWrarMhXCfPn0AYMmSDd8gLiXl5eU1bNiQ3QpYvnw5AFSvXj0qKuru3btch6Z++fn51tbWAGBnZ5eenq7KUCNHqq3BzdSpUwFgxYoV7I8xMTEKTZ/HxsayYpQtWrRISUlRQ0BEBWfPnt3Qpo2kShVUtknW4sUIgD164O7dCID16snbdmXRIgTAGjUwKgoNDBAAT55ULgRSeiZNwkmT8M4d3LAB583D2Fhctgzv3eM6rNLl8NQBwsE33ZfrQD4nkUgCAwMdHR1ld0FtbW29vLxu377t4uKip6cnawNy4MABfX19Nicrf2+QEhN3FxcEwI0bVfweELFjRwTA8+dVH6kMa9WqFQBcVeHuI1tZGxISwvqnvnv3To3hlQmfPn0yNzcvc5Pujx/n6uggj4cXLypzekRETIsW5/X1MSFB3ZEpa9GiRQBQu3btyMhI1vwlICCgXbt2QqHw5Pf4sR8XF8dy96ZNmyYlJSk9Ts2aCIAREWoI6aeffgKAa9euKT1CXFxczZo12TelafdzfiiJiYlsm9ouRdrxfiY1FQ0NEQBv3cJq1dDKCuPivn5WWFislVUBn49BQdiuHQLgiBFKh0BKz8yZePYszpuHGzbg6NF4+jROmvTDJe71YutBOERna9CNhszMTHd3d1m5GH19/fHjx4eFhR04cKBly5aypYw7d+6UnfLw4UM2C2ZgYHBYvjtlJSbunp4IgOpYUrxxI+7Zg+/fKz2b8D2YNGkSAKxdu1bpEebPn+/k5HT79u0uXboAgI+PjxrDKyvYpHuTJk2Cg4OjoqJevnyp9E2M0iGRSOzs7Nq3HztpUobSg/Tpw1pmqjEu5d27d48tkgkKCmL9RCdMmODh4cFuBarYdF1jvXr1ihVjrVu37ps3b+Q5RSLB1NT//zErC1u2xHLllFgK8bmMjAyBQCASibKyskVa7HsAACAASURBVFQZ5/Xr17Vr1+bz+WfPnlU1JqKsAQMGsBXq/92QoJBZsxAAf/kFHzyQq/VpTk5OvXr1jIysVqx4umpV4YrW7/Tl+/1ITcVXr3DmTETEAQNww4bCydVdu36sxF2KUr1IPQiHj2INWux3/vx5toOoZs2a7u7uDx48cHd3lzXaMzY2dnV1jfvPJXV2dvaYMWNky2a++q5eYuIeFoYArzp2VPE7QcSRI3H9eszP15TMgxN79uxhO/lUH2r06NEAsGTJEtWHKnMyMzOtrKysrKw+22ZtYmJSrVq1Ro0atWvXrlevXkOGDJk4ceK8efPYejIOrV+/XvWMNiICeTzU0+N+0r2goIAVOPr999/XrFkDAJUrV46KijIwMACA06dPcxzft5SQkNCkSRMAqFat2tOnT4s7LDsbAwPR1RUrV8Z+/Qof9Pcv/Hxds0YNkfj7+7OlO6oP5evrCwBt2rRRfSjCxMXFnT59unr16i1atOjevfuQIUOmTp3q5ua2efPmQ4cOXbhwITQ09Pnz5xkZGYh44MABADAyMnr16pWKz5uQgLq6yOOhnLfcZ8yYwS5E7969a2fnbmEhCQhQMQTybWVmYuvWaGWF7CeVmIgvXuDLl4iIb9+qviGxLEnIT4BwMIsy4zqQ/5NKpXp6egBw6tSp1NTU/v37C4WFJdebNm26Z8+e7OzsEk738vJipzdt2rSEzxcsOXEX5+ZamJsLBILMzEwlv49/zJyJbm745AnOmoV//40lBv/dioyMZKsLVBznypUrhoaGNWrUeP36tVoCK3Py8vKmTp1qZ2fXsGFDKysrdoFbHEdHx71793IValxcHMtoz5w5o+JQGjLpvnTpUgCoUaNGREQEa9Do7+/ftWtXABgyZAjHwX17Hz58aNOmDQBYWlpG/3sv2MuXLz09PQcOHGhvf0pWJqhRI2SzqIcO4cCB+PQpTpumhjAWLFgAAPPmzVN6hBMnTnTt2vX48eOrV68GgEmTJqkhLIIoFovt7Ozk7F0qFAoNDQ0BQF3vUZMnY/v2cq3Fevr0qUAgEAqFN2/eZCWGXV2V/3UipSAvDx0cEACtrFDlq7wy707mHQiHZg+bcR3I/yUkJACAmZkZIkql0rp162ppaQ0cOFD+lb2xsbH169cHAENDw2PHjhV3WDENmAAAQKCtXcXKKik5+d69e+3atZPnbeiLcnMBAGbNgtmzgccDe/vCMrXDh0Pv3vBPieHvX4MGDXR0dJ4+fZqRkWGsbFurAwcOjBs3Lj8/v2vXruV/1LZpIpFo8+bNRR9BxPT09PT09I8fP2YUcf369WPHjkVHRw8dOlSVjiRFPX/+/OTJkwEBAcZfYmJiIvva0NBw1KhRnz59cnZ27tu3r4rP6+YGPj6waxcsWQL6+mr5VhT28OHDVatW8Xg8T09PV1fXnJyc0aNHv3z5MjAwsHz58hs3buQmrFJkYmISGBjYr1+/wMDAn3/++cKFC2zvytatW9luUQCoUuVt27a/ODlBjx6QmQnz58PZszB6NLi6wrp1oGw3+n9hXZxUeVsODAwMDAzs1q2b6g2hSFHr16+/ceNGxYoVr1+/LpFIUlNTU1NT09LSPvuC9T39+PGjQCDQ0tLq0aOHWp59wwbo2xcEAnj1Ci5cgBJ6c9vY2Pj5+T1+/PjChQuRkZE1atRYsWKBWmIg34JEAsOGwcWLYGEBgYFQtSrXAXHtpf9L/cn6P437CVZxHco/ivZD5fF4+/fvr1q1akVFOo/Wr1+fbWA9duzYxYsX+/Tpo6Oj84XjSk7/x40bBwCbVCiC4OGBDRrg5MmIiCdO4PDh2KoV8niF01EmJjhlSpa/v39+fr7ST1GGtGjRAgCCgoIQ8c6dO3Z2dps3b37//r2cp3t4eLBNyq6urhI5Swb82CQSSaNGjQDA09NTLQMmJCSYmZnJ/1LU1tYuX758atGVzipYvx63bkVEDA/nYClqQUEB+wWeNGkSy9ErVqwYFRXFpgxPnDhR2gFxJzc3t1+/fgBgYGBw5coVRLx7966enp6jo6Onp2d0dPThwxn9+xduFmT/DRuG4eF47hy2aKGGZ9fR0eHz+ar8XtWrVw8Abt68aWJiAgA/7O079Xrw4AH7oPXz88uTY5l5fn6+k5MTAMyZM0ddMfz+O7q44LNn6OaGI0bg9Om4YgVu347e3nj1at69e/fevHkjW0QbHh4u26+irgCI2kmlUlfX1wBYrtwPV/OxOO7u7gAwky321wzHjh0DgP79+6s+FNtPFVxMUcevJO47duwAgOHDhyvxxGIxTpyIAMjn4/Hj//qrV6/QwwPt7JDHww4dwgHA1NTU2dnZx8fn+87gJ0yYAADr169HxFmzZrHcjs/nd+zYkXXHLO5EsVjMzhUIBFtY1VYiH/Zaqlq1qjyfo1/Vv39/AGjbtm1gYOCpU6f27t27cePGJUuWTJ8+ffTo0QMGDLC3t2/evHmtWrUsLCy0tLR0dHTq1q2r+vMySUlYuzbeu4dbtmCJS+C+iZcvX9auXbtatWoxMTGy9T/du3cHgIEDB5Z2NFwTi8UjRowAAD09vQsXLkil0kePHnl4eNjb2wuFwo4dg1m+Xr8+zp2LISEYE1O4P6H4+5/yYnPkjRs3VnqE5ORkHo+nq6t79+5dAKhRo4aqMZEiV7YuLi7btm1r3LhxZGRkyadkZ2ffvXuXNWpITk5WSxgzZ+K1a7hwIbq6/qu5GwBaWz+UzSno6upWqVKFFSibMWOGWp6afCMzZ840MTFt2vTWrVtch6IxJk6cCACbN2/mOpD/U/1aYtu2bZs2bUpOTmaTg8XNp3wlcQ8NDYV/WgYq9PSfPqGTEwKgtjYePVrsYU+e4Pr1J1kpHKZChQrf8dTd5MmT+Xy+ubm5m5tbVFSUj4+Ps7Oz/j/rHgQCgZ2dnYeHx2el2TIzM3v16gUAOjo6xz+7BiJfo8ZJd9byRraNbPr06U2bNu3YsWOfPn2GDx8+derURYsWrV271tPT09vb+8OHDzk5OZUqVQKA82qqhJqUhMuW4dixuHkzB4k7ImZnZ8fGxtrb2wPAsGHDdu/eDQBmZmYJnO+Z5YJYLGb3JIVCYdGbMDo6OqNG/bljB36jWWxWWGkyu4+plLNnzwJAp06dtmzZovTUDPmMm5sbAFSvXl12Zevt7V3C8QcOHLC0tNy3b5+DgwMA/PHHH2oJg6UN48fjsmW4fz+uX48LFuCECThgAA4ZEtO4ceMqVarIluAbGxtraWk9KNrMmWiYP/74AwBEItGFCxe4jkWDsNVlGlVbT/VrCVafNyoqisfjaWlpFdcA+SuJe05OjqOjo76+vomJifwz4gkJCZ065QOgmRlevy5XuLGxsW5ubqwlrL29/d9//y3XaWXKtm3b2HJG2Qd88+bN165dGxsbe/DgQUdHR9kibJFI9JJtFEd8//49K99uZmZ2Xc5/TfJvx48f72ZrG9qli1w10oqRkpJSoUKFohcA7B53ce7fv4//lJSxtbVVsdAbk5SEq1ZhcDC2bMlN4o6IW7duBQBzc/Po6GjWEO7IkSPchKIBpFLpoEGDWG8Bc3NzZ2dnb2/vb92LtGfPngBw9OhRRMzLy5N/rZ3MzJkzWaY4aNAgAPjrr7++QZg/Flkj4StXrnTo0AEAhg4dWvIphw4dYvNi169fZzm0WirbspqAKSlfKb6clZX15s0btuJrgvp6pUokknfv3vXr12/MmDFz5879888/9+zZc/bs2eDg4NjY2Pj4+O/7prrasUtrgUBQ8kXgD6hOnToAEK1JK4dUvJaQSCQikYjH40VFRQFAzZo1izvyK4k7Ir548YJVQGPKly8/YcKEq1evFncp8PTp01q1ajVuPLluXakShfhGjhwJ312hQ6lUyiZjeDzeH3/8ERwc7OLiUnR/av369d3d3R8+fOjl5eXo6Ci7CX7//v1q1aqxH+Hjx4+5/S7KMIkEGzdGACzS9UBRgwcPZpOUshT8/fv3YWFhV65cOX369L59+zw8PJYuXTpjxoyxY8cOHDiQTULLJt39/PyUe97wcHzxAhExNxcjInDfPkTEGTO+1WxuyV6+fGlpaQkAJ0+ePHTokFAo7N27NwdxaBJW4GXEiBFquTaTB7uSj4iIEIvFgwcPrlq16hMFG2SwViCBgYFVqlQBAM5LppZ1ubm57LbetGnT/vzzTwCoWLHiV3cgiMXiWrVqAcCxY8c6duwIAKtWrSqdgGUePnzI5/O1tbXfvn2rlgE9PDzY8psSGBkZVa9evXnz5g4ODrm5uWp53u/SmTNneDwe2+bIdSyaQtaUVFdX19jY2N3dneuI/o9tHFL6WuL169fsrSMgIAAAOnfuXNyRX0/cmbi4OA8PD/aBwZiZmTk7OwcGBhbdJRkcHMxetC1btkxMVKaN9tGjRwHge8oGcnNzhwwZAgBCobDoao3c3Fy2VIbt7QMAPp/Plsqw9i5Xr15l+8Zat26tSrNGgoh4/DgCYNWqqNTnhI+PDwDo6ek9e/ZM0XNVmXTPzsZatdDAAG/fxgULUE8PDx5UdAy1kUqlXbt2rVy58tSpU9kj4eHhP2D73s+weixKX5gpge0MtrGxiY2NtbOzgy/VpixBVlaWSCQSCoXR0dFsLqbULjm+V3PmzAGAOnXqyGqkyrk6bteuXQDQoEGDS5cusU9V1YsvK2rgwIEAMH36dNWHevToEfv258yZs2vXrtWrV8+aNWvUqFF9+vRp165d/fr1K1SoIKtsDQDa2tqWlpbs5iT5r8OHD1tYWGjU/ksOpaSkrFmzRtaUVPufioSDBg1iLRGUdPkyHjyI6rjZxZY9Kx1McHAwALRp08bT0xMARo8eXdyR8ibuMvfv33dzc2M3KZgqVaq4urqGhIScOHGCvWj79OmjdD+/J0+eAEDlypWVO13TpKWhvX12o0ZtDQwM/P39v3hMVlaWt7d3//79ZesOBQLBTz/9xBbV9O/fv+Si/UQuUmnhpPuOHYqemp6ezjqfKbctWDbp7uvrq+i5M2YU1gIPDUUtLeTzMSREiRDU46+//mJ53o+5ov2L1FLgRVFpaWmsBmXFihXDwsK6desGAKampjdv3pTn9MuXLwNAixYt9u/fDwD9ZD2iiFJu3rwpEAgEAsGNGzdkm1PlPDc/P5/dUz179ixrQryRtekqRffu3WO7Y5OSVMpdCgoK2K/lqFGjSj4yIyPj+fPnoaGhbKHOV9cUKSQ7O3vOnDmLFi3auHGjl5eXn5/frVu3Hj9+nJKizEwit1hFiu9sAYISIiIiXFxcWHMi+KcpaUpKypkzZ9jkZq1ate4p1zZ22zY8eRLj4tDZGVWr1JeYmAgA5cqVU3oE1ovtt99+Y3dxly5dWtyRCifuMuHh4XPmzJFd/bAZZQCYPHlycato5CGVStlPIj4+XulBNERcHNatiwDYsGFyVNTX58Oys7PZHLyenp5IJKpRowaVfVQnb+/C3hUKTroPHz6cXQcr/bPYsGEDADRr1kyhqc3Q0GShEIVCvH0bmzZFAOSw9sO7d+/YC7OErhA/INULvCgnMzOzc+fOAGBhYREaGsqKHenr68vT6ePYsWMWFhbTp08fO3Ys/FPkSnOUrXe8rKwsVrhtwYIFss2pCm1yYC0pmjVrdu7cOXYxlpOT8+0C/qIJE/Y1bPhxwQKVBlmxYgWbdLt3756Dg0PJrR+Z169fi0QigUCg6Fqv4gQGBlasWLHopH5RPB6vfPnyderUadOmjaOj4/Dhw0vzelsJ58+fZ3druQ6EG3l5ed7e3qwWAluSYG9v7+3tfeXKlbFjxxYUFCDiy5cv2cI/HR0dDw8PxZ4gLQ3Hjy/8euVKFZef3rlzh72QlR5h2bJlADB//ny2RsPLy6u4I5VP3GXYHLy1tfWKFSvWrl2r+oBstZ+6CnFwJTQUK1RgWbvCTc4+fPgQGBiYVvqVur9vEgm2bYvz56Mid7LYW6eurq4qHy1KTLrn5OTUq1evadNZy5Zl/vEHAmCNGvjpk9IhqKp3794A4OTkxFkEGonDtqNZWVmsGomJiUlISMioUaPY7WM5e/RmZWWxG6ehoaHfOlSFdOvWrUWLFmVl+cSUKVPgn7YpbHOqopUVZG8OAQEBbDHqDsXvCqrozh0EQCMj5btD3L9/X0dHh8fj+fv7d+rUCQCGDRtWwvFPnz4dNmyYu7v7mDFjAGDs2LFKPnER6enpVatWBYDevXsvW7bs999/d3Z27tmzZ+vWrWvVqvXFlfdNmza9c+eO6k/9jeTm5hoaGvJ4PLZ69scRHx/v7u5uZWXFfkxGRkYuLi4RERFeXl6NGzdmD8rKD+bm5rq6urIHhw0b9vXFZnl56O2NdnbYoAFOnYpsRcO0afjhAyq+0V+GFZ375ZdflB6BvRZ27tzJbr5du3atuCPVkLgzEolEXQslWcWD5cuXq2U0TgQFob4+AmDXrgplieQbKyjAqVNx5UocPx7l2DaQkZHB3jtUn5VUdNJ97ty5AFC3bt3Q0NBOnSIFAiz+VfzNsTUVJiYm6trB9t0oWuCl9OXl5bEFyvr6+hcvXvz999/Znc8SpmpkYmNj2QIJjarykZ+fr6enx+PxysquHldXVy0trYiIiA8fPjg7O0+bNk2JQdh+1rZt27LP/qpVq5b+D6VrVwRA5T518/PzbW1t2f12tgHD3Nz8s6LGn7l69SoAmJmZRUdHC4VCLS0tWSE1pbHKFra2tsX960kkkqSkpEePHt24ccPHx4eVBdPwDXVsNVHpX8tx6NGjR7Lie40aNfL09IyKipo2bZqsnkfFihWXLFny2aKMU6dOsQPq1KlT7IafV69w/nw0Ny/sa2BmhkFBOGMGLlmCu3bhwoVoZobFLGn+KnbHibVEiI+Pb9mypaJV97t06QIAFy9eZFfyr4qf8VVb4q5Ghw8fBoC+fftyHYhcLl8uzKhWrMAtWwrLlsyfj3Xq4IgRqEmfiQTx8uXCtgIPH+LKldi1Kw4ciOPG4axZuHx55s6dXl5eZ8+e/fvvvyMiIp4/f8467LRq1UqV1V9MTk4OWygvT62ou3fvCoVCgUBw/fp1Ngm3cOEeFQNQ2vv379lk1YEDB7iKQTNJJBL2L8Nh21GxWDx69GgAEIlEp06dYtd7BgYGxSW+9+/fd3d3t7Oz4/P5VatWNTU11ahyVbdv3waAevXqcR2IXCQSCZviPXfuHHtEuTeKzMxMMzMzHR2dp0+fNmjQAABKv4pIUFBhJqNELdOFCxcCQI0aNWR7c0+dOvXVs9q1a8fmRNjCgClTpigT9z9Y/QAdHZ3Y2Fg5T0lJSTEwMODxeOHh4ao89Te1d+9eAOjZsyfXgZQSsVhcs2ZNIyOjXr16Xbp06dKlSwMHDhQIBCxlt7W19fLyKu7C7NGjR2w+XldXd9euXUX/KiQkZODAgU87dChM2Zs2RU9PLLoVUyJBR8fCjqELF6IiL+S3b9+6ubkZGhpWrFixWbNmHz58mDRpErv/uZW1OpcPK+IeHR3N5/NLKOKOmpm4P3r0iM06cB2IXHx88MQJTEnBSZNw2TKcNAnfvcNp0zAlBalUg8bx8UFW/ePtW5w587O+gh8bNfrsRqqRkZGWlpb8nwQlY3NR8ky6Z2VlzZ07d86cOewiXtFVs+rFpnx+nE8O+d27dw80oO2oVCqdPn06AAgEgv37969evfqzffA5OTn+/v4TJ06U3Xpmn21sXsfS0jIqKoqr4D+zdu1aUGRzJ+fYi7ply5YqjnPp0iVWj3/lypX6+vqcVNZv3x4BUNHlruHh4bI1QiwXHzlypDwn+vv7s1+/iIgIPp+vo6OjdImq5GTs3n0CKL61d8aMGQAwaNAg5Z63FCQlJQkEAm1tbQ4/AkqTrCQi+5ptV9DV1R0zZsxX+xAjYk5OjouLC3uLc3Z2TkxM3L59e/369QsfadgQf/sNi9vEL5WihwdqaSEAduiAX/ttlEqlFy9edHJy4vP5bHy2fdbGxubu3btz587l8XhsDlrO/gw3btzw8vJixb6sra1LOFITE3eJRMIqJJaJu6U+Pjh1Ku7Ygfb2uGwZPnuGrq6o1P1S8u2lp+PIkXjnDk6fjnfv4sWLePw4enrimjW4YMH7RYuGDRvm5OTUoUOHJk2aWFlZ6ejo6OjoJCYmPnnyZPjw4SpOzMgm3WfOnOnn5xcSEhIdHf3q1av09PQvHv/w4UO2bDQgIECV51UFu/1lbGzM4aSyxmK9qJydnbkOBPGfbts8Hm/Tpk3skaSkJC8vr4EDBxoZGcnydQsLC1mXqKysrO7du7NFUHJWpPnW2FaKgxwWPVVQVlaWhYUFAFy6dEn10fLz85s2bQqlW9D9zZvC7foHDuDIkYU7sh49kuvc3Nxcdotg9uzZK1euBIDKlSvLvzurefPmALBt27ZffvmFDaLct/DrrwiAo0f7K7qzOT4+XldXl8/na/KeCrbi+fTp01wHUhpkJRHZH6dNm7Z27VpF9xDv27eP5dCySn2VKlVaunSpXCVPrl3DSpUKhMKBnTpduXLli4d8/PjR09OT/eazu50DBw68fv36q1evWGElbW1tDw+Ps2fPsh6FtWrVkueqg2FF3Dt16lTCMZqYuOM/pZEvXrzIdSBf5+ODLMwZM3DZMkxJwQMHkLbwaa60NAwIQPn2+rA0Yvbs2WzfRZ8+fZR4QolEsnTpUnYV+ttvv7H2q/9lampavXr1xo0bt2/f3tHRcejQoaw5Doezj8nJySwp2b17N1cxaDJNazu6Zs0a1q6le/fuzZs3Z/M9LJtv3rz5kiVLwsLCPrvbk5uby+6oGBoaBgWFcRU5I5Vit24TLS0rv2Atx8oItkH5559/Vn0o1ty+Ro0apTm9unZtYYu3KVNw/HhkDW1+/12uc9mtnnr16oWHh7NZhgsXLsj/1KdOnQIAKyur0NBQtuMiOTlZ0fiPHEEA1NdHxXtsICJOn/5Hx44BEyeWdiUf+bFfsK8W2fw+yEoiqjhOTExMuXLlypcv37BhwxJW13xZYuKu8ePZPcylS5cWvRp8/Pjx3LlzWYE1dmfAzc2t6BRz0Z2yv/zyS0xMjPxFb9LT0z09PatWrWptbT137twSjtTQxH3atGkAsHLlSq4D+bo3bwrvqISFYVgYpqTglSu4ejXXYRF1iIiIYB8nDx8+NDAwAKVKcLB52UaNGr1+/ZrtnmnXrl2PHj3atm3boEGDKlWqyDpwfcbS0tLQ0JDDoukDBgwAgM6dO1ODni/SwLajO3fuFAgEZmZmbLbJ3t5e1tCtOGKxeNSoUQ0ajDYzk3I7qXf/PgJgmevhkZGRwebVgoODVRknIiKCrTkJCgpSV2zyWLsWFy/GjRuxVy+cORNXrsTHj3HqVDQxQRsbbNkSe/TAYcPQ1RWXL1+1ZcuWI0eOBAQEhIWFnTx5UiAQCIXCW7dusc2pipZXkkqlrOPs3r17Wbv4P/74Q6ER3r9HMzMEQKUvn1+9QpEIBQKUo3wlN2JjYwHA3Nxc9a1Wmk9WElHpEd69e5eXl4eI7G1QuQ9QqVTq7u7O1tZ36tTp3bt3rF2rbDbEzs7O29ublaT8r9OnT7Pkvnbt2qGhoawePwAMGzbsiz2OIiMjx44dKytU/9VZAA1N3NlVV//+/bkORGHBwQiAP2rd1e8Qm3SfNWvWrFmzlJh0f/HiBcvLT5061adPHyimoqJEIklLS3v+/HlkZGRQUNC5c+cOHDjA2qErXJu2eJmZmcHBwdbW1s2aNevUqVPfvn1HjBjh6uq6ePHidevW7dq1y9vbOzAwMDQ09PHjx6ySjL6+/vPnz9UVwPfk+fPnoHltRz99+sSaAZ08eVL+xm0SiWT69DwA1NJC+QvkiMXi4ODgOXPm3Lp1Sy37QHbuRABUea6NA6yCu4ODg9Ij5ObmNmzYEP6pSlGa1q7FBw/w0yecOBFnzsTsbJw0CceN+2wHEIpEef+dXODxeAsWLEhJSenatWvNmjU/KV6wli3Gq1mz5vXr1wHA2NhYzgXBTL9+hdXbVHkVjhiBAP+v6K2B2GfB9evXuQ7km5OVRFR6BCsrKz6f/+DBAzZ5ocr78+XLl9kdctnkmoGBwcSJE+V5u3v8+HGTJk1kc+2s6E2rVq3YRQUjFot9fHxkhep5PB4rVP/VKzQNTdzZJaaxsfHRo0eVeC/gUGYm8vkoEmGRnw4pw9iku56e3oMHDxSddJdKpayr5eDBg5WoqMgaslhaWirdh/gzkyZNkpXZ+ip25LZt29Ty1N+Z+/fvOzg48Hi8tm3bch3LvwQGBoKyeyXd3BAABYKvTF5++vTJx8fHxcXF0tKS/apUrly5XLlyqteDHzoUAXD7dhWH4UBqair7aFf6H4HNC9StW7f0+2QXXSozcyYiop8fTpiAaWn49Cnevo3nz+PBg7h1a/Yff/wxefLkwYMHd+vWrWnTpuxbZv2kpVKpcltLxWIxy0pPnjzJWrjIs74/La1wXf7evWhjo2LnHHz6FAUC1NJSuONKqWFLkkpePvF9kJVEVO70/Px8NnMREREB6qhP9e7duy5dukyePNnGxsbd3V2h1fY5OTmyZTPOzs4RERGyrWIJCQn/LVQv/0YLDU3cxWLx/v372V0JHR0dR0dHLy+vr9fV1wysW2pEBNdxEDVhM+WySXf56/7u3LmTTcpGR0crV1GRdVBXSxf0oKAgHo8nFAp9fHzCwsIuX7586tSpvXv3bty4ccmSJdOnTx89enT//v3t7e1tbW1tbGzYp7KsyQXBIhMk7K1JX19fJBKpuEBCvdgi6Zks/1LcqlUIgDweHjny+V89f46enujoiF26LJVd3dWpU2f69Omsh6ucfVtLUK0aAmBxJZg13Jw5cwCgX79+Spx748YNtubk9u3bag/s2/H29gaAqlWr5qk2TXXmzBkvL6+CggK2LU9PT8/CwqJevXp2dna9e/ceOXKkgo46tQAAIABJREFUm1vGqlXo6YknT+Lff2N0NC5ejAsXIiJOm6ZQ4b5iDRqEAJpbVYKVva9fvz7XgXxzrCTiIzk3R//Hs2fPAKBatWqsPGiPHj3UElVeXp7SM/cHDx7U19dnl+UxMTFhYWEuLi46OjrsLbR27doeHh6KJrcamrgjYnp6+pYtW9q3by8rtWNoaDhkyJBz587lKtiyvpQNGYIA+O8qoqQMU27S/e3bt2yV2/Hjx5WuqMjefVSfdM/KyrKxsQGApUuXyrlNZ9u2bQDQoEGDstWC/hthnfxY0W72XuTi4jJ06FAAMDMz05xS6Kxp5dmzZ5UeYccO/OknHDECQ0MxJwfnz8dZs7BOnf8vmWjYMKJz584bNmyQ9bQXi8Ws9438fVv/680bBEBTUyyjv24JCQmsdZSs+cv9+/ejo6Pfvn2bk1PSxsesrCw25bxo0aJSiVRtJBIJK6yxb98+tQzI6tKwCoBFWVqKP1u3M2kSLl2KkZFqS7WjorB+fTx8GBFRTTc41SkvL09PT8/U1LR169YeHh5KbOEtEyQSiUgk4vF4St93unz5MgD8/PPPmzdvBoCJEyeqN0Ll3L9/n5WklOXrQqHwl19+uXr1qnIDam7iLvP27VsPDw87OzvZtgBjY2NnZ2cfHx8VL/S/kfXrEQA14xeGqAebdJ85c+bs2bPlnHRne6169+595MgRdi9MiYqKUqnUweGX9u09N21SqZUX2+3duHHjmzdvVq1a1dfXt+Tj09PT4+LiqlevTpPuYWFhzs7OsiVGderUcXd3j4yMfPLkiUQiYb8Y1tbWmlC7Vl1tR/Pzcdo0nDABMzNx7NjCVKlcORw4EL288IsrkKVSKbspLBKJjh8/rugzPn+Ob97g0aPo5qZK4BybOnUqFCmIwW76M3p6elZWVj/99FPnzp1//fXXiRMnylZyT5w4EQCaNGmimR9nJfPy8gIAGxsb1fdN3rt3jyVtfn5+CQkJsbGxISEhZ8+e3bt374YN4vnzcdw4/OUX/PlnbNQIZ8/G5GQcN07e6jfy2LwZp09HlLuiTmlasmRJ0UsaHR2dfv36HT9+XKqBFxkqKFrEXTm7d+8GgBEjRrBCcO6sRpIG+PTpk7Oz89SpUy0sLObOnatin+AykLjLvHjxYs2aNayRJGNmZjZ27NiwMI6rmH3m+vXUn38+9csvS7kOhKgNm3TX0dGJiorS19fn8XgRJa6FYu3uzMzMYmNjVayo6OODAGhpqfw80K1bt2TFH1gNh1mzZpVw/KVLl0xNTfv27bt9+/YfdtKdVeplffgAQCAQODo6yjr5CYXCgQMHImJWVhar9tWuXTvO7wTevo3W1g8GDJB7e2nxZszA0FBcuxbnz8flyzE4+OsLEqRSKVsuIhAIFP1tX7IEXV0RNTJnkt+bN29EIpFAIGB3YMaOHduoUaNKlSppa2vDf7DE/fLlyzweTyQSaU4PLIXIVqgfO3ZMlXHy8/NZXRo5+6cuXYrp6RgUhGpaCoGIuHkzzp6NoaH4++84YQL2748uLjh/Pq5bh/v2ob//zevXrz948CAxMbGUq7tcvXpVIBDw+fzTp097eXk5OjqyDL5J7dqoq4uOjujt/X1sqvusiLsSFi9eDABubm79+/dX/ddS7aRSqVo+JspS4i7z8uVLNgfP3gGnTJmi9IqobyEjI4P1gVOsdCjRbH379mWT7uvXr9+7d29xdaCYDh06AMDBgwfVUlGxZUsEwA0blDk3NzeX3aRbuHAhe1OrXbt2yTciZTf9b9269WNOuq9YsULWtKhSpUpubm6xsbHr1q1jy43YjNeYMWPYz/T9+/dsCc2gQYO4rTCzdi0CoFrq/rPSJrNno6Jl2WR9oNavXy/P8e/f48GDuGQJbt2Kly+X7cQdEceNGwcA9evXd3Nz27Rp06FDh/z9/e/cuRMTE3P//v3IyMjAwMBjx45t27ZNKpWmp6ez35zSbLekdp6enqpf3i9YsIDduZJzsW9aGkok+OIFDh+OKhQg+ZfNm/HZMxw7FqdOLdxuUfS/unX/P2PIbvvfuHFDPU9cooSEhIoVKwLA0qVLZXVd379/7+HhcWjECOTx/n9HbOxYjInBI0dw6VI8dKgUYlM71Yu4Ozs7A8DevXvZdWDZ2jQivzKZuMvExsa2adMGAJYtW8Z1LP/CJiHu3bvHdSBEbSIjI9mkuzzFE/Ly8g4ePMjKwqheUdHXV/lJd7a2p27duqGhoaxK9LVr1756FusE3q9fvx07dvxok+53795l9blsbW29vLzu3Lnj4uLCdhcBQOXKlT/ruIGI9+/fZxX63Thd6tG7NwKgWrqOHj6MXl54/TreuaPwudu3b2cbk0oognH/Prq7o50d8vkIgJMnY3o6uriggnXANc6zZ89GjRr13/l12X0bCwuLunXrsm2XtWvXBoBWrVqVPAug4fLz89nlx7lz55QbISwsTP63pqLOnkUAtLJSz3Tz5s344gXevIlt22JwMJ44gTt24MqVOGMGjhyJQ4eOtbOzq1u3rrm5OSvvXfJNV7WQSCRswVWnTp2uXLkiEolWrFjxryNev0YPD7SzK0zfN27ErVsREXfuRAX/MTVB0SLuBQUFXl5eik6FsCmzq1evli9fHgDkapVaBpXtxB0R2QLivn37ch3IvwwePBgA9uzZw3UgRJ3YpPvPP//8119/eXt7X7p06c6dO48ePYqPj//vHHZKSgorAbtdHfXtlJt0j4iIEAqFfD4/ODiYzUC4shUJX/PfSXdvb29l4i6D9uzZA/+UB5k0aRJLufh8voODg6+vb3EXMBcuXBAKhTwez8vLq3TjLSSVFnaiUW3xZKF16xCgcMmvEg4dOsTu5k+ZMkX20ZuVlcXqSLZtmymbyNTXxz59cMIEzMjAmBjs2ROHDMEy/bv28ePHzZs3L1myZOrUqUOGDHFwcGjRooW1tTW7tCtKJBIZGBioWIpHE3h4eABAs2bNlLjjlJOTw3a4zpkzR9FzpVJs3Fg9pSCcnXHRImTv4nFxXz8+LS2tFO6osxsRlpaWMTExlSpVAoDFixd/+dDYWFy2DLdvL6xnd/8+bt78rcNTr9jYWHZzmF3wsyknR0dHhSowsmvImJgYULmIuyYr84n7o0ePAMDKyorrQP5l7dq1oHgbOaLhdu/eLVtB8V8ikcjc3NzGxsbW1tbe3r5GjRoA0LFjR1XeO7KzCyeTjh/HLl2Q3ZtNSZHr3Ly8PNbSZfbs2cuXLweA6tWry192ik269+3b90ebdGeVfBwdHRHx+PHjxsbGLi4u8nTc2LVrFwBoaWlduXLl24f5OdZ2tEoV9Yw2bRoCoHyrXb7s3LlzrITCsGHDduzY4ejoqKury14pHTsGV6iAzs7o7Y2f/T4ePlxYS15NdUo0S0FBQUJCwoMHD0JCQs6dO8fKlo/X5MY/8snJyWHLOQICAtgj8i/kZfvm69WrV3LtneIcPYoAaG2Nqty0OHIEAdDICEtsMVza/P39+Xy+UCgMCgrq2rUr+zT5yvL64ODCi5j9+1HZiiWlTCKRFG1KamRkpKWltWHDhsDAQDbzZWVlJf+qpMGDB7ds2TIyMpLdZ/6mkXOozCfuUqmUzWRw2Bn+v1i3HTMzs7Vr177S2KYORBGyiopt27YdM2bMgAED7O3tmzdvXqtWLQsLi//uPxMKhYMGDXr27JkqT3r0KLJmeZMn44IFuHw5otwb+BYuXAgAtWvXjoyM1NHR4fF4ly5dkv+pk5OTDQwMfsBJ95s3b7IFDIhYUFCgUGEy1ielXLlypb/rJigI69XDIUPUM9qAAQiAipeH+ZcLFy7o6enJZpr5fH6rVq1WrFhx715J/zju7oW15JXb1FGGPHv2TCgUikSi7+AzYvXq1QDQoUMH9seFCxcWXRfk5OQ0cuTIGTNmrFy5cufOnbK12tevX2e5qdKNq8TiwlqlSi/qfvcOy5VDAFS2fMA38ebNG7bYw93dnTVnqFChglwtrnbvxmXLvtJETTMkJeHWrRdkTYgMDAzGjx8/efJkttCud+/e9+/fZ1sZhUKhu7u7/FNg/2vvPgOaOr8GgJ+wpwiCgAMEt5VSBLUSVxXFCmjVoqUVnI1aEXdxFqvVF6laEEeti6GoqC3DihbqRAQ3QwQr1gWKArJlJef98GDK35mFIeH8Plmbe3Oi8XLuc89zTmxsLEg3ybiJU/jEHV9WNcXFxck7kHrnzp0zNDQUtp8HgB49evj7+0s2WI40EcKOim/r2vbixYsnT55kZ2dfunQpPj5e4obWDR04gAEBGBuLbm64bBmuXo03b+Lcudi/P376KQ4fju7uyOPh4sW4YcPe4ODgsLCw6Ojo06dPHzx4kJWNnjlzxtHREQBmzpwp7ruzjlqjR49mk6R69OjRHBbd//nnHwDo2LGjBMfy+XzWs9/CwiI6OvrKlStXrlzJzMzMycnJycl5+vRpUVFRUVGRTB7g7t5d/+wlIACXLkWW+QQESH9iRMRJk7YNHLg1OVmM4fNvdO7cuejo6LFjx+7evVv0tZXAwPpNd2vXftD2HR+eh4cHAMxrsoN/RFZWVsYSTTaPjF0t3+b48eOIWF5ezpZCpNwZEhKC9vbPXFx+lOzqNHIkAuDw4dh0qipqa2v79+8PACNHjvz7779ZSxlRS6pWrkRDwyZeJ3PlCvJ4qK2NnTplcDicV4aSxsTEsHmFFhYWiYmJfn5+LJsaPXp0UVHRe0/++PHjkSNHSvYjT1EoQ+IetXZtOJf7RJrHurJz5MgR9kTYzc3twIEDX331lXBbW+/enw8ahNu2YX6+vKMkYhJ2VLx8+fKHfN8DBzA0FFNT0cMDly3DkhKcMQN9fFBT89WmB8bGPV4v3Zk6dWpVVdXixYutrKxKSkrEfXe26A4ASUlJrPJHghbdCqe4uJg9sZXscPZkxtDQ8B2Ji3AF2tDQcMSIEdevX5fgjX76CdnOq9mz69uu19XJbB4NK6iVYPKArISHo4ZGnaPjV99//72yFqoi4s2bN1kLsry8PHnHIi0/Pz8AsLOz++OPP86dO5eampqenp6WlpaYmBgdHb1nz54NGzYsXbqUx+Oxdpk8Ho+9Xspi8ZqaGvZI8MiRI+IeGxGRqqpaZ2SETWpVja2YtG/f/ubNm2ZmZgCwhj1sFcXcuQiAgYGNGeD7VVbimTOIiDdv4oULyJ71xsdjWFj9fi0AVFFBNzdMSEh+/R/4gwcPWN8RTU3NwMDAmJgYdkW1tLR8R6OYhkNJXV1dpXzc3ZQpQ+KO+/YhAI4dK+84MDAwkN0aTp8+XZgnVVRUHDp0aOzYsYMHR7Dvq6oqOjnhzp144kR91XJMjDzDJu/x4sXMIUMAYNmyZR/4nV8plamqwpMncfRozMjACxcwLg4PHsQdO9DfH1esWP3dd9998803rq6uAwcONDExAQDey9aAEg9eXbRokb6+/r59+5rPortAIHB0zOvZs1SyfrtlZWWs3rdbt2729vb29vbdunWztra2trY2NjY2NDR8Jac3MDBQV1eXYPbqTz/hkiX400/o4oILFmBKCm7ZIpvEvba2VlVVVVVVVb7dTqKikjU0NNjKmRJ/6yZOnD548NoVK0rlHYi0srOzdXV12VppQ/r6+h06dHBwcHB2dvbw8PD29vbz8/vuu+84HI6mpqZw0Kw02JjnTz75RKx7vHv37rVo0cLGxvHQoSb0hx8bG8vhcNTV1c+ePTtgwAAAGDJkiBid47/7DgFw69bGjPH9nj3DVasQESMjcdMm/PRTfPwY581De3sEQAMD9PF5zybg2tpaX19fVvj+xRdf3Lhxw8HBAQDatWv3yg6KysrK3bt3Cyf8qKqqjh079gy7b1BSSpG4Z2YiAFpayup8EmQ5dXV13t7eAMDhcPz8/A4fPmxqapqent7wNZWVGBOD7u7/LZd6eeEXX2BlpcJ3L1Zy33+P2tp/jh//4SfslJUh27L19CkWFtY/zBVlLCZbydPU1Hwo3X6roqKigoICRHz69Km+vv7s2bM/8PARuWjTBgHw0SNJjmWrZQ4ODnw+Py8vb/fu3ZGRkZGRkdHR0fHx8fHx8UlJSayEJjc3t6ioaPLkyQAwbtw4cd+o4Yo7a7u+ZAnOm4dxcVJt1EPE+/fvsx+QUp1FFv7880/2ANPDw0NZx2JcvYocDurpoaKPsR81ahQAWFlZjR49esCAAT169DA1NRWOHH5dly5dZDXYsqqqij0jOnbsmIiHCASC4cOHQxNrSScQCD755BMA2LRpE8vg27VrJ94g5G+/RQC517g/e4ZDh+JPP+FXX+GmTRgWhnPn4rx5GB2Nu3ah6PuGoqKiWrZsCQCdO3dOSUnx9vY+ceKE8P/m5ub6+fmxGi0AaNmypY+Pj5RDSRWCUiTufD7q6yOASBnNO504ccLDw8PU1JTL5QYGBopYlFlRUcGuWZqamhEREf7+/uw28dWWqy89f45796KrK/78M544gatXU+LehF27hurqqKJSv/StOCZMmAAAs2fPlsnZpk6dCgCOjo5KXLcgZGuLAChBAUtGRgbbWpCSkoKI8fHx7yiVmTVrFiLm5eWxarpEMb9gycn1ff0TEpC1sSksxEWLkMPBMWNQmnvMwsLCoKCg4OBgyU8hO6dPn9bX1weAsU3gmWojGT4cAVCuMwCkxWZFGxgYvF5eVVJScvfu3UuXLp04cWL//v3CXpl5eXkyXAXYsGEDAPTs2TMpKSk7O7ugoODdV6qgoCAAMDExyW9Kpat8Pn/YsGEqKirsanD06FFxLws4eTICyL0r0ysr7rGxuHcv9ukjyanu3bvHplNraWkFviwBOn/+PJtgza6l9vb2O3bsEKuRgEJTisQdEfv3RwB82YtKMrt27WLfA+EigZqamrOz8549e96xJaKgoIBtfDY0NDx9+jRr/MzW3d/7jlu2YE4Orl3bFMp8yJtUV2PPngiAixfLOxSxZWZmymTRHV8OZtfU1BSlK6IScHJCABSnBw8iokAgYA3+5syZw34nIyNjypQp7u7u7u7ubm5uTk5OTk5On376KSuhEd7Yr1ixAgA+/fRT6W+KLl+u7+b+2WdY2oSe/0vlypUrJiYmO6Vv1t1UXbhQXz9QXCzvUCTy6NEjVgAWFhYmrxjKy8stLS3btWsnvDHmcDjGxsZdunTp16+fi4uLl5fX/Pnz16xZs23bts2bN7O7ZQnK4hvb0qVL2YOLUon+AT/39q7o3r384EGZByaW4mIMCUFEPH0aDx3CixdRIECJG5++ePFixowZ7K/V0dGxa9eu7Neampqenp7KOh71HZQlcZ87F1VUUNJJNwKBgG2sAQAfH5+ysrLIyEhXV1dWYcmqppycnEJDQ1/Z4Xfnzh02JNXKyuratWtubm7sy3TgwAFR3jc6GvPyqFSmCVu+HAGwSxcxnu01JWwQmJSL7iUlJWyqRYCsWpY0eR4eCID794t3FFt0NDU1ff5cvGYsZWVlrGOxTDoR3bxZX+rTpw+KM7qkSRP3j1ThDByIACijypEPSyD42curKdSc1NTUzJ49+9NPP+3cuXOrVq3e8bALANq1a+fp6SnfgN+opqamd+/eADB9+nQJDh8/fjw0sS4CNTWop4c2NijlRpWjR48aGBh0794dAMzNzX19fR9JVs6o+JQlcc/Oxh9/xLVrUfw2CNXV1Z6eniw737ZtW0qDGd/Pnz8PDQ11dXUVrsFraWm5urqGhoaWlpZevHiRbQHs3bt3Wloa2zlhZGTE+mGJKC0NTU2xd29xoyYfxLJlqK6ucEUyQmzRXUNDQ5qyP7bUYWdnp9CD2cXi44MA4nVUKyoqat26NQDsk6ihdHBwMAB07dpVJpXct2+jhQUCoIdHungFskROTp7EXr3wzz8RESsqUPgtUIDC/q1bUVX1nItLk6o5QUQ+n//s2bOsrKwLFy7ExsaGhIRs2rRp+fLlM2fOdHd3v3r1qgSNtj6MzMxMtrVDggcCrB3t77//3hiBSebOHZltQszKysrOzj5y5Ejz+WH0RsqSuM+ahYWFWFGBU6eKdVxpaemIESMAQFdXNyYmhq27b9my5ZWXPX36dPv27YMHDxZ2Z9fW1mbZvJubW1pamnDdXdzBKyUlqKKCmpqKcIFWfHV1dUFBQWvWrNm8eXNoaGhUVNTp06drr1/HnBwsKkJhweW//+KiRbhqFYaFNa1heuJji+4SD/E9deoUh8PR0NB4Zae1cluyBMvK8OZNFP1Ds9ubgQMHSlbuUlNTw64h27dvl+Dw192/j2PG3FZRUevevftb16UEAszPx6dP8fvvcfVquXeiaOaWLatvwz9vHnp7IyKWl6Ovr3yDep+cHNTTQwA8fFjeoSiVwMBAVoL/mO1Af6eqqqq4uDh24+Tq6goAsbGxjR+jqBISEAAHDZJ3HEpEWRJ3YfHUjBl46hTu3y9KgWdubi7bwW1mZnbx4sVvvvmG1bXvevsItYKCgtDQUCcnJw6HY2ZmNmzYsNraWnd3dwDo27evWEsOO3fi4MF4/Dh26YIAeOOG6IcSSfz777/W1tasJqGhCl3d/9qh6+nhRx/hnDlYXo6I//1CYUmz6F5RUdGxY0d4+zZrZeXkhFu34okTePy4SK+/fPky+0POzMyU+E0PHz4MAK1bt5astvV1T548sbW1BQBLS8t//vkHER89enTy5MmILVtw2jTs0wf19bFNG1y+HFkT8VWrJHhiSWRl2TJcsQJzcnDePJw8GRMTMSGhaSfufH59ic/EifIORdkIBILPP/8cAEaMGPG2tYDCwsLIyEhPT082nJjd8zs7OwNAw9YrcrdrFwLgpEnyjkOJqL27DkxhIEJVFairQ10d/PwzxMWBlhY4OYG7O4wdC3p6rx+Rnp7u4uLy8OHDHj16HDx40MfH58yZM3p6egcPHnRxcXnb+7Rq1crLy8vLy2vBggW//PKLl5cXS/QtLCxWr16to6Mjesj//gtnzgCXC716we3bcPUq2NpK8tGJKBCRx+PdvXu3d+/e06ZNK3mpvKxMp7gYiouhpASKi6G8HCoqoKYG2Nis1q3h+XN4OUJLEXXv3n3ChAkHDhwICAhg3Y6Li4vv3Llj8JKmpubbjvX19c3JybG1tf3+++8/YMjyZ2sLDx6Ari7k54O3N3C50L8/cLnw0UdveLFAIJg9e7ZAIFi4cCGrv5TMl19+6ejomJSUtHHjxlWrVkl8HiFTU9MzZ864uLgkJSX179//xYsXpaWlAKCnoeGBCLW1AAAqKvDoEZiZAQC0awf5+fByAjn58ObPhxUrQFMT2N8P+ytqujZsgHPnoE0bCAqSdyjKhsPh7Nq1y8bG5sSJEzt37mTDqpjs7OyYmJjY2NikpCQ+n89+087OrkWLFnV1dU+fPgUAYbuVpuD+fQAAS0t5x6FM5H3nICP//osrV+LKlZiRgb/9hgMHoopK/Rqqvv68KVP++OOPF6whNiIixsfHs5tUR0fHtLQ0ti5lbm5+9epVEd8wJiYGAIYOHSpxyEePIgB+/jn+/DMCoIy69pE32759OwAYGxu/56lISQk+fowbN2J8PBYUoJeXtBtqmoBXFt1PnjzZ8AqgpaXVunXrzp07Ozg4ODk5CXt3XLhwQUVFRU1NTfR/FEogOxszMnDhQiwsxL59cdKk/xlP27Ytzp17LTg4ODU1VTgSaPPmzQBgYWFRLvXDmaSkJA6Ho6enJ8rzcRGVlZUNGTIEALS1tfX09Nq1a9euXbvnHTr896lWrsT9+7G4GCdPRkkHdRHpsQlrf/yBY8YoSKnM1q2ooyPqYykivqNHjwKArq4uG9B2+/btLl26CC/dmpqazs7O27Zty8rKiomJ4fF47Hmyubl53759ZXgNkdL8+U/btavds0f5B4B8MMqSuL/u2TPcsQO53OeffMK+5To6Ou7u7jExMTt37mTl6V9++eXly5dZA6mPPvpIrFqC3NxcADA0NJS4g9u9ewiAJiZ46lRtz55lXl6SjD0norh//z5rBX1YxEJMgQCPHsXgYGxi260k5uHhAS8r3c+ePWtvb9+xY0djY+PXx6MsWbIEESsrK1nJtShdTZXG2bNoZISWlvXbUo8exatXMSMDd+xAd3c0MUEAHDx4KfuDatmypYuLy4oVK9hXKyoqSiYxjB49Gl62eJeVsrIyTU3Nhn/X9/v1Q3197NMHp03D1FSMi8PAQGwGg0uaJj4fR43C9evrJ6zdvVv/V8HnN8ktNjk5uGAB+vnh9u1Kc4VsslgFr4ODQ01NTXV1tb6+vpGRkbu7e2hoaGpqalBQkJOTU8N/2p07d2YTi9q2bStWn4zGM3DgQAD4mw2bILKgvIn7S/kPHmzYsIH1VxLep7IE5eTJky1atACAzz77TIJ2Y2ZmZgCQk5MjcWzOzvs6dx6bmZnJ4XC0tLSUdTSg3LH9x6NHj5Z3IHKTnZ2tqqqqpqbm4+OzYcOGnTt3RkZGxsfHX7p06caNG2lpaampqSkpKX/99Rfr1L5gwQIAsLGxqa6ulnfsH8jBg6ilhQA4YsSbN8gIBJiZiaGhsZ6enh06dBBeTwwNDXu/bAslfZ+KzMxMNTU1NTU1cbe5v8Ply5cBwMTExNPTc/369ceOHSu8dw+bwSAtRbFpEwKgmZmC9HH38anf+bNwIb59wgmRieLiYktLSwBYvXo1It66dSstLc3Pz8/e3p7NeQQAVVVVLpfr7+/P9tjk5+c7OTkBgJqamp+fH1+ih8b//vtvaWmpTEYasW7C0mRK5BXKn7gL5eTkrFu3rm3bthoaGiyHY+UT7u7uDatoRDdy5EgxFnHfZNiwYWytjm0BTEtLk/hU5G127doFAK1atRJxDq6yWrRoESuZeBsNDQ0TE5NOnTr17NmTFclcvnxZ3lF/CAIB+vkhh4MA6OODIg5zfPjwYUREBLsItG/f/sWLF76+vvr6+mwbqLiePXu2fPk8yAZaAAAYgUlEQVTysrIyROzUqdPAgQOfPXsmwXneaNOmTQAwbdo0WZ2QyNCtW6itjQDYlDr4vZOwFcT69Xj3rlxDaRbOnTunqqqqqqo6atQotlzIGBgYTJgwYf/+/a8PiKyrq/Pz82NN8FxcXArFGeggHErq4uLSvXv3jIwMaYKvqalhwdO6pAw1o8Sd2bdvHwCMGTOG/eeff/4pca3LypUrhaUFklmyZAkArFy5kg1N2CvvMcXKJzc3l4302y/uNB1ldPz4cT8/v/nz50+dOnXcuHFOTk729vadOnUyMTERzhpjpkyZsnHjRnnH+yFUVVXNmDHf1DRPTU2Sdoh8Pt/Ozg4AAgICpkyZAgDjx4+XIIypU6cCgKen55EjRwCgRYsWeazTiyyMHTuWLi9NU20t9u2LAKhId1W//oqRkXjvHnp6inqbS6SzcOFCKysrdnG2tLTk8XgxMTHvfRyakJDAqt7bt29/4cKFd7+4pKQkODi4W7duwsIENqZGX18/IiJC4shzcnIAwMLCQuIzkNc1u8Q9MzOTffWlP1VUVBQADB8+XOIzREZGshvi9evXA4A325FEZOeLL74AAFdXV3kHogBevHjx5MmT7OzsS5cuPWgebQELCgoGDBgAAA4On0m8xS4uLo6VvKenp+vo6HA4nPf+jHxFYmIia5Z/48YNVoSzTdIh0K8TCARsMtSdO3dkdU4iK5s33wVACwtsqrOA3uKvv3DvXoyLw5gYeYfSLFRVVZWWlq5bty41NVWsAx8+fMjlclnZjL+//xuXKW/fvu3r68tWuKDBUNLKyspp06ax3/T09KyQaOd6dHQ0AHC5XAmOJW/T7BJ3Pp/PNpNJP1DwwYMHrAZD4jM8e/YsNjY2Ly/vr7/+AgBHR0cpQyINhYWFseeJD5viDi8iZ3fu3GHLS23atJGycw6reVu4cOHSpUsBYMCAAaIfW1tby6ZJ/PDDD4sXLwYAe3v7OtktZGZlZQGAmZmZrE5IZOXGjRsaGhq9e/v9/bcCrlufP48A2K4dVlXJOxTyLrW1tcKymVGjRgnravh8fnx8vKurq7BW3t7ePjQ0VFjTkp6eHhkZGRoayvpc29nZiVUHmJWV5ePjo62t3aFDB319/fj4eNl/tuaq2SXuiNi/f38AOHnypPSnYs+hpJknj4gvXrwYM2aMrq4ulXO8S2Ul/vgjrlmDv/0mysufPn3KnvRRhQB5XWJiYqtWrQCgV69eubm5Up7txo0brOFmWloaW96OEXklcuPGjewZ4JUrV9TV1VVUVJKTk6WMp6GdO3dKXMBDxMDn49Gj+Ntv+Pw5pqTg2rX466945AieOoWpqRWPHr2yz6+6uvrjjz8GgDlz5sgrZGn16oUAuGOHvOMg7xcTE2NkZMSqVuLj4wMDA4U77LW0tDw9PV9Zy6+srGTrGt7e3ikpKZ06dWIlfAcPHnz3G9XW1kZGRg4aNIidnMPhtGnThi35r1u3TuLKZNJQc0zc586dCwDr1q2T/lSsXcnRo0clPkN+fn7fvn0BwMjIKCkpSfqQlFZQEF67hoi4bh2eOIH+/vjrr3jwIMbFYVJS2a1bjx49ajhycty4cQDg5OREVwryuqtXr+rp6Y0YMUL6PjDMxIkTAWDixIlsVnm3bt1qa2vfe9Tjx4/ZQImYmJjPPvsMAGbLeqDDpEmTAGAz63BJGs/q1XjuHD54gJMmYUDA//T/B/hj0CAA0NHRad++va2t7ZAhQ7y8vADA2tqa7UhWSIcOIQBaW6MIX3Uid3fv3nVwcAAAvZcjKTt37vzLL78Uv6WZUWhoqLa2NlvdSE1N/eqrr9hRPB7vjeX1+fn5/v7+rIcMK47n8Xjp6ekNd8oOHTq0mXeJkInmmLizCoovv/xS+lMtX74cAJYvX46Iqampzs7Oe/bseX2L99vcuXOHzVPo0KGDNMPSm4X58+t7kB09isuWvfJz8crL+3sVFRVDQ8O2bdtyOJwWLVrcv39f3nGTJio1NVWGFSn37t3T0tLicDjJyclsdeo3ER4NsV3pY8eODQkJAQBTU1PRrx4isra2BoDr12lMRCMT9lpZvBhPnMClS/Hbb3HsWBw8GG1sdo0cqaWl1XD/t4qKioqKShPptC0hPh8/+ggBMCxM3qEQkVRVVdnY2GhpadnZ2cXFxb23U+S1a9dYy7sWLVpERkbu2LGDddO2t7dv2N7xypUrPB6PZfnsfsDf3194Kdu5c2dAQEBcXBx7Bj5ixLe0RCml5pi4Z2RkAICVlZX0p2KDzUaMGIGIy5YtY99aDQ2Nb75ZEB7+5m7QQhcu4Mcf9wYABweHpjPkrOmKjMRDh1AgQG9vTEjA779HHg/d3XH4cOzb9293d3Nzc11dXeHPxUWLFr33oR4hMrRw4UIAGDx48MGDB9ker3fPUmU7W3R0dNLS0szNzQEgTNYJUF5eHvuhK8NbFPJmM2ciKw7m8XDjRvTwwNmz8YcfMCgIw8PT4uNTUlLS0tIyMjKuX78eEBDQsmXLKVOmyDtoqYWFlevq7nB3l6xZOPnwhg8fDgB//vmniK8vKSlh6wscDsfHxyc5OZml8gYGBgcOHIiMjHR0dBTeizo5OcXExDR8yv3kyRNWIu/m5paenj5q1FctWxapq+OGDTRJQnLNMXGvq6vT1dXlcDgFBQVSnio9PZ396A0KCsrKygoNDXV1dVVXVx806CgAamnh2LH4xx9vOPDwYdTSQiurrAkTPKWflK78LlzAS5fw0CFcuxbf2Vy8tra2oKAgJydHrM61hEivqKiIVZEeP368d+/e5ubmV65cecfrWRno+vXrZ82axba0yrysi91CfP7557I9LXmDW7dw0SL84Qc8cgTHjHnlkeB0GxvhmoKqqipLZWTy1FfOamt729kBwKFDh+QdChFJ165dAeDGjRtz587dsmWLiEft2LGDtQzu3bv39evX2YBntvoOAMbGxr6+vm/b7Hfs2DG2oahz5y5JSdV+fqiiggDo5ob0U1oyzTFxR0R2jyjlNueHDx/a2NhwOBy2KVtFRYXL5QYGBmZkZOzdWzh4cP238/VdYYGB9f9r2jQqDhRBeTlaWaGaGtLMZNK0BQQEAICNjU12dvZ7b8hLSkrWrVuXnJzMhtqK2+hNFN7e3gDw008/yfzM5F0uX8aICAwOxlWr0McHv/lmkYdHnz59OnbsyLY0sB2BKioqUk63aQrYHENbW1vaTdT0CQQCVrKVlpYGYvbFvnjxIqtfnzp1qkAgGDdunKamZps2bfbu3fveEZYPHjxwdHQcODBYTQ39/TE6Go2MEACtrOoX4vh8lGgMZjPVTBP3OXPmAIC/vz/7Twke86Wnp7dv3x4AOnbsGBgYOGbMGGEJY/v23OHDcdcuzMzEzZvxzJn/jqqrwzlzEAA5HPTzk9GHUXre3giAtrZIo9dI01ZdXc1qykNCQkR5PZ/PZ3vTfX19GyMeW1tbAOjatWtCQkJjnJ9IoK6uLj8/f8aMGQAwadIkeYcjraqqqrZt2wJAbGysvGMh78Fq50xMTBISEgBg0KBBYh1eWFg4c+ZMtpnV19dXrEWB6uqa+fPrB1SPG4c3b2K/fti+PfbvX7+pe8MGcT9N89VME/e9e/dCgxZpNjY2rq6uoaGhIm7wT0hIYAsn/fr1E04mLykpCQ8Pd3V1HTLkOHtAqqqKXC7u2IFpafWLxRER2KoVamqiFJPImpmkJFRRQTU1lK7TNiEfhnB6gLW1dc+ePe3t7e3t7QcPHuzk5OTk5PTll1+6u7tPmDCBx+PxeDxWLWNhYdEY9XICgWDu3Lmsel5bW/u4xCOmSCO4f/++urq6urr63bt35R2LtDZt2gQAffv2lXcg5D2SkpJYucuuXbukvG+cMGECAOzbt0+so6Kj0dAQW7fG3FysrsY7d3D+fOTxMCeHEncxNNPEnT0n6tixIyJmZWWxRkUAoKen5+HhERUVVfX2oRIhISHq6uoAMG7cuFda8zJFRbhnDzo7o5pafYnj+PHYrx8+e4bz5mFi4v+swZN3qazELl0QAFeulHcohIiEz+fv3r2bpcuicHV1/f333xsjkvLy8uHDh588edLHx4dtmo+MjGyMNyKSYR0hZ86cKe9ApFVRUWFiYmJrayv9tjHSqCIiIgDA3d195cqVAOAnxXN/9qgwMTFR3ANzcrDhaOkFC/DGDZw/nxJ3MaiJ+NNFyWhqampqaj59+pTL5Y4fP/769eunT58+fPhwUlLSgQMHDhw4oKOj4+Li4unp6ezszPZkMOvXr1+6dCki+vj4/PLLL8KMvyFDQ5gyBaZMgYIC+P13OHQIBg8GPT34v/8DAOByP9inVHiLf/ih1NR0g76+/vLl8o6FEJGoqKhMnTp16NChfD6/oqKipqYGAEpLS/l8PgA8f/4cAPh8fmlpKQDU1NR4eHiwnVsyt23btr/++uvcuXOHDh3S1NT8+eefPTw8SktLhWPMiXwtXbp03759e/fuXbFiBas2UVA6OjrJyclWVlbCGZykabp37x4AdOjQgf3C0tJS+lOJe6C1NVhb/8/v2NqCWjNNRSUl7zsHOUhOTmb9RFVVVdkfgoaGhpubW3h4+M2bNwMCAtiQAmbFihXsqNraWh6Px44SfS82Ex+Px4/jjh3I5TbC51FSFy9eZJv2Ll+6JO9YCFE8AoFg3rx57JIVEhLi7+8PABwOZ+PGjfIOjdRjjfbmz58v70BIs8B2VmzZsmXAgAEAcOrUKcnOU1lZyeFwNDQ0pG8DGhGBmzbhpUtIc5lE1+wS96ioKNaKa9iwYQ8ePBA2cGRpupaWFit2T01NXbt27ccff3zt2jVELCsr+/zzzwFAV1dX9GHmQikpeOEC8vk4cWIjfCRlVFVV9dFHHwHAkiVL5B0LIQqM5esqKiq//fbb1q1b2UPCRtoLS8R148YNDoejo6OTn58v71iI8nN2dgaAY8eOsdYaEu+vyMzMBIDOnTtLH9KMGQiAYq6FNnfNK3Hf9+uvbJV9+vTpDQeSFxYWsgxe7eUDG21tbZbBl5eX5+bm2tnZAUCrVq0uNCzOIo1myZIlANC1a9f39pkihLybcK39559/Dg8PZ1e5OXPmUP++psDNzQ0AWAUmIY2qW7duAHD9+nVVVVVVVdUaSRu1HT9+nK1+Sh+SszMC4LFj0p+pGVHIxP327dsitn/5j0CAfn6PzMzat2nzjg0ZeXl5QUFBXC5XWKunr6/fsmVLAOjWrZsSbP9XCKWlpa1bt1ZVVU2iyciEyML27duFa+1RUVFscgqPx6OBl3KXkpICAC1atBCOiCekMQgEAlZukJqaCmI2cX/Ftm3bAODbb7+VPqquXREAFX+ewQf1hr2VTd/UqVNNTEzc3NzCwsLKy8vff0BVFYwfDz/+2LaoKG3DhlWrVr3thebm5j4+PomJiQ8ePAgMDORyueXl5Z999lm/fv3OnTtnZWUlw09B3kZfXz81NXXPnj39+vWTdyyEKIOZM2eGh4erq6uvX78+Pj7+999/19bW/u2337755pva2lp5R9es9enTx8nJqbS0NDg4WN6xEGWWn59fWVlpbGzcpUuX8+fP//rrrxKf6v79+yDd3lYGER48AACQ+kzNjLzvHMRWXV09aNCghg0cp3l6YlQUvq2BY2EhDhiAAKivj3Fx4r5dTk5OcXFxdXW1tHETQohcxcTEsDlxEydOPHXqVIsWLYB2RsrbkydPWDsEIyMjsZ8kEyKyq1evqqurm5mZSf81k6yJ++vy8hAATUykPE2zo3gr7hoaGmfOnBGuiFdUVFhkZcEXX4CREYwfD7GxUFPzPwf88AOcPw8WFpCUBCNGiPt21tbWBgYGDTtCEkKIInJzczt+/Li+vv6+ffuCgoJOnDjRt2/fRYsWyTuuZm3mzJlXrlzp0KGDv7+/cPw2ITLXq1evyZMnP3nypHfv3hkZGeIefvbs2X379rFfS9wL8hUPH6bb2S0eNixSyvM0O/K+c5DWvXv37m3fjg4O9bOOANDICA8fxrlzce1a9PbG/HycMgVzc+UdKSGEyF9iYiIb/Dxt2jR5x9LchYSEAICBgUFaWlqbNm0ajuImROays7NtbW0BQEtLKzAwUJRDXrx4ERoayo5q2bIlm/FsZmYGAI8ePZIyHuFAKCnP09wo3or7KywtLS1nzoTLl+HePQgMBC4Xiorg0SMYMQKWLYMJEyAuDvbsgTZt5B0pIYTIH5fLPX36dI8ePRYsWCDvWJq13Nzc+fPnA8DmzZv9/f3z8vI4HI6hoaG84yJKq0uXLsnJyT4+PlVVVfPmzfPy8qqoqHjbi+/cubNgwQJzc/NJkyalpqaamZn5+PgUFBT4+/s/e/ZMVVUVEaWMR1a18s2Nwifu/7G0hLlzITER/vkHDA2hZUsAAENDKCuTd2SEENKE2NnZpaen9+jRQ96BNF+I+O233z5//nzUqFEGBgYRERE6OjohISHCsYCENAYtLa2goKDw8HBdXd3w8HAHB4dXymYEAkFCQsL48eO7dev2yy+/FBcX29vb79ixIzo6Ojc3t3v37qx1KZ/Pt7e3T0hIEDeArKwsHx+fx48fAyXuEpPzin8jyc3FGTMwLQ29vTEnR97REEIIIf9hDfWMjY0zMjJMTU0BYNu2bfIOijQjt27dsrGxAQA9Pb39+/cLf3/r1q0sOdTW1p46dWpKSkpkZKSTkxP7TQ6H4+TktHv3bjbLicPh+Pr61tXVvfft6uowOvrPYcOGsV7bq1atQsQRI0YAQGxsbCN+TmWkpIk7IublYUwMPnwo7zgIIYSQ/9y9e1dfXx8AIiMjx40bBwBDhw6leVjkA6usrJw+fTrLyD09PSsqKhCxsLCwR48e69evv3Xrlr+/P5uxCgAtWrTg8Xg3b95kx/L5/DVr1rAHREOHDn3y5K2znIqLMTAQraxwwIBpAKCrq8vj8a5duxYWFsY226Snp3+gD6wsOCh1lRIhhBBCRCEQCIYMGXL27Nmvv/7a2dl50qRJbHOqhYWFvEMjzVFYWNisWbMqKyvt7OwiIyM7dep09erVoKCggwcPsiEPXbt2nTVr1rRp0/T09F459uzZsx4eHl26bLl1a+y+fTBs2KsnDwyEpUuhqgoAYMiQDFfX+JEjR0ZFRQUHB+fm5gJAeHj4V199JRxaT0RBiTshhBDygWzcuHHRokXm5ubx8fEDBgx4/vx5SEjIpEmT5B0Xab5SU1Pd3d3/+ecfXV1dc3PzO3fuAICamtro0aO9vb0HDx78jmOfPMn38jKJj1dRVYUff4SlS0Glwd7JmBgYMwaGDAEeD4yM4OhRv50719XV1QGAnZ3d7Nmzv/76a21t7cb9eEqHEndCCCHkQ8jKyurVq9eLFy9iY2O3bdsWFxfn5uYWExMj77hIc1dWVsbj8c6fP19QUGBgYDBlypRZs2aJuG2Uz4c1a2DNGhAIYMgQiIgAU9P//ld2Nly5Ahs3QloaODoeuHx50hdffMHj8YR180RclLgTQgghja6uro7L5V66dGn69Om9evX67rvvjI2N09PTWVdsQuTuyZMnOTk5Dg4Ompqa4h578iR4esKzZzBhAsyZA1wu7N4N6ekQEgIlJQAA5uYwa1bt9OkF5ubmsg+9OaHEnRBCCGl0oaGhkydPtrS0jI2N5XK5ZWVlhw4dGj9+vLzjIkQ2Hj2CdevAzAyys2HPHli0CPbvh+fPwd4efHzAwwPU1eUdolKgxJ0QQghpdIi4ZcuWHj16rFmzhu3qY5MjCVEm69bBgAGQmAhPn0K/ftClC3zyibxjUi60k5cQQghpdBwOZ86cOQUFBTU1Nebm5sHBwfKOiJBG0b07nD4NT58CPU9qDEo0OZUQQghp2oyNjc+fP3/27NlWrVrJOxZCZK97d9DUhIULwcZG3qEoKSqVIYQQQgghRAHQijshhBBCCCEKgBJ3QgghhBBCFAAl7oQQQgghhCgAStwJIYQQQghRAJS4E0IIIYQQogAocSeEEEIIIUQBUOJOCCGEEEKIAqDEnRBCCCGEEAVAiTshhBBCCCEKgBJ3QgghhBBCFAAl7oQQQgghhCgAStwJIYQQQghRAJS4E0IIIYQQogAocSeEEEIIIUQBUOJOCCGEEEKIAqDEnRBCCCGEEAVAiTshhBBCCCEKgBJ3QgghhBBCFAAl7oQQQgghhCgAStwJIYQQQghRAJS4E0IIIYQQogAocSeEEEIIIUQBUOJOCCGEEEKIAqDEnRBCCCGEEAVAiTshhBBCCCEKgBJ3QgghhBBCFAAl7oQQQgghhCgAStwJIYQQQghRAJS4E0IIIYQQogAocSeEEEIIIUQBUOJOCCGEEEKIAqDEnRBCCCGEEAVAiTshhBBCCCEKgBJ3QgghhBBCFMD/AxWSS2LAGA9/AAACOHpUWHRyZGtpdFBLTCByZGtpdCAyMDIxLjAzLjQAAHice79v7T0GIOABYkYGCJAHYiUgbmBkY0gAiTNzMGgAaWYmNgcwzcLmkAGimRlhAuwQmhkugRCAKmAASzAxYjECzSxOBgWQpTCuIIyLpgxDAO5IsKOZMGh2sEHM6MIcYGEM1dzA4GBkUmBizmBiZklgYc1gYmVLYGPPYGLnSODgVODkUuDizmDi5kng4c1g4uVj4OVP4Bdg4BfMYOIQymASEk4QFslgEhFVEBVjEBNnEJdgkJBkkJRikJJmkJZhkJFlkJVjEGFKkJNkEGJJEORKEGFhYxIRFmJhZmNlY+cQYmHj5uHlF+Rik5KWkZWTFIdFDYO88Wb3A5sbJhwAcYoW3Nw/5et8MPtBitB++dAGMJtDPdKe4VQ/mN3G+NdePDgBzN6bHOlww6YezI4/O8Hh3W97MDupvN2hddHh/SD2aW4TB8bzrWD2xXhFhxjJW3Yg9qVpmQ7aHFvtQexnNosc/DPzwOz0iGMONdu+gtlZTHsdXrFGOoDYr2UfOmQp94DZbyf0O6x5Xw5mf7Bqc9DhXQ1m33wV5nBonQWYPWXldftsDSawe2r72u0Ca4+B3XBUJHb/5HolsLi2htCBi1OZwWzVKyoHJq8RBauR315/IFLnwl4Qu8ew88CkoPVg93Au3nZATO0tmM32c/+B7XtDwHY1Z709ULm8GMxmOsxxsD/NBMxmlmA5eKx8DVh9575bB1o8YsFsMQDSMpVgQ62s1AAAAiJ6VFh0TU9MIHJka2l0IDIwMjEuMDMuNAAAeJydVc3OEzEMvPcp8gKN/JvYZ/pxQXxIHHgHJI68v3A2rVkQSK1Xq3amu5mOHdu5tHV9vX36/rPlRbfLpTE2ltbgn7e7t28EAJd4/codCXgh6Yo6lwb0eArtQ/ufxPk+VLBPANoq7nZW+fK8CnSd6FsFEKTkJVaY2D0icS6qYPc5xs6QgmJNhTv7mFvFzc4q78+rxM7Q4eBKkV23mhfpxMx7t5RMal6oGzJtFRAtZpfCAepeKzSg5oX7kJ0N7ILCNS/aYbjvtc5YVBkd/ai6VTnoo+rFYeijchBqKrMDi+895+nniD6+Ui9iQ7YXm1L0IpEXmTs2/qtefryw06y7e6L+rDilYmeGHXmJPgLmogp0GmL3PlIoTsyYUoPH9qLstezGWrIjjhWR/tFHL8zdcDCPnVkT2KQYUUw417FVELDWATGzyea9j3h40YvGeTRlq5jSWeX5+RIqMW3xXn8ktTPgOmM27R6MPoJZVLGuMsdjAtv5DHhhp62Tqt+zK7M2va+jW7TjXhsjoqQSaaDjc5FAnCSQHPci8aVJAo0kgWaSQJYkkCfxtqbolg6EmAQb0uO1QMhJuGE6CLQOKkySDgLhzCdB7Pyn6SAQwYMEIkyCjTIHgShzEIgkiTRKB4FoJBmN0kEgsiTWyJN448xBIM4cLC8Zdvz8W3r5z8RHZPhw/bm1t/fb5RcmGZ9zQd0f6wAAAW96VFh0U01JTEVTIHJka2l0IDIwMjEuMDMuNAAAeJwlkTlu5UAMRK8y4f9Ai+C+QKEAh/YhOjV8Ah/eZE8k6XFRVfH52rQ3/+yf/frcsvd+fbz36/l+b3lv3pu+nuf5pOfpJ/37fV0CxCi0LgUjC1r3RRCIfFBVhjRC6FIaD0NCqXUjpCb/R1qiPUlQ4d6DAoaGsW4BKY9DKhN7rH/DU7q4l1fYEBaR3kNdSl03Q5LwAagmOcSYNBaCsp0hAddKWQRK2vJvA/Qq6ZYS4uo1DlTJ1S1F5TIthW66RhRWawlA0VoKEtUCWomm6zRk6HxSqdcykJbhx40l5mqBaR5j2DsEHzMoEjypsGtYHTcngs4uXaxyuqz/3Jv7jVNOCGiOfIiFqa2JOtW9PU5oZXYYIfXeZp3WnIRAvM61rK/Vagn6PKOgQQdLNjZZW+19RYdUPCTxzCSYRh9qks7wQ9isnfRejbnl5ZBiXRv5Kpnr/fsHXUl80py6h+4AAAIXelRYdHJka2l0UEtMMSByZGtpdCAyMDIxLjAzLjQAAHice79v7T0GIOABYkYGCJAFYnkgbmBkY8gA0kzMQIYGiMHC5gCimYE0SIIZKIGFAVHCDtbLzIQQgNDMcJUIAQxDIQIcYFuZmdgYEkC2w2kOBgUQDeEyMpOsHM0auAA3A6MGMyOTAhNzBhMzSwILawYTK1sCG7sCO4cCB2cGEydXAhd3BhM3TwIPbwYTL18CH78CvwCDgCCDoBCDkDADn0gGk4iogqgYg5g4g7gEg4Qkg4hUgpR0BhObTAaTDFOCNEeCNE+CCDMbkwwbKwszGycXN480Bxsvn4iUNI84LPwZZKdbMDtK9kk7gDi6bG8cAs9NswexdWZfdJD8OX0viL1Y6rmDrdbW/SD2ovVnHAT2aB0AsbWPznFYzasKZm91bXdYVTAPrKZ2m57DQ+HJYPbE7cwOAdtc7EDsSb0WDmue7ACbv6yP12GNuxHY3sfPzOwFvpmD2cKdj/fazzsPVpPz6Ox+jt+3wGzz49IHpm95BTZHdU71gXvCPGDxDt/JB2Zt+Qhm/zc/fCBZ8C+YXbr9xgH2uBCwmd8CWA7m8ESB2dMmPNzP/TsR7DafeaoHtizlALt/7s6mA/7fmSBslbkHHOSCwWwR/rMH7uT7gtmiVc8PpJ3uA7PfzWrfN29LBdicvi5+e99z/WC3bduw0OHK7DwbEFsMALn2j9I8RSYCAAAB+3pUWHRNT0wxIHJka2l0IDIwMjEuMDMuNAAAeJydVkuKHTEM3PcpfIFnJFm2pHVeViETyCJ3mP3cn8itbjGBGcioMbwq3C5KH6vf0fbz+/nj9a3lQ8/jaGRtYGvw4TKz9ocA4NjvayfAcZ7sPGBuBN13oX1rn0m8X6eK9CFTN8KOolRTWX1O2Gcffla4qCKdiGCrYGecXPUybO2zD+pridRUuKsZhsoUg6oKkYyIiIZoTYW6kJf+VEH+x8vLV1RgKsZZNMKqF9Wxol+YeVa9EKJeselcNS/QBcOBuxLmkhfvWPQnIlrRf1/34pVZoDNUBKFW6ce+yXw54Km1G/AY3QZeZyfL+9v46/9V2CMaFBGpF73mZXUEuPrFRGpd5yoidEY0+kAtRuQTc5mGCoOUKy3eJtE5qlSbL3uq6DkPHOGYWIuIuzcdhQrwKtaIuyFIdA6ZFiNantNzvmwVL3otIv8GjCHhihcVIwKvNFsgEyx+G/32LLiyQQpWU5k+d+meB8ilWedp9SqPIIEwiCM+1yb+M5M4WkkcSRJHmgKOLIk1hPs1R3ssXgQbUhJqOJKMhunAEaYDR7huaUcoSaRhOnCE6cDRnsB4C1A6cLRvXew4osyBoz0bLsKNZhIXSAdbIHPgaNckE+L/u+4du5O6SWQnSYb9s7XvL8/jL/b1gw/8z/L7AAABXHpUWHRTTUlMRVMxIHJka2l0IDIwMjEuMDMuNAAAeJw9kUtOxjAMhK+CxIZfSiO/H+qyezhE95yAwzMuEtk0+mp7xpPr/br5xvn4vOX7/r4V16/r+rpe/99b9HXz289HbSFWWbJNyX2duTU9ffHmLM51xnYn7nXQpjQhjykSkXXwNnb1qdEOs3XIjsjUddqubsohntUxRCQlpksUo9cpO6Wrh7A12RDyolq0uYVJhlRpGOwYTg0Q5lIYzvJABe1ks2CQStNeJ5wyDjG6QmTGQCKoLEGSKadoNjZSaJmX0SDdrWwM5JZYH8jQpzKTCkZmUmwm8gbpzKctdqZAWLdyCdY4kGrgL4hRwsfoZzyZEQZJaj4OvBJecGF15keOyjkGkYXagxqO0akbaeWfBaOC9CDqxgMceBHV8IVyC1yfFCSs3Eazk51iwvKAo0lYEHRC05G5lIAQmwee8/XzC2NvdoE5rUbdAAACjnpUWHRyZGtpdFBLTDIgcmRraXQgMjAyMS4wMy40AAB4nH3RX0hTURgA8LNz7+7d/81td3d3OruaizUqfKtedk9R4YsRRi9meKjAS0VSRIU5EjRqBf1RIlaLCG0QZVIgUbPtJJE9FCbhIoSConwpMuihh2DtftNKjS4cvt8933e+813u19zgW1R6HKVlQuUnUlrR0uoyCUgvRQ7jWXClHSPD8ZZyxOJshUkg5YRA5ipnNxZViOXI/VW54MiiXr+PIGrMyf3jsv9g4bXzv+BPz0WDL7gUIsZzUUSqkZ+fNnF2ZIpiE1YxF8WYV3mzahZ0LIhUtKgWq2q16dhmp3aHjh1O6nSpLreO3R7qqUAeL/X6dOzzU7+kYylAA7KOnUEdi4qOlZAaqkRKFa0K6zhcrVYvQdUqUmtQTS2qXYpq61DYTINWKruo7KV+XjCHqxRREGx2hzNoNbtdstcj+PxSQPbKcz8aRYLPQqTvdYoZLw++39S6xg6AzzQWNCv1g49F6slAxgJevlvSxmYG8oafS/u1Nd9WxQ2f6KnLHRxMaYbF9fF4fTxGDO/NtOULkX3g/AeJ8Zkt4I6729nkpiR4fPIKe+M8AuY+Z9jOjAJeZu5hRxND0LO58hxrlYcfGS62Zdl0ZwxmeNJznyU222C2rTNTbLTQALZOnGIfO1Rwb3oXKzw8BG7v51i2eBh8ubU/P8RHwKk9xXxn8jr0bL/Tyu4V0+CoZwWrTHyCGZIj4xrObYTZmqWf2kjvBfAE30xuNF0Do9srSUuBA186LpO+rAJnmxp3EPHpVM7w9NltpME5Cv2z/WlyseL9WpjhdJ7EHnfD/q2TX4i7WwFvWG1Z9+r8S/C7qz/Ii1AL9Az8AlnYuG5Mfsd5AAACbXpUWHRNT0wyIHJka2l0IDIwMjEuMDMuNAAAeJydVkmOGzEMvPsV+oAFkRQp8RzPKcgEyCF/yD3/R0qtNqcHSICYRgMuWlK5uIjsW1mfH4+vv36X+PDjdisySm+l/P1x9/KTW2u3Y3/tNBXg3utsw9ZvrWK1lS/lXxTX52ChKjzmYpE6xoFSLDY6LxauQrPnWLgOZdksJMoXlu//z9KqTlnRuFPlOa9xeX+FxQUnDkSj5eJyx1lrY0cIiUvmCCxT546Q2VPV61q8dV9npdr0mYrLym/ntlnYGuW0SO0ou3W2I0fuOS2oe9t+CFDjnBatTCbnjWrZTPdKrHbeqEHJHPXaB9POVpvJewSPplrfLIaCybIM0XbeRvvk0Qs5sjqH0M45yUzWC6pkqG4t2oZmq07PuKBeWDzHwrWp+cminswR+sHYWuDRyGaaqrv2k884mWncRt+ZBgtbrkvBD5vHPMINmG13vdf7LiYJ89ml2vSR0gIWt52ZXrV7cpIgLs10s/iYydmIqUbHPAJq2e6Ns2Lj9AMkuRuwPNI97Vvt/CkuL+RIqojNXS9Kyf6CmM5ddfts8p1Bq08dW0tjlxzLQDT4jIu6J2t3IhqiW4txsjNAy7CnH+gvqapDm+XjWQa+5PhpGUA9VmBorABZGEDj2LkMoBkGkMc2L2subAOI6LkNiDgMLiRhSKEeRi8UCoDIYsUKhQIgmrENhseKl9X1tgHEoQCIQwEQhwIgvipgvTjHoQBovaLsPwXiULBWQgGQhAKgNez2NiDhqxFZAJIeRi8SMQASuxqhYP3JhzY9An8aO4gfxlPbt1Le3h+3P9eN7EARvDsRAAABrHpUWHRTTUlMRVMyIHJka2l0IDIwMjEuMDMuNAAAeJwlUktyKkEMu8pbQlXT5f+nqKxmTw4x+5wgh4/cjwUDQpZlievruh5f38/Pzff9+Nzyc+P5uvX+eVzP2+55qT1/5Hk/voHc/MEP13Xe//0+ZBuXxXrZLkrP9eatklnrpTvnCSDSxNZLtnJprLfsdJEehNUZQ7S91CHDW6pigFYiWbQ5qUzW+4WPQRGywCEKHhKXZ/eSHUHkh9RkVbp0R3WBNGtNaBAJYgWi2+CRl2EZpt9jProclAqSWeZbOJShbERzBTgsHortmkxyEEshnEGbCh7Vz2B5mA8Y4R11sFTrOPcGkwGKXakzq4igmI+cpLsMyxHl8enQ0iGVaJ9byANGB/GeLCexDKyesSzjA3W72UkzhPj/ye1wPZCE+9EKuG4cVIizT1FoxZACVacM0IHvtt2asQsiFD5AJ0ZPkaxoZGx1n2Y1ElQcjz64zszYmjxMWpAMINVzBG9HpWgE+behCQRJZMrc2O4blUQOjaQVtISEoFNozTr8X94FCWQ7pIB3GVJGS0ILCc3m5+8ft/eYEoCiQ+kAAAJuelRYdHJka2l0UEtMMyByZGtpdCAyMDIxLjAzLjQAAHicjdFLaBNBGADgySSZTZpNk8072TzGBG1QIVqotyQb6s1KkdJCKciCgosvFC81CD7QiGAPAZuC7SlF6SVCECt6SKaI1R6qtVaRGIKUXnqQHnIQL8XdP4nFFzgw/N8/88/wz+5WpdRA6uDVqUOtEVPnHnVe0xGkqFGPcRt6dSWuwWBqRcy1K3REam0QqVP5F/x6tpNzraj/mf/PnZ3S9lEkq1HrsxU5RLX1Vqr7Y/vfLbUP7LT0W6EAF+80YkG6ONZhivVxjA3UYKRGomDCyZxJwSazbO6iXRZq4RXMW2VrN+22UZtdwXZBFhwKdjip04VcbuT2II8XeXzI50eOgBwQFSwGaTCErGEFhyNyhCqY7kLmqIKjRplaZNEm+53IZSDGqNnEEcJbwxFqIXbBERBtxOX2+PxOb+eHotgH/xM2ebTCtCQXvM+EmQIYbT9io69GwEv1Bis8GwSX0T127CQH3rs+x8Q3/VXNTfaJCVM94HPFr8y3vzetOfxglYn1b+DhxSIrsE0wWbrNhvoPS5qzawmW70uCcwJhE3eWoebdoL9qOl8Fr1XHktMnXCnN0dHF9EqoO6k50eOXtg/NQs3Cxrh0WZwE14byUu1AqqJ5tndBup6bAjcTdanx+iLUHOdI5n1+GCyO2zMjBw3Q/9VT8YysUPCl7zjzvPEFHHJ9lPperIK9pbPSvrvz4FtbvPTwwhx4ebOUHpuOwfepPUXSbj4LLp7OpvhAAt54ZH2lcublDfD842Z1YCAHfjsTY+WbZfDnjQlmutKE93p+ADg7rGSkoWgYAAACVHpUWHRNT0wzIHJka2l0IDIwMjEuMDMuNAAAeJydVs3OEzEMvPcp8gKN4t/EZ8oJ8SFx4B2QOPL+YrZJzVYCqc1qpY6beDp2HLuXcjzfb19+/i758O1yKWJFRintn29ElB/cWrtg+9WqW+hEob0dHK1itZVP5X8U5/fOonWQt4l6c99jsao+7EBSxSz2WLyG62JhtX5i+fZORM5GB+JKZHZi+XgnIu79yMa11e66HVHvsljcdDO7vSo7TV8P3zxprzb4nlOqIa67J92GL5bBzrtVxypy+EpF0Z3z8sZJc+3a7yxcw3Yj4tpCx4zIm429emnVYsRk0Xiqute1HB4mKxukT1X3uhYoMI1HTkX7nhauEtImH3ejPRapY8Riod17VBQRkc0807DNiBzZ6DpZOGwzu46I2vIN1c2THlW6r1oborLHErVxyKo/eroBr0dE8GVbLM6bMwAR4WSOvFypdvOxx+LocK1NFtddLQKWQZNFd7sUbgA3XixCm1MNdS82+uw09tylXu910NKIjjgwG6NtTnt48KpY9E55miRv9Tpto817iWmwOdUwhZrEZKHYrJdTTg09oj/NgF8vs2hV0VUliuLd0YJC4ft7GPiQ+1eHAaS5AsNyBcjTAOr3nYcBNNIAijQCF/ZhABE9CICOClkGF5LcJoU0DS2UCoAoFQBRKgCiVABEqQCI28MHiFMBEKcCIM4cALGejVQAxH8VgDoVAHEqAOJInyiSChCP0GMbkHAaXCRzACSpAHnDP+3HyjyF3EZ8+lHKFajMsL+W8vnjdvkDzhHTJ3E2o1QAAAGdelRYdFNNSUxFUzMgcmRraXQgMjAyMS4wMy40AAB4nC2SOW7rQBBEr+KQBKhG7wsER8ylQzD98Al8+F9DmQmHD1O9VPH8Ps/t+72/LrnwbO9Lf67tddn6ePl5vrZzP0/fr8ve5/5zXXr+2y/5+t0eQRnjB97jOXU8H04tMX3gUJwRQEGeHXI8jCxiFChp0j0WUo+PLjUYOiWRP5lWJWRMld7pt64KNRbL8PQBK3JNKIEGneO+Fq2Zh9DYrQvizhIAcJm7n7rpHEaciS5PNC4v80NpIm1uwuOtUCVHJQgTOnQ5kE+sMZk40AO7M4n7CEoJhU8CsMGVNYCSjfGqpBUCB4y6e9aEcm/hkAgO6CAdZXY8E/JyW0ixmPdC3YwNGXa7Y59nk1Wu3dtcAyMOsY7pUoWkFVSCo8ZdKBV52ZKhC7oJVeRdOHswDkB6Rq8Bc5pvAnsl1g7KitlBTFbq2NOia0UWcCzXFRZRXbEO58yyR5GzF1xFcPPx0LkGdvoKZRHExIb/wkkm+5MFKuL/CNhSHndebo7koC4Yn8f++x+gf4+ZxLNnGwAAArt6VFh0cmRraXRQS0w0IHJka2l0IDIwMjEuMDMuNAAAeJyFkltIVFEUhvfZM3PmzM25ODcd5+rMaJIPhg/SRHMORSk+KFFZPtSOiA6EReaLEF1gJEOETCSzi1D4UCKpZRjqzJZSUUjKpLCrlPkQVFQa9RKdsyanSMoNi/Wd/19rs9bmfIx3vUTS0UvBoOTJlWK1FCcYFhFZV5iQT8osB5YCL+WkjVNZncxMSuehTsnyopwVzB+w5KxUoU5mRcr4LfwqQGBgZuW7ls39n46/WjXwAst18z/0lMAlBayTnpfBHGYUUiiRUoVULGLVSM0hTiNijZZodSLW6X16g4gNaSTNKGKjiZjMIjZbiCVdxOlWn9Xms9lFbHcQh1PEzgxfRibKdCFXloiz3MTtEbHHS7w+5PVLboAEslEgKDWGSCgs3Z1DcjgS1pOQkQRtxO8iVpWK02h1OawhzRgK61mT2ZIeMrJ2hzMQtLFZbo/X73Is/RUoV48madPwAi9/lOsp9UyPAt/9/p7ume0Hfu45S5+NTQM3O3tp53wr8OLcFK3pOwBc9OkebXxqBG4bekt31DVHZX4x/oROD5+Jy1wVX6AbtwwlZOaLZ2jXvnwq8/3KTlp4zAxcaamjW/eXAp9jGujebS3AxdUl9EtJL/C46nVi4mI78MKYOVHZNAjculgWXTN3Dbj+0PHo51gNcEV5aXzqwlrgK6e3D9Lu2zDDzYIb0ci3CuDhVUF+1+Qr4OD5o/xARgvwg0iMb7/VsV7mk0e6+ZYNIuy1OPCY91u9EZkf1TLCTs4OuuGyVSgrugr7zt/JE9a1nYLeup58obpqFmpKGzOFGW8evNW7mFvo6IkBVx9WCvUjSuD++QgvRi9BfeHIZj78Jh/0zg+j0QZbCPSHxROJ7K+7Ya/yvgKqMISBaw9epz+0m2B++09SV9DN/yIDLgAAAp56VFh0TU9MNCByZGtpdCAyMDIxLjAzLjQAAHicnVVLqhw5ENz3KXSBFsqPlMr1PM9msA02zB0GZjn3Z0IqvXQ9sKGdTdNEUqXoUOTvUdbn29tf//xX4sNvj0fRVlRLaT/9unv5m1trD7z+HFXF+jppdegcC7WKp638UX5Fcf8eltZos4zKJHpj+f46i0HLsHW2VzO7s3x9nUVrH0MuLUM9ydLB0veNFFomZ33p3rYCqWNKy7JQ183CldXsxvLld9wlu9wg8HHPajHd+X22ypMtx7JrbXn6pKrmlNbibZ19crXmkmPpVbrOi4VNkiwKT+fy9CnwOVsvWkXFLzTGSLoLBWrjVLFRMtNUbfR5afFpnmNp6CPvl5bpnKtdnJjEcrLVkvWCE+42L4cmt5HSghuRX5nm6rQdSvnSSOh0AMou5wtVGdMuvonhmfOF16xrJ+c6c/WCCec65sVCQ3O+YNqS8HEDIHkj1D3pqRJvH9x9fQdgfxi12B+sOS2zNuczD/ocydp1TNu9nZFpoZlzl1od9n4jzuYILLNfdY966cmJiRuNvicD6g+DJjcxwTJV/VSOfpiYf/5Ojtiuvcq1mab7yGW0yxfmfB8R09n2RtbuLP++zEK1dz2ejuNQZgf02eSamOqe64C1nW1nBqi7JvcRJj9vd9EBZh8mw8s9jebj/bsCINm/J9B70OM1oBEBkEUANCMA8ggcTbIJEQARRUCFOAIuJO9ngFbWzxMta22foBcaEYxCFoEVmhHMQh6BFw4FQEzv/wPE4QHQGrbnNSkcCoA4FABxeADE4QEQhwdAHAqAJBQASXgAJOEBkIQHK9Dbn0ooAJJQsAK7XU7CAyDxm70aChaKJ3iH5Hbmh73g5R/adF9uB59L+fTl7fE/EoEV9YL6IkUAAAHMelRYdFNNSUxFUzQgcmRraXQgMjAyMS4wMy40AAB4nCVSSY4bQQz7So5uoF3QvmCQk4EcZw55Ql2DyQfy+FBlA3aX2ZREsvT6/fj5dc339fp8bd57P55b8NDv/b0fn9sG+npt33P4dW2/9uP159p2bd1y/eUf/x7PWKbpfOcKq9D7AwgR+x1LWLUBJCiRdvvKzIPY8ghJcMLaADgA99vAKI7TxJvMb11R0n4QdgMiSyyTT1/ORj/GG3E+nLSZ+aQlJSnv6RAmfj95WTblm9aE01NWUqseAepWOpCkHsjQtgzNFHOK60BqCsE4BD7TCy8t4x4HyT51vDK8htOVNRII7to8h1UtiOKDVrGo8UBKzTxQd2bHDCyh4FPJXT4iZDV7xsGIUWJ6LMElZPDSqBzfhawVpTKJ0rGdNjY+dLVFHYQRCTKFQxW9aeE3DKpggqEJSiil0AVJMeENZpJglqKqFrXIYF5BAaSRdvmJXfntmWlF0pAk3uOBlCMX6HFVm6rwnvtEWtzzv8x6loAtomeQYGFAoDSPsdTqyIeXyMhH9DJycYscPSOWu2F9MNuwjOcuvAiiEan12TSQc7rj4LiT9/KpeB/52M9AaNe//11apR11s72KAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAADICAIAAAD0hVwYAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd1RUVxMA8NnC0psIYsGC2FsUO2osqKhgiRqNil3sxN4NdjE27BIrdrEDoogaBCtSBMQudukIIn135/vjkv2IEdwmb9H5nZwcXN+7Owi7O+++e2d4iAiEEEIIIYQQzcbnOgBCCCGEEELI11HiTgghhBBCSBlAiTshhBBCCCFlACXuhBBCCCGElAGUuBNCCCGEEFIGUOJOCCGEEEJIGUCJOyGEEEIIIWUAJe6EEEIIIYSUAZS4E0IIIYQQUgZQ4k4IIYQQQkgZQIk7IYQQQgghZQAl7oQQQgghhJQBlLgTQgghhBBSBlDiTgghhBBCSBlAiTshhBBCCCFlACXuhBBCCCGElAGUuBNCCCGEEFIGUOJOCCGEEEJIGUCJOyGEEEIIIWUAJe6EEEIIIYSUAZS4E0IIIYQQUgZQ4k4IIYQQQkgZQIk7IYQQQgghZQAl7oQQQgghhJQBlLgTQgghhBBSBlDiTgghhBBCSBlAiTshhBBCCCFlACXuhBBCCCGElAGUuBNCCCGEEFIGUOJOCCGEEEJIGUCJOyGEEEIIIWUAJe6EEEIIIYSUAZS4E0IIIYQQUgZQ4k4IIYQQQkgZQIk7IYQQQkgZ4OPjM2zYsLi4OK4DIZyhxJ0QQgghpAw4duzY4cOHfXx8uA6EcIYSd0IIIYSQMsDJyQkAfH19uQ6EcIaHiFzHQAghhBBCviIjI8Pc3BwRk5KSTE1NuQ6HcIBm3AkhhBBCygBjY+P27duLxeKLFy9yHQvhBiXuhBBCCCFlg5OTk5aW4P37m1wHQrhBS2UIIYQQQsqGtLQXr183B5A2aZLE42lxHQ4pbTTjTgghhBBSNpQrV0MkqiiRpH/6FCzXCZ8+QXAwvH//jeMipYQSd0IIIYSQMsPYuDcApKcXX1smPh7++gvmzYPsbJgyBXg82LgR7t4tvRDJN0NLZQghhBBCyoysrFuPHrUViao1avSy6OM5WVG6Hn5w7hyEhQEiCARw8iTk58Ovv0J6Ori7g7s7RyETtRFyHQAhhBBCCJGXvn4rLS3L/PxXOTn3dXTqZWXdysjwS08/k5v7pOnx2vyYJ6CnB127gpMTGBnBixcAAJmZoKfHdeBEDWjGnRBCCCGkLElMXItYYGTUMyFh1YcPJ9iDWloVbWLH6Bm2AmtrCAwEPz8oXx4sLaFyZXj2DBYvhsqVuQ2bqI5m3AkhhBBCyoC8vKfp6T7Z2RHVq+978WKIUGipq9soJyfWxMTJyKgnjyfNwmt6v86EJ08KTyhfHhISoKAAdHQ4DZyoDSXuhBBCCCGaSiKBW7fiq1xIyzqdm/uIPWZpOVcqzdXRsSlffrSOTv2MjHNxcb+IxamAvPJZlrxy5aBLF3B0hD59QCAAgYDb74CoES2VIYQQQgjRMNnZcOUK+PmBry/Ex7/f3Tz+pzChsJyRUQ8Tk96Ghp35fN2UlD0CgWFy8s6srFAA0NGpbWzc2zLrF6FNS0rWv1eUuBNCCCGEaIyPH0FfH6ZMgZ07Cx+xscldOrrAqY1AUO7jxwsZGb6IYjOzEQUF8To69QCkBQXvjY176+jU4TRuUhpoqQwhhBBCiGaYPh1q1ICHD6FJE7Czg969oVs3ePdO+2rAkwbDCsTv2FECgbGRUffMzMuZmZetrLby+brcRk1KDc24E0IIIWVbljRLn6/PdRREZQ8fwsWLMH06ZGfDggXQsiWcOAGBgZCVBQAvTtT9VCfbyMjBxMTRyKgbj6f96FHLrKy7Nja+xsaOXIdOSgnNuBNCCCFlT5Y0a1XCKhFP1EyvWVBm0Poq67mOiKisoABEIgAALS2QSODECTh7Fng8aN4ceve2at5bWL1J0cONjZ2ysu6mp1Pi/gOhxF1TxBfEV9SqyHUUhBBCyoa9qXv7GPdpqd+yAAuCMoO4DoeoQ4MGsHkz+PtDSAgMHgzZ2eDgAE5OUKkSfCljMzHp/f79HxkZvgA7AXilHy8pfZS4c+lezr19qft0eDpDTIcc+XBkTeU1XEdECCGkbHib/3ao6VAA0OJpcR0LUROBALZvh5gYmDYNKlT46uG6uk20tWvk5b3Iyrqrr9+yFAIknONzHcAPbWvS1nWV162pvKaBbgOuYyGEEFKWtNZvfSL9RD7mJ4mTEsWJ/eL63fh0g+ugiMpEIrC1lSdrZ4yNexUU6D54cO2bBkU0ByXuXOLxeDRTQgghRAn9TPpVEFb4M/HPt/lvBSA4m352ZcJKroMipS0p6ZcuXXhjxx7iOhBSSqiqDJdWJKxoqtu0lk4tQ76hR5IHLZUhhBCihDRxWvXY6pmSzLt17zbXa851OKT0FBQUWFhYpKenx8XF1ahRg+twyDdHM+5cWmi5MEuatT91/9uCt4NMB3EdDiGEgEQiuXHjRmJiIteBEAWUE5abVH4SAKxOWM11LKRUaWlpdevWDQD8/Py4joWUBkrcucQDXkxOzOqE1WfSzzTTa8Z1OISQH1dWVpavr+/48eOtrKzatWvn7e3NdUREMTMqzNDj651JPxOTE8N1LKRUOTk5AYCvry/XgZDSQFVlOGarZwsA4dnhXAdCCPkhPX8Ovr4BsbFOXl4FBQXssVq1auno6HAbF1GUhdBibPmxm5M2b3m75a9af3EdDik9PXv2FAqFQUFB6enpJiYmXIdDvi1K3DlGiTshpJQkJMC+fSAUwrhxEB0N58+Dry88fAgALczMeDyera2to6Ojk5OTra0t17ESZcyuMPvekXsHlh6YFTmrdu3aXIdDSsmTJ0+EQuGIESPoevtHQIk7x6xEVuZC82Rx8uv811VFVbkOhxDy/Vq0CDZuhJwcWLQIAgLg2TMAgHLlwMGhnJNTavfuBqamXIdIVFJFq0qdZ3WCs4PXrFmzZ88ersMhpSEqKqpHjx65ublisZgS9x8BrXHnHlvdrpZJ9wVxcbvj4/3T0lQfihCinKwsyMwEAEhN5TqUz2hpgaEhWFiARALjx8OsWRAUBImJcPgwDB5MWfv3Yd68eUKh8ODBgy9fvuQ6FvLNPXv2zMHBIT09vW/fvjt37uQ6HFIaKHHnnn2ifeszrR8cfqD6ULoCQXtj45aGhqoPRQhRzvnzMGIEAMDy5SqNEx//+Reqys8HqbTw/7Nmwdq18PPPIKT7rt8Va2vrwYMHFxQUrFu3jutYyLf19u3brl27JiQk2NvbHzt2TEiv5R8DJe7cq5FQ4/aK2zfOq9rxLk8qLUBMLCj4JJGoJTBCiEKkUrhzBwoKoEkTOH5c1dFWrSr8YqW6mupMmACLF8OyZTB7tppGJJpowYIFfD5/9+7dDx6oYT6IaKbk5ORu3bq9fPmydevWZ86c0dbW5joiooDLHz5sffduT3x8tlSq6Ll0fcY9tg8sLCxM6RGkiOvfvr2flVVPT6+DsbH6QiOEfF12Nly5An5+4OcH79/DvHnQty8cOgQ5OSoNm5MDBw4AAOTnqyVMgOnT4cMHOHECbGzUNCLRRPXq1WvTpk10dHSDBg34fL6ZmVm5cuVk/5d9Ub58efbHChUqVKhQgeuoiQI+fvzYo0ePhw8fNm7c2N/f38DAgOuIiGJSCwp6m5lZ6ejwFD+XEnfuVa9evXz58snJyW/fvq1SpYqip+dKpYtevAhKTxfxeIMsLL5FhISQ/3r58qWfn9+9e80OHWqbl1f4oLU1sK9nz4YePWDLFjA3h8GDlRlfWxs6dQIAuH1bHeHm5EBYGIjFULmyOoYjmis+Pv7BgwdZWVmGhoaZmZnJycnJycklHO/o6Dhp0qQePXqUWoREFTk5OU5OTuHh4TY2NgEBAaa0O6VsOpmSUkUk+lXxtI0Sd43QtGnTwMDA8PBwRRP3DLF45vPn9z59MhII1tWs2YxWtxPyLUml0sjISF9fXz8/v4iICERs335sQUFbW1twdAQnJ7C1hawsEApBWxs8PKB7d+DzITMTxo1T+Ln4fLCyKvxCDUJDIS8PmjYFuin3vRs3btyHDx+6du0aEBDw4cOHd+/eIWJmZmZaWlpqair7f2pqakpKSmpqalJSUmBg4NWrV1+8eGFBUz8ar6CgYMCAAcHBwVWqVAkMDLS0tOQ6IqKkAebmVZVa4KR84p6ZmXn37t22bdtS+SEVIWJubq6BgcG4ceNu3bo1YsSIevXqyXPiy5SU6QkJb/LyKolEm2rVqkE/CEK+pezs7KNHj44dO5b90djYuHv37v369TpzBszM/n+Yvn7hF127wurVMG8ejB8PGRkwa5ZiT9e5M7x/D5UqQc+e6og+JAQAoH17dYxFNNeePXvOnz9vYmKyZ88eHo+3Z8+eOXPmAICBgcFnK2Tq16/fv3//Jk2a9O3b99y5cx4eHqtk+yqIRpJKpc7Ozv7+/ubm5pcuXapevTrXERElWYpEKQUF5YVCPYFA4ZNRcWKxeOLEiXXr1uXxeHp6eo6Ojt7e3nl5eUoMRfLz80eOHAkARa9/GjduvHLlymfPnpVw4u3bty0qVBh26dLg2NjE/PxSC5iQH9bRo0cFAoGpqen06dMvX76c/7XXXVISHjqEO3Ygn48AOHeuYk83dSpOm4aIhf9XVffuCIDe3uoYi2ioN2/esMaZhw8fZo+sW7euYsWKIpHoiwnA0aNHETE8PJzH4xkZGaWlpXEaPimJVCp1cXEBACMjo/DwcK7DISpZ9/q1bVjYwYQEJc5V+Bbsp0+fnJycduzY8eLFi7p162ZnZ/v5+f3666+WlpajR48OCAgQi8UKXz38qD59+tSnT5/9+/fr6+sfO3YsJCTE1dXVwsIiOjp64cKFNjY2DRo0WLJkyTPWJ6WI06dPd+rUKSkx8eOOHXvr1rXQ0uIkfkJ+KCEhIRKJZM6cORs2bOjSpYtWia+7ggLo0QOcnSEjAw4eBKEQbtx4NnWqq/RrNQSSk2H/fpg5E0QiaNkSLlxQQ+QSieQuYnbdutCunRqGIxoJEceOHZuent6nT58hQ4awB2fOnPn+/fu8vLzMzMyXL1+Gh4cHBAQcOXJky5YtS5cubdq0KQA0a9asW7duHz9+3LJlC6ffASlJQUFBenq6SCTy9fVt1qwZ1+EQlbzPzweASsVcUX+FQml+fHw8K4FSrly5kJAQRHz16pWHh4ednZ1sQFNTU2dnZx8fn4KCAiWuJH4c7969Y2+aZmZmQUFB79+/Z4+LxeKQkBAXFxfjIktR69ev7+bmFhcXh4geHh58Ph8ARo8e/dU5v++BVMp1BIQgIjZq1AgAQkJC9uzZ8+DBg68e7+n5/7l2X99kXV19ABgzZoxYLP7vwc+fo4cH2tujUIgACIDjxiEiTpyIrq744YNKkYeHhwOAjY2NSqMQzbZp0yYAMDc3T1B8Gi8kJAQAWrbs/PHjtwiNqMHTp08BwMTEhJKr78BvsbG2YWEPsrKUOFeRxD02dnbnzuzd/+nTp5/95YsXLzw8PFhaz5iZmbEM/oufUj+4mJiYqlWrsn/MyMhIBwcHGxubpKSkosfk5uaePXv2t99+k1V64vP5NWrUAAAej7dq1SqugleLzMzMPn36DB8+fOrUqYsWLVq7du3J/fvR2xsDAvD2bXz4EN+/x6ws3L8fFyzAWbPQ15frkMkPLS0tjc/na2trsyS4SpUq8px15AhqaWGLFgmurjOuXLliaGgIAIMGDWKX3AUFBSEhIXPnzq1du3bVqk9Zvq6jgz174vbtuGEDIuLDh7hgAVasiOvXKx+8h4cHAIwaNUr5IYhme/78OfukOHnypHIjODuH8HhSd3f1xkXUqU6dOgAQFBTEdSBEVT9HRtqGhaUrdQ0md+L+999oaioxN5/i5PRZfvmZ+/fvL168uHbt2rIMfs+ePbm5uUoE9726fPkym01v06bNvXv32DSepaVldHT0F4/Pycnx8fFxdnY2MDAwNjbW09M7ePBgKcesdv9tx922UaPCmUbZfwMH4pgxhSeMHctpvORH5+vrCwAdOnTYsWMHAAwZMkTOE/39PxkbVwCAESNGXLt2jb32bW1te/fuXbT6spPTtnHj8OxZ/O8UzJ49yOMhAC5dqmTw/fv3B4C9e/cqeT7RbBKJpH379gAwfPhwpQcJCEAAtLD4wm8g0RCzZ88GgJkzZ3IdCFFJhlhsGxbWPjJSudPlS9xPnEAdHQTAvn3lf01HRETMmzfPxMRES0vr3LlzysX3/fHy8mJLY/v373/37l0rKyu2Eubly5dfPTczM7NcuXIAIM/BGi4rK+v06dP79u3z8PBYunTpjBkzNs6ZgwMHor09tmiBtWtjhQo4ZQqOH194guwLQrgwd+5cAFi4cOHQoUMBYPv27fKfe+XKFZajDxo0KCIiwtjYuFKlSrJVcHPnzmWr50sY4dChwiU0U6Yos3asYsWKAPDkyROFzySc8PfH5cvRwwPlWwy5evVqAKhUqZKKu0tbtEAA3LRJlTHINxQcHAwANWvW5DoQopIHL18O8fb+PThYudPlSNw9PArXabq6YokfLV/EPu3c3NyUCO774+7uzuPxAMDV1fXSpUts7q1t27bJyclfPVcqlX78+NHBwQEATp06VQrRaoTZs/HCBTx+HOkOLuFU27ZtAeDChQtskVtMTIxCp4eGhpYvX3737t2I2KFDBwBwcXF5+/at/COcOIEiEQLgrFkZJWf5RcXFxS1evJhtTFIoYMKZd+9wzhxExOvXcds2PHsWg4IwJgbfvcMv3buOjY3V0dHh8Xj+/v4qPvPZswiAVaogVYnTTGKxuHz58gDw6NFzrmMhyjtz5gwAODo6Knd68VVlYmPBxwcyMiA8HBDBzQ02bVKiEQjb+8xWhf7IxGLxhAkT5s2bx+fzt27d2rRp0169emVkZAwYMODKlSvspVgCPz8/U1PTCRMmsH/PiIiIUolaA7i7g54eWFoCnw/BwVxHowZeXrB5MwDA8uVch0LklpOTEx4eLhAIqlWr9vr1a1NT0/r16ys0QosWLZ48eTJmzBiJRBIVFQUAbm5ulRVpYjpgAFy4ALVqFRw50n3o0KEFBQXFHSmVSsPDw5csWdK8efOaNWsuX77c3Nz8w4cPGzduVChmwo2nT+GnnwAAWrWCmBjo1w86doRGjaByZdDReVOrVrVq1Zo1a9a1a9fffvtt4sSJPXr0yM3NdXFxUb31ae/e0LgxxMcXFv0nmkYgEIwZc9XKquDcOWuuYyHKY0uFlS7DX0wDJl9fePIE7O1h6lTYtg1GjIAuXZR7ArZdNSwsTLnTvxvbt2/39PTU09M7cuRIZGTklClTAMDV1XXjxo18OS6HKleunJGRER4eztaq/kAXQnw+dOgA69bBnDnQrt138HmSkQFRUfDqFaSmwooV8OkTmJiAsXHhf+XKPTQwEBsbGxsZGbF6zEQThIaG5uXlNW3alF0zt2vXTp6X7WdYZ/KoqKiMjAwbGxvZahn5de4Me/bcdXR8cOzY7ezs7OPHjxft/5CRkREQEODn53fhwoWUlBT2oImJiYODg46OzoEDB2bMmJGYmOju7q7o85JSVbs2nD8Pv/0Gd+5A3brQty+kpkJqKqSlQWpqklD4+tmz169fyw6vVq2aiYnJn3/+mZWVtW/fvjFjxujq6ir3zDwe/PUXnD8P7dtDQgK8fQvNm6vpmyJq0qJFozVrwNcX5szhOhQN8CD3gRSlNbRrhGeHdzDowHU48nr16hUAVKtWTbnTi0ncL1yAbduAxwM7O3j+XOmsHQCsra3LlSuXkJAQHx/P1ln+mAIDA0UikY+PT4sWLebMmSMQCLZu3TphwgQ5T2/YsKGOjs6TJ0/Yrt8f7kJowgT480+4fh2uXFHlt1FDTJ8Oa9eCUAj79kFc3L/+ql69FQ8fHpH90cTE5NChQ23btmU5H+EKK5bXvn172ReqD6Xc6e3bt7169aqDg4OPj4+Dg4Ovr29KSkpgYKCvr++lS5fy8/PZYdbW1vb29r169bK0tKxSpUqlSpW6dOkyatSoNWvWYJE1e0TjZGbC48fQqROsWAHGxjBpEvz+e9G/b5KZ+TItLTU1NSUlJS0tLTExcfny5enp6devX9+0adOlS5cAgE0MKadVK1izBjZtgu7dITqaEneN07076OjArVuQkgJfu1X/nVuXuM5QYKjL182F3FtZt8pQ4v5tZtz19ODjRzA2htRUKFJNXAk8Hq9jxx7v3mXHxGT/wHk7pKamss9UIyOjCxcuPHr0qKcifcy1tLQaNmwYFhaWlpZWvnz5lJSUt2/fVqlS5ZvFq2EMDGDaNFi4EP744ztI3A0N4eefwdMTFi+GhARIT4f0dMjIgIwMEAqN+fwGGRkZHz9+/PjxY3p6+q+//jpp0qS1a9dyHfUP7fr16wDQrl27JUuWAKeJOwDY2toGBQV17dr12rVr1apV+/DhA3tcKBR27NjR0dGxW7duiYmJvr6+U6ZMefPmzapVq+bPnz9s2DBDQ8NBgwb9+eefGRkZ27dvV+KmAfnmZs2CXbtgwwZYtOiLfy80NKxmaFh0rk4qlc6YMWP58uWzZ8++dOnSn3/+6eLiUlyrVHlYW0N29udzCkRDGBhAx45w8SKcPw8jRnAdDace5T7aXW03ACSJk7iORQGvXr1ic68WFhbKjVDMG/eUKbB4MSxbBlIp1KihdHyMtfWhO3dO375dU8VxyjS2ZIgtcbG2tlYoay86QkREBGvb9AOtlmFcXcHcHG7ehCtXuA5Fedu3g0gEZmYwcCDMng0jR8KQIfDqFQBAtWrQoQP06tVq/vz5O3bs8PPzS0tLCwoKysnJ2bFjR1KSJr4x5ebmbt26tYTF1t8HiURy+/ZtAGjQoMGjR490dXVVaVv45MnmNm2OtW/voEpIDRo0CAkJMTY21tLSMjU1HThwoJeXV3R09JAhQ4KDg1u3bt21a9fNmze/efOmSpUq2tra7Kw+ffqcPn1aV1fX09Nz2LBh3/0PruwJDIRdu0AkUmh6Yvz48RYWFrdv3zY2Nm7QoMGbN28OHjykYiCzZsGOHSqOQb4VJycAAF9fruPgmgQkXIegmOvXr//66682NjZv377V09MbO3ZsdHS0MgMVu201LQ2nTMHBg5Xb9FrU0aMIgL17qz5SGbZv3z4A+PXXX5UewdPTEwCGDRs2b948AFi8eLEawysbVq3Kqldv57BhXMehpJgY1NZGPh+L9ty8efNfleu1tPRkr83Lly8jYu/evQFg9uzZnMVdPFYz6rfffvu+m6zJ2o7m5eUFBQXt379f6aGePEEArFBBDVHFx8cDgKGhYV5eHutpLVv9wufzW7RosWzZsoiICOl/ikdeu3bNyMgIABwdHXNyctQQClGLDx/QygoB8M8/FT111apVANC5c+djx3w6drz500+KvSKjo3HPHkREqRQvXkQvL0TEixfx6lVFAyGl4fVrbNwYV67kOg6unfxwcsabGcveL4vIjnBP0Ny6cx8/fty6dWvdunXZ+7O2tnafPn1YLy09Pb19+/YpOmDxiXteXmGWoXIHZPZZVbmyisOUbayOhCotx9m9lXr16p04cQIAevXqpcbwyoScjx/Ny5cHgMDAQK5jUZhYXFgjeeLEfz2emIiHD+P27bh6Nc6fL50wYcJvv/3Ws2dPOzs7VnAwIiKCx+Pp6+snJiZyE3oxIiIitLS0+Hz+tWvXWrduPXfu3O+1z9rdu3dbtWpVrVq1jyq/Ge7ZgwA4YIAaojp+/DgAODg4IKJEIrG0tNTV1bW3t/fw8PhqlcmwsDBWyapjx46qf1NEPYYORQBs0wYVvwzOyMioXbvTzz+HBwdLatdGADx8WN5z8/Pxp58QALdtw82bEQAnTFD0+Ulpa9wY4+Lwzh308MAtWxAR9+3DYlo4frc8kz1/f/17aFYoIoqlmjh59OTJk7lz58q2qFWsWHHu3LkPHz5ExJycHFdXV/a4s7Pzp0+f5B+2xDrutrYIgMqWiJeRStHEBAEwPl7FkcowsVisp6fH4/E+fPig3Ah5eXna2tp8Pj8mJgYAKqhl1q6sYRNLbdu25ToQhbm7IwBWrarMhXCfPn0AYMmSDd8gLiXl5eU1bNiQ3QpYvnw5AFSvXj0qKuru3btch6Z++fn51tbWAGBnZ5eenq7KUCNHqq3BzdSpUwFgxYoV7I8xMTEKTZ/HxsayYpQtWrRISUlRQ0BEBWfPnt3Qpo2kShVUtknW4sUIgD164O7dCID16snbdmXRIgTAGjUwKgoNDBAAT55ULgRSeiZNwkmT8M4d3LAB583D2Fhctgzv3eM6rNLl8NQBwsE33ZfrQD4nkUgCAwMdHR1ld0FtbW29vLxu377t4uKip6cnawNy4MABfX19Nicrf2+QEhN3FxcEwI0bVfweELFjRwTA8+dVH6kMa9WqFQBcVeHuI1tZGxISwvqnvnv3To3hlQmfPn0yNzcvc5Pujx/n6uggj4cXLypzekRETIsW5/X1MSFB3ZEpa9GiRQBQu3btyMhI1vwlICCgXbt2QqHw5Pf4sR8XF8dy96ZNmyYlJSk9Ts2aCIAREWoI6aeffgKAa9euKT1CXFxczZo12TelafdzfiiJiYlsm9ouRdrxfiY1FQ0NEQBv3cJq1dDKCuPivn5WWFislVUBn49BQdiuHQLgiBFKh0BKz8yZePYszpuHGzbg6NF4+jROmvTDJe71YutBOERna9CNhszMTHd3d1m5GH19/fHjx4eFhR04cKBly5aypYw7d+6UnfLw4UM2C2ZgYHBYvjtlJSbunp4IgOpYUrxxI+7Zg+/fKz2b8D2YNGkSAKxdu1bpEebPn+/k5HT79u0uXboAgI+PjxrDKyvYpHuTJk2Cg4OjoqJevnyp9E2M0iGRSOzs7Nq3HztpUobSg/Tpw1pmqjEu5d27d48tkgkKCmL9RCdMmODh4cFuBarYdF1jvXr1ihVjrVu37ps3b+Q5RSLB1NT//zErC1u2xHLllFgK8bmMjAyBQCASibKyskVa7HsAACAASURBVFQZ5/Xr17Vr1+bz+WfPnlU1JqKsAQMGsBXq/92QoJBZsxAAf/kFHzyQq/VpTk5OvXr1jIysVqx4umpV4YrW7/Tl+/1ITcVXr3DmTETEAQNww4bCydVdu36sxF2KUr1IPQiHj2INWux3/vx5toOoZs2a7u7uDx48cHd3lzXaMzY2dnV1jfvPJXV2dvaYMWNky2a++q5eYuIeFoYArzp2VPE7QcSRI3H9eszP15TMgxN79uxhO/lUH2r06NEAsGTJEtWHKnMyMzOtrKysrKw+22ZtYmJSrVq1Ro0atWvXrlevXkOGDJk4ceK8efPYejIOrV+/XvWMNiICeTzU0+N+0r2goIAVOPr999/XrFkDAJUrV46KijIwMACA06dPcxzft5SQkNCkSRMAqFat2tOnT4s7LDsbAwPR1RUrV8Z+/Qof9Pcv/Hxds0YNkfj7+7OlO6oP5evrCwBt2rRRfSjCxMXFnT59unr16i1atOjevfuQIUOmTp3q5ua2efPmQ4cOXbhwITQ09Pnz5xkZGYh44MABADAyMnr16pWKz5uQgLq6yOOhnLfcZ8yYwS5E7969a2fnbmEhCQhQMQTybWVmYuvWaGWF7CeVmIgvXuDLl4iIb9+qviGxLEnIT4BwMIsy4zqQ/5NKpXp6egBw6tSp1NTU/v37C4WFJdebNm26Z8+e7OzsEk738vJipzdt2rSEzxcsOXEX5+ZamJsLBILMzEwlv49/zJyJbm745AnOmoV//40lBv/dioyMZKsLVBznypUrhoaGNWrUeP36tVoCK3Py8vKmTp1qZ2fXsGFDKysrdoFbHEdHx71793IValxcHMtoz5w5o+JQGjLpvnTpUgCoUaNGREQEa9Do7+/ftWtXABgyZAjHwX17Hz58aNOmDQBYWlpG/3sv2MuXLz09PQcOHGhvf0pWJqhRI2SzqIcO4cCB+PQpTpumhjAWLFgAAPPmzVN6hBMnTnTt2vX48eOrV68GgEmTJqkhLIIoFovt7Ozk7F0qFAoNDQ0BQF3vUZMnY/v2cq3Fevr0qUAgEAqFN2/eZCWGXV2V/3UipSAvDx0cEACtrFDlq7wy707mHQiHZg+bcR3I/yUkJACAmZkZIkql0rp162ppaQ0cOFD+lb2xsbH169cHAENDw2PHjhV3WDENmAAAQKCtXcXKKik5+d69e+3atZPnbeiLcnMBAGbNgtmzgccDe/vCMrXDh0Pv3vBPieHvX4MGDXR0dJ4+fZqRkWGsbFurAwcOjBs3Lj8/v2vXruV/1LZpIpFo8+bNRR9BxPT09PT09I8fP2YUcf369WPHjkVHRw8dOlSVjiRFPX/+/OTJkwEBAcZfYmJiIvva0NBw1KhRnz59cnZ27tu3r4rP6+YGPj6waxcsWQL6+mr5VhT28OHDVatW8Xg8T09PV1fXnJyc0aNHv3z5MjAwsHz58hs3buQmrFJkYmISGBjYr1+/wMDAn3/++cKFC2zvytatW9luUQCoUuVt27a/ODlBjx6QmQnz58PZszB6NLi6wrp1oGw3+n9hXZxUeVsODAwMDAzs1q2b6g2hSFHr16+/ceNGxYoVr1+/LpFIUlNTU1NT09LSPvuC9T39+PGjQCDQ0tLq0aOHWp59wwbo2xcEAnj1Ci5cgBJ6c9vY2Pj5+T1+/PjChQuRkZE1atRYsWKBWmIg34JEAsOGwcWLYGEBgYFQtSrXAXHtpf9L/cn6P437CVZxHco/ivZD5fF4+/fvr1q1akVFOo/Wr1+fbWA9duzYxYsX+/Tpo6Oj84XjSk7/x40bBwCbVCiC4OGBDRrg5MmIiCdO4PDh2KoV8niF01EmJjhlSpa/v39+fr7ST1GGtGjRAgCCgoIQ8c6dO3Z2dps3b37//r2cp3t4eLBNyq6urhI5Swb82CQSSaNGjQDA09NTLQMmJCSYmZnJ/1LU1tYuX758atGVzipYvx63bkVEDA/nYClqQUEB+wWeNGkSy9ErVqwYFRXFpgxPnDhR2gFxJzc3t1+/fgBgYGBw5coVRLx7966enp6jo6Onp2d0dPThwxn9+xduFmT/DRuG4eF47hy2aKGGZ9fR0eHz+ar8XtWrVw8Abt68aWJiAgA/7O079Xrw4AH7oPXz88uTY5l5fn6+k5MTAMyZM0ddMfz+O7q44LNn6OaGI0bg9Om4YgVu347e3nj1at69e/fevHkjW0QbHh4u26+irgCI2kmlUlfX1wBYrtwPV/OxOO7u7gAwky321wzHjh0DgP79+6s+FNtPFVxMUcevJO47duwAgOHDhyvxxGIxTpyIAMjn4/Hj//qrV6/QwwPt7JDHww4dwgHA1NTU2dnZx8fn+87gJ0yYAADr169HxFmzZrHcjs/nd+zYkXXHLO5EsVjMzhUIBFtY1VYiH/Zaqlq1qjyfo1/Vv39/AGjbtm1gYOCpU6f27t27cePGJUuWTJ8+ffTo0QMGDLC3t2/evHmtWrUsLCy0tLR0dHTq1q2r+vMySUlYuzbeu4dbtmCJS+C+iZcvX9auXbtatWoxMTGy9T/du3cHgIEDB5Z2NFwTi8UjRowAAD09vQsXLkil0kePHnl4eNjb2wuFwo4dg1m+Xr8+zp2LISEYE1O4P6H4+5/yYnPkjRs3VnqE5ORkHo+nq6t79+5dAKhRo4aqMZEiV7YuLi7btm1r3LhxZGRkyadkZ2ffvXuXNWpITk5WSxgzZ+K1a7hwIbq6/qu5GwBaWz+UzSno6upWqVKFFSibMWOGWp6afCMzZ840MTFt2vTWrVtch6IxJk6cCACbN2/mOpD/U/1aYtu2bZs2bUpOTmaTg8XNp3wlcQ8NDYV/WgYq9PSfPqGTEwKgtjYePVrsYU+e4Pr1J1kpHKZChQrf8dTd5MmT+Xy+ubm5m5tbVFSUj4+Ps7Oz/j/rHgQCgZ2dnYeHx2el2TIzM3v16gUAOjo6xz+7BiJfo8ZJd9byRraNbPr06U2bNu3YsWOfPn2GDx8+derURYsWrV271tPT09vb+8OHDzk5OZUqVQKA82qqhJqUhMuW4dixuHkzB4k7ImZnZ8fGxtrb2wPAsGHDdu/eDQBmZmYJnO+Z5YJYLGb3JIVCYdGbMDo6OqNG/bljB36jWWxWWGkyu4+plLNnzwJAp06dtmzZovTUDPmMm5sbAFSvXl12Zevt7V3C8QcOHLC0tNy3b5+DgwMA/PHHH2oJg6UN48fjsmW4fz+uX48LFuCECThgAA4ZEtO4ceMqVarIluAbGxtraWk9KNrMmWiYP/74AwBEItGFCxe4jkWDsNVlGlVbT/VrCVafNyoqisfjaWlpFdcA+SuJe05OjqOjo76+vomJifwz4gkJCZ065QOgmRlevy5XuLGxsW5ubqwlrL29/d9//y3XaWXKtm3b2HJG2Qd88+bN165dGxsbe/DgQUdHR9kibJFI9JJtFEd8//49K99uZmZ2Xc5/TfJvx48f72ZrG9qli1w10oqRkpJSoUKFohcA7B53ce7fv4//lJSxtbVVsdAbk5SEq1ZhcDC2bMlN4o6IW7duBQBzc/Po6GjWEO7IkSPchKIBpFLpoEGDWG8Bc3NzZ2dnb2/vb92LtGfPngBw9OhRRMzLy5N/rZ3MzJkzWaY4aNAgAPjrr7++QZg/Flkj4StXrnTo0AEAhg4dWvIphw4dYvNi169fZzm0WirbspqAKSlfKb6clZX15s0btuJrgvp6pUokknfv3vXr12/MmDFz5879888/9+zZc/bs2eDg4NjY2Pj4+O/7prrasUtrgUBQ8kXgD6hOnToAEK1JK4dUvJaQSCQikYjH40VFRQFAzZo1izvyK4k7Ir548YJVQGPKly8/YcKEq1evFncp8PTp01q1ajVuPLluXakShfhGjhwJ312hQ6lUyiZjeDzeH3/8ERwc7OLiUnR/av369d3d3R8+fOjl5eXo6Ci7CX7//v1q1aqxH+Hjx4+5/S7KMIkEGzdGACzS9UBRgwcPZpOUshT8/fv3YWFhV65cOX369L59+zw8PJYuXTpjxoyxY8cOHDiQTULLJt39/PyUe97wcHzxAhExNxcjInDfPkTEGTO+1WxuyV6+fGlpaQkAJ0+ePHTokFAo7N27NwdxaBJW4GXEiBFquTaTB7uSj4iIEIvFgwcPrlq16hMFG2SwViCBgYFVqlQBAM5LppZ1ubm57LbetGnT/vzzTwCoWLHiV3cgiMXiWrVqAcCxY8c6duwIAKtWrSqdgGUePnzI5/O1tbXfvn2rlgE9PDzY8psSGBkZVa9evXnz5g4ODrm5uWp53u/SmTNneDwe2+bIdSyaQtaUVFdX19jY2N3dneuI/o9tHFL6WuL169fsrSMgIAAAOnfuXNyRX0/cmbi4OA8PD/aBwZiZmTk7OwcGBhbdJRkcHMxetC1btkxMVKaN9tGjRwHge8oGcnNzhwwZAgBCobDoao3c3Fy2VIbt7QMAPp/Plsqw9i5Xr15l+8Zat26tSrNGgoh4/DgCYNWqqNTnhI+PDwDo6ek9e/ZM0XNVmXTPzsZatdDAAG/fxgULUE8PDx5UdAy1kUqlXbt2rVy58tSpU9kj4eHhP2D73s+weixKX5gpge0MtrGxiY2NtbOzgy/VpixBVlaWSCQSCoXR0dFsLqbULjm+V3PmzAGAOnXqyGqkyrk6bteuXQDQoEGDS5cusU9V1YsvK2rgwIEAMH36dNWHevToEfv258yZs2vXrtWrV8+aNWvUqFF9+vRp165d/fr1K1SoIKtsDQDa2tqWlpbs5iT5r8OHD1tYWGjU/ksOpaSkrFmzRtaUVPufioSDBg1iLRGUdPkyHjyI6rjZxZY9Kx1McHAwALRp08bT0xMARo8eXdyR8ibuMvfv33dzc2M3KZgqVaq4urqGhIScOHGCvWj79OmjdD+/J0+eAEDlypWVO13TpKWhvX12o0ZtDQwM/P39v3hMVlaWt7d3//79ZesOBQLBTz/9xBbV9O/fv+Si/UQuUmnhpPuOHYqemp6ezjqfKbctWDbp7uvrq+i5M2YU1gIPDUUtLeTzMSREiRDU46+//mJ53o+5ov2L1FLgRVFpaWmsBmXFihXDwsK6desGAKampjdv3pTn9MuXLwNAixYt9u/fDwD9ZD2iiFJu3rwpEAgEAsGNGzdkm1PlPDc/P5/dUz179ixrQryRtekqRffu3WO7Y5OSVMpdCgoK2K/lqFGjSj4yIyPj+fPnoaGhbKHOV9cUKSQ7O3vOnDmLFi3auHGjl5eXn5/frVu3Hj9+nJKizEwit1hFiu9sAYISIiIiXFxcWHMi+KcpaUpKypkzZ9jkZq1ate4p1zZ22zY8eRLj4tDZGVWr1JeYmAgA5cqVU3oE1ovtt99+Y3dxly5dWtyRCifuMuHh4XPmzJFd/bAZZQCYPHlycato5CGVStlPIj4+XulBNERcHNatiwDYsGFyVNTX58Oys7PZHLyenp5IJKpRowaVfVQnb+/C3hUKTroPHz6cXQcr/bPYsGEDADRr1kyhqc3Q0GShEIVCvH0bmzZFAOSw9sO7d+/YC7OErhA/INULvCgnMzOzc+fOAGBhYREaGsqKHenr68vT6ePYsWMWFhbTp08fO3Ys/FPkSnOUrXe8rKwsVrhtwYIFss2pCm1yYC0pmjVrdu7cOXYxlpOT8+0C/qIJE/Y1bPhxwQKVBlmxYgWbdLt3756Dg0PJrR+Z169fi0QigUCg6Fqv4gQGBlasWLHopH5RPB6vfPnyderUadOmjaOj4/Dhw0vzelsJ58+fZ3druQ6EG3l5ed7e3qwWAluSYG9v7+3tfeXKlbFjxxYUFCDiy5cv2cI/HR0dDw8PxZ4gLQ3Hjy/8euVKFZef3rlzh72QlR5h2bJlADB//ny2RsPLy6u4I5VP3GXYHLy1tfWKFSvWrl2r+oBstZ+6CnFwJTQUK1RgWbvCTc4+fPgQGBiYVvqVur9vEgm2bYvz56Mid7LYW6eurq4qHy1KTLrn5OTUq1evadNZy5Zl/vEHAmCNGvjpk9IhqKp3794A4OTkxFkEGonDtqNZWVmsGomJiUlISMioUaPY7WM5e/RmZWWxG6ehoaHfOlSFdOvWrUWLFmVl+cSUKVPgn7YpbHOqopUVZG8OAQEBbDHqDsXvCqrozh0EQCMj5btD3L9/X0dHh8fj+fv7d+rUCQCGDRtWwvFPnz4dNmyYu7v7mDFjAGDs2LFKPnER6enpVatWBYDevXsvW7bs999/d3Z27tmzZ+vWrWvVqvXFlfdNmza9c+eO6k/9jeTm5hoaGvJ4PLZ69scRHx/v7u5uZWXFfkxGRkYuLi4RERFeXl6NGzdmD8rKD+bm5rq6urIHhw0b9vXFZnl56O2NdnbYoAFOnYpsRcO0afjhAyq+0V+GFZ375ZdflB6BvRZ27tzJbr5du3atuCPVkLgzEolEXQslWcWD5cuXq2U0TgQFob4+AmDXrgplieQbKyjAqVNx5UocPx7l2DaQkZHB3jtUn5VUdNJ97ty5AFC3bt3Q0NBOnSIFAiz+VfzNsTUVJiYm6trB9t0oWuCl9OXl5bEFyvr6+hcvXvz999/Znc8SpmpkYmNj2QIJjarykZ+fr6enx+PxysquHldXVy0trYiIiA8fPjg7O0+bNk2JQdh+1rZt27LP/qpVq5b+D6VrVwRA5T518/PzbW1t2f12tgHD3Nz8s6LGn7l69SoAmJmZRUdHC4VCLS0tWSE1pbHKFra2tsX960kkkqSkpEePHt24ccPHx4eVBdPwDXVsNVHpX8tx6NGjR7Lie40aNfL09IyKipo2bZqsnkfFihWXLFny2aKMU6dOsQPq1KlT7IafV69w/nw0Ny/sa2BmhkFBOGMGLlmCu3bhwoVoZobFLGn+KnbHibVEiI+Pb9mypaJV97t06QIAFy9eZFfyr4qf8VVb4q5Ghw8fBoC+fftyHYhcLl8uzKhWrMAtWwrLlsyfj3Xq4IgRqEmfiQTx8uXCtgIPH+LKldi1Kw4ciOPG4axZuHx55s6dXl5eZ8+e/fvvvyMiIp4/f8467LRq1UqV1V9MTk4OWygvT62ou3fvCoVCgUBw/fp1Ngm3cOEeFQNQ2vv379lk1YEDB7iKQTNJJBL2L8Nh21GxWDx69GgAEIlEp06dYtd7BgYGxSW+9+/fd3d3t7Oz4/P5VatWNTU11ahyVbdv3waAevXqcR2IXCQSCZviPXfuHHtEuTeKzMxMMzMzHR2dp0+fNmjQAABKv4pIUFBhJqNELdOFCxcCQI0aNWR7c0+dOvXVs9q1a8fmRNjCgClTpigT9z9Y/QAdHZ3Y2Fg5T0lJSTEwMODxeOHh4ao89Te1d+9eAOjZsyfXgZQSsVhcs2ZNIyOjXr16Xbp06dKlSwMHDhQIBCxlt7W19fLyKu7C7NGjR2w+XldXd9euXUX/KiQkZODAgU87dChM2Zs2RU9PLLoVUyJBR8fCjqELF6IiL+S3b9+6ubkZGhpWrFixWbNmHz58mDRpErv/uZW1OpcPK+IeHR3N5/NLKOKOmpm4P3r0iM06cB2IXHx88MQJTEnBSZNw2TKcNAnfvcNp0zAlBalUg8bx8UFW/ePtW5w587O+gh8bNfrsRqqRkZGWlpb8nwQlY3NR8ky6Z2VlzZ07d86cOewiXtFVs+rFpnx+nE8O+d27dw80oO2oVCqdPn06AAgEgv37969evfqzffA5OTn+/v4TJ06U3Xpmn21sXsfS0jIqKoqr4D+zdu1aUGRzJ+fYi7ply5YqjnPp0iVWj3/lypX6+vqcVNZv3x4BUNHlruHh4bI1QiwXHzlypDwn+vv7s1+/iIgIPp+vo6OjdImq5GTs3n0CKL61d8aMGQAwaNAg5Z63FCQlJQkEAm1tbQ4/AkqTrCQi+5ptV9DV1R0zZsxX+xAjYk5OjouLC3uLc3Z2TkxM3L59e/369QsfadgQf/sNi9vEL5WihwdqaSEAduiAX/ttlEqlFy9edHJy4vP5bHy2fdbGxubu3btz587l8XhsDlrO/gw3btzw8vJixb6sra1LOFITE3eJRMIqJJaJu6U+Pjh1Ku7Ygfb2uGwZPnuGrq6o1P1S8u2lp+PIkXjnDk6fjnfv4sWLePw4enrimjW4YMH7RYuGDRvm5OTUoUOHJk2aWFlZ6ejo6OjoJCYmPnnyZPjw4SpOzMgm3WfOnOnn5xcSEhIdHf3q1av09PQvHv/w4UO2bDQgIECV51UFu/1lbGzM4aSyxmK9qJydnbkOBPGfbts8Hm/Tpk3skaSkJC8vr4EDBxoZGcnydQsLC1mXqKysrO7du7NFUHJWpPnW2FaKgxwWPVVQVlaWhYUFAFy6dEn10fLz85s2bQqlW9D9zZvC7foHDuDIkYU7sh49kuvc3Nxcdotg9uzZK1euBIDKlSvLvzurefPmALBt27ZffvmFDaLct/DrrwiAo0f7K7qzOT4+XldXl8/na/KeCrbi+fTp01wHUhpkJRHZH6dNm7Z27VpF9xDv27eP5dCySn2VKlVaunSpXCVPrl3DSpUKhMKBnTpduXLli4d8/PjR09OT/eazu50DBw68fv36q1evWGElbW1tDw+Ps2fPsh6FtWrVkueqg2FF3Dt16lTCMZqYuOM/pZEvXrzIdSBf5+ODLMwZM3DZMkxJwQMHkLbwaa60NAwIQPn2+rA0Yvbs2WzfRZ8+fZR4QolEsnTpUnYV+ttvv7H2q/9lampavXr1xo0bt2/f3tHRcejQoaw5Doezj8nJySwp2b17N1cxaDJNazu6Zs0a1q6le/fuzZs3Z/M9LJtv3rz5kiVLwsLCPrvbk5uby+6oGBoaBgWFcRU5I5Vit24TLS0rv2Atx8oItkH5559/Vn0o1ty+Ro0apTm9unZtYYu3KVNw/HhkDW1+/12uc9mtnnr16oWHh7NZhgsXLsj/1KdOnQIAKyur0NBQtuMiOTlZ0fiPHEEA1NdHxXtsICJOn/5Hx44BEyeWdiUf+bFfsK8W2fw+yEoiqjhOTExMuXLlypcv37BhwxJW13xZYuKu8ePZPcylS5cWvRp8/Pjx3LlzWYE1dmfAzc2t6BRz0Z2yv/zyS0xMjPxFb9LT0z09PatWrWptbT137twSjtTQxH3atGkAsHLlSq4D+bo3bwrvqISFYVgYpqTglSu4ejXXYRF1iIiIYB8nDx8+NDAwAKVKcLB52UaNGr1+/ZrtnmnXrl2PHj3atm3boEGDKlWqyDpwfcbS0tLQ0JDDoukDBgwAgM6dO1ODni/SwLajO3fuFAgEZmZmbLbJ3t5e1tCtOGKxeNSoUQ0ajDYzk3I7qXf/PgJgmevhkZGRwebVgoODVRknIiKCrTkJCgpSV2zyWLsWFy/GjRuxVy+cORNXrsTHj3HqVDQxQRsbbNkSe/TAYcPQ1RWXL1+1ZcuWI0eOBAQEhIWFnTx5UiAQCIXCW7dusc2pipZXkkqlrOPs3r17Wbv4P/74Q6ER3r9HMzMEQKUvn1+9QpEIBQKUo3wlN2JjYwHA3Nxc9a1Wmk9WElHpEd69e5eXl4eI7G1QuQ9QqVTq7u7O1tZ36tTp3bt3rF2rbDbEzs7O29ublaT8r9OnT7Pkvnbt2qGhoawePwAMGzbsiz2OIiMjx44dKytU/9VZAA1N3NlVV//+/bkORGHBwQiAP2rd1e8Qm3SfNWvWrFmzlJh0f/HiBcvLT5061adPHyimoqJEIklLS3v+/HlkZGRQUNC5c+cOHDjA2qErXJu2eJmZmcHBwdbW1s2aNevUqVPfvn1HjBjh6uq6ePHidevW7dq1y9vbOzAwMDQ09PHjx6ySjL6+/vPnz9UVwPfk+fPnoHltRz99+sSaAZ08eVL+xm0SiWT69DwA1NJC+QvkiMXi4ODgOXPm3Lp1Sy37QHbuRABUea6NA6yCu4ODg9Ij5ObmNmzYEP6pSlGa1q7FBw/w0yecOBFnzsTsbJw0CceN+2wHEIpEef+dXODxeAsWLEhJSenatWvNmjU/KV6wli3Gq1mz5vXr1wHA2NhYzgXBTL9+hdXbVHkVjhiBAP+v6K2B2GfB9evXuQ7km5OVRFR6BCsrKz6f/+DBAzZ5ocr78+XLl9kdctnkmoGBwcSJE+V5u3v8+HGTJk1kc+2s6E2rVq3YRQUjFot9fHxkhep5PB4rVP/VKzQNTdzZJaaxsfHRo0eVeC/gUGYm8vkoEmGRnw4pw9iku56e3oMHDxSddJdKpayr5eDBg5WoqMgaslhaWirdh/gzkyZNkpXZ+ip25LZt29Ty1N+Z+/fvOzg48Hi8tm3bch3LvwQGBoKyeyXd3BAABYKvTF5++vTJx8fHxcXF0tKS/apUrly5XLlyqteDHzoUAXD7dhWH4UBqair7aFf6H4HNC9StW7f0+2QXXSozcyYiop8fTpiAaWn49Cnevo3nz+PBg7h1a/Yff/wxefLkwYMHd+vWrWnTpuxbZv2kpVKpcltLxWIxy0pPnjzJWrjIs74/La1wXf7evWhjo2LnHHz6FAUC1NJSuONKqWFLkkpePvF9kJVEVO70/Px8NnMREREB6qhP9e7duy5dukyePNnGxsbd3V2h1fY5OTmyZTPOzs4RERGyrWIJCQn/LVQv/0YLDU3cxWLx/v372V0JHR0dR0dHLy+vr9fV1wysW2pEBNdxEDVhM+WySXf56/7u3LmTTcpGR0crV1GRdVBXSxf0oKAgHo8nFAp9fHzCwsIuX7586tSpvXv3bty4ccmSJdOnTx89enT//v3t7e1tbW1tbGzYp7KsyQXBIhMk7K1JX19fJBKpuEBCvdgi6Zks/1LcqlUIgDweHjny+V89f46enujoiF26LJVd3dWpU2f69Omsh6ucfVtLUK0aAmBxJZg13Jw5cwCgX79+Spx748YNtubk9u3bag/s2/H29gaAqlWr5qk2TXXmzBkvL6+CggK2LU9PT8/CwqJevXp2dna9e/ceOXKkgo46tQAAIABJREFUm1vGqlXo6YknT+Lff2N0NC5ejAsXIiJOm6ZQ4b5iDRqEAJpbVYKVva9fvz7XgXxzrCTiIzk3R//Hs2fPAKBatWqsPGiPHj3UElVeXp7SM/cHDx7U19dnl+UxMTFhYWEuLi46OjrsLbR27doeHh6KJrcamrgjYnp6+pYtW9q3by8rtWNoaDhkyJBz587lKtiyvpQNGYIA+O8qoqQMU27S/e3bt2yV2/Hjx5WuqMjefVSfdM/KyrKxsQGApUuXyrlNZ9u2bQDQoEGDstWC/hthnfxY0W72XuTi4jJ06FAAMDMz05xS6Kxp5dmzZ5UeYccO/OknHDECQ0MxJwfnz8dZs7BOnf8vmWjYMKJz584bNmyQ9bQXi8Ws9438fVv/680bBEBTUyyjv24JCQmsdZSs+cv9+/ejo6Pfvn2bk1PSxsesrCw25bxo0aJSiVRtJBIJK6yxb98+tQzI6tKwCoBFWVqKP1u3M2kSLl2KkZFqS7WjorB+fTx8GBFRTTc41SkvL09PT8/U1LR169YeHh5KbOEtEyQSiUgk4vF4St93unz5MgD8/PPPmzdvBoCJEyeqN0Ll3L9/n5WklOXrQqHwl19+uXr1qnIDam7iLvP27VsPDw87OzvZtgBjY2NnZ2cfHx8VL/S/kfXrEQA14xeGqAebdJ85c+bs2bPlnHRne6169+595MgRdi9MiYqKUqnUweGX9u09N21SqZUX2+3duHHjmzdvVq1a1dfXt+Tj09PT4+LiqlevTpPuYWFhzs7OsiVGderUcXd3j4yMfPLkiUQiYb8Y1tbWmlC7Vl1tR/Pzcdo0nDABMzNx7NjCVKlcORw4EL288IsrkKVSKbspLBKJjh8/rugzPn+Ob97g0aPo5qZK4BybOnUqFCmIwW76M3p6elZWVj/99FPnzp1//fXXiRMnylZyT5w4EQCaNGmimR9nJfPy8gIAGxsb1fdN3rt3jyVtfn5+CQkJsbGxISEhZ8+e3bt374YN4vnzcdw4/OUX/PlnbNQIZ8/G5GQcN07e6jfy2LwZp09HlLuiTmlasmRJ0UsaHR2dfv36HT9+XKqBFxkqKFrEXTm7d+8GgBEjRrBCcO6sRpIG+PTpk7Oz89SpUy0sLObOnatin+AykLjLvHjxYs2aNayRJGNmZjZ27NiwMI6rmH3m+vXUn38+9csvS7kOhKgNm3TX0dGJiorS19fn8XgRJa6FYu3uzMzMYmNjVayo6OODAGhpqfw80K1bt2TFH1gNh1mzZpVw/KVLl0xNTfv27bt9+/YfdtKdVeplffgAQCAQODo6yjr5CYXCgQMHImJWVhar9tWuXTvO7wTevo3W1g8GDJB7e2nxZszA0FBcuxbnz8flyzE4+OsLEqRSKVsuIhAIFP1tX7IEXV0RNTJnkt+bN29EIpFAIGB3YMaOHduoUaNKlSppa2vDf7DE/fLlyzweTyQSaU4PLIXIVqgfO3ZMlXHy8/NZXRo5+6cuXYrp6RgUhGpaCoGIuHkzzp6NoaH4++84YQL2748uLjh/Pq5bh/v2ob//zevXrz948CAxMbGUq7tcvXpVIBDw+fzTp097eXk5OjqyDL5J7dqoq4uOjujt/X1sqvusiLsSFi9eDABubm79+/dX/ddS7aRSqVo+JspS4i7z8uVLNgfP3gGnTJmi9IqobyEjI4P1gVOsdCjRbH379mWT7uvXr9+7d29xdaCYDh06AMDBgwfVUlGxZUsEwA0blDk3NzeX3aRbuHAhe1OrXbt2yTciZTf9b9269WNOuq9YsULWtKhSpUpubm6xsbHr1q1jy43YjNeYMWPYz/T9+/dsCc2gQYO4rTCzdi0CoFrq/rPSJrNno6Jl2WR9oNavXy/P8e/f48GDuGQJbt2Kly+X7cQdEceNGwcA9evXd3Nz27Rp06FDh/z9/e/cuRMTE3P//v3IyMjAwMBjx45t27ZNKpWmp6ez35zSbLekdp6enqpf3i9YsIDduZJzsW9aGkok+OIFDh+OKhQg+ZfNm/HZMxw7FqdOLdxuUfS/unX/P2PIbvvfuHFDPU9cooSEhIoVKwLA0qVLZXVd379/7+HhcWjECOTx/n9HbOxYjInBI0dw6VI8dKgUYlM71Yu4Ozs7A8DevXvZdWDZ2jQivzKZuMvExsa2adMGAJYtW8Z1LP/CJiHu3bvHdSBEbSIjI9mkuzzFE/Ly8g4ePMjKwqheUdHXV/lJd7a2p27duqGhoaxK9LVr1756FusE3q9fvx07dvxok+53795l9blsbW29vLzu3Lnj4uLCdhcBQOXKlT/ruIGI9+/fZxX63Thd6tG7NwKgWrqOHj6MXl54/TreuaPwudu3b2cbk0oognH/Prq7o50d8vkIgJMnY3o6uriggnXANc6zZ89GjRr13/l12X0bCwuLunXrsm2XtWvXBoBWrVqVPAug4fLz89nlx7lz55QbISwsTP63pqLOnkUAtLJSz3Tz5s344gXevIlt22JwMJ44gTt24MqVOGMGjhyJQ4eOtbOzq1u3rrm5OSvvXfJNV7WQSCRswVWnTp2uXLkiEolWrFjxryNev0YPD7SzK0zfN27ErVsREXfuRAX/MTVB0SLuBQUFXl5eik6FsCmzq1evli9fHgDkapVaBpXtxB0R2QLivn37ch3IvwwePBgA9uzZw3UgRJ3YpPvPP//8119/eXt7X7p06c6dO48ePYqPj//vHHZKSgorAbtdHfXtlJt0j4iIEAqFfD4/ODiYzUC4shUJX/PfSXdvb29l4i6D9uzZA/+UB5k0aRJLufh8voODg6+vb3EXMBcuXBAKhTwez8vLq3TjLSSVFnaiUW3xZKF16xCgcMmvEg4dOsTu5k+ZMkX20ZuVlcXqSLZtmymbyNTXxz59cMIEzMjAmBjs2ROHDMEy/bv28ePHzZs3L1myZOrUqUOGDHFwcGjRooW1tTW7tCtKJBIZGBioWIpHE3h4eABAs2bNlLjjlJOTw3a4zpkzR9FzpVJs3Fg9pSCcnXHRImTv4nFxXz8+LS2tFO6osxsRlpaWMTExlSpVAoDFixd/+dDYWFy2DLdvL6xnd/8+bt78rcNTr9jYWHZzmF3wsyknR0dHhSowsmvImJgYULmIuyYr84n7o0ePAMDKyorrQP5l7dq1oHgbOaLhdu/eLVtB8V8ikcjc3NzGxsbW1tbe3r5GjRoA0LFjR1XeO7KzCyeTjh/HLl2Q3ZtNSZHr3Ly8PNbSZfbs2cuXLweA6tWry192ik269+3b90ebdGeVfBwdHRHx+PHjxsbGLi4u8nTc2LVrFwBoaWlduXLl24f5OdZ2tEoV9Yw2bRoCoHyrXb7s3LlzrITCsGHDduzY4ejoqKury14pHTsGV6iAzs7o7Y2f/T4ePlxYS15NdUo0S0FBQUJCwoMHD0JCQs6dO8fKlo/X5MY/8snJyWHLOQICAtgj8i/kZfvm69WrV3LtneIcPYoAaG2Nqty0OHIEAdDICEtsMVza/P39+Xy+UCgMCgrq2rUr+zT5yvL64ODCi5j9+1HZiiWlTCKRFG1KamRkpKWltWHDhsDAQDbzZWVlJf+qpMGDB7ds2TIyMpLdZ/6mkXOozCfuUqmUzWRw2Bn+v1i3HTMzs7Vr177S2KYORBGyiopt27YdM2bMgAED7O3tmzdvXqtWLQsLi//uPxMKhYMGDXr27JkqT3r0KLJmeZMn44IFuHw5otwb+BYuXAgAtWvXjoyM1NHR4fF4ly5dkv+pk5OTDQwMfsBJ95s3b7IFDIhYUFCgUGEy1ielXLlypb/rJigI69XDIUPUM9qAAQiAipeH+ZcLFy7o6enJZpr5fH6rVq1WrFhx715J/zju7oW15JXb1FGGPHv2TCgUikSi7+AzYvXq1QDQoUMH9seFCxcWXRfk5OQ0cuTIGTNmrFy5cufOnbK12tevX2e5qdKNq8TiwlqlSi/qfvcOy5VDAFS2fMA38ebNG7bYw93dnTVnqFChglwtrnbvxmXLvtJETTMkJeHWrRdkTYgMDAzGjx8/efJkttCud+/e9+/fZ1sZhUKhu7u7/FNg/2vvPgOaOr8GgJ+wpwiCgAMEt5VSBLUSVxXFCmjVoqUVnI1aEXdxFqvVF6laEEeti6GoqC3DihbqRAQ3QwQr1gWKArJlJef98GDK35mFIeH8Plmbe3Oi8XLuc89zTmxsLEg3ybiJU/jEHV9WNcXFxck7kHrnzp0zNDQUtp8HgB49evj7+0s2WI40EcKOim/r2vbixYsnT55kZ2dfunQpPj5e4obWDR04gAEBGBuLbm64bBmuXo03b+Lcudi/P376KQ4fju7uyOPh4sW4YcPe4ODgsLCw6Ojo06dPHzx4kJWNnjlzxtHREQBmzpwp7ruzjlqjR49mk6R69OjRHBbd//nnHwDo2LGjBMfy+XzWs9/CwiI6OvrKlStXrlzJzMzMycnJycl5+vRpUVFRUVGRTB7g7t5d/+wlIACXLkWW+QQESH9iRMRJk7YNHLg1OVmM4fNvdO7cuejo6LFjx+7evVv0tZXAwPpNd2vXftD2HR+eh4cHAMxrsoN/RFZWVsYSTTaPjF0t3+b48eOIWF5ezpZCpNwZEhKC9vbPXFx+lOzqNHIkAuDw4dh0qipqa2v79+8PACNHjvz7779ZSxlRS6pWrkRDwyZeJ3PlCvJ4qK2NnTplcDicV4aSxsTEsHmFFhYWiYmJfn5+LJsaPXp0UVHRe0/++PHjkSNHSvYjT1EoQ+IetXZtOJf7RJrHurJz5MgR9kTYzc3twIEDX331lXBbW+/enw8ahNu2YX6+vKMkYhJ2VLx8+fKHfN8DBzA0FFNT0cMDly3DkhKcMQN9fFBT89WmB8bGPV4v3Zk6dWpVVdXixYutrKxKSkrEfXe26A4ASUlJrPJHghbdCqe4uJg9sZXscPZkxtDQ8B2Ji3AF2tDQcMSIEdevX5fgjX76CdnOq9mz69uu19XJbB4NK6iVYPKArISHo4ZGnaPjV99//72yFqoi4s2bN1kLsry8PHnHIi0/Pz8AsLOz++OPP86dO5eampqenp6WlpaYmBgdHb1nz54NGzYsXbqUx+Oxdpk8Ho+9Xspi8ZqaGvZI8MiRI+IeGxGRqqpaZ2SETWpVja2YtG/f/ubNm2ZmZgCwhj1sFcXcuQiAgYGNGeD7VVbimTOIiDdv4oULyJ71xsdjWFj9fi0AVFFBNzdMSEh+/R/4gwcPWN8RTU3NwMDAmJgYdkW1tLR8R6OYhkNJXV1dpXzc3ZQpQ+KO+/YhAI4dK+84MDAwkN0aTp8+XZgnVVRUHDp0aOzYsYMHR7Dvq6oqOjnhzp144kR91XJMjDzDJu/x4sXMIUMAYNmyZR/4nV8plamqwpMncfRozMjACxcwLg4PHsQdO9DfH1esWP3dd9998803rq6uAwcONDExAQDey9aAEg9eXbRokb6+/r59+5rPortAIHB0zOvZs1SyfrtlZWWs3rdbt2729vb29vbdunWztra2trY2NjY2NDR8Jac3MDBQV1eXYPbqTz/hkiX400/o4oILFmBKCm7ZIpvEvba2VlVVVVVVVb7dTqKikjU0NNjKmRJ/6yZOnD548NoVK0rlHYi0srOzdXV12VppQ/r6+h06dHBwcHB2dvbw8PD29vbz8/vuu+84HI6mpqZw0Kw02JjnTz75RKx7vHv37rVo0cLGxvHQoSb0hx8bG8vhcNTV1c+ePTtgwAAAGDJkiBid47/7DgFw69bGjPH9nj3DVasQESMjcdMm/PRTfPwY581De3sEQAMD9PF5zybg2tpaX19fVvj+xRdf3Lhxw8HBAQDatWv3yg6KysrK3bt3Cyf8qKqqjh079gy7b1BSSpG4Z2YiAFpayup8EmQ5dXV13t7eAMDhcPz8/A4fPmxqapqent7wNZWVGBOD7u7/LZd6eeEXX2BlpcJ3L1Zy33+P2tp/jh//4SfslJUh27L19CkWFtY/zBVlLCZbydPU1Hwo3X6roqKigoICRHz69Km+vv7s2bM/8PARuWjTBgHw0SNJjmWrZQ4ODnw+Py8vb/fu3ZGRkZGRkdHR0fHx8fHx8UlJSayEJjc3t6ioaPLkyQAwbtw4cd+o4Yo7a7u+ZAnOm4dxcVJt1EPE+/fvsx+QUp1FFv7880/2ANPDw0NZx2JcvYocDurpoaKPsR81ahQAWFlZjR49esCAAT169DA1NRWOHH5dly5dZDXYsqqqij0jOnbsmIiHCASC4cOHQxNrSScQCD755BMA2LRpE8vg27VrJ94g5G+/RQC517g/e4ZDh+JPP+FXX+GmTRgWhnPn4rx5GB2Nu3ah6PuGoqKiWrZsCQCdO3dOSUnx9vY+ceKE8P/m5ub6+fmxGi0AaNmypY+Pj5RDSRWCUiTufD7q6yOASBnNO504ccLDw8PU1JTL5QYGBopYlFlRUcGuWZqamhEREf7+/uw28dWWqy89f45796KrK/78M544gatXU+LehF27hurqqKJSv/StOCZMmAAAs2fPlsnZpk6dCgCOjo5KXLcgZGuLAChBAUtGRgbbWpCSkoKI8fHx7yiVmTVrFiLm5eWxarpEMb9gycn1ff0TEpC1sSksxEWLkMPBMWNQmnvMwsLCoKCg4OBgyU8hO6dPn9bX1weAsU3gmWojGT4cAVCuMwCkxWZFGxgYvF5eVVJScvfu3UuXLp04cWL//v3CXpl5eXkyXAXYsGEDAPTs2TMpKSk7O7ugoODdV6qgoCAAMDExyW9Kpat8Pn/YsGEqKirsanD06FFxLws4eTICyL0r0ysr7rGxuHcv9ukjyanu3bvHplNraWkFviwBOn/+PJtgza6l9vb2O3bsEKuRgEJTisQdEfv3RwB82YtKMrt27WLfA+EigZqamrOz8549e96xJaKgoIBtfDY0NDx9+jRr/MzW3d/7jlu2YE4Orl3bFMp8yJtUV2PPngiAixfLOxSxZWZmymTRHV8OZtfU1BSlK6IScHJCABSnBw8iokAgYA3+5syZw34nIyNjypQp7u7u7u7ubm5uTk5OTk5On376KSuhEd7Yr1ixAgA+/fRT6W+KLl+u7+b+2WdY2oSe/0vlypUrJiYmO6Vv1t1UXbhQXz9QXCzvUCTy6NEjVgAWFhYmrxjKy8stLS3btWsnvDHmcDjGxsZdunTp16+fi4uLl5fX/Pnz16xZs23bts2bN7O7ZQnK4hvb0qVL2YOLUon+AT/39q7o3r384EGZByaW4mIMCUFEPH0aDx3CixdRIECJG5++ePFixowZ7K/V0dGxa9eu7Neampqenp7KOh71HZQlcZ87F1VUUNJJNwKBgG2sAQAfH5+ysrLIyEhXV1dWYcmqppycnEJDQ1/Z4Xfnzh02JNXKyuratWtubm7sy3TgwAFR3jc6GvPyqFSmCVu+HAGwSxcxnu01JWwQmJSL7iUlJWyqRYCsWpY0eR4eCID794t3FFt0NDU1ff5cvGYsZWVlrGOxTDoR3bxZX+rTpw+KM7qkSRP3j1ThDByIACijypEPSyD42curKdSc1NTUzJ49+9NPP+3cuXOrVq3e8bALANq1a+fp6SnfgN+opqamd+/eADB9+nQJDh8/fjw0sS4CNTWop4c2NijlRpWjR48aGBh0794dAMzNzX19fR9JVs6o+JQlcc/Oxh9/xLVrUfw2CNXV1Z6eniw737ZtW0qDGd/Pnz8PDQ11dXUVrsFraWm5urqGhoaWlpZevHiRbQHs3bt3Wloa2zlhZGTE+mGJKC0NTU2xd29xoyYfxLJlqK6ucEUyQmzRXUNDQ5qyP7bUYWdnp9CD2cXi44MA4nVUKyoqat26NQDsk6ihdHBwMAB07dpVJpXct2+jhQUCoIdHungFskROTp7EXr3wzz8RESsqUPgtUIDC/q1bUVX1nItLk6o5QUQ+n//s2bOsrKwLFy7ExsaGhIRs2rRp+fLlM2fOdHd3v3r1qgSNtj6MzMxMtrVDggcCrB3t77//3hiBSebOHZltQszKysrOzj5y5Ejz+WH0RsqSuM+ahYWFWFGBU6eKdVxpaemIESMAQFdXNyYmhq27b9my5ZWXPX36dPv27YMHDxZ2Z9fW1mbZvJubW1pamnDdXdzBKyUlqKKCmpqKcIFWfHV1dUFBQWvWrNm8eXNoaGhUVNTp06drr1/HnBwsKkJhweW//+KiRbhqFYaFNa1heuJji+4SD/E9deoUh8PR0NB4Zae1cluyBMvK8OZNFP1Ds9ubgQMHSlbuUlNTw64h27dvl+Dw192/j2PG3FZRUevevftb16UEAszPx6dP8fvvcfVquXeiaOaWLatvwz9vHnp7IyKWl6Ovr3yDep+cHNTTQwA8fFjeoSiVwMBAVoL/mO1Af6eqqqq4uDh24+Tq6goAsbGxjR+jqBISEAAHDZJ3HEpEWRJ3YfHUjBl46hTu3y9KgWdubi7bwW1mZnbx4sVvvvmG1bXvevsItYKCgtDQUCcnJw6HY2ZmNmzYsNraWnd3dwDo27evWEsOO3fi4MF4/Dh26YIAeOOG6IcSSfz777/W1tasJqGhCl3d/9qh6+nhRx/hnDlYXo6I//1CYUmz6F5RUdGxY0d4+zZrZeXkhFu34okTePy4SK+/fPky+0POzMyU+E0PHz4MAK1bt5astvV1T548sbW1BQBLS8t//vkHER89enTy5MmILVtw2jTs0wf19bFNG1y+HFkT8VWrJHhiSWRl2TJcsQJzcnDePJw8GRMTMSGhaSfufH59ic/EifIORdkIBILPP/8cAEaMGPG2tYDCwsLIyEhPT082nJjd8zs7OwNAw9YrcrdrFwLgpEnyjkOJqL27DkxhIEJVFairQ10d/PwzxMWBlhY4OYG7O4wdC3p6rx+Rnp7u4uLy8OHDHj16HDx40MfH58yZM3p6egcPHnRxcXnb+7Rq1crLy8vLy2vBggW//PKLl5cXS/QtLCxWr16to6Mjesj//gtnzgCXC716we3bcPUq2NpK8tGJKBCRx+PdvXu3d+/e06ZNK3mpvKxMp7gYiouhpASKi6G8HCoqoKYG2Nis1q3h+XN4OUJLEXXv3n3ChAkHDhwICAhg3Y6Li4vv3Llj8JKmpubbjvX19c3JybG1tf3+++8/YMjyZ2sLDx6Ari7k54O3N3C50L8/cLnw0UdveLFAIJg9e7ZAIFi4cCGrv5TMl19+6ejomJSUtHHjxlWrVkl8HiFTU9MzZ864uLgkJSX179//xYsXpaWlAKCnoeGBCLW1AAAqKvDoEZiZAQC0awf5+fByAjn58ObPhxUrQFMT2N8P+ytqujZsgHPnoE0bCAqSdyjKhsPh7Nq1y8bG5sSJEzt37mTDqpjs7OyYmJjY2NikpCQ+n89+087OrkWLFnV1dU+fPgUAYbuVpuD+fQAAS0t5x6FM5H3nICP//osrV+LKlZiRgb/9hgMHoopK/Rqqvv68KVP++OOPF6whNiIixsfHs5tUR0fHtLQ0ti5lbm5+9epVEd8wJiYGAIYOHSpxyEePIgB+/jn+/DMCoIy69pE32759OwAYGxu/56lISQk+fowbN2J8PBYUoJeXtBtqmoBXFt1PnjzZ8AqgpaXVunXrzp07Ozg4ODk5CXt3XLhwQUVFRU1NTfR/FEogOxszMnDhQiwsxL59cdKk/xlP27Ytzp17LTg4ODU1VTgSaPPmzQBgYWFRLvXDmaSkJA6Ho6enJ8rzcRGVlZUNGTIEALS1tfX09Nq1a9euXbvnHTr896lWrsT9+7G4GCdPRkkHdRHpsQlrf/yBY8YoSKnM1q2ooyPqYykivqNHjwKArq4uG9B2+/btLl26CC/dmpqazs7O27Zty8rKiomJ4fF47Hmyubl53759ZXgNkdL8+U/btavds0f5B4B8MMqSuL/u2TPcsQO53OeffMK+5To6Ou7u7jExMTt37mTl6V9++eXly5dZA6mPPvpIrFqC3NxcADA0NJS4g9u9ewiAJiZ46lRtz55lXl6SjD0norh//z5rBX1YxEJMgQCPHsXgYGxi260k5uHhAS8r3c+ePWtvb9+xY0djY+PXx6MsWbIEESsrK1nJtShdTZXG2bNoZISWlvXbUo8exatXMSMDd+xAd3c0MUEAHDx4KfuDatmypYuLy4oVK9hXKyoqSiYxjB49Gl62eJeVsrIyTU3Nhn/X9/v1Q3197NMHp03D1FSMi8PAQGwGg0uaJj4fR43C9evrJ6zdvVv/V8HnN8ktNjk5uGAB+vnh9u1Kc4VsslgFr4ODQ01NTXV1tb6+vpGRkbu7e2hoaGpqalBQkJOTU8N/2p07d2YTi9q2bStWn4zGM3DgQAD4mw2bILKgvIn7S/kPHmzYsIH1VxLep7IE5eTJky1atACAzz77TIJ2Y2ZmZgCQk5MjcWzOzvs6dx6bmZnJ4XC0tLSUdTSg3LH9x6NHj5Z3IHKTnZ2tqqqqpqbm4+OzYcOGnTt3RkZGxsfHX7p06caNG2lpaampqSkpKX/99Rfr1L5gwQIAsLGxqa6ulnfsH8jBg6ilhQA4YsSbN8gIBJiZiaGhsZ6enh06dBBeTwwNDXu/bAslfZ+KzMxMNTU1NTU1cbe5v8Ply5cBwMTExNPTc/369ceOHSu8dw+bwSAtRbFpEwKgmZmC9HH38anf+bNwIb59wgmRieLiYktLSwBYvXo1It66dSstLc3Pz8/e3p7NeQQAVVVVLpfr7+/P9tjk5+c7OTkBgJqamp+fH1+ih8b//vtvaWmpTEYasW7C0mRK5BXKn7gL5eTkrFu3rm3bthoaGiyHY+UT7u7uDatoRDdy5EgxFnHfZNiwYWytjm0BTEtLk/hU5G127doFAK1atRJxDq6yWrRoESuZeBsNDQ0TE5NOnTr17NmTFclcvnxZ3lF/CAIB+vkhh4MA6OODIg5zfPjwYUREBLsItG/f/sWLF76+vvr6+mwbqLiePXu2fPk8yAZaAAAYgUlEQVTysrIyROzUqdPAgQOfPXsmwXneaNOmTQAwbdo0WZ2QyNCtW6itjQDYlDr4vZOwFcT69Xj3rlxDaRbOnTunqqqqqqo6atQotlzIGBgYTJgwYf/+/a8PiKyrq/Pz82NN8FxcXArFGeggHErq4uLSvXv3jIwMaYKvqalhwdO6pAw1o8Sd2bdvHwCMGTOG/eeff/4pca3LypUrhaUFklmyZAkArFy5kg1N2CvvMcXKJzc3l4302y/uNB1ldPz4cT8/v/nz50+dOnXcuHFOTk729vadOnUyMTERzhpjpkyZsnHjRnnH+yFUVVXNmDHf1DRPTU2Sdoh8Pt/Ozg4AAgICpkyZAgDjx4+XIIypU6cCgKen55EjRwCgRYsWeazTiyyMHTuWLi9NU20t9u2LAKhId1W//oqRkXjvHnp6inqbS6SzcOFCKysrdnG2tLTk8XgxMTHvfRyakJDAqt7bt29/4cKFd7+4pKQkODi4W7duwsIENqZGX18/IiJC4shzcnIAwMLCQuIzkNc1u8Q9MzOTffWlP1VUVBQADB8+XOIzREZGshvi9evXA4A325FEZOeLL74AAFdXV3kHogBevHjx5MmT7OzsS5cuPWgebQELCgoGDBgAAA4On0m8xS4uLo6VvKenp+vo6HA4nPf+jHxFYmIia5Z/48YNVoSzTdIh0K8TCARsMtSdO3dkdU4iK5s33wVACwtsqrOA3uKvv3DvXoyLw5gYeYfSLFRVVZWWlq5bty41NVWsAx8+fMjlclnZjL+//xuXKW/fvu3r68tWuKDBUNLKyspp06ax3/T09KyQaOd6dHQ0AHC5XAmOJW/T7BJ3Pp/PNpNJP1DwwYMHrAZD4jM8e/YsNjY2Ly/vr7/+AgBHR0cpQyINhYWFseeJD5viDi8iZ3fu3GHLS23atJGycw6reVu4cOHSpUsBYMCAAaIfW1tby6ZJ/PDDD4sXLwYAe3v7OtktZGZlZQGAmZmZrE5IZOXGjRsaGhq9e/v9/bcCrlufP48A2K4dVlXJOxTyLrW1tcKymVGjRgnravh8fnx8vKurq7BW3t7ePjQ0VFjTkp6eHhkZGRoayvpc29nZiVUHmJWV5ePjo62t3aFDB319/fj4eNl/tuaq2SXuiNi/f38AOHnypPSnYs+hpJknj4gvXrwYM2aMrq4ulXO8S2Ul/vgjrlmDv/0mysufPn3KnvRRhQB5XWJiYqtWrQCgV69eubm5Up7txo0brOFmWloaW96OEXklcuPGjewZ4JUrV9TV1VVUVJKTk6WMp6GdO3dKXMBDxMDn49Gj+Ntv+Pw5pqTg2rX466945AieOoWpqRWPHr2yz6+6uvrjjz8GgDlz5sgrZGn16oUAuGOHvOMg7xcTE2NkZMSqVuLj4wMDA4U77LW0tDw9PV9Zy6+srGTrGt7e3ikpKZ06dWIlfAcPHnz3G9XW1kZGRg4aNIidnMPhtGnThi35r1u3TuLKZNJQc0zc586dCwDr1q2T/lSsXcnRo0clPkN+fn7fvn0BwMjIKCkpSfqQlFZQEF67hoi4bh2eOIH+/vjrr3jwIMbFYVJS2a1bjx49ajhycty4cQDg5OREVwryuqtXr+rp6Y0YMUL6PjDMxIkTAWDixIlsVnm3bt1qa2vfe9Tjx4/ZQImYmJjPPvsMAGbLeqDDpEmTAGAz63BJGs/q1XjuHD54gJMmYUDA//T/B/hj0CAA0NHRad++va2t7ZAhQ7y8vADA2tqa7UhWSIcOIQBaW6MIX3Uid3fv3nVwcAAAvZcjKTt37vzLL78Uv6WZUWhoqLa2NlvdSE1N/eqrr9hRPB7vjeX1+fn5/v7+rIcMK47n8Xjp6ekNd8oOHTq0mXeJkInmmLizCoovv/xS+lMtX74cAJYvX46Iqampzs7Oe/bseX2L99vcuXOHzVPo0KGDNMPSm4X58+t7kB09isuWvfJz8crL+3sVFRVDQ8O2bdtyOJwWLVrcv39f3nGTJio1NVWGFSn37t3T0tLicDjJyclsdeo3ER4NsV3pY8eODQkJAQBTU1PRrx4isra2BoDr12lMRCMT9lpZvBhPnMClS/Hbb3HsWBw8GG1sdo0cqaWl1XD/t4qKioqKShPptC0hPh8/+ggBMCxM3qEQkVRVVdnY2GhpadnZ2cXFxb23U+S1a9dYy7sWLVpERkbu2LGDddO2t7dv2N7xypUrPB6PZfnsfsDf3194Kdu5c2dAQEBcXBx7Bj5ixLe0RCml5pi4Z2RkAICVlZX0p2KDzUaMGIGIy5YtY99aDQ2Nb75ZEB7+5m7QQhcu4Mcf9wYABweHpjPkrOmKjMRDh1AgQG9vTEjA779HHg/d3XH4cOzb9293d3Nzc11dXeHPxUWLFr33oR4hMrRw4UIAGDx48MGDB9ker3fPUmU7W3R0dNLS0szNzQEgTNYJUF5eHvuhK8NbFPJmM2ciKw7m8XDjRvTwwNmz8YcfMCgIw8PT4uNTUlLS0tIyMjKuX78eEBDQsmXLKVOmyDtoqYWFlevq7nB3l6xZOPnwhg8fDgB//vmniK8vKSlh6wscDsfHxyc5OZml8gYGBgcOHIiMjHR0dBTeizo5OcXExDR8yv3kyRNWIu/m5paenj5q1FctWxapq+OGDTRJQnLNMXGvq6vT1dXlcDgFBQVSnio9PZ396A0KCsrKygoNDXV1dVVXVx806CgAamnh2LH4xx9vOPDwYdTSQiurrAkTPKWflK78LlzAS5fw0CFcuxbf2Vy8tra2oKAgJydHrM61hEivqKiIVZEeP368d+/e5ubmV65cecfrWRno+vXrZ82axba0yrysi91CfP7557I9LXmDW7dw0SL84Qc8cgTHjHnlkeB0GxvhmoKqqipLZWTy1FfOamt729kBwKFDh+QdChFJ165dAeDGjRtz587dsmWLiEft2LGDtQzu3bv39evX2YBntvoOAMbGxr6+vm/b7Hfs2DG2oahz5y5JSdV+fqiiggDo5ob0U1oyzTFxR0R2jyjlNueHDx/a2NhwOBy2KVtFRYXL5QYGBmZkZOzdWzh4cP238/VdYYGB9f9r2jQqDhRBeTlaWaGaGtLMZNK0BQQEAICNjU12dvZ7b8hLSkrWrVuXnJzMhtqK2+hNFN7e3gDw008/yfzM5F0uX8aICAwOxlWr0McHv/lmkYdHnz59OnbsyLY0sB2BKioqUk63aQrYHENbW1vaTdT0CQQCVrKVlpYGYvbFvnjxIqtfnzp1qkAgGDdunKamZps2bfbu3fveEZYPHjxwdHQcODBYTQ39/TE6Go2MEACtrOoX4vh8lGgMZjPVTBP3OXPmAIC/vz/7Twke86Wnp7dv3x4AOnbsGBgYOGbMGGEJY/v23OHDcdcuzMzEzZvxzJn/jqqrwzlzEAA5HPTzk9GHUXre3giAtrZIo9dI01ZdXc1qykNCQkR5PZ/PZ3vTfX19GyMeW1tbAOjatWtCQkJjnJ9IoK6uLj8/f8aMGQAwadIkeYcjraqqqrZt2wJAbGysvGMh78Fq50xMTBISEgBg0KBBYh1eWFg4c+ZMtpnV19dXrEWB6uqa+fPrB1SPG4c3b2K/fti+PfbvX7+pe8MGcT9N89VME/e9e/dCgxZpNjY2rq6uoaGhIm7wT0hIYAsn/fr1E04mLykpCQ8Pd3V1HTLkOHtAqqqKXC7u2IFpafWLxRER2KoVamqiFJPImpmkJFRRQTU1lK7TNiEfhnB6gLW1dc+ePe3t7e3t7QcPHuzk5OTk5PTll1+6u7tPmDCBx+PxeDxWLWNhYdEY9XICgWDu3Lmsel5bW/u4xCOmSCO4f/++urq6urr63bt35R2LtDZt2gQAffv2lXcg5D2SkpJYucuuXbukvG+cMGECAOzbt0+so6Kj0dAQW7fG3FysrsY7d3D+fOTxMCeHEncxNNPEnT0n6tixIyJmZWWxRkUAoKen5+HhERUVVfX2oRIhISHq6uoAMG7cuFda8zJFRbhnDzo7o5pafYnj+PHYrx8+e4bz5mFi4v+swZN3qazELl0QAFeulHcohIiEz+fv3r2bpcuicHV1/f333xsjkvLy8uHDh588edLHx4dtmo+MjGyMNyKSYR0hZ86cKe9ApFVRUWFiYmJrayv9tjHSqCIiIgDA3d195cqVAOAnxXN/9qgwMTFR3ANzcrDhaOkFC/DGDZw/nxJ3MaiJ+NNFyWhqampqaj59+pTL5Y4fP/769eunT58+fPhwUlLSgQMHDhw4oKOj4+Li4unp6ezszPZkMOvXr1+6dCki+vj4/PLLL8KMvyFDQ5gyBaZMgYIC+P13OHQIBg8GPT34v/8DAOByP9inVHiLf/ih1NR0g76+/vLl8o6FEJGoqKhMnTp16NChfD6/oqKipqYGAEpLS/l8PgA8f/4cAPh8fmlpKQDU1NR4eHiwnVsyt23btr/++uvcuXOHDh3S1NT8+eefPTw8SktLhWPMiXwtXbp03759e/fuXbFiBas2UVA6OjrJyclWVlbCGZykabp37x4AdOjQgf3C0tJS+lOJe6C1NVhb/8/v2NqCWjNNRSUl7zsHOUhOTmb9RFVVVdkfgoaGhpubW3h4+M2bNwMCAtiQAmbFihXsqNraWh6Px44SfS82Ex+Px4/jjh3I5TbC51FSFy9eZJv2Ll+6JO9YCFE8AoFg3rx57JIVEhLi7+8PABwOZ+PGjfIOjdRjjfbmz58v70BIs8B2VmzZsmXAgAEAcOrUKcnOU1lZyeFwNDQ0pG8DGhGBmzbhpUtIc5lE1+wS96ioKNaKa9iwYQ8ePBA2cGRpupaWFit2T01NXbt27ccff3zt2jVELCsr+/zzzwFAV1dX9GHmQikpeOEC8vk4cWIjfCRlVFVV9dFHHwHAkiVL5B0LIQqM5esqKiq//fbb1q1b2UPCRtoLS8R148YNDoejo6OTn58v71iI8nN2dgaAY8eOsdYaEu+vyMzMBIDOnTtLH9KMGQiAYq6FNnfNK3Hf9+uvbJV9+vTpDQeSFxYWsgxe7eUDG21tbZbBl5eX5+bm2tnZAUCrVq0uNCzOIo1myZIlANC1a9f39pkihLybcK39559/Dg8PZ1e5OXPmUP++psDNzQ0AWAUmIY2qW7duAHD9+nVVVVVVVdUaSRu1HT9+nK1+Sh+SszMC4LFj0p+pGVHIxP327dsitn/5j0CAfn6PzMzat2nzjg0ZeXl5QUFBXC5XWKunr6/fsmVLAOjWrZsSbP9XCKWlpa1bt1ZVVU2iyciEyML27duFa+1RUVFscgqPx6OBl3KXkpICAC1atBCOiCekMQgEAlZukJqaCmI2cX/Ftm3bAODbb7+VPqquXREAFX+ewQf1hr2VTd/UqVNNTEzc3NzCwsLKy8vff0BVFYwfDz/+2LaoKG3DhlWrVr3thebm5j4+PomJiQ8ePAgMDORyueXl5Z999lm/fv3OnTtnZWUlw09B3kZfXz81NXXPnj39+vWTdyyEKIOZM2eGh4erq6uvX78+Pj7+999/19bW/u2337755pva2lp5R9es9enTx8nJqbS0NDg4WN6xEGWWn59fWVlpbGzcpUuX8+fP//rrrxKf6v79+yDd3lYGER48AACQ+kzNjLzvHMRWXV09aNCghg0cp3l6YlQUvq2BY2EhDhiAAKivj3Fx4r5dTk5OcXFxdXW1tHETQohcxcTEsDlxEydOPHXqVIsWLYB2RsrbkydPWDsEIyMjsZ8kEyKyq1evqqurm5mZSf81k6yJ++vy8hAATUykPE2zo3gr7hoaGmfOnBGuiFdUVFhkZcEXX4CREYwfD7GxUFPzPwf88AOcPw8WFpCUBCNGiPt21tbWBgYGDTtCEkKIInJzczt+/Li+vv6+ffuCgoJOnDjRt2/fRYsWyTuuZm3mzJlXrlzp0KGDv7+/cPw2ITLXq1evyZMnP3nypHfv3hkZGeIefvbs2X379rFfS9wL8hUPH6bb2S0eNixSyvM0O/K+c5DWvXv37m3fjg4O9bOOANDICA8fxrlzce1a9PbG/HycMgVzc+UdKSGEyF9iYiIb/Dxt2jR5x9LchYSEAICBgUFaWlqbNm0ajuImROays7NtbW0BQEtLKzAwUJRDXrx4ERoayo5q2bIlm/FsZmYGAI8ePZIyHuFAKCnP09wo3or7KywtLS1nzoTLl+HePQgMBC4Xiorg0SMYMQKWLYMJEyAuDvbsgTZt5B0pIYTIH5fLPX36dI8ePRYsWCDvWJq13Nzc+fPnA8DmzZv9/f3z8vI4HI6hoaG84yJKq0uXLsnJyT4+PlVVVfPmzfPy8qqoqHjbi+/cubNgwQJzc/NJkyalpqaamZn5+PgUFBT4+/s/e/ZMVVUVEaWMR1a18s2Nwifu/7G0hLlzITER/vkHDA2hZUsAAENDKCuTd2SEENKE2NnZpaen9+jRQ96BNF+I+O233z5//nzUqFEGBgYRERE6OjohISHCsYCENAYtLa2goKDw8HBdXd3w8HAHB4dXymYEAkFCQsL48eO7dev2yy+/FBcX29vb79ixIzo6Ojc3t3v37qx1KZ/Pt7e3T0hIEDeArKwsHx+fx48fAyXuEpPzin8jyc3FGTMwLQ29vTEnR97REEIIIf9hDfWMjY0zMjJMTU0BYNu2bfIOijQjt27dsrGxAQA9Pb39+/cLf3/r1q0sOdTW1p46dWpKSkpkZKSTkxP7TQ6H4+TktHv3bjbLicPh+Pr61tXVvfft6uowOvrPYcOGsV7bq1atQsQRI0YAQGxsbCN+TmWkpIk7IublYUwMPnwo7zgIIYSQ/9y9e1dfXx8AIiMjx40bBwBDhw6leVjkA6usrJw+fTrLyD09PSsqKhCxsLCwR48e69evv3Xrlr+/P5uxCgAtWrTg8Xg3b95kx/L5/DVr1rAHREOHDn3y5K2znIqLMTAQraxwwIBpAKCrq8vj8a5duxYWFsY226Snp3+gD6wsOCh1lRIhhBBCRCEQCIYMGXL27Nmvv/7a2dl50qRJbHOqhYWFvEMjzVFYWNisWbMqKyvt7OwiIyM7dep09erVoKCggwcPsiEPXbt2nTVr1rRp0/T09F459uzZsx4eHl26bLl1a+y+fTBs2KsnDwyEpUuhqgoAYMiQDFfX+JEjR0ZFRQUHB+fm5gJAeHj4V199JRxaT0RBiTshhBDygWzcuHHRokXm5ubx8fEDBgx4/vx5SEjIpEmT5B0Xab5SU1Pd3d3/+ecfXV1dc3PzO3fuAICamtro0aO9vb0HDx78jmOfPMn38jKJj1dRVYUff4SlS0Glwd7JmBgYMwaGDAEeD4yM4OhRv50719XV1QGAnZ3d7Nmzv/76a21t7cb9eEqHEndCCCHkQ8jKyurVq9eLFy9iY2O3bdsWFxfn5uYWExMj77hIc1dWVsbj8c6fP19QUGBgYDBlypRZs2aJuG2Uz4c1a2DNGhAIYMgQiIgAU9P//ld2Nly5Ahs3QloaODoeuHx50hdffMHj8YR180RclLgTQgghja6uro7L5V66dGn69Om9evX67rvvjI2N09PTWVdsQuTuyZMnOTk5Dg4Ompqa4h578iR4esKzZzBhAsyZA1wu7N4N6ekQEgIlJQAA5uYwa1bt9OkF5ubmsg+9OaHEnRBCCGl0oaGhkydPtrS0jI2N5XK5ZWVlhw4dGj9+vLzjIkQ2Hj2CdevAzAyys2HPHli0CPbvh+fPwd4efHzAwwPU1eUdolKgxJ0QQghpdIi4ZcuWHj16rFmzhu3qY5MjCVEm69bBgAGQmAhPn0K/ftClC3zyibxjUi60k5cQQghpdBwOZ86cOQUFBTU1Nebm5sHBwfKOiJBG0b07nD4NT58CPU9qDEo0OZUQQghp2oyNjc+fP3/27NlWrVrJOxZCZK97d9DUhIULwcZG3qEoKSqVIYQQQgghRAHQijshhBBCCCEKgBJ3QgghhBBCFAAl7oQQQgghhCgAStwJIYQQQghRAJS4E0IIIYQQogAocSeEEEIIIUQBUOJOCCGEEEKIAqDEnRBCCCGEEAVAiTshhBBCCCEKgBJ3QgghhBBCFAAl7oQQQgghhCgAStwJIYQQQghRAJS4E0IIIYQQogAocSeEEEIIIUQBUOJOCCGEEEKIAqDEnRBCCCGEEAVAiTshhBBCCCEKgBJ3QgghhBBCFAAl7oQQQgghhCgAStwJIYQQQghRAJS4E0IIIYQQogAocSeEEEIIIUQBUOJOCCGEEEKIAqDEnRBCCCGEEAVAiTshhBBCCCEKgBJ3QgghhBBCFAAl7oQQQgghhCgAStwJIYQQQghRAJS4E0IIIYQQogAocSeEEEIIIUQBUOJOCCGEEEKIAqDEnRBCCCGEEAVAiTshhBBCCCEKgBJ3QgghhBBCFMD/AxWSS2LAGA9/AAACOHpUWHRyZGtpdFBLTCByZGtpdCAyMDIxLjA5LjUAAHicbdFNaBNBFADgt7ObyeZnjdls/n+tf4H2IvYgUpq56U38xYClQxXdRvCghyBYE9C2FIoJtnpV6kHEqIdie0qztZiDIloRbHsQvXioxHrpQURw92lSSBwY3jdvHm8euxsLTz6BuRTYWklzd5m7KFDgZhREGdJmFAllGCXKdCuKQjNh/xvF1sVW4l8B4AUR/tOirZcDUtajzaO3eWwr60i0hsShSUe0YyOxPS1juqPaBQIIJEVEnYgSl2w6sVFO7Tqxy1x2pBzOlNOlE5ebuxWdKNtA8XDPdvB4dSKrOlF93KfpRPOn/AEIBCEYglAYwhGIRCEag1gc4gnQCE+EQZW418k1iRLNp0oitVG7rErU5VY8XieNRGPxRDh4XTA/Qev/7J89ZMwWy4Z1uHx/tTa9eQ/9+ZxaS54souW92Qy8KqHHhN+Z4HGOrp7NspW+AnrwTZl9/5VBD+XH2ejMUs3ya1cvE96OopcHd7Az4bV+y+/vDrNu+XnG8te+GXZk+BL6wuk6uza3ic6RKlu3ZZnlb/EvLLdzEt0ol1hlI4/+cXCM9SiP0avrp9iLpwfQ048+Zi6mCc4zcmu8/+hIHWd4qQ3UpgpdmO9Oq8byHRG9+8MuY6rix5rkfMHI9ryrWp7cN2HcPvYM53E8mDMCexpo+rNmzFdP4Fs3cg3j6sMraLIkL5bO96LFkLRYz1ewfmJhzbh5eAAd+AMMpJXfK9iSUwAAAuZ6VFh0TU9MIHJka2l0IDIwMjEuMDkuNQAAeJx9VVtuGzEM/PcpdAELfEriZxKnRVHEAdq0dyjQz94fHcqI1kGF7lrE7npMzZIz9Knk8e3y9defsg65nE6l0H8+EVF+KhGdXkpelMfnz1+u5ent4fH9ydPrj+vb96Jc1PAbnB+xD2+vL+9PuDyVs1YWUpZytursnblQpXkcv5XyWs5cO5FQJDJidBkbpGZOqsgzfOYkJo1dTgOS6rAhN6CFGu1SOoBco7eWe2t1cuq7jK1ci1aN1lkTGGPQiA2wIyPeVpCHylnwNtFB4l/gQEaroqqiWQCXodE3wEBGqYNVhBJI5jpoA2RCSkEitq743sSx9w6Y3dHaLEbeVWPLLm2AAqBXahHZ8hqAhe2A2ZtWOYagIagoR9NdHdlmxqDm5rOiFKPtgF4+lV5JLUhQKO2RhdoA26y4jWYGZdbRjWgLRGt+A8lhLRwkFIX0nSp4zPrgSxqWtR/e2pZkTP00KK1pdptUO++aiNalJKVZ95jt9qzqDsk3mSOjx8ikjiLpbnuZ3pEK5XQUKff3RrzNOs2DXN3NxrTRsNZ26hC7eTfCPe1DlYnBewdN/8BfAseCK1dt0WmLTAOdHTZHewRIWLjLdvt0EJAwDoMp2iBGfftO2aZzh3wjfY7Ww3NbC0lkoUZ162n0dNPA1W7GZJ+AFPfRkqcaCO946uxTq0M9W5oNMx07OT1fLx9m421aPr5eL8e0zFOOkYibosfcs1zHcMvTjxGGm9KOQWVY/RhHhjWOoWNYcYwWznU/QXgGvhsVloEXOcwEy8CLHydBBF4U4XKeYbHkpJlPFlH4lmdYXDnJ5pNFl5MvCC7C0LZlkHtjWQZZlGXWEp+jnrOgAhPc2YEzyKIsSRlBFmWokzPIoixJGUEWZYiVM8iiDFFyBlmcJauMoPci4zIldCcmS85Hz5Oy8t3mqrdXX/w0ZYAKHc1Kod3LKu/f/8BxffoLnmaAItjBQCMAAAFvelRYdFNNSUxFUyByZGtpdCAyMDIxLjA5LjUAAHicJZE5buVADESvMuH/QIvgvkChAIf2ITo1fAIf3mRPJOlxUVXx+dq0N//sn/363LL3fn289+v5fm95b96bvp7n+aTn6Sf9+31dAsQotC4FIwta90UQiHxQVYY0QuhSGg9DQql1I6Qm/0daoj1JUOHegwKGhrFuASmPQyoTe6x/w1O6uJdX2BAWkd5DXUpdN0OS8AGoJjnEmDQWgrKdIQHXSlkEStrybwP0KumWEuLqNQ5UydUtReUyLYVuukYUVmsJQNFaChLVAlqJpus0ZOh8UqnXMpCW4ceNJeZqgWkeY9g7BB8zKBI8qbBrWB03J4LOLl2scrqs/9yb+41TTghojnyIhamtiTrVvT1OaGV2GCH13mad1pyEQLzOtayv1WoJ+jyjoEEHSzY2WVvtfUWHVDwk8cwkmEYfapLO8EPYrJ30Xo255eWQYl0b+SqZ6/37B11JfNKB8ouaAAACF3pUWHRyZGtpdFBLTDEgcmRraXQgMjAyMS4wOS41AAB4nHu/b+09BiDgZUAAWSCWB+IGRjaGDCDNxAxkaIAYLGwOIJoZSIMkmIESWBgQJexgvcxMCAEIzQxXiRDAMBQiwAG2lZmJjSEBZDuc5mBQANEQLiMzycrRrIELcDMwajAzMikwMWcwMbMksLBmMLGyJbCxK7BzKHBwZjBxciVwcWcwcfMk8PBmMPHyJfDxK/ALMAgIMggKMQgJM/CJZDCJiCqIijGIiTOISzBISDKISCVISWcwsclkMMkwJUhzJEjzJIgwszHJsLGyMLNxcnHzSHOw8fKJSEnziKcxAp0Hj4TpFsyOkn3SDiCOLtsbh8Bz0+xBbJ3ZFx0kf07fC2IvlnruYKu1dT+IvWj9GQeBPVoHQGzto3McVvOqgtlbXdsdVhXMA6up3abn8FB4Mpg9cTuzQ8A2FzsQe1KvhcOaJzvA5i/r43VY424EtvfxMzN7gW/mYLZw5+O99vPOg9XkPDq7n+P3LTDb/Lj0gelbXoHNUZ1TfeCeMA9YvMN38oFZWz6C2f/NDx9IFvwLZpduv3GAPS4EbOa3AJaDOTxRYPa0CQ/3c/9OBLvNZ57qgS1LOcDun7uz6YD/dyYIW2XuAQe5YDBbhP/sgTv5vmC2aNXzA2mn+8Dsd7Pa983bUgE2p6+L3973XD/Ybds2LHS4MjvPBsQWAwDB7ZA5tCJHXQAAAqx6VFh0TU9MMSByZGtpdCAyMDIxLjA5LjUAAHicfVVbbtwwDPzfU+gCK/AlkfpsskFRFNkF2rR36H/vjw5lJFYAodoVIdtjUiJn6EvJ8eP2/c/f8jHkdrmUQv/5jzHKbyWiy2vJRXl6+frtXp7fvjy933l+/Lq//SwyijLewe8z9svb4/X9DpfnElWIlXuRakrNolClOc43BTiv6s2bFa7swc4bnALXa2vEQ8oVz92E+gZo06GIEHG5cjVu2nYe2/Soo5tRuUrt3V12W+wAWo0xqEcCm8doYwP0CRRxwWOEFsVpdAOMckdOXEZEJJBtkNkGOOBRKrUgz4A4O5NscEzTY4R2Y6TRMHy3RebpUZhDJfcQrcsuMgs8UnU265yu3XRsgVkZFIQxKGN3pJ59h8zS4LSdwlyAdCaPXQ05a3NN1hhpBrUWRtvz9PIoV61D2agB0MzBoR0yq3M1RFfhpBpyr/ujRyJ7ZULiG5DDncaujjwyeq8gjo5WtCoHVjuaU/qEIPrw3oE0cqKtIPjIkiOP0jKzEeK6S6hIhgchwz08Vwyq8+5MosfpKRq3yWKyrtZ2UDugA9XBtpFc8NRlJyHsb57fKGjwhKKPtB1DJVV0hTBVOwDwb11Utrnyg1HSLdAUsBrObSt2yVKh6B3ZzGRKUGzbh6SSGpQkcZyErfVdol7ut0997OhsT4/77exsiilnA8NF0bNPWc6zG+WvnT0HF6WfncUw/ewfjBlnl2DMcfYCw+RV85aGeRG3pWFZVGxpWBe5Whq2RZaWhtsiP56mLzLjaXyRE08Ti2x4mrHIg9PIKoMMBJIvdOc0Igur8xKUXcjLacQWjnIaaQsVOY30hXE2PftCLEsjsfDHkHIZC09sfuA+6pk7lqUMyseNM6VJmZUgef3+2cT68g/092Yw8sVpQwAAAVx6VFh0U01JTEVTMSByZGtpdCAyMDIxLjA5LjUAAHicPZFLTsYwDISvgsSGX0ojvx/qsns4RPecgMMzLhLZNPpqe8aT6/26+cb5+Lzl+/6+Fdev6/q6Xv/fW/R189vPR20hVlmyTcl9nbk1PX3x5izOdcZ2J+510KY0IY8pEpF18DZ29anRDrN1yI7I1HXarm7KIZ7VMUQkJaZLFKPXKTulq4ewNdkQ8qJatLmFSYZUaRjsGE4NEOZSGM7yQAXtZLNgkErTXiecMg4xukJkxkAiqCxBkimnaDY2UmiZl9Eg3a1sDOSWWB/I0KcykwpGZlJsJvIG6cynLXamQFi3cgnWOJBq4C+IUcLH6Gc8mREGSWo+DrwSXnBhdeZHjso5BpGF2oMajtGpG2nlnwWjgvQg6sYDHHgR1fCFcgtcnxQkrNxGs5OdYsLygKNJWBB0QtORuZSAEJsHnvP18wtjb3aBpZJcugAAAo56VFh0cmRraXRQS0wyIHJka2l0IDIwMjEuMDkuNQAAeJx90V1IFFEUAOA7d2Zn9sfZXdednZ3VtXFzY5MK36qXnVtU+GKE0YsZXipwqEiKqDAlQaMs6EeJsIwIbSHKpCCi1nZvEtpDYRJuhFBQlC9FBj30EGwzx7/UaOByvrnn3HPPMN8z/e+R9cho/olbK2GtVk5EphV5jGfAWzt2hhec0xFLMxWcSKYTIpmtnNlYUiFNR/6vykVHlvSaO4KoFTn+H5f9B4uvXfgF8z2XDL7oUogYz0YJ6XZ+YZrjPYhLYA7rmE9gLOiCQ3eIJhYlKjl1p0t3uU3s9lBPgYkLZCp7da/PxD4/9Rcif4AGikxcFKRBxcRKiIZUE8thE0uaibWIHilGWgktiZo4WqqXLkOlOtLLUFkMxZajWDmKOmjYRVUvVQM0KIiOaIkmiaLbUyCHXQ6fVw34xaKgElID6jBnDTr3t8MvIqTrbTezXx7/vG20jhwCn6vOGS4aBJ+IV5K+lBO8cq9ijEz1ZW2/VA4a636sSdo+1V6eOdzfbdiWNiaTlckKYnt/qiGbix8AZz8pTEhtAzfd38nGt3SAR8evsXfyMTD/NcV2pzTwCkc7O94yAD1riy+wevXhU9v5hjSbbK6AGZ63P2ItW90w2/apCTaUqwK7xs6wz006uLNnD8s9OQJu7OVZOn8UfLW+NzsgxMHd+/LZ5o6b0LPxXj17kO8BJ/yrWHHLF5ihY3DUwJnNMFut8tsY7LwEHhNqya2aG2B0dzWpy/HgKydV0pXW4GxN9S4iDU9kbE+e30Gq5CHon+7tIZcLP66HGc5mScWzNti/c/ob8bVp4E1rnRveXHwN/nD9F3kVqYOeoT9ajrk16bq/zgAAA1R6VFh0TU9MMiByZGtpdCAyMDIxLjA5LjUAAHicfVZbbtw4EPyfU/ACQ/Sb5GdsB0EQZAxkvblD/vf+2GrKphSEiGw2JE4NWezqLs2t5PXj5duv/8q65OV2K4X+8j/GKD+ViG7fS96Up89fvj7K89unp4+Z59d/H2//FG3FqMy/37Gf3l6/f8xweS5SjbuFlrvVTs3DC1Wa1/lVAZCrSmudy11rww3JBqgTGM3EAJSq3DV2QCuv2Lq5SO8JZHVuvAF6eWDWu3pQuXMF3kffAANbUx3IjmC2cqNuu50bcHd8HhRghgWJcLsB9rkgd2/IutQIItvhBhhiwUHWuxat0UensQEy5dZIigmJAylBrLpDcq6p1ZBygpI49eij7ZApTUoXozvyjxuSmYA/kKnN3atwKJhAdyKouEPasSaLh/QUvjHxdnc/kNaE+sgsUEfWt0eKY/vuYeYJjfAROyWx1SOhTW14m9URTLalmiLdo/am1FumjLUzbVcdB1dpjlLLVR3lTruakymUVgdXnQXfRaHvDsqHpuSR+U+oD/UdAZlSoeBaqPsk0LrxloAe0DHcspHwpUCdble1gytSBeEnVMJ9J4FkL2HbgEY9oGtH6Y8tMo4+FhnYXqHqaLJrJmnoY/CMYfADq26Dt/0uKRRYUuBEAI6GZtmeZ0xTagzf0JKJRRJ2wPQ6fK7Rjh3Rns5bYDYTts5sWxaeyRDb2ZzKJKka3Vqm0uESuqs7TYHQdcNGf2+MrJQNMOXxiuaMGLkkyVDdWmeq00BOOmoCNHHw8J3haKrTQQ79oblmQKZtz2uaXasthkxzRW0iCRvg58fLb2+G413x9Pp4Od8VkuN8I+SEnr6Ph2Knu6Nqip8ezhhxOrVhtNOQDaOftssY43RXznE1UcvAfDFLy8CLHEzRMvDiB/OzDLwocnLMsFjCzPIRTnXxLMvAiyuMg2dYdFFyNmcWYxiNZZCrn1gGWZwlOSPImdDkjCCLsyTn7IHFGb1uyVkWZ0nOHf166VzOIIuyJGUEWZQlKSdmUZakjKDX7uIym+fSRpxBF2WV95mzDDRn8BJclHWWgqG6L3XOGXRx1nifWZzz10vufkImZb/UgU7KV/2M3mfWsbKqrzWczx+/lXB/+x/+3sJACATBQwAAAax6VFh0U01JTEVTMiByZGtpdCAyMDIxLjA5LjUAAHicJVJLcipBDLvKW0JV0+X/p6isZk8OMfucIIeP3I8FA0KWZYnr67oeX9/Pz833/fjc8nPj+br1/nlcz9vueak9f+R5P76B3PzBD9d13v/9PmQbl8V62S5Kz/XmrZJZ66U75wkg0sTWS7Zyaay37HSRHoTVGUO0vdQhw1uqYoBWIlm0OalM1vuFj0ERssAhCh4Sl2f3kh1B5IfUZFW6dEd1gTRrTWgQCWIFotvgkZdhGabfYz66HJQKklnmWziUoWxEcwU4LB6K7ZpMchBLIZxBmwoe1c9geZgPGOEddbBU6zj3BpMBil2pM6uIoJiPnKS7DMsR5fHp0NIhlWifW8gDRgfxniwnsQysnrEs4wN1u9lJM4T4/8ntcD2QhPvRCrhuHFSIs09RaMWQAlWnDNCB77bdmrELIhQ+QCdGT5GsaGRsdZ9mNRJUHI8+uM7M2Jo8TFqQDCDVcwRvR6VoBPm3oQkESWTK3NjuG5VEDo2kFbSEhKBTaM06/F/eBQlkO6SAdxlSRktCCwnN5ufvH7f3mBINLJ1uAAACbXpUWHRyZGtpdFBLTDMgcmRraXQgMjAyMS4wOS41AAB4nI3RS2gTQRgA4MkkmU2a5+adbB5jgjaoEC3UW5IN9WalSGmhFGRBwcUXipcaBB9oRLCHgE3B9pSi9JJCECt6SKaI1R6qtVaRGIKUXnqQHnIQL8XdP0mLL3Bg+L9/5p/hn92tSqmBlGFBuyOmzH3KvKEhSFaiFuM2tMpKXIXO0IqYa1doiNjaIGKn8i/49Wwn51pRu5P/z52d0vZRJClR7bMVOUTV9Vaq+WP73y21D+y29FshDxfvNmJCmjjWYIq1cYx1VKeneiJjwkmcQcYGo2Tsol0majLL2GyRLFZqtVGbXcZ2XuIdMnY4qdOFXG7k9iCPF3l8yOdHjoAUEGQsBGkwhCxhGYcjUoTKmO5BxqiMo3qJmiTBJvmdyKUj+qjRwBFitoQj1ETsvCMg2IjL7fH5nd45jdLqzl/96H/KJo5XmJrkgg8ZP10Ao+05NvJ6GLxUb7DC8wFwGT1gJ05z4P3rs0x421dV3WSfGT/ZDb5Q/MZ8B3vSqsOPVplQ/w4eWiyyAtsEk6W7bLDvqKg6u5Zg+d4kOMcTNn5vGWreD/irhotV8Fp1NDl1ypVSHR1ZTK+ErEnViW6/uH1kBmoWNsbEq8IEuDaYF2uHUhXVMz0L4s3cJLiZqIuNN5eh5iRHMh/yQ2BhzJ4ZPqyD/q+fiWckmYKv/MCZF42v4JDrk9j7chXsLZ0XD9yfB9/ZMouPL82ClzdL6dGpGHyf2jMk7jVnwcWz2ZQ5kIA3HltfqZx7dQs8/6RZ7e/Pgd9Nx1j5dhn8ZWOcGa414b2en/ASrRNvZY7QAAADL3pUWHRNT0wzIHJka2l0IDIwMjEuMDkuNQAAeJx9Vltu3DAM/N9T6AIriE+Jn3kURVFkA7Rp71Cgn70/OtQmsgsIdSLCdsbSkBwOcil5fXv++utPWRc/Xy6ltP/8RkT5Ka21y0vJm/L46fOXW3l6e3j8ePP0+uP29r2IFRn4Bj//Yh/eXl8+3lB5KlerbqFN8i7Uo1Nptc3r+JYTqXWQxeC8683Ndki576k+rHm5ShWzoL5BanktV6/hqtgJSFbrjTdIK7c809na0HLlSmQaY4P0++ncu7dRrq121+G6QfZEeu0d/CSRbuoaG+RIZK/K3nrm4YEi2AYY9y1tsJsXqiGubQekdqfZhnfcU8UXFG2HpCySojTCI4rU5u5tx5Jmi7h27aJSuIa5xC5zkiwn1xY6OE/3ZijXDqm5Z6vId3QFUsNMtxlli/DaxC13ItWgnTwoO0QV7bOYGwkk5ztgNoirhDTcElpqRFtg9kfqGCOcASR0sW2Pzv4ojiZIItOiYV1kp/aGbBzcugolksFWd3rjHCHH4W1Y7hSquh+gbM+o0r1P4Q5Rtl06nN2J2jgE32TxyaVvz87uEABs7FPsDuHFNiGbpyPhLM2Vajfw2A0l+0zIR6DViXR1CHqH7LPuHqNhwIDEgJBtTx+zldyY0AMgBTYi25QCcsffbcCHUqMGEduOZzod9mxEzNM8onnE1pBoSpPhMtrxCQY+fKdh4bvataE0DqVgPC12sybT5DDgTQJN0krhg3azJujR7/dEVL0Y5Nd1KyWxu8eqKI1MWbvZViKfbs//2Pjd2B9fb8+HsXOuw73zhRwWjYeihw8THu0wW8Lyw1EVqx+2qVjj8EbFisMBFYvORkcz0MnQaIZFDsalGWjxg0FpBloUKTlmWCwpaWZYRCmZItDiSkk2zWPRpeSLQIsxBEkZ+Dz8lIEXZ07OCHwUdFaUMaynsaUMvDizvr9ZnDk5I/DizJMzTl+cOTkj8OKM6aEMvDhzckaQ8zRo1kcWZ6g+HyHqk7w1gxw6SM4IsjhDrpr9ksUZqtQMi7Ik5fzy2HhSHqdWyKTsp6KmZM8CzeeP/1pwf/kLLC2tfQU8rWsAAAGdelRYdFNNSUxFUzMgcmRraXQgMjAyMS4wOS41AAB4nC2SOW7rQBBEr+KQBKhG7wsER8ylQzD98Al8+F9DmQmHD1O9VPH8Ps/t+72/LrnwbO9Lf67tddn6ePl5vrZzP0/fr8ve5/5zXXr+2y/5+t0eQRnjB97jOXU8H04tMX3gUJwRQEGeHXI8jCxiFChp0j0WUo+PLjUYOiWRP5lWJWRMld7pt64KNRbL8PQBK3JNKIEGneO+Fq2Zh9DYrQvizhIAcJm7n7rpHEaciS5PNC4v80NpIm1uwuOtUCVHJQgTOnQ5kE+sMZk40AO7M4n7CEoJhU8CsMGVNYCSjfGqpBUCB4y6e9aEcm/hkAgO6CAdZXY8E/JyW0ixmPdC3YwNGXa7Y59nk1Wu3dtcAyMOsY7pUoWkFVSCo8ZdKBV52ZKhC7oJVeRdOHswDkB6Rq8Bc5pvAnsl1g7KitlBTFbq2NOia0UWcCzXFRZRXbEO58yyR5GzF1xFcPPx0LkGdvoKZRHExIb/wkkm+5MFKuL/CNhSHndebo7koC4Yn8f++x+gf4+ZapQflwAAArx6VFh0cmRraXRQS0w0IHJka2l0IDIwMjEuMDkuNQAAeJyFkltIVFEUhvfZM3PmzM25ODcd5+rMWJIPhg/SRHMORSk+KFFZPtSOiA6EReaLEF1gJEOETCSzi1D4UCJpZRjqzJZSUUjKpLCrlPkgVFQa9RKdsybHSMoNi/87/1prs9bmfIp3vkbSMaCls0qKNVKcZFhEJGUUJuSTlOUgpcCLmkzjlKqTyqR8HuqULC/KqmD+gMXMShXqpCpSiSXjdwGCBGZWvmvZ3P/p+KtVAy+w3Df/w08ZXNLAOsQgBnOYUUihREoVUrGIVSM1hziNiDVaotWJWKf36Q0iNqSRNKOIjSZiMovYbCGWdBGnW31Wm89mF7HdQRxOETszfBmZKNOFXFkiznITt0fEHi/x+pDXL2UDJJCNAkGpMURCYenuHJLDkbCehIwkaCN+F7GqVJxGq8thDWnGUFjPmsyW9JCRtTucgaCNzXJ7vH6XY46R9kv9Gno0ThsH53n5o0xPqWdyGPj+jw9073Qv8EvPOfpiZBK4yXmLdsy2AC/MTNDqnoPAhZ8f0IbnRuDWgfd0Z21TVOZXo8/o5ODZuMyV8Xm6aetAQma+aIp27s+jMj+s6KAFx83AFZZauu1ACfB5pp7u294MXFRVTL8W3wIeVb1NjF1qA54fMScqGvuBWxZKo2tnrgPXHT4R/RKrBi4vK4lPXFwHfPXMjn7adRdmuJ1/Mxr5Xg48uDrI7x5/Axy8cIzvy2gGfhSJ8W132jfIfOpoF9+8UYS9Fvqe8n6rNyLzkxpG2MXZwTdcsQqlhddg39l7ucL61tPQW9udJ1RVTkNNSUOmMOXNhbeai7mF9u4YcNURpVA3pATunY3wYvQy1BcMbeHD7/LA7/g4HK23hcB/XDSWyP62B/Yq68mnCkMYuObQDfpTuxnmt/8CzVHRuKnTN4IAAAOXelRYdE1PTDQgcmRraXQgMjAyMS4wOS41AAB4nH1WW47cOAz871PoAi2ID4niZ2YmuwiCdAPJ7N4hwH7u/bFFeUd2ACLuNsd2l6VSFUnNrcTx/e3rz3/LPvjtdiul/ebr7uVvaa3dvpW4KC+f//zyKK/vn14+nrw+/3q8/yjaiirewedX7Kf357ePJ1Rey31UFettFKtD52AvrbZ1nK9y+RHA1qg3KaMyibgkQCnPcjeMOExm6dXMxFsC1ABq7WPwMIw41MVHAuzBsQPYOx4rRpzUZwIcx2K6N1UvUsdk79nUVh4BpK6qo3BlNSNNgDNGtEoGar0Q3uDeLAH6MbUpVOFyb5UnWyoktWNMKM2Y/E5VzZtlUtL/7uD3Zq3cuVpzEcqgfIgkXadoQNlEOFOJJKCKtUyFMXfB8iZNzqB6QEXFkUu4GjhyrssljKU28Dz8MqiVaUXLJ6o2+mwco/q0OVOxllMN3rt2i1GnM0TOoOFVq5NYlJYUzall+USOQVt1N0O+gfPkNlL7eXnVKvnsyCio6tSxvgxKB9NGmFeXrUiAkZZSeEVVxrSm8c5EsaSucljFkflN55JMp86eIcMpqa5jqgWSRkAzZBgF94WlxZz4OzRd/ECBwkZSiscVScozZWkYEVlKKLtjINbUeA6LZm3OvCzsc7SRribKyVFDs08LhYSQIZmW0e5QUnVYkyUMx7pTJB3I2ZH3SIJqXUQzK4XX7KO7ougZF5M8U0ik/AHgRLfp0ZhIx0jdEV0LZ7PhhhGbae9Zakpfhrt0R7pTZcZiMhcFNfQPDCeGPYRXjIbnCtnKtt6VevwOs2eawTKPskRRSuSQVHW0vXT21e4wqY3hFFfQqqdZBIWfqxq5+xzhJfaD0TKVPj/eftmbjt3q5fl4O3er+PC5J8VHzp0nbvXcXwAt/dxFCOc49wrCaeeOQDjn2fcJp5/dXXHStYdrBKJLq9YItMmhI9MKmx8ar0agTRFNRyPQZok2GrfokZduqRFoc0VT1Ai06aL3aQTajCkoI/C1l1EE3px5iYnvKSjki8CbMwdnBN6cOTgj8ObMIS0Cb84c6iLw5swhMAJvzhycEXhz5uCMINfq1rJq91LFGkE2ZwmdEeTMg+AcTzZnWZw7yutSaBRBNmcJnePJ5iyhM0dhXEpEI8jmLEtnyHZNeI2wIboo+yURlI9hTpN1UbaLFRqURS+CRXlciyHuP/7tw/XtPy2x6KK8LphSAAABzHpUWHRTTUlMRVM0IHJka2l0IDIwMjEuMDkuNQAAeJwlUkmOG0EM+0qObqBd0L5gkJOBHGcOeUJdg8kH8vhQZQN2l9mURLL0+v34+XXN9/X6fG3eez+eW/DQ7/29H5/bBvp6bd9z+HVtv/bj9efadm3dcv3lH/8ez1im6XznCqvQ+wMIEfsdS1i1ASQokXb7ysyD2PIISXDC2gA4APfbwCiO08SbzG9dUdJ+EHYDIkssk09fzkY/xhtxPpy0mfmkJSUp7+kQJn4/eVk25ZvWhNNTVlKrHgHqVjqQpB7I0LYMzRRziutAagrBOAQ+0wsvLeMeB8k+dbwyvIbTlTUSCO7aPIdVLYjig1axqPFASs08UHdmxwwsoeBTyV0+ImQ1e8bBiFFieizBJWTw0qgc34WsFaUyidKxnTY2PnS1RR2EEQkyhUMVvWnhNwyqYIKhCUoopdAFSTHhDWaSYJaiqha1yGBeQQGkkXb5iV357ZlpRdKQJN7jgZQjF+hxVZuq8J77RFrc87/MepaALaJnkGBhQKA0j7HU6siHl8jIR/QycnGLHD0jlrthfTDbsIznLrwIohGp9dk0kHO64+C4k/fyqXgf+djPQGjXv/9dWqUdfrSTNQAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, - "execution_count": 14, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mols = []\n", - "for entry in measured_compounds.most_common()[0:5]:\n", + "for entry in top_measured_compounds:\n", " mols.append(Chem.MolFromSmiles(entry[0]))\n", "Draw.MolsToGridImage(mols, molsPerRow=5)" ] @@ -1018,7 +1056,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "In this example, the first molecule is gefitinib, a known FDA-approved drug against EGFR." + "In this example (demo mode), the first molecule is gefitinib, a known FDA-approved drug against EGFR." ] }, { @@ -1030,7 +1068,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -1103,7 +1141,7 @@ "4 P00533 Br.C[C@@H](Nc1ncnc2[nH]c(-c3ccc(O)cc3)cc12)c1c... 8.420216" ] }, - "execution_count": 15, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -1130,7 +1168,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -1139,7 +1177,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -1168,7 +1206,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ @@ -1177,7 +1215,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -1270,7 +1308,7 @@ "4 1 " ] }, - "execution_count": 19, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -1303,7 +1341,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -1341,12 +1379,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Let's see what information we get for EGFR (which corresponds to the first row in the DataFrame):" + "Let's see what information we get for the first kinase in our dataset:" ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -1362,16 +1400,18 @@ } ], "source": [ - "uniprot_id = kinase_selection_df[\"uniprot_id\"][0]\n", - "print(f\"{kinase_selection_df['kinase'][0]} ({uniprot_id}):\")\n", - "egfr_metrics = kinase_to_activity_numbers(uniprot_id, data)\n", + "example_kinase = kinase_selection_df[\"kinase_klifs\"][0]\n", + "example_uniprot = kinase_selection_df[\"uniprot_id\"][0]\n", + "\n", + "print(f\"{example_kinase} ({example_uniprot}):\")\n", + "example_metrics = kinase_to_activity_numbers(example_uniprot, data)\n", "print(\n", " f\"{'Total number of measured compounds:' : <40}\"\n", - " f\"{egfr_metrics[0]} \\n\"\n", + " f\"{example_metrics[0]} \\n\"\n", " f\"{'Number of active compounds:' : <40}\"\n", - " f\"{egfr_metrics[1]} \\n\"\n", + " f\"{example_metrics[1]} \\n\"\n", " f\"{'Fraction of active compounds:' : <40}\"\n", - " f\"{egfr_metrics[2]:.2f} \\n\"\n", + " f\"{example_metrics[2]:.2f} \\n\"\n", ")\n", "# NBVAL_CHECK_OUTPUT" ] @@ -1385,7 +1425,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -1419,7 +1459,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -1520,7 +1560,7 @@ "p38a 3637 2778 0.763816" ] }, - "execution_count": 23, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -1657,7 +1697,7 @@ "" ] }, - "execution_count": 24, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -1693,7 +1733,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 26, "metadata": {}, "outputs": [], "source": [ @@ -1755,12 +1795,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Let's look at the values and similarity between EGFR and MET (which corresponds to the first and seventh row in the DataFrame)." + "Let's look at the values and similarity between two kinases." ] }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -1772,24 +1812,35 @@ "Total number of measured compounds: 92 \n", "Number of active compounds: 21 \n", "Fraction of active compounds or \n", - "ligand profile similarity between EGFR and MET: 0.23 \n", + "ligand profile similarity: 0.23 \n", "\n" ] } ], "source": [ - "similarity_egfr_met = similarity_ligand_profile(\n", - " kinase_selection_df[\"uniprot_id\"][0], kinase_selection_df[\"uniprot_id\"][7], data\n", + "if DEMO:\n", + " kinase1 = \"EGFR\"\n", + " uniprot1 = \"P00533\"\n", + " kinase2 = \"MET\"\n", + " uniprot2 = \"P08581\"\n", + "else:\n", + " kinase1 = kinase_selection_df[\"kinase_klifs\"][0]\n", + " uniprot1 = kinase_selection_df[\"uniprot_id\"][0]\n", + " kinase2 = kinase_selection_df[\"kinase_klifs\"][1]\n", + " uniprot2 = kinase_selection_df[\"uniprot_id\"][1]\n", + "\n", + "similarity_example = similarity_ligand_profile(\n", + " uniprot1, uniprot2, data\n", ")\n", "print(\n", - " f\"Values for EGFR and MET: \\n\\n\"\n", + " f\"Values for {kinase1} and {kinase2}: \\n\\n\"\n", " f\"{'Total number of measured compounds:' : <50}\"\n", - " f\"{similarity_egfr_met[0]} \\n\"\n", + " f\"{similarity_example[0]} \\n\"\n", " f\"{'Number of active compounds:' : <50}\"\n", - " f\"{similarity_egfr_met[1]} \\n\"\n", + " f\"{similarity_example[1]} \\n\"\n", " f\"Fraction of active compounds or \\n\"\n", - " f\"{'ligand profile similarity between EGFR and MET:' : <50}\"\n", - " f\"{similarity_egfr_met[2]:.2f} \\n\"\n", + " f\"{'ligand profile similarity:' : <50}\"\n", + " f\"{similarity_example[2]:.2f} \\n\"\n", ")\n", "# NBVAL_CHECK_OUTPUT" ] @@ -1810,7 +1861,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -1990,7 +2041,7 @@ "p38a 69/138 1/20 2778/3637 " ] }, - "execution_count": 27, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -2035,7 +2086,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 29, "metadata": {}, "outputs": [ { @@ -2058,7 +2109,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 30, "metadata": {}, "outputs": [ { @@ -2230,7 +2281,7 @@ "p38a 0.050000 0.763816 " ] }, - "execution_count": 29, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" } @@ -2249,7 +2300,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 31, "metadata": {}, "outputs": [ { @@ -2588,7 +2639,7 @@ "" ] }, - "execution_count": 30, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } @@ -2612,7 +2663,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 32, "metadata": {}, "outputs": [ { @@ -2955,7 +3006,7 @@ "" ] }, - "execution_count": 31, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -2975,7 +3026,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 33, "metadata": {}, "outputs": [], "source": [ @@ -2998,7 +3049,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 34, "metadata": {}, "outputs": [ { @@ -3020,7 +3071,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 35, "metadata": {}, "outputs": [], "source": [ @@ -3036,7 +3087,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 36, "metadata": {}, "outputs": [], "source": [ @@ -3045,7 +3096,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 37, "metadata": {}, "outputs": [ { @@ -3380,7 +3431,7 @@ "" ] }, - "execution_count": 36, + "execution_count": 37, "metadata": {}, "output_type": "execute_result" } @@ -3398,7 +3449,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 38, "metadata": {}, "outputs": [], "source": [ From c2fb038830a6d0853ae28400bacdb559c7e2453c Mon Sep 17 00:00:00 2001 From: dominiquesydow Date: Fri, 3 Jun 2022 14:22:54 +0100 Subject: [PATCH 10/17] T026: Generalize examples (code/text) --- .../T026_kinase_similarity_ifp/talktorial.ipynb | 13 ++++++++++--- 1 file changed, 10 insertions(+), 3 deletions(-) diff --git a/teachopencadd/talktorials/T026_kinase_similarity_ifp/talktorial.ipynb b/teachopencadd/talktorials/T026_kinase_similarity_ifp/talktorial.ipynb index e68e7cec..b084d61f 100644 --- a/teachopencadd/talktorials/T026_kinase_similarity_ifp/talktorial.ipynb +++ b/teachopencadd/talktorials/T026_kinase_similarity_ifp/talktorial.ipynb @@ -1291,7 +1291,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "A kinase pair can be represented by many different structure pairs which are associated with different distance values. For example, if we compare all EGFR structure to each other, the range of distance values is already quite high because we can observe different binding modes of the co-crystallized ligands." + "A kinase pair can be represented by many different structure pairs which are associated with different distance values. \n", + "\n", + "For example (in the demo mode), if we compare all EGFR structure to each other, the range of distance values is already quite high because we can observe different binding modes of the co-crystallized ligands." ] }, { @@ -1317,14 +1319,19 @@ } ], "source": [ + "if DEMO:\n", + " example = \"EGFR\"\n", + "else:\n", + " example = kinase_selection_df[\"kinase_klifs\"][0]\n", + "\n", "# Select EGFR-EGFR structure pairs only\n", - "D = kinase_distance_matrix_df.loc[\"EGFR\", \"EGFR\"]\n", + "D = kinase_distance_matrix_df.loc[example, example]\n", "# Extract all pairwise distances without identical structure pairs\n", "# = lower triangular matrix without the diagonal\n", "D_condensed = distance.squareform(D)\n", "# Plot pairwise distances\n", "plt.boxplot(D_condensed)\n", - "plt.xticks([1], [\"EGFR\"])\n", + "plt.xticks([1], [example])\n", "plt.ylabel(\"Distance between structures\")\n", "# plt.xlabel(\"EGFR\")\n", "plt.show()\n", From cc17611b7564c9986ff6305925e36c708a335aa4 Mon Sep 17 00:00:00 2001 From: dominiquesydow Date: Fri, 3 Jun 2022 14:25:33 +0100 Subject: [PATCH 11/17] Regenerate READMEs --- .../talktorials/T025_kinase_similarity_kissim/README.md | 2 +- .../talktorials/T027_kinase_similarity_ligand_profile/README.md | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/teachopencadd/talktorials/T025_kinase_similarity_kissim/README.md b/teachopencadd/talktorials/T025_kinase_similarity_kissim/README.md index 4670dea5..bd16066f 100644 --- a/teachopencadd/talktorials/T025_kinase_similarity_kissim/README.md +++ b/teachopencadd/talktorials/T025_kinase_similarity_kissim/README.md @@ -29,7 +29,7 @@ We will assess the similarity between a set of kinases from a structural point o * Fetch all structures describing these kinases * Filter structures * Show kinase coverage -* Load KiSSim fingerprints +* Calculate KiSSim fingerprints * Compare structures * Map structure to kinase distance matrix * Save kinase distance matrix diff --git a/teachopencadd/talktorials/T027_kinase_similarity_ligand_profile/README.md b/teachopencadd/talktorials/T027_kinase_similarity_ligand_profile/README.md index fde93f8d..53e07d29 100644 --- a/teachopencadd/talktorials/T027_kinase_similarity_ligand_profile/README.md +++ b/teachopencadd/talktorials/T027_kinase_similarity_ligand_profile/README.md @@ -11,7 +11,7 @@ Authors: ## Aim of this talktorial -The aim of this talktorial is to investigate kinase similarity through ligand profiling data. In the context of drug design, the following assumption is often made: if a compound was tested active on two different kinases, it is suspected that these two kinases may have some degree of similarity. We will use this assumption in this talktorial. The concept of kinase promiscuity is also covered. +The aim of this talktorial is to investigate kinase similarity through ligand profiling data (ChEMBL29). In the context of drug design, the following assumption is often made: if a compound was tested active on two different kinases, it is suspected that these two kinases may have some degree of similarity. We will use this assumption in this talktorial. The concept of kinase promiscuity is also covered. ### Contents in *Theory* From 3af2d9112728cf2f52ef36243bf3c3df31d0fadd Mon Sep 17 00:00:00 2001 From: dominiquesydow Date: Sat, 4 Jun 2022 09:54:05 +0100 Subject: [PATCH 12/17] Update kinase selection based on Xiong (KLIFS names) --- .../{kinase_selection_quiz.csv => kinase_selection_xiong.csv} | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) rename teachopencadd/talktorials/T023_what_is_a_kinase/data/{kinase_selection_quiz.csv => kinase_selection_xiong.csv} (77%) diff --git a/teachopencadd/talktorials/T023_what_is_a_kinase/data/kinase_selection_quiz.csv b/teachopencadd/talktorials/T023_what_is_a_kinase/data/kinase_selection_xiong.csv similarity index 77% rename from teachopencadd/talktorials/T023_what_is_a_kinase/data/kinase_selection_quiz.csv rename to teachopencadd/talktorials/T023_what_is_a_kinase/data/kinase_selection_xiong.csv index 91af7cd7..07cfed7f 100644 --- a/teachopencadd/talktorials/T023_what_is_a_kinase/data/kinase_selection_quiz.csv +++ b/teachopencadd/talktorials/T023_what_is_a_kinase/data/kinase_selection_xiong.csv @@ -2,8 +2,8 @@ RET,RET,P07949,TK BRAF,BRAF,P15056,TKL SRC,SRC,P12931,TK -RPS6KB1,S6K,P23443,AGC -MKNK1,MKNK1,Q9BUB5,CAMK +S6K,p70S6K,P23443,AGC +MKNK1,MNK1,Q9BUB5,CAMK TTK,TTK,P33981,Other PDK,PDK1,O15530,AGC PAK3,PAK3,O75914,STE From 0b28a914248b926e3bc7175c7365b363ab0d2abf Mon Sep 17 00:00:00 2001 From: dominiquesydow Date: Sat, 4 Jun 2022 10:25:14 +0100 Subject: [PATCH 13/17] T23/25/28: TK/DS walkthrough - bug fixes (demo mode) --- .../T023_what_is_a_kinase/talktorial.ipynb | 38 +- .../talktorial.ipynb | 738 +++++++++--------- .../talktorial.ipynb | 222 +++++- 3 files changed, 590 insertions(+), 408 deletions(-) diff --git a/teachopencadd/talktorials/T023_what_is_a_kinase/talktorial.ipynb b/teachopencadd/talktorials/T023_what_is_a_kinase/talktorial.ipynb index d494ec54..6eb55bb9 100644 --- a/teachopencadd/talktorials/T023_what_is_a_kinase/talktorial.ipynb +++ b/teachopencadd/talktorials/T023_what_is_a_kinase/talktorial.ipynb @@ -495,8 +495,8 @@ "\n", "- Update the `T023_what_is_a_kinase/data/kinase_selection.csv` file with your kinases; the only mandatory columns are `kinase_klifs` and `uniprot_id`.\n", "- Update the `T023_what_is_a_kinase/data/pipeline_configs.csv` file with your configurations:\n", - " - Set \"DEMO\" to `False`.\n", - " - Choose the number of structures per kinases to be used in T025 (KiSSim) and T26 (IFP). If \"N_STRUCTURES_PER_KINASE\" is set to `None`, all structures are used; if set to a number (X), the best X structures are being used for the encoding and comparison. The latter makes sense for a test run of your data (running the notebook on all structures is time-consuming for the KiSSim approach).\n", + " - Set \"DEMO\" to 0.\n", + " - Choose the number of structures per kinases to be used in T025 (KiSSim) and T026 (IFP). If \"N_STRUCTURES_PER_KINASE\" is set to -1, all structures are used; if set to a number (X), the best X structures are being used for the encoding and comparison (w.r.t. resolution and KLIFS quality score). The latter makes sense for a test run of your data (running the T025 on all structures is time-consuming).\n", " - If you run the notebooks on all structures (see \"N_STRUCTURES_PER_KINASE\"), we recommend to increase the number of cores to be used in T025 (KiSSim) by redefining \"N_CORES\".\n", " \n", "Let's take a look at the currently set configurations:" @@ -537,35 +537,35 @@ " \n", " 0\n", " DEMO\n", - " True\n", - " Run the notebooks exactly as displayed online (default) or run your own kinase set (as defined in `kinase_selection.csv`)\n", + " 1\n", + " Run the notebooks exactly as displayed online (default: 1) or set to 0 and run your own kinase set (as defined in `kinase_selection.csv`)\n", " \n", " \n", " 1\n", " N_STRUCTURES_PER_KINASE\n", - " None\n", - " Run structure-based notebooks on all structures per kinase (default) or a subset of structures (replace `None` with a number, e.g. 3)\n", + " -1\n", + " Run structure-based notebooks on all structures per kinase (default: -1) or a subset of structures (replace -1 with e.g. 3)\n", " \n", " \n", " 2\n", " N_CORES\n", " 1\n", - " Run T025 on one (default) or more cores\n", + " Run T025 on one (default: 1) or more cores\n", " \n", " \n", "\n", "" ], "text/plain": [ - " variable default_value \\\n", - "0 DEMO True \n", - "1 N_STRUCTURES_PER_KINASE None \n", - "2 N_CORES 1 \n", + " variable default_value \\\n", + "0 DEMO 1 \n", + "1 N_STRUCTURES_PER_KINASE -1 \n", + "2 N_CORES 1 \n", "\n", - " description \n", - "0 Run the notebooks exactly as displayed online (default) or run your own kinase set (as defined in `kinase_selection.csv`) \n", - "1 Run structure-based notebooks on all structures per kinase (default) or a subset of structures (replace `None` with a number, e.g. 3) \n", - "2 Run T025 on one (default) or more cores " + " description \n", + "0 Run the notebooks exactly as displayed online (default: 1) or set to 0 and run your own kinase set (as defined in `kinase_selection.csv`) \n", + "1 Run structure-based notebooks on all structures per kinase (default: -1) or a subset of structures (replace -1 with e.g. 3) \n", + "2 Run T025 on one (default: 1) or more cores " ] }, "execution_count": 4, @@ -793,7 +793,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8951db9308d84e54adceabdb750d2439", + "model_id": "27a4173bf7504c9a9f529823f56ec466", "version_major": 2, "version_minor": 0 }, @@ -832,7 +832,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -841,7 +841,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 11, "metadata": { "tags": [ "nbsphinx-thumbnail" @@ -855,7 +855,7 @@ "" ] }, - "execution_count": 12, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } diff --git a/teachopencadd/talktorials/T025_kinase_similarity_kissim/talktorial.ipynb b/teachopencadd/talktorials/T025_kinase_similarity_kissim/talktorial.ipynb index 7db01296..9c95974c 100644 --- a/teachopencadd/talktorials/T025_kinase_similarity_kissim/talktorial.ipynb +++ b/teachopencadd/talktorials/T025_kinase_similarity_kissim/talktorial.ipynb @@ -985,8 +985,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "Matrix shape: (9, 1032)\n", - "Number of fingerprints: 9\n", + "Matrix shape: (1611, 1032)\n", + "Number of fingerprints: 1611\n", "Number of fingerprint bits: 1032\n" ] } @@ -1067,31 +1067,31 @@ " \n", " \n", " \n", - " 6940\n", + " 6285\n", " 2.0\n", - " 1.0\n", - " 1.0\n", " 0.0\n", + " 2.0\n", + " -1.0\n", " 0.0\n", " 0.0\n", + " 2.0\n", " 3.0\n", - " 3.0\n", - " 3.0\n", - " 3.0\n", + " 2.0\n", + " 1.0\n", " ...\n", - " 12.942128\n", - " 11.985044\n", - " 4.457572\n", - " 4.956582\n", - " 4.199447\n", - " 3.389494\n", - " 2.121078\n", - " 3.639504\n", - " 3.025491\n", - " -0.735870\n", + " 13.150351\n", + " 11.958837\n", + " 4.717011\n", + " 4.843444\n", + " 4.655707\n", + " 3.577213\n", + " 2.771821\n", + " 4.302192\n", + " 3.583341\n", + " 2.066700\n", " \n", " \n", - " 11214\n", + " 10568\n", " 2.0\n", " 0.0\n", " 2.0\n", @@ -1103,88 +1103,88 @@ " 2.0\n", " 1.0\n", " ...\n", - " 13.220558\n", - " 11.910293\n", - " 4.519495\n", - " 5.205553\n", - " 4.701987\n", - " 3.606066\n", - " 2.350237\n", - " 4.535347\n", - " 3.639106\n", - " 2.246397\n", + " 13.069152\n", + " 11.883944\n", + " 4.691527\n", + " 5.006221\n", + " 4.679352\n", + " 3.531177\n", + " 2.714736\n", + " 4.165350\n", + " 3.549843\n", + " 2.138838\n", " \n", " \n", - " 12827\n", + " 11187\n", " 2.0\n", - " 1.0\n", " 0.0\n", - " 1.0\n", + " 2.0\n", + " -1.0\n", " 0.0\n", " 0.0\n", " 2.0\n", " 3.0\n", + " 2.0\n", " 1.0\n", - " 0.0\n", " ...\n", - " 13.137809\n", - " 12.070367\n", - " 4.468091\n", - " 4.732294\n", - " 4.492335\n", - " 3.413136\n", - " 2.521082\n", - " 3.860944\n", - " 3.389642\n", - " 1.705861\n", + " 13.297023\n", + " 11.991511\n", + " 4.590040\n", + " 5.141397\n", + " 4.699467\n", + " 3.625989\n", + " 2.549692\n", + " 4.442117\n", + " 3.699695\n", + " 2.261646\n", " \n", " \n", - " 4815\n", + " 4060\n", " 2.0\n", - " 1.0\n", " 0.0\n", - " 1.0\n", + " 2.0\n", + " -1.0\n", " 0.0\n", " 0.0\n", " 2.0\n", " 3.0\n", + " 2.0\n", " 1.0\n", - " 0.0\n", " ...\n", - " 12.565927\n", - " 11.563268\n", - " 4.329979\n", - " 4.619996\n", - " 4.303767\n", - " 3.301969\n", - " 2.532475\n", - " 3.652125\n", - " 2.879959\n", - " 1.076340\n", + " 12.910837\n", + " 11.775556\n", + " 4.359330\n", + " 4.844833\n", + " 4.214195\n", + " 3.383812\n", + " 2.699580\n", + " 3.860920\n", + " 3.161863\n", + " 2.185979\n", " \n", " \n", - " 5325\n", + " 10566\n", " 2.0\n", - " 1.0\n", " 0.0\n", - " 1.0\n", + " 2.0\n", + " -1.0\n", " 0.0\n", " 0.0\n", " 2.0\n", " 3.0\n", + " 2.0\n", " 1.0\n", - " 0.0\n", " ...\n", - " 12.987014\n", - " 11.967419\n", - " 4.357804\n", - " 4.994864\n", - " 4.008406\n", - " 3.339058\n", - " 2.417556\n", - " 3.575011\n", - " 2.380876\n", - " 1.798392\n", + " 13.196581\n", + " 12.115342\n", + " 4.701176\n", + " 4.690081\n", + " 4.683674\n", + " 3.633418\n", + " 2.489983\n", + " 3.972552\n", + " 3.692501\n", + " 0.759234\n", " \n", " \n", "\n", @@ -1193,25 +1193,25 @@ ], "text/plain": [ " 0 1 2 3 4 5 6 7 8 9 ... 1022 \\\n", - "6940 2.0 1.0 1.0 0.0 0.0 0.0 3.0 3.0 3.0 3.0 ... 12.942128 \n", - "11214 2.0 0.0 2.0 -1.0 0.0 0.0 2.0 3.0 2.0 1.0 ... 13.220558 \n", - "12827 2.0 1.0 0.0 1.0 0.0 0.0 2.0 3.0 1.0 0.0 ... 13.137809 \n", - "4815 2.0 1.0 0.0 1.0 0.0 0.0 2.0 3.0 1.0 0.0 ... 12.565927 \n", - "5325 2.0 1.0 0.0 1.0 0.0 0.0 2.0 3.0 1.0 0.0 ... 12.987014 \n", + "6285 2.0 0.0 2.0 -1.0 0.0 0.0 2.0 3.0 2.0 1.0 ... 13.150351 \n", + "10568 2.0 0.0 2.0 -1.0 0.0 0.0 2.0 3.0 2.0 1.0 ... 13.069152 \n", + "11187 2.0 0.0 2.0 -1.0 0.0 0.0 2.0 3.0 2.0 1.0 ... 13.297023 \n", + "4060 2.0 0.0 2.0 -1.0 0.0 0.0 2.0 3.0 2.0 1.0 ... 12.910837 \n", + "10566 2.0 0.0 2.0 -1.0 0.0 0.0 2.0 3.0 2.0 1.0 ... 13.196581 \n", "\n", " 1023 1024 1025 1026 1027 1028 1029 \\\n", - "6940 11.985044 4.457572 4.956582 4.199447 3.389494 2.121078 3.639504 \n", - "11214 11.910293 4.519495 5.205553 4.701987 3.606066 2.350237 4.535347 \n", - "12827 12.070367 4.468091 4.732294 4.492335 3.413136 2.521082 3.860944 \n", - "4815 11.563268 4.329979 4.619996 4.303767 3.301969 2.532475 3.652125 \n", - "5325 11.967419 4.357804 4.994864 4.008406 3.339058 2.417556 3.575011 \n", + "6285 11.958837 4.717011 4.843444 4.655707 3.577213 2.771821 4.302192 \n", + "10568 11.883944 4.691527 5.006221 4.679352 3.531177 2.714736 4.165350 \n", + "11187 11.991511 4.590040 5.141397 4.699467 3.625989 2.549692 4.442117 \n", + "4060 11.775556 4.359330 4.844833 4.214195 3.383812 2.699580 3.860920 \n", + "10566 12.115342 4.701176 4.690081 4.683674 3.633418 2.489983 3.972552 \n", "\n", " 1030 1031 \n", - "6940 3.025491 -0.735870 \n", - "11214 3.639106 2.246397 \n", - "12827 3.389642 1.705861 \n", - "4815 2.879959 1.076340 \n", - "5325 2.380876 1.798392 \n", + "6285 3.583341 2.066700 \n", + "10568 3.549843 2.138838 \n", + "11187 3.699695 2.261646 \n", + "4060 3.161863 2.185979 \n", + "10566 3.692501 0.759234 \n", "\n", "[5 rows x 1032 columns]" ] @@ -1259,7 +1259,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Structure distance matrix size: (9, 9)\n", + "Structure distance matrix size: (1611, 1611)\n", "Show matrix subset:\n" ] }, @@ -1284,52 +1284,52 @@ " \n", " \n", " \n", - " 6940\n", - " 11214\n", - " 12827\n", - " 4815\n", - " 5325\n", + " 6285\n", + " 10568\n", + " 11187\n", + " 4060\n", + " 10566\n", " \n", " \n", " \n", " \n", - " 6940\n", + " 6285\n", " 0.000000\n", - " 26.920292\n", - " 23.348573\n", - " 26.904703\n", - " 28.584015\n", + " 13.256941\n", + " 14.001474\n", + " 26.391543\n", + " 14.307291\n", " \n", " \n", - " 11214\n", - " 26.920292\n", + " 10568\n", + " 13.256941\n", " 0.000000\n", - " 24.320298\n", - " 31.941118\n", - " 35.606910\n", + " 10.379779\n", + " 27.882193\n", + " 16.833932\n", " \n", " \n", - " 12827\n", - " 23.348573\n", - " 24.320298\n", + " 11187\n", + " 14.001474\n", + " 10.379779\n", " 0.000000\n", - " 24.719913\n", - " 30.474484\n", + " 30.962221\n", + " 18.338492\n", " \n", " \n", - " 4815\n", - " 26.904703\n", - " 31.941118\n", - " 24.719913\n", + " 4060\n", + " 26.391543\n", + " 27.882193\n", + " 30.962221\n", " 0.000000\n", - " 27.387487\n", + " 28.905189\n", " \n", " \n", - " 5325\n", - " 28.584015\n", - " 35.606910\n", - " 30.474484\n", - " 27.387487\n", + " 10566\n", + " 14.307291\n", + " 16.833932\n", + " 18.338492\n", + " 28.905189\n", " 0.000000\n", " \n", " \n", @@ -1337,12 +1337,12 @@ "" ], "text/plain": [ - " 6940 11214 12827 4815 5325 \n", - "6940 0.000000 26.920292 23.348573 26.904703 28.584015\n", - "11214 26.920292 0.000000 24.320298 31.941118 35.606910\n", - "12827 23.348573 24.320298 0.000000 24.719913 30.474484\n", - "4815 26.904703 31.941118 24.719913 0.000000 27.387487\n", - "5325 28.584015 35.606910 30.474484 27.387487 0.000000" + " 6285 10568 11187 4060 10566\n", + "6285 0.000000 13.256941 14.001474 26.391543 14.307291\n", + "10568 13.256941 0.000000 10.379779 27.882193 16.833932\n", + "11187 14.001474 10.379779 0.000000 30.962221 18.338492\n", + "4060 26.391543 27.882193 30.962221 0.000000 28.905189\n", + "10566 14.307291 16.833932 18.338492 28.905189 0.000000" ] }, "execution_count": 19, @@ -1408,11 +1408,11 @@ " \n", " \n", " kinase.klifs_name\n", - " BRAF\n", " CDK2\n", - " EGFR\n", - " ErbB2\n", - " KDR\n", + " CDK2\n", + " CDK2\n", + " CDK2\n", + " CDK2\n", " \n", " \n", " kinase.klifs_name\n", @@ -1425,43 +1425,43 @@ " \n", " \n", " \n", - " BRAF\n", + " CDK2\n", " 0.000000\n", - " 26.920292\n", - " 23.348573\n", - " 26.904703\n", - " 28.584015\n", + " 13.256941\n", + " 14.001474\n", + " 26.391543\n", + " 14.307291\n", " \n", " \n", " CDK2\n", - " 26.920292\n", + " 13.256941\n", " 0.000000\n", - " 24.320298\n", - " 31.941118\n", - " 35.606910\n", + " 10.379779\n", + " 27.882193\n", + " 16.833932\n", " \n", " \n", - " EGFR\n", - " 23.348573\n", - " 24.320298\n", + " CDK2\n", + " 14.001474\n", + " 10.379779\n", " 0.000000\n", - " 24.719913\n", - " 30.474484\n", + " 30.962221\n", + " 18.338492\n", " \n", " \n", - " ErbB2\n", - " 26.904703\n", - " 31.941118\n", - " 24.719913\n", + " CDK2\n", + " 26.391543\n", + " 27.882193\n", + " 30.962221\n", " 0.000000\n", - " 27.387487\n", + " 28.905189\n", " \n", " \n", - " KDR\n", - " 28.584015\n", - " 35.606910\n", - " 30.474484\n", - " 27.387487\n", + " CDK2\n", + " 14.307291\n", + " 16.833932\n", + " 18.338492\n", + " 28.905189\n", " 0.000000\n", " \n", " \n", @@ -1469,13 +1469,13 @@ "" ], "text/plain": [ - "kinase.klifs_name BRAF CDK2 EGFR ErbB2 KDR \n", + "kinase.klifs_name CDK2 CDK2 CDK2 CDK2 CDK2\n", "kinase.klifs_name \n", - "BRAF 0.000000 26.920292 23.348573 26.904703 28.584015\n", - "CDK2 26.920292 0.000000 24.320298 31.941118 35.606910\n", - "EGFR 23.348573 24.320298 0.000000 24.719913 30.474484\n", - "ErbB2 26.904703 31.941118 24.719913 0.000000 27.387487\n", - "KDR 28.584015 35.606910 30.474484 27.387487 0.000000" + "CDK2 0.000000 13.256941 14.001474 26.391543 14.307291\n", + "CDK2 13.256941 0.000000 10.379779 27.882193 16.833932\n", + "CDK2 14.001474 10.379779 0.000000 30.962221 18.338492\n", + "CDK2 26.391543 27.882193 30.962221 0.000000 28.905189\n", + "CDK2 14.307291 16.833932 18.338492 28.905189 0.000000" ] }, "execution_count": 20, @@ -1531,7 +1531,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Structure matrix of shape (9, 9) reduced to kinase matrix of shape (9, 9).\n" + "Structure matrix of shape (1611, 1611) reduced to kinase matrix of shape (9, 9).\n" ] } ], @@ -1552,344 +1552,316 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 BRAFCDK2EGFRErbB2KDRLCKMETp110ap38aBRAFCDK2EGFRErbB2KDRLCKMETp110ap38a
BRAF0.00026.92023.34926.90528.58432.09133.67446.11327.575BRAF0.00017.15619.51521.38321.08921.58320.29737.61121.731
CDK226.9200.00024.32031.94135.60738.89728.81551.78431.632CDK217.1560.00018.14721.10619.88017.97318.30436.78019.481
EGFR23.34924.3200.00024.72030.47431.78819.91349.78627.863EGFR19.51518.1470.00016.39217.28216.46717.49836.04622.128
ErbB226.90531.94124.7200.00027.38732.24331.44448.28930.704ErbB221.38321.10616.3920.00023.85123.88122.56341.27724.682
KDR28.58435.60730.47427.3870.00022.42134.30243.51322.838KDR21.08919.88017.28223.8510.00019.25520.43141.10420.263
LCK32.09138.89731.78832.24322.4210.00035.08941.13324.987LCK21.58317.97316.46723.88119.2550.00019.22139.02222.457
MET33.67428.81519.91331.44434.30235.0890.00051.84431.995MET20.29718.30417.49822.56320.43119.2210.00039.41421.983
p110a46.11351.78449.78648.28943.51341.13351.8440.00042.557p110a37.61136.78036.04641.27741.10439.02239.4140.00038.530
p38a27.57531.63227.86330.70422.83824.98731.99542.5570.000p38a21.73119.48122.12824.68220.26322.45721.98338.5300.000
\n" ], "text/plain": [ - "" + "" ] }, "execution_count": 23, diff --git a/teachopencadd/talktorials/T028_kinase_similarity_compare_perspectives/talktorial.ipynb b/teachopencadd/talktorials/T028_kinase_similarity_compare_perspectives/talktorial.ipynb index 49c189fb..181beae9 100644 --- a/teachopencadd/talktorials/T028_kinase_similarity_compare_perspectives/talktorial.ipynb +++ b/teachopencadd/talktorials/T028_kinase_similarity_compare_perspectives/talktorial.ipynb @@ -972,7 +972,7 @@ "metadata": {}, "outputs": [], "source": [ - "def _define_kinase_order(kinase_distance_matrix_df, kinase_names):\n", + "def _define_kinase_order(kinase_distance_matrix_df, kinase_names, label=\"\"):\n", " \"\"\"\n", " Define the order in which kinases shall\n", " appear in the input DataFrame.\n", @@ -983,12 +983,19 @@ " Kinase distance matrix.\n", " kinase_name : list of str\n", " List of kinase names to be used for sorting.\n", + " label : str\n", + " Add label for the input matrix.\n", "\n", " Returns\n", " -------\n", " pd.DataFrame\n", " Kinase distance matrix with sorted columns/rows.\n", " \"\"\"\n", + " # Remove kinases from ordered kinase set that are not \n", + " # present in input kinase matrix\n", + " kinase_names = [name for name in kinase_names if name in kinase_distance_matrix_df.columns]\n", + " print(f\"Kinases present in {label} kinase matrix:\\n {kinase_names}\")\n", + " # Reorder kinases in matrix\n", " kinase_distance_matrix_df = kinase_distance_matrix_df.reindex(kinase_names, axis=1).reindex(\n", " kinase_names, axis=0\n", " )\n", @@ -1001,10 +1008,25 @@ "metadata": { "tags": [] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Kinases present in sequence kinase matrix:\n", + " ['EGFR', 'ErbB2', 'p110a', 'KDR', 'BRAF', 'CDK2', 'LCK', 'MET', 'p38a']\n", + "Kinases present in kissim kinase matrix:\n", + " ['EGFR', 'ErbB2', 'p110a', 'KDR', 'BRAF', 'CDK2', 'LCK', 'MET', 'p38a']\n", + "Kinases present in ifp kinase matrix:\n", + " ['EGFR', 'ErbB2', 'p110a', 'KDR', 'BRAF', 'CDK2', 'LCK', 'MET', 'p38a']\n", + "Kinases present in ligand-profile kinase matrix:\n", + " ['EGFR', 'ErbB2', 'p110a', 'KDR', 'BRAF', 'CDK2', 'LCK', 'MET', 'p38a']\n" + ] + } + ], "source": [ "kinase_distance_matrices_normalized = {\n", - " descriptor: _define_kinase_order(score_df, kinase_names)\n", + " descriptor: _define_kinase_order(score_df, kinase_names, descriptor)\n", " for descriptor, score_df in kinase_distance_matrices_normalized.items()\n", "}" ] @@ -1333,7 +1355,7 @@ "5. What is the difference between the distances that we show in the heatmap and the dendrogram? \n", "6. Rerun the notebooks T023-T028 on another kinase dataset. \n", " 1. If you need inspiration, you can use the kinases used by [Xiong et al.](https://doi.org/10.1371/journal.pcbi.1009302) to predict multi-targeting compounds for RET-driven cancers (see Table 1): RET, BRAF, SRC, RPS6KB1, MKNK1, TTK, PDK1, and PAK3 (notes: We are omitting ERK8 since this kinase has no structures; RPS6KB1 is listed as S6K in Table 1.). Update the `T023_what_is_a_kinase/data/kinase_selection.csv` file yourself with the mandatory columns `kinase_klifs` and `uniprot_id` (or copy-paste the data from `T023_what_is_a_kinase/data/kinase_selection_xiong.csv`).\n", - " 2. Update the configuration file `T023_what_is_a_kinase/data/pipeline_configs.csv` as follows: DEMO=0, N_STRUCTURES_PER_KINASE=2, and N_CORES as your system allows." + " 2. Update the configuration file `T023_what_is_a_kinase/data/pipeline_configs.csv` as follows: `DEMO=0`, `N_STRUCTURES_PER_KINASE=2` (the more structures used, the longer T025 will take), and `N_CORES` as your system allows." ] }, { @@ -1665,7 +1687,195 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAR0AAAEWCAYAAABbrUO4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAdO0lEQVR4nO3deZxcVZn/8c83EBIhGxB2DFFQRxgWHRQ3JMgOMsAIMsJAyLiBRgXF0VEUx0FFRERBxJ8LEQQBQwTZBFxYBDEEB8ggyLAEshBIgASIiZDw/P44p8xNUd1dvZ3qrv6+X6/7elXdc+6t5ybpJ+ee6nseRQRmZqUMa3UAZja0OOmYWVFOOmZWlJOOmRXlpGNmRTnpmFlRTjr9QNIxkn7fSfu1kib3w+dOlBSS1u7rc5v1Ff/jbIGI2K/VMZi1ikc6NmB5xNaehlzSkfRKSTMkLZL0lKSz8/5hkk6S9KikJyWdL2lsbqvdtkyRNFfSM5KOlfQmSfdIWlI7z5ofpbMkLZV0v6Q9Kg03SvpAfn2MpN9LOj2f9xFJ+1X6jpX0I0mPS5ov6RRJa+W2tfJxiyU9DBzQxbXPkfTpHPOyfN5N8u3ec5J+LWn9Sv+3SLotX9/dkiZV2qZIui8f97CkD1faxku6Kh/3tKRbJA3LbSFpm0rfaZJOya8nSZon6TOSFgLn5b+Xz0p6KP99XSppg9x/pKSf5v1LJN0haZOm/iFYywyppJN/WK8CHgUmAlsAF+fmY/K2O/BqYBRQn0h2AV4DHA6cCXwe2BPYDnivpN3q+j4MjAdOBmbUflga2AX4S+57GvAjScptPwFWAtsAbwD2Bj6Q2z4IvDvv3xk4tOs/Bd4D7AW8FjgQuBb4XP7sYcDHASRtAVwNnAJsAJwIXCZpo3yeJ/NnjwGmAN+S9Mbc9ilgHrARsEk+f7PP22yaP28r4EM5noOB3YDNgWeA7+a+k4GxwCuBDYFjgeVNfo61SkQMmQ14K7AIWLtB22+Aj1Tevw54kTTvNZH0Q7NFpf0p4PDK+8uA4/PrY4AFgCrtM4Gj8usbgQ9U+j5Y6bdu/qxNST+wfwNeUWl/H/C7/Pq3wLGVtr3zsS+7vtw+BziyLubvVd5/DLg8v/4McEHd8dcBkzs49+XAJ/LrLwNXANs06BfV/cA04JT8ehLwAjCy0n4fsEfl/WaVv5d/B24Ddmj1vy1vzW9DaqRD+h/x0YhY2aBtc9IIqOZR0j/s6nD9icrr5Q3ej6q8nx/5p6Ryvs07iGth7UVE/DW/HEX633448Hi+fVgCfB/YuBLz3LrP6Eqz17AVcFjtc/Nnv4P0Q4+k/STdnm+flgD7k0ZLAN8AHgSuz7den20irppFEbGi8n4r4BeVGO4DVpH+Xi4gJcKLJS2QdJqk4d34LGuBoZZ05gITOpigXED6B14zgXRb80SDvs3YonKLVDvfgm6eYy5ppDM+IsblbUxEbJfbHycl0upn9JW5pJHOuMq2XkScKmkEaZR0OrBJRIwDrgEEEBHPRcSnIuLVpFu4T1bmtP5KGs3VbFr3ufW3YXOB/eriGBkR8yPixYj4r4jYFngb6Xbv6L77I7D+MNSSzkzSD+qpktbLE5Fvz20/A06Q9CpJo4CvApd0MCpqxsbAxyUNl3QY8HrSD2bTIuJx4Hrgm5LG5EnVrStzR5fmz9gyTwB3Z0TRlZ8CB0raJ09Yj8wTvVsC6wAjSLeqK/PE9961AyW9W9I2Oek+SxqZrMrNdwFH5HPuS5qr6cy5wFckbZXPvZGkg/Lr3SVtn+fqniXddq3q+FQ2EAyppBMRq0j/824DPEaa7Dw8N/+YNFy/GXgEWEGa4+ipP5ImnRcDXwEOjYinenCeo0k/5H8mTaJOJ9/iAD8g3V7cDfwJmNGLeNcQEXOBg0iTwItII45PA8Mi4jnSBO+lOaYjgF9WDn8N8GvgeeAPwDkRcWNu+wTp72AJcCRpLqgz387nvl7Sc8DtpIl3SKOk6aSEcx9wEylZ2gCmNacdzMz615Aa6ZhZ6znpmFlRTjpmVpSTjpkV1ekDdePHj4+JEycWCsXMGrnzzjsXR8RGXfccHDpNOhMnTmTWrFmlYjGzBiQ185vmg4Zvr8ysKCcdMyvKScfMinLSMbOinHTMrCgnHTMryknHzIpy0jFrU5K2lTQrL/j/TF54f9tK+whJ50p6Iq8AeWVeG7tfOemYta8FpMX6NyAtJftLVhcigLS20VuBHUhL3y4BzurvoFxXyBqbdR7Mnt7qKKwJkuaQ1s4+irTA2+XAcRGxhJRIyKs4riItYFfzKuC6iHgi97kYOKNy3m8D/0KquPF/pMIDt/Q2Xo90rLHZ02Hh7FZHYc07EtgH2JpUXuikWkNe0H4FaRTz1coxPwLeLmlzSevmc1xbab8D2Ik0UroI+Lmkkb0N1CMd69im28OUq1sdhf27uu4DZ+clZpH0FVKCOQkgIsZJWo9UJ6z6HNcDpGV755NGQbOBqbXGiKgu/fpNSSeRSjPd3eNrwSMds3ZRX4pojXJHEbGMtMj9+ZJqJYy+B4wkFSpcj7TG9t9HOpI+lau4Ls2jpbGsLjPUY046Zu2hvhRRo3JHw0jlf2rfUO0ITIuIpyPib6TR0ZtzWehdSQUX3wusn8sMLSWXGeoNJx2z9vDRXIpoA1IFj0sk7SXpDbnczxjSJPEzpMoZkOZsjpY0Nhcp/AiwICIWA6NJdd8WAWtL+iKphHSvOemYtYeLSDXSHs7bKcA4Uj23pcBDpG+u9q1UUD2RNMH8f6Tksj9wSG67jnSr9QDpdm0Fa97C9Zgnks3awx0R8bW6fT/PW0O5DtuRHbStAt6ft5rTehskeKRjZoU56ZhZUb69MhvkImJiq2PoDo90zKwoJx0zK8q3V0NNsw9yLrwHNt2h/+OxIccjnaHGD3Jai3mkMxQ18yDneQeUicWGHI90zKwoJx0zK8pJx8yKctIxs6KcdMysKCcdMyvKScdskJM0R9Kelff/mutc7SYpJD2ftyckXSVprwbHL899FkqaJmlUf8XrpGPWRiRNBr4LHMDqRdjHRcQo0vKkNwC/kHRM3aEH5j47AW8A/rO/YnTSMWsTkj4EfBPYJyJuq2+PiIUR8W3gS8DXJb3s5z8iFpJWDdypv+L0byRbxxbO9m8mDx7HAe8A9oiIrkrEzAC+QSonc1+1QdKWwH7Ab/sjSHDSsY5sf2irI7Du2Qv4Hal2VVdqlSI2qOy7XFIAo0gJ5+S+DW81Jx1rbOcpabPWa67Y3rHAF4AfSnp/REQnfWslaJ6u7Ds4In4taTfSIu/jySWJ+5rndMzaw5PAHsCuwDld9D0k9/9LfUNE3ARMA07v4/j+zknHrE1ExALgXcC+kr5V3y5pE0lTSbdO/xkRL3VwqjOBvSTt1B9x+vbKrI1ExFxJ7wJuBjbNu5dIErAMmAUcFhG/6uQciySdT7pde09fx+ikM5g1uwpglVcEbDv1C7NHxCOsLjP8vu4en/cd1xexNeLbq8HMqwDaIOSRzmDXzCqAVf69G2sxj3TMrCgnHTMryknHzIpy0jGzopx0zKwoJx0zK8pJx8yKctIxs6KcdMysKCcdMyvKScfMinLSMbOinHTMrCgnHbNBrr7YXmX/GElnSnosF9J7ML8f3+i4apG+/ozXScesDUlaB/gNsB2wLzAGeBvwFPDmBv3/XqQvr5Pcb7yezlDkelZDwdHABGD3iHg+73sS+O/6jrlI31dJRfpm9XdgTjpDjetZDRV7Ar+qJJyOdKdIX59w0hlqXM9q8Gmu7lW9DYE7m+jXnSJ9fcJJp5V6srB6lRdZt449BWzWRL/uFOnrE55IbiUvrG7959fAPpLW66Jfd4r09QmPdFqtuwurV3ky2FYbLmlk5f0FwIeByyQdDzwArJ/33RUR19Q6RsSCWq0sSd+KiBP6M1CPdMzawzXA8sr2BdJk8v3ADcCzwExSjfI/1h8cEXNJ1UEPlfS1/gzUIx2zQa5RsbyK4/PW5XF1Rfr6jUc6ZlaUk46ZFeWkY2ZFOemYWVFOOmZWlJOOmRXlpGNmRTnpmFlRTjpmVpSTjpkV5aRjZkU56ZhZUU46ZlaUk46ZFeWkYzbI5fpVy3Ntq2ckXS3plbltmqQXctvTkm6Q9A8NznFjPnZE3f7q8bXt8N7E66Rj1h4OjIhRpHWRnwDOqrSdltu2AOYDP6oeKGkiabnSAP65wblPi4hRle2S3gTqRbwGO9ewsoqIWCFpOnBmg7blki4Ffl7XdDRwO2lFwckN2vuUk85g5hpWVkfSusDhpCRS37Ye8D7gwbqmo4EzSEnndkmbRMQT/RWjk85g5hpWQ0Nzda8ul7QSGEWq8LBPpe1ESVNJpYUfBQ6qNUh6B7AVcGlELJb0EHAE8K0GxwOsjIjxPb4WPKdj1i4OjohxwAhgKnCTpE1z2+m5bSJp0fbXVY6bDFwfEYvz+4vyvqrTI2Jc3nqVcMAjHbO2EhGrgBmSvk8qF1xte0zSJ4CfSLoq734vsJakhfn9CGCcpB37q8ywRzpmbUTJQaQaV/fVt0fEDcAC4EPAwcAqYFtgp7y9HriFNM/TLzzSMWsPV0paRfra+1FgckTcKzWcD/oGaeL4AeC8iHis2ijpbOA7kj7TH4E66ZRWrV/uWuTWBzqrexURxzTYdwnQ4e/aRMSlwKX57cuO7y3fXpXm+uU2xDnptEKtfrlHOTYEOemYWVFOOmZWlJOOmRXlpGNmRTnpmFlRTjpmVpSTjpkV5aRjZkU56ZhZUU46ZlaUk46ZFeWkYzaESDpG0u9bGYOTjtkgV1f3qrad3cNz3ShpRT7HUkk3S9q+0j5Z0p2SnpU0T9Jpkrq1RI6Tjll7OLCuNtXU+g7dSA5Tc52sDYEbgQsqbesCxwPjgV2APYATuxOoF/GyvlddqMxaRtIxwAeBmaTF1s8hlZ+RpLNIS5I+Dnw0In5Tf3xErJR0MfDZyr7vVbrMl3QhsHt34vJIx/qeFyobSHYBHgY2Br5St288cDJpIfcN6g+UtA5wJA1qaFW8E7i3OwF5pGP9o7ZQmfVe9+pe1XwaeBFYEBG1EsMr85rJTwJnRkQAl0j6FHAAq2+jviPpdNKt1HLgXxp9oKQpwM7AB7pzOR7pmLWHgyu1qcZFxA/y/rkN+s7PCafmUWDzyvuP5zpZI4F3A9MlrbHMpaSDgVOB/So1s5ripGPW3qLBvi20ZpmICaSyNGseGPFSRNxCmgfau7Zf0r7AD0iT192+j3bSMRt6NgY+Lmm4pMNIta6uadRR0ltJdbHuze/fBVwIvCciZvbkwz2nY9YeanWvam4Aruig7x+B1wCLgSeAQyPiqUr72ZLOzK8XAidFxLX5/ReAscA1lcHSLRGxX7OBOumYDXKd1b0CptX1nVbZ97Lf5YmISV18Vre+Hm/Et1dmVpSTjpkV5aRjZkU56ZhZUZ5IbrWFs+G8A1odRd9aeI9LJluHnHRaaftDWx2BWXFOOq2085S0tZt2G7lZn/KcjpkV5aRjZkU56ZhZUU46ZlaUk46ZFeWkY2ZFOemYWVF98ns6F/3xMa64a35fnKr9LTyISyZ0tMyJWfdJmgNsAlTX05kWEVMlbQZ8mbQG8hjS+sg3A6dGxP2SJgKPAMsqxz4UETvmahI/Iq2T/FLu9/mIuKo38fbJSOeKu+bz58ef7YtTmVnPvKzulaQNgdtIC6zvCowG3gjcBOxVd/y4yrE7Vvb/IdfAGkcqYXOxpHG9CbTPfiN5283GcMmH39pXp2tf553S6gjKaMdnygafE4BngaMi4qW8bwlwXndPFBEvSboAOJe06uAdPQ3Kj0FY3/MzZQPFnsAvKgmnxyStBUwhlbV5tDfnctKxvteuz5S1Ss/rXo0nrXEMgKR/Bs4H1iLdNu1d6b+4subxKRFxen79FklLgPWAlcC/RcSTPbmMGn97ZdYeGtW9egrYrNYhIn6Z61mdAKxTd/z4yrGnV/bfno9ZH/glaW6oV5x0zNrXb4CDJfX65zwingc+Ahwl6Q29OZeTjln7OoM0QrlA0tZKRgM79eRkuUzND4Ev9iYoJx2z9nClpOcr2y9yud+3ACuA3wPPAXeRvjo/roefcyawf32Z4e7wRLLZINdZ3auIWAC8v5P2OUDDmeq6Glm1ffOAEd2PcjWPdMysKCcdMyvKScfMinLSMbOinHTMrCgnHTMryknHzIpy0jGzopx0zKwoJx0zK8pJx8yKctIxs6KcdMysKCcdMyvKScdskJM0R9ILksbX7b9LUkiaKGla7lNdc+duSbtW3i/L/at9JvR1vE46Zu3hEeB9tTeStgdeUdfntLraWDtGxC2198B2uV+1BtZjfR2oF/EaqGadB7OntzoKGzwuAI4GzsrvJ5MqPwy4Qmse6QxUs6engnVmzbkdGCPp9blG1eHAT1scU0Me6Qxkm24PU65udRTWas3VvYLVo52bgPuB+XXtJ0qaWnl/RURM7n2A3eOkY9Y+LgBuBl5FurWqd3pEnFQ2pJfz7ZVZm4iIR0kTyvsDM1ocToc80jFrL+8H1o+IZZIG5M+3RzpmbSQiHoqIWR00/0fd7+AsLhpcNiAzoZk1r6O6VxGxktU1rY7JW2fnmUMHNbD6kkc6ZlaUk46ZFeWkY2ZFOemYWVGeSG6FhbPhvAO66HMPbLpDmXjMCnLSKW37Q1sdgVlLOemUtvOUtHWlq5GQ2SDlOR0zK8pJx8yKctIxs6KcdMysKCcdMyvKScfMinLSMbOinHTM2oSkIyTNymvlPC7pWknvkPQlSS9Kei5vD0g6W9JmlWMnSZpXeb+OpBmSbpU0RtJkSXdKelbSPEmn9XSRMCcdszYg6ZPAmcBXgU2ACcA5wEG5yyURMRrYADgE2BS4s5p4KucaQVrudBywd0Q8C6wLHA+MB3YB9gBO7EmsTjpmg5ykscCXgY9GxIyIWBYRL0bElRHx6WrfvP9eUomaRcCn6s61LnAlMBw4ICKW5eO+lwvzvRAR84ELgbf3JF4/BjGQNfNgqBm8FRgJ/KLZAyJilaQrgH0qu0cA1wJLgcMi4m+dnOKdwL09iNVJZ8Dyg6HWvA2BxXl50u5YQLrdqhlNSmDv6yzhSJoC7Ax8oLuBgpPOwNXsg6HW/routvcUMF7S2t1MPFsAT1feLwY+Dpwv6fmIuK7+AEkHA6cCe0ZEjxZ295yO2eD3B2AFcHCzB0gaBhwI3FLdHxEzgA8C0yXtXnfMvsAPgAMjosc1rz3SMRvkImKppC8C35W0ErgeeBHYE9gd+Gutr6ThwDbAl0jfYJ3R4Hw/k7QOcIWk/SLiVknvIk0eHxIRM3sTr0c6Zm0gIs4APgmcRPpWai4wFbg8dzlc0vPAEuCXpFuyf4qIBR2c7yekb7aulvRm4AvAWOCaSt2sa3sSq0c6Zm0iIi4kjUbq3UYa2XR27I3AlnX7fkC6nYI0YuoTHumYWVFOOmZWlJOOmRXlpGNmRTnpmFlRTjpmVpSTjpkV5aRjZkU56ZhZUU46ZlaUk46ZFeWkY2ZFOemYWVFOOmZWlJOOmRXlpGPWpnLBvOmS5kgKSZPq2neX9DtJSyXNaXD8xNz+V0n3S9qzL+Jy0jFrb78H/g1Y2KBtGfBj4NMN2gB+BvwPqdrE50nrJm/U24D6bOXAPz/+LId//w99dToza1IepXwfOArYjLRE6XERsYJU9RNJq+qPy2sdz2w0gpH0WuCNpAqfy4HLJB0PvAc4V9LWpFUFdwQCuI5U7G9JV/H2yUjnoJ22YNvNxvTFqcysZ44kFc7bGngtaa3k3tgOeDginqvsuzvvBxDwNWBz4PXAK+liSdSaPhnpHLHLBI7YZUJfnMrM6lx6bFPdzo6IuQCSvgKcRe8SzyhSpc+qpaRaWUTEg8CDef8iSWcAJzdzYi/MbtYe5lZeP0oagfTG80D97csY4DkASRsD3wF2JVUGHQY808yJPZFs1h5eWXk9gVQyuDfuBV4taXRl346srl/+NdJczg4RMYY0Wd1lKVJw0jFrFx+VtKWkDYDPAZcASBohaWTus46kkZKU24bltuHprUbmIntExAPAXcDJef8hwA7AZflco0mjoSWStqDjb8BexknHrD1cRKrs+XDeTsn7/wIsJ83FXJdfb5Xb3pnfX0MaHS3P56j5V2Bn0m3TqcChEbEot/0X6dutpcDVwIxmA/Wcjll7uCMivla/MyImdnRALrDX4S1RRMwBJnXQdi/wT3W7v9l1mB7pmFlhTjpmVpRvr8wGuc5uoQYij3TMrCgnHTMrShHRcaO0iPTbja00Hljc4hh6w/G33mC/htdFxOiuuw0Onc7pRESvH2PvLUmzImLnVsfRU46/9Qb7NUia1eoY+pJvr8ysKCcdMytqMCSd/9fqAHrJ8bfeYL+GwR7/GjqdSDYz62uDYaRjZm3EScfMihoQSUfSvpL+IulBSZ9t0D5W0pWS7pZ0r6QprYizM11dQ+4zSdJd+RpuKh1jZ5qJP/d7k6RVkg4tGV9Xmvg3dKSke/J2m6QdWxFnZ5q4Bkn6Tm6/R9IbWxFnr0VESzdgLeAh4NXAOqTFn7et6/M54Ov59UbA08A6rY69m9cwDvgzMCG/37jVcXcn/kq/35LWXzm01XF388//bcD6+fV+wB9bHXcPrmF/4FrSchRvGWjX0Ow2EEY6bwYejIiHI+IF4GLgoLo+AYzOK56NIiWdlWXD7FQz13AEMCMiHgOIiCcLx9iZZuIH+Bhp5biBFDs0EX9E3BYRtTV8bwe2LBxjV5r5OzgIOD+S24FxkjYrHWhvDYSkswVrLio9L++rOptU5mIBMBv4RES8VCa8pjRzDa8F1pd0o6Q7JR1dLLqudRl/XpLyEODcgnE1q5k//6r3k0YMA0kz19Dd6xyQBsLSFo1WLqv/Hn8f0nqt7yLV9blB0i0R8Ww/x9asZq5hbdJKa3sArwD+IOn2SGvRtloz8Z8JfCYiVuUldgeSZuJPHaXdSUnnHf0aUfc1cw1NX+dANhCSzjzWXMl+S16+kv0U4NRIN7YPSnoE+AdgZpkQu9TMNcwDFkfEMmCZpJtJq+sPhKTTTPw7AxfnhDMe2F/Syoi4vEiEnWsmfiTtAPwQ2C8inioUW7Oa/TfU5XUOeK2eVCIlvoeBV7F6Am27uj7fA76UX28CzAfGtzr2bl7D64Hf5L7rAv8L/GOrY282/rr+0xhYE8nN/PlPIBWHe1ur4+3FNRzAmhPJM1sdd0+2lo90ImKlpKmklerXAn4cEfdKOja3nwv8NzBN0mzSH/hnImLALFXQzDVExH2SfgXcA7wE/DAi/rd1Ua/W5N/BgNVk/F8ENgTOyaO1lTGAnjxv8hquIX2D9SDwV9IdwKDjxyDMrKiB8O2VmQ0hTjpmVpSTjpkV5aRjZkU56ZhZUU46A0h+erv2FPrdkj4paVhu21nSdzo5dqKkI8pFa9Yz/sp8AJH0fESMyq83Bi4Cbo2Ik5s4dhJwYkS8u1+DNOslj3QGqEhPoX8ImJrXUZkk6SoASbvlEdFdkv5H0mjgVGDXvO+EPPK5RdKf8va2fOyk/NDpdEn3S7owP71fWyvntjzKmilptKS1JH1D0h15DZcPt+rPxNpDy38j2ToWEQ/n26uN65pOBD4aEbdKGgWsAD5LZaQjaV1gr4hYIek1wM9Iz08BvAHYjvTczq3A2yXNBC4BDo+IOySNAZaTHo5cGhFvkjQCuFXS9RHxSH9eu7UvJ52Br9GTxbcCZ0i6kLRGz7wGT34PB86WtBOwirS0Rs3MiJgHIOkuYCKwFHg8Iu4AiPwEv6S9gR0qKwWOBV4DOOlYjzjpDGCSXk1KGE+SHhgFICJOlXQ16Tmc2yXt2eDwE4AnSE+yDyONhmr+Vnm9ivTvQDReJkHAxyLiul5citnfeU5ngJK0EWnBrLOjbrZf0tYRMTsivg7MIi3z8RxQrXc9ljRyeQk4ivQQYWfuBzaX9Kb8GaMlrU16APE4ScPz/tdKWq/3V2hDlUc6A8sr8u3OcNJyrBcAZzTod3xejGoVad3la0lPrq+UdDdp6YlzgMskHQb8DljW2QdHxAuSDgfOkvQK0nzOnqT1ZyYCf8oTzouAg3t1lTak+StzMyvKt1dmVpSTjpkV5aRjZkU56ZhZUU46ZlaUk46ZFeWkY2ZF/X+QTB8CJqvq3QAAAABJRU5ErkJggg==\n", + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EGFRErbB2p110aKDRBRAFCDK2LCKMETp38a
EGFR0.0000000.3450730.8530700.4882920.5175610.5222260.4801770.5174060.520092
ErbB20.3450730.0000000.9917780.5950150.6317760.6908130.6700810.6695460.631571
p110a0.8530700.9917780.0000000.9243480.8455780.7791100.8766360.9262150.925134
KDR0.4882920.5950150.9243480.0000000.4824810.4631510.4127950.5022860.405543
BRAF0.5175610.6317760.8455780.4824810.0000000.6115840.5180790.6544720.499924
CDK20.5222260.6908130.7791100.4631510.6115840.0000000.5458410.5383010.575915
LCK0.4801770.6700810.8766360.4127950.5180790.5458410.0000000.5357910.483474
MET0.5174060.6695460.9262150.5022860.6544720.5383010.5357910.0000000.677882
p38a0.5200920.6315710.9251340.4055430.4999240.5759150.4834740.6778820.000000
\n", + "
" + ], + "text/plain": [ + " EGFR ErbB2 p110a KDR BRAF CDK2 LCK \\\n", + "EGFR 0.000000 0.345073 0.853070 0.488292 0.517561 0.522226 0.480177 \n", + "ErbB2 0.345073 0.000000 0.991778 0.595015 0.631776 0.690813 0.670081 \n", + "p110a 0.853070 0.991778 0.000000 0.924348 0.845578 0.779110 0.876636 \n", + "KDR 0.488292 0.595015 0.924348 0.000000 0.482481 0.463151 0.412795 \n", + "BRAF 0.517561 0.631776 0.845578 0.482481 0.000000 0.611584 0.518079 \n", + "CDK2 0.522226 0.690813 0.779110 0.463151 0.611584 0.000000 0.545841 \n", + "LCK 0.480177 0.670081 0.876636 0.412795 0.518079 0.545841 0.000000 \n", + "MET 0.517406 0.669546 0.926215 0.502286 0.654472 0.538301 0.535791 \n", + "p38a 0.520092 0.631571 0.925134 0.405543 0.499924 0.575915 0.483474 \n", + "\n", + " MET p38a \n", + "EGFR 0.517406 0.520092 \n", + "ErbB2 0.669546 0.631571 \n", + "p110a 0.926215 0.925134 \n", + "KDR 0.502286 0.405543 \n", + "BRAF 0.654472 0.499924 \n", + "CDK2 0.538301 0.575915 \n", + "LCK 0.535791 0.483474 \n", + "MET 0.000000 0.677882 \n", + "p38a 0.677882 0.000000 " + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# In case one or more perspectives have missing kinases,\n", + "# the combined distance matrix will contain NaN values\n", + "# Remove the missing kinases (and NaN values) from the matrix\n", + "# before plotting the dendrogram\n", + "combined_distance_matrix = combined_distance_matrix.dropna(axis=0, how=\"all\").dropna(axis=1, how=\"all\")\n", + "combined_distance_matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAR0AAAEWCAYAAABbrUO4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAdO0lEQVR4nO3deZxcVZn/8c83EBIhGxB2DFFQRxgWHRQ3JMgOMsAIMsJAyLiBRgXF0VEUx0FFRERBxJ8LEQQBQwTZBFxYBDEEB8ggyLAEshBIgASIiZDw/P44p8xNUd1dvZ3qrv6+X6/7elXdc+6t5ybpJ+ee6nseRQRmZqUMa3UAZja0OOmYWVFOOmZWlJOOmRXlpGNmRTnpmFlRTjr9QNIxkn7fSfu1kib3w+dOlBSS1u7rc5v1Ff/jbIGI2K/VMZi1ikc6NmB5xNaehlzSkfRKSTMkLZL0lKSz8/5hkk6S9KikJyWdL2lsbqvdtkyRNFfSM5KOlfQmSfdIWlI7z5ofpbMkLZV0v6Q9Kg03SvpAfn2MpN9LOj2f9xFJ+1X6jpX0I0mPS5ov6RRJa+W2tfJxiyU9DBzQxbXPkfTpHPOyfN5N8u3ec5J+LWn9Sv+3SLotX9/dkiZV2qZIui8f97CkD1faxku6Kh/3tKRbJA3LbSFpm0rfaZJOya8nSZon6TOSFgLn5b+Xz0p6KP99XSppg9x/pKSf5v1LJN0haZOm/iFYywyppJN/WK8CHgUmAlsAF+fmY/K2O/BqYBRQn0h2AV4DHA6cCXwe2BPYDnivpN3q+j4MjAdOBmbUflga2AX4S+57GvAjScptPwFWAtsAbwD2Bj6Q2z4IvDvv3xk4tOs/Bd4D7AW8FjgQuBb4XP7sYcDHASRtAVwNnAJsAJwIXCZpo3yeJ/NnjwGmAN+S9Mbc9ilgHrARsEk+f7PP22yaP28r4EM5noOB3YDNgWeA7+a+k4GxwCuBDYFjgeVNfo61SkQMmQ14K7AIWLtB22+Aj1Tevw54kTTvNZH0Q7NFpf0p4PDK+8uA4/PrY4AFgCrtM4Gj8usbgQ9U+j5Y6bdu/qxNST+wfwNeUWl/H/C7/Pq3wLGVtr3zsS+7vtw+BziyLubvVd5/DLg8v/4McEHd8dcBkzs49+XAJ/LrLwNXANs06BfV/cA04JT8ehLwAjCy0n4fsEfl/WaVv5d/B24Ddmj1vy1vzW9DaqRD+h/x0YhY2aBtc9IIqOZR0j/s6nD9icrr5Q3ej6q8nx/5p6Ryvs07iGth7UVE/DW/HEX633448Hi+fVgCfB/YuBLz3LrP6Eqz17AVcFjtc/Nnv4P0Q4+k/STdnm+flgD7k0ZLAN8AHgSuz7den20irppFEbGi8n4r4BeVGO4DVpH+Xi4gJcKLJS2QdJqk4d34LGuBoZZ05gITOpigXED6B14zgXRb80SDvs3YonKLVDvfgm6eYy5ppDM+IsblbUxEbJfbHycl0upn9JW5pJHOuMq2XkScKmkEaZR0OrBJRIwDrgEEEBHPRcSnIuLVpFu4T1bmtP5KGs3VbFr3ufW3YXOB/eriGBkR8yPixYj4r4jYFngb6Xbv6L77I7D+MNSSzkzSD+qpktbLE5Fvz20/A06Q9CpJo4CvApd0MCpqxsbAxyUNl3QY8HrSD2bTIuJx4Hrgm5LG5EnVrStzR5fmz9gyTwB3Z0TRlZ8CB0raJ09Yj8wTvVsC6wAjSLeqK/PE9961AyW9W9I2Oek+SxqZrMrNdwFH5HPuS5qr6cy5wFckbZXPvZGkg/Lr3SVtn+fqniXddq3q+FQ2EAyppBMRq0j/824DPEaa7Dw8N/+YNFy/GXgEWEGa4+ipP5ImnRcDXwEOjYinenCeo0k/5H8mTaJOJ9/iAD8g3V7cDfwJmNGLeNcQEXOBg0iTwItII45PA8Mi4jnSBO+lOaYjgF9WDn8N8GvgeeAPwDkRcWNu+wTp72AJcCRpLqgz387nvl7Sc8DtpIl3SKOk6aSEcx9wEylZ2gCmNacdzMz615Aa6ZhZ6znpmFlRTjpmVpSTjpkV1ekDdePHj4+JEycWCsXMGrnzzjsXR8RGXfccHDpNOhMnTmTWrFmlYjGzBiQ185vmg4Zvr8ysKCcdMyvKScfMinLSMbOinHTMrCgnHTMryknHzIpy0jFrU5K2lTQrL/j/TF54f9tK+whJ50p6Iq8AeWVeG7tfOemYta8FpMX6NyAtJftLVhcigLS20VuBHUhL3y4BzurvoFxXyBqbdR7Mnt7qKKwJkuaQ1s4+irTA2+XAcRGxhJRIyKs4riItYFfzKuC6iHgi97kYOKNy3m8D/0KquPF/pMIDt/Q2Xo90rLHZ02Hh7FZHYc07EtgH2JpUXuikWkNe0H4FaRTz1coxPwLeLmlzSevmc1xbab8D2Ik0UroI+Lmkkb0N1CMd69im28OUq1sdhf27uu4DZ+clZpH0FVKCOQkgIsZJWo9UJ6z6HNcDpGV755NGQbOBqbXGiKgu/fpNSSeRSjPd3eNrwSMds3ZRX4pojXJHEbGMtMj9+ZJqJYy+B4wkFSpcj7TG9t9HOpI+lau4Ls2jpbGsLjPUY046Zu2hvhRRo3JHw0jlf2rfUO0ITIuIpyPib6TR0ZtzWehdSQUX3wusn8sMLSWXGeoNJx2z9vDRXIpoA1IFj0sk7SXpDbnczxjSJPEzpMoZkOZsjpY0Nhcp/AiwICIWA6NJdd8WAWtL+iKphHSvOemYtYeLSDXSHs7bKcA4Uj23pcBDpG+u9q1UUD2RNMH8f6Tksj9wSG67jnSr9QDpdm0Fa97C9Zgnks3awx0R8bW6fT/PW0O5DtuRHbStAt6ft5rTehskeKRjZoU56ZhZUb69MhvkImJiq2PoDo90zKwoJx0zK8q3V0NNsw9yLrwHNt2h/+OxIccjnaHGD3Jai3mkMxQ18yDneQeUicWGHI90zKwoJx0zK8pJx8yKctIxs6KcdMysKCcdMyvKScdskJM0R9Kelff/mutc7SYpJD2ftyckXSVprwbHL899FkqaJmlUf8XrpGPWRiRNBr4LHMDqRdjHRcQo0vKkNwC/kHRM3aEH5j47AW8A/rO/YnTSMWsTkj4EfBPYJyJuq2+PiIUR8W3gS8DXJb3s5z8iFpJWDdypv+L0byRbxxbO9m8mDx7HAe8A9oiIrkrEzAC+QSonc1+1QdKWwH7Ab/sjSHDSsY5sf2irI7Du2Qv4Hal2VVdqlSI2qOy7XFIAo0gJ5+S+DW81Jx1rbOcpabPWa67Y3rHAF4AfSnp/REQnfWslaJ6u7Ds4In4taTfSIu/jySWJ+5rndMzaw5PAHsCuwDld9D0k9/9LfUNE3ARMA07v4/j+zknHrE1ExALgXcC+kr5V3y5pE0lTSbdO/xkRL3VwqjOBvSTt1B9x+vbKrI1ExFxJ7wJuBjbNu5dIErAMmAUcFhG/6uQciySdT7pde09fx+ikM5g1uwpglVcEbDv1C7NHxCOsLjP8vu4en/cd1xexNeLbq8HMqwDaIOSRzmDXzCqAVf69G2sxj3TMrCgnHTMryknHzIpy0jGzopx0zKwoJx0zK8pJx8yKctIxs6KcdMysKCcdMyvKScfMinLSMbOinHTMrCgnHbNBrr7YXmX/GElnSnosF9J7ML8f3+i4apG+/ozXScesDUlaB/gNsB2wLzAGeBvwFPDmBv3/XqQvr5Pcb7yezlDkelZDwdHABGD3iHg+73sS+O/6jrlI31dJRfpm9XdgTjpDjetZDRV7Ar+qJJyOdKdIX59w0hlqXM9q8Gmu7lW9DYE7m+jXnSJ9fcJJp5V6srB6lRdZt449BWzWRL/uFOnrE55IbiUvrG7959fAPpLW66Jfd4r09QmPdFqtuwurV3ky2FYbLmlk5f0FwIeByyQdDzwArJ/33RUR19Q6RsSCWq0sSd+KiBP6M1CPdMzawzXA8sr2BdJk8v3ADcCzwExSjfI/1h8cEXNJ1UEPlfS1/gzUIx2zQa5RsbyK4/PW5XF1Rfr6jUc6ZlaUk46ZFeWkY2ZFOemYWVFOOmZWlJOOmRXlpGNmRTnpmFlRTjpmVpSTjpkV5aRjZkU56ZhZUU46ZlaUk46ZFeWkYzbI5fpVy3Ntq2ckXS3plbltmqQXctvTkm6Q9A8NznFjPnZE3f7q8bXt8N7E66Rj1h4OjIhRpHWRnwDOqrSdltu2AOYDP6oeKGkiabnSAP65wblPi4hRle2S3gTqRbwGO9ewsoqIWCFpOnBmg7blki4Ffl7XdDRwO2lFwckN2vuUk85g5hpWVkfSusDhpCRS37Ye8D7gwbqmo4EzSEnndkmbRMQT/RWjk85g5hpWQ0Nzda8ul7QSGEWq8LBPpe1ESVNJpYUfBQ6qNUh6B7AVcGlELJb0EHAE8K0GxwOsjIjxPb4WPKdj1i4OjohxwAhgKnCTpE1z2+m5bSJp0fbXVY6bDFwfEYvz+4vyvqrTI2Jc3nqVcMAjHbO2EhGrgBmSvk8qF1xte0zSJ4CfSLoq734vsJakhfn9CGCcpB37q8ywRzpmbUTJQaQaV/fVt0fEDcAC4EPAwcAqYFtgp7y9HriFNM/TLzzSMWsPV0paRfra+1FgckTcKzWcD/oGaeL4AeC8iHis2ijpbOA7kj7TH4E66ZRWrV/uWuTWBzqrexURxzTYdwnQ4e/aRMSlwKX57cuO7y3fXpXm+uU2xDnptEKtfrlHOTYEOemYWVFOOmZWlJOOmRXlpGNmRTnpmFlRTjpmVpSTjpkV5aRjZkU56ZhZUU46ZlaUk46ZFeWkYzaESDpG0u9bGYOTjtkgV1f3qrad3cNz3ShpRT7HUkk3S9q+0j5Z0p2SnpU0T9Jpkrq1RI6Tjll7OLCuNtXU+g7dSA5Tc52sDYEbgQsqbesCxwPjgV2APYATuxOoF/GyvlddqMxaRtIxwAeBmaTF1s8hlZ+RpLNIS5I+Dnw0In5Tf3xErJR0MfDZyr7vVbrMl3QhsHt34vJIx/qeFyobSHYBHgY2Br5St288cDJpIfcN6g+UtA5wJA1qaFW8E7i3OwF5pGP9o7ZQmfVe9+pe1XwaeBFYEBG1EsMr85rJTwJnRkQAl0j6FHAAq2+jviPpdNKt1HLgXxp9oKQpwM7AB7pzOR7pmLWHgyu1qcZFxA/y/rkN+s7PCafmUWDzyvuP5zpZI4F3A9MlrbHMpaSDgVOB/So1s5ripGPW3qLBvi20ZpmICaSyNGseGPFSRNxCmgfau7Zf0r7AD0iT192+j3bSMRt6NgY+Lmm4pMNIta6uadRR0ltJdbHuze/fBVwIvCciZvbkwz2nY9YeanWvam4Aruig7x+B1wCLgSeAQyPiqUr72ZLOzK8XAidFxLX5/ReAscA1lcHSLRGxX7OBOumYDXKd1b0CptX1nVbZ97Lf5YmISV18Vre+Hm/Et1dmVpSTjpkV5aRjZkU56ZhZUZ5IbrWFs+G8A1odRd9aeI9LJluHnHRaaftDWx2BWXFOOq2085S0tZt2G7lZn/KcjpkV5aRjZkU56ZhZUU46ZlaUk46ZFeWkY2ZFOemYWVF98ns6F/3xMa64a35fnKr9LTyISyZ0tMyJWfdJmgNsAlTX05kWEVMlbQZ8mbQG8hjS+sg3A6dGxP2SJgKPAMsqxz4UETvmahI/Iq2T/FLu9/mIuKo38fbJSOeKu+bz58ef7YtTmVnPvKzulaQNgdtIC6zvCowG3gjcBOxVd/y4yrE7Vvb/IdfAGkcqYXOxpHG9CbTPfiN5283GcMmH39pXp2tf553S6gjKaMdnygafE4BngaMi4qW8bwlwXndPFBEvSboAOJe06uAdPQ3Kj0FY3/MzZQPFnsAvKgmnxyStBUwhlbV5tDfnctKxvteuz5S1Ss/rXo0nrXEMgKR/Bs4H1iLdNu1d6b+4subxKRFxen79FklLgPWAlcC/RcSTPbmMGn97ZdYeGtW9egrYrNYhIn6Z61mdAKxTd/z4yrGnV/bfno9ZH/glaW6oV5x0zNrXb4CDJfX65zwingc+Ahwl6Q29OZeTjln7OoM0QrlA0tZKRgM79eRkuUzND4Ev9iYoJx2z9nClpOcr2y9yud+3ACuA3wPPAXeRvjo/roefcyawf32Z4e7wRLLZINdZ3auIWAC8v5P2OUDDmeq6Glm1ffOAEd2PcjWPdMysKCcdMyvKScfMinLSMbOinHTMrCgnHTMryknHzIpy0jGzopx0zKwoJx0zK8pJx8yKctIxs6KcdMysKCcdMyvKScdskJM0R9ILksbX7b9LUkiaKGla7lNdc+duSbtW3i/L/at9JvR1vE46Zu3hEeB9tTeStgdeUdfntLraWDtGxC2198B2uV+1BtZjfR2oF/EaqGadB7OntzoKGzwuAI4GzsrvJ5MqPwy4Qmse6QxUs6engnVmzbkdGCPp9blG1eHAT1scU0Me6Qxkm24PU65udRTWas3VvYLVo52bgPuB+XXtJ0qaWnl/RURM7n2A3eOkY9Y+LgBuBl5FurWqd3pEnFQ2pJfz7ZVZm4iIR0kTyvsDM1ocToc80jFrL+8H1o+IZZIG5M+3RzpmbSQiHoqIWR00/0fd7+AsLhpcNiAzoZk1r6O6VxGxktU1rY7JW2fnmUMHNbD6kkc6ZlaUk46ZFeWkY2ZFOemYWVGeSG6FhbPhvAO66HMPbLpDmXjMCnLSKW37Q1sdgVlLOemUtvOUtHWlq5GQ2SDlOR0zK8pJx8yKctIxs6KcdMysKCcdMyvKScfMinLSMbOinHTM2oSkIyTNymvlPC7pWknvkPQlSS9Kei5vD0g6W9JmlWMnSZpXeb+OpBmSbpU0RtJkSXdKelbSPEmn9XSRMCcdszYg6ZPAmcBXgU2ACcA5wEG5yyURMRrYADgE2BS4s5p4KucaQVrudBywd0Q8C6wLHA+MB3YB9gBO7EmsTjpmg5ykscCXgY9GxIyIWBYRL0bElRHx6WrfvP9eUomaRcCn6s61LnAlMBw4ICKW5eO+lwvzvRAR84ELgbf3JF4/BjGQNfNgqBm8FRgJ/KLZAyJilaQrgH0qu0cA1wJLgcMi4m+dnOKdwL09iNVJZ8Dyg6HWvA2BxXl50u5YQLrdqhlNSmDv6yzhSJoC7Ax8oLuBgpPOwNXsg6HW/routvcUMF7S2t1MPFsAT1feLwY+Dpwv6fmIuK7+AEkHA6cCe0ZEjxZ295yO2eD3B2AFcHCzB0gaBhwI3FLdHxEzgA8C0yXtXnfMvsAPgAMjosc1rz3SMRvkImKppC8C35W0ErgeeBHYE9gd+Gutr6ThwDbAl0jfYJ3R4Hw/k7QOcIWk/SLiVknvIk0eHxIRM3sTr0c6Zm0gIs4APgmcRPpWai4wFbg8dzlc0vPAEuCXpFuyf4qIBR2c7yekb7aulvRm4AvAWOCaSt2sa3sSq0c6Zm0iIi4kjUbq3UYa2XR27I3AlnX7fkC6nYI0YuoTHumYWVFOOmZWlJOOmRXlpGNmRTnpmFlRTjpmVpSTjpkV5aRjZkU56ZhZUU46ZlaUk46ZFeWkY2ZFOemYWVFOOmZWlJOOmRXlpGPWpnLBvOmS5kgKSZPq2neX9DtJSyXNaXD8xNz+V0n3S9qzL+Jy0jFrb78H/g1Y2KBtGfBj4NMN2gB+BvwPqdrE50nrJm/U24D6bOXAPz/+LId//w99dToza1IepXwfOArYjLRE6XERsYJU9RNJq+qPy2sdz2w0gpH0WuCNpAqfy4HLJB0PvAc4V9LWpFUFdwQCuI5U7G9JV/H2yUjnoJ22YNvNxvTFqcysZ44kFc7bGngtaa3k3tgOeDginqvsuzvvBxDwNWBz4PXAK+liSdSaPhnpHLHLBI7YZUJfnMrM6lx6bFPdzo6IuQCSvgKcRe8SzyhSpc+qpaRaWUTEg8CDef8iSWcAJzdzYi/MbtYe5lZeP0oagfTG80D97csY4DkASRsD3wF2JVUGHQY808yJPZFs1h5eWXk9gVQyuDfuBV4taXRl346srl/+NdJczg4RMYY0Wd1lKVJw0jFrFx+VtKWkDYDPAZcASBohaWTus46kkZKU24bltuHprUbmIntExAPAXcDJef8hwA7AZflco0mjoSWStqDjb8BexknHrD1cRKrs+XDeTsn7/wIsJ83FXJdfb5Xb3pnfX0MaHS3P56j5V2Bn0m3TqcChEbEot/0X6dutpcDVwIxmA/Wcjll7uCMivla/MyImdnRALrDX4S1RRMwBJnXQdi/wT3W7v9l1mB7pmFlhTjpmVpRvr8wGuc5uoQYij3TMrCgnHTMrShHRcaO0iPTbja00Hljc4hh6w/G33mC/htdFxOiuuw0Onc7pRESvH2PvLUmzImLnVsfRU46/9Qb7NUia1eoY+pJvr8ysKCcdMytqMCSd/9fqAHrJ8bfeYL+GwR7/GjqdSDYz62uDYaRjZm3EScfMihoQSUfSvpL+IulBSZ9t0D5W0pWS7pZ0r6QprYizM11dQ+4zSdJd+RpuKh1jZ5qJP/d7k6RVkg4tGV9Xmvg3dKSke/J2m6QdWxFnZ5q4Bkn6Tm6/R9IbWxFnr0VESzdgLeAh4NXAOqTFn7et6/M54Ov59UbA08A6rY69m9cwDvgzMCG/37jVcXcn/kq/35LWXzm01XF388//bcD6+fV+wB9bHXcPrmF/4FrSchRvGWjX0Ow2EEY6bwYejIiHI+IF4GLgoLo+AYzOK56NIiWdlWXD7FQz13AEMCMiHgOIiCcLx9iZZuIH+Bhp5biBFDs0EX9E3BYRtTV8bwe2LBxjV5r5OzgIOD+S24FxkjYrHWhvDYSkswVrLio9L++rOptU5mIBMBv4RES8VCa8pjRzDa8F1pd0o6Q7JR1dLLqudRl/XpLyEODcgnE1q5k//6r3k0YMA0kz19Dd6xyQBsLSFo1WLqv/Hn8f0nqt7yLV9blB0i0R8Ww/x9asZq5hbdJKa3sArwD+IOn2SGvRtloz8Z8JfCYiVuUldgeSZuJPHaXdSUnnHf0aUfc1cw1NX+dANhCSzjzWXMl+S16+kv0U4NRIN7YPSnoE+AdgZpkQu9TMNcwDFkfEMmCZpJtJq+sPhKTTTPw7AxfnhDMe2F/Syoi4vEiEnWsmfiTtAPwQ2C8inioUW7Oa/TfU5XUOeK2eVCIlvoeBV7F6Am27uj7fA76UX28CzAfGtzr2bl7D64Hf5L7rAv8L/GOrY282/rr+0xhYE8nN/PlPIBWHe1ur4+3FNRzAmhPJM1sdd0+2lo90ImKlpKmklerXAn4cEfdKOja3nwv8NzBN0mzSH/hnImLALFXQzDVExH2SfgXcA7wE/DAi/rd1Ua/W5N/BgNVk/F8ENgTOyaO1lTGAnjxv8hquIX2D9SDwV9IdwKDjxyDMrKiB8O2VmQ0hTjpmVpSTjpkV5aRjZkU56ZhZUU46A0h+erv2FPrdkj4paVhu21nSdzo5dqKkI8pFa9Yz/sp8AJH0fESMyq83Bi4Cbo2Ik5s4dhJwYkS8u1+DNOslj3QGqEhPoX8ImJrXUZkk6SoASbvlEdFdkv5H0mjgVGDXvO+EPPK5RdKf8va2fOyk/NDpdEn3S7owP71fWyvntjzKmilptKS1JH1D0h15DZcPt+rPxNpDy38j2ToWEQ/n26uN65pOBD4aEbdKGgWsAD5LZaQjaV1gr4hYIek1wM9Iz08BvAHYjvTczq3A2yXNBC4BDo+IOySNAZaTHo5cGhFvkjQCuFXS9RHxSH9eu7UvJ52Br9GTxbcCZ0i6kLRGz7wGT34PB86WtBOwirS0Rs3MiJgHIOkuYCKwFHg8Iu4AiPwEv6S9gR0qKwWOBV4DOOlYjzjpDGCSXk1KGE+SHhgFICJOlXQ16Tmc2yXt2eDwE4AnSE+yDyONhmr+Vnm9ivTvQDReJkHAxyLiul5citnfeU5ngJK0EWnBrLOjbrZf0tYRMTsivg7MIi3z8RxQrXc9ljRyeQk4ivQQYWfuBzaX9Kb8GaMlrU16APE4ScPz/tdKWq/3V2hDlUc6A8sr8u3OcNJyrBcAZzTod3xejGoVad3la0lPrq+UdDdp6YlzgMskHQb8DljW2QdHxAuSDgfOkvQK0nzOnqT1ZyYCf8oTzouAg3t1lTak+StzMyvKt1dmVpSTjpkV5aRjZkU56ZhZUU46ZlaUk46ZFeWkY2ZF/X+QTB8CJqvq3QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1682,7 +1892,7 @@ "D_condensed = distance.squareform(D)\n", "hclust = hierarchy.linkage(D_condensed, method=\"average\")\n", "tree = hierarchy.to_tree(hclust)\n", - "labels = distance_matrix.columns.to_list()\n", + "labels = combined_distance_matrix.columns.to_list()\n", "hierarchy.dendrogram(hclust, labels=labels, orientation=\"left\", ax=ax)\n", "ax.set_title(\"combined measures\")\n", "ax.set_xlabel(\"Distance\")\n", From 04692808cfd36c0babe6650b29075e9e0a436c0b Mon Sep 17 00:00:00 2001 From: dominiquesydow Date: Sat, 4 Jun 2022 10:25:31 +0100 Subject: [PATCH 14/17] Add livecoms-review branch to CI (tmp) --- .github/workflows/ci.yml | 2 ++ .github/workflows/docs.yml | 2 ++ 2 files changed, 4 insertions(+) diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml index 4c715fd5..54da007a 100644 --- a/.github/workflows/ci.yml +++ b/.github/workflows/ci.yml @@ -5,10 +5,12 @@ on: branches: - "master" - "maintenance/.+" + - "livecoms-review" pull_request: branches: - "master" - "maintenance/.+" + - "livecoms-review" schedule: # Run a cron job once weekly on Monday - cron: "0 3 * * 1" diff --git a/.github/workflows/docs.yml b/.github/workflows/docs.yml index ff893dea..2a614310 100644 --- a/.github/workflows/docs.yml +++ b/.github/workflows/docs.yml @@ -5,10 +5,12 @@ on: branches: - "master" - "maintenance/.+" + - "livecoms-review" pull_request: branches: - "master" - "maintenance/.+" + - "livecoms-review" schedule: # Run a cron job once weekly on Monday - cron: "0 3 * * 1" From 174146ca5b860b8fdd6a33a6d44329aa45e7bcb7 Mon Sep 17 00:00:00 2001 From: dominiquesydow Date: Sat, 4 Jun 2022 10:28:16 +0100 Subject: [PATCH 15/17] Satisfy black-nb --- .../talktorial.ipynb | 2 +- .../T025_kinase_similarity_kissim/talktorial.ipynb | 14 +++++++------- .../T026_kinase_similarity_ifp/talktorial.ipynb | 10 +++++----- .../talktorial.ipynb | 6 ++---- 4 files changed, 15 insertions(+), 17 deletions(-) diff --git a/teachopencadd/talktorials/T024_kinase_similarity_sequence/talktorial.ipynb b/teachopencadd/talktorials/T024_kinase_similarity_sequence/talktorial.ipynb index e7abd92e..4ac97d84 100644 --- a/teachopencadd/talktorials/T024_kinase_similarity_sequence/talktorial.ipynb +++ b/teachopencadd/talktorials/T024_kinase_similarity_sequence/talktorial.ipynb @@ -333,7 +333,7 @@ "configs = pd.read_csv(HERE / \"../T023_what_is_a_kinase/data/pipeline_configs.csv\")\n", "configs = configs.set_index(\"variable\")[\"default_value\"]\n", "DEMO = bool(int(configs[\"DEMO\"]))\n", - "print(f\"Run in demo mode: {DEMO}\") \n", + "print(f\"Run in demo mode: {DEMO}\")\n", "# NBVAL_CHECK_OUTPUT" ] }, diff --git a/teachopencadd/talktorials/T025_kinase_similarity_kissim/talktorial.ipynb b/teachopencadd/talktorials/T025_kinase_similarity_kissim/talktorial.ipynb index 9c95974c..4c38b981 100644 --- a/teachopencadd/talktorials/T025_kinase_similarity_kissim/talktorial.ipynb +++ b/teachopencadd/talktorials/T025_kinase_similarity_kissim/talktorial.ipynb @@ -204,7 +204,7 @@ " else:\n", " print(f\"Number of structures per kinase: all available structures\")\n", " print(f\"Number of cores used: {N_CORES}\")\n", - " \n", + "\n", "# NBVAL_CHECK_OUTPUT" ] }, @@ -806,7 +806,9 @@ " structure_klifs_ids = pd.read_csv(DATA / \"frozen_structure_klifs_ids.csv\")[\n", " \"structure.klifs_id\"\n", " ].to_list()\n", - " structures_df = structures_df[structures_df[\"structure.klifs_id\"].isin(structure_klifs_ids)].copy()\n", + " structures_df = structures_df[\n", + " structures_df[\"structure.klifs_id\"].isin(structure_klifs_ids)\n", + " ].copy()\n", "else:\n", " if N_STRUCTURES_PER_KINASE > 0:\n", " print(f\"Select {N_STRUCTURES_PER_KINASE} structures per kinase for downstream analysis.\")\n", @@ -816,9 +818,7 @@ " ascending=[True, True, False],\n", " )\n", " # Reduce number of structures per kinase\n", - " structures_df = structures_df.groupby(\n", - " \"kinase.klifs_name\"\n", - " ).head(N_STRUCTURES_PER_KINASE)\n", + " structures_df = structures_df.groupby(\"kinase.klifs_name\").head(N_STRUCTURES_PER_KINASE)\n", " structure_klifs_ids = structures_df[\"structure.klifs_id\"].to_list()\n", " else:\n", " print(f\"Use all available structures per kinase for downstream analysis.\")\n", @@ -953,14 +953,14 @@ " print(\"Calculate and save KiSSim fingerprints...\")\n", " # Calculate fingerprints\n", " from kissim.api import encode\n", + "\n", " kissim_fingerprints = encode(structure_klifs_ids, n_cores=N_CORES)\n", "\n", " # Save fingerprints in csv file\n", " structure_klifs_ids = list(kissim_fingerprints.data.keys())\n", " kissim_fingerprints_array = [\n", " fingerprint.values_array().tolist()\n", - " for structure_klifs_id, fingerprint\n", - " in kissim_fingerprints.data.items()\n", + " for structure_klifs_id, fingerprint in kissim_fingerprints.data.items()\n", " ]\n", " kissim_fingerprints_array = np.array(kissim_fingerprints_array)\n", " kissim_fingerprints_df = pd.DataFrame(kissim_fingerprints_array, index=structure_klifs_ids)\n", diff --git a/teachopencadd/talktorials/T026_kinase_similarity_ifp/talktorial.ipynb b/teachopencadd/talktorials/T026_kinase_similarity_ifp/talktorial.ipynb index b084d61f..e219e159 100644 --- a/teachopencadd/talktorials/T026_kinase_similarity_ifp/talktorial.ipynb +++ b/teachopencadd/talktorials/T026_kinase_similarity_ifp/talktorial.ipynb @@ -220,7 +220,7 @@ " else:\n", " print(f\"Number of structures per kinase: all available structures\")\n", " print(f\"Number of cores used: {N_CORES}\")\n", - " \n", + "\n", "# NBVAL_CHECK_OUTPUT" ] }, @@ -560,7 +560,9 @@ " structure_klifs_ids = pd.read_csv(DATA / \"frozen_structure_klifs_ids.csv\")[\n", " \"structure.klifs_id\"\n", " ].to_list()\n", - " structures_df = structures_df[structures_df[\"structure.klifs_id\"].isin(structure_klifs_ids)].copy()\n", + " structures_df = structures_df[\n", + " structures_df[\"structure.klifs_id\"].isin(structure_klifs_ids)\n", + " ].copy()\n", "else:\n", " if N_STRUCTURES_PER_KINASE > 0:\n", " print(f\"Select {N_STRUCTURES_PER_KINASE} structures per kinase for downstream analysis.\")\n", @@ -570,9 +572,7 @@ " ascending=[True, True, False],\n", " )\n", " # Reduce number of structures per kinase\n", - " structures_df = structures_df.groupby(\n", - " \"kinase.klifs_name\"\n", - " ).head(N_STRUCTURES_PER_KINASE)\n", + " structures_df = structures_df.groupby(\"kinase.klifs_name\").head(N_STRUCTURES_PER_KINASE)\n", " structure_klifs_ids = structures_df[\"structure.klifs_id\"].to_list()\n", " else:\n", " print(f\"Use all available structures per kinase for downstream analysis.\")\n", diff --git a/teachopencadd/talktorials/T027_kinase_similarity_ligand_profile/talktorial.ipynb b/teachopencadd/talktorials/T027_kinase_similarity_ligand_profile/talktorial.ipynb index 45b282ea..b82139e9 100644 --- a/teachopencadd/talktorials/T027_kinase_similarity_ligand_profile/talktorial.ipynb +++ b/teachopencadd/talktorials/T027_kinase_similarity_ligand_profile/talktorial.ipynb @@ -223,7 +223,7 @@ "configs = pd.read_csv(HERE / \"../T023_what_is_a_kinase/data/pipeline_configs.csv\")\n", "configs = configs.set_index(\"variable\")[\"default_value\"]\n", "DEMO = bool(int(configs[\"DEMO\"]))\n", - "print(f\"Run in demo mode: {DEMO}\") \n", + "print(f\"Run in demo mode: {DEMO}\")\n", "# NBVAL_CHECK_OUTPUT" ] }, @@ -1829,9 +1829,7 @@ " kinase2 = kinase_selection_df[\"kinase_klifs\"][1]\n", " uniprot2 = kinase_selection_df[\"uniprot_id\"][1]\n", "\n", - "similarity_example = similarity_ligand_profile(\n", - " uniprot1, uniprot2, data\n", - ")\n", + "similarity_example = similarity_ligand_profile(uniprot1, uniprot2, data)\n", "print(\n", " f\"Values for {kinase1} and {kinase2}: \\n\\n\"\n", " f\"{'Total number of measured compounds:' : <50}\"\n", From ef0493027c4232aaa40b9e9df945fcb63377d066 Mon Sep 17 00:00:00 2001 From: dominiquesydow Date: Sat, 4 Jun 2022 10:29:08 +0100 Subject: [PATCH 16/17] Satisfy black-nb --- .../talktorial.ipynb | 18 ++++++++++-------- 1 file changed, 10 insertions(+), 8 deletions(-) diff --git a/teachopencadd/talktorials/T028_kinase_similarity_compare_perspectives/talktorial.ipynb b/teachopencadd/talktorials/T028_kinase_similarity_compare_perspectives/talktorial.ipynb index 181beae9..c1af75be 100644 --- a/teachopencadd/talktorials/T028_kinase_similarity_compare_perspectives/talktorial.ipynb +++ b/teachopencadd/talktorials/T028_kinase_similarity_compare_perspectives/talktorial.ipynb @@ -752,7 +752,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAU4AAAESCAYAAACSHzzlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB9sElEQVR4nO2dd3hU1daH3zUzIYGEQGhJIJBQQ5EmYAMFAyIgRQFFQaoUr/V69X4ilmvB7rVdK0i10qSIgFIVEKWThBJIIISSEJKQBgFT9vfHOUmmJZkwMwh43ueZJ5k5+6y9zzpn1uz+E6UUBgYGBgauY/qrC2BgYGBwpWEETgMDA4NKYgROAwMDg0piBE4DAwODSmIETgMDA4NKYgROAwMDg0piBE4DA4MrAhGZKSKpIhJbxnERkQ9FJF5EokXkWm+VxQicBgYGVwqzgT7lHO8LNNdfE4FPvVUQI3AaGBhcESilfgUyykkyCJirNH4HaopIqDfKYgROAwODq4UGwDGr98f1zzyOxRtGLwVFKS28ulZ043lvWoc3ru/pVfv7X27qVft+KWav2geQQu/azwv1cgZeptoJ796DfVOfEHdtVOZ7ag49NAmtiV3MNKXUtEpk56y8XokTV2zgNDAwuPwposjltHqQrEygtOc40NDqfRhw0g17ZWI01Q0MDLxGvip0+eUBlgGj9NH1G4AspVSyJwzbY9Q4DQwMvEZlapwVISLfAj2AOiJyHPgP4AOglPoMWAH0A+KBc8BYj2VuhxE4DQwMvEahB7etVErdV8FxBTzssQzLwQicBgYGXqPIO2MzfzlG4DQwMPAahUbgLEVECoEYq4++U0q9ISIW4GXgbuCsfmyBUurVMs67E4gAlgKHgarAcqXUUxdTLmc8+wZs2AK1guCH2ZU/P3YbzPsMigqhW1/oO8z2+NkcmPMunE4GHx8Y/SQ0iCg9XlQIrz4KNWvDo684z6PTra15cOo9mMzCqq83s+B/PztN16JDOO+u+D/emPgFm5bvwsfXwttLn8SnigWz2cSm5bv46u3lDud1bxjBCzdFYRZh3oEYPt291eb4xPZduLNZKwDMJhPNatbi2rmfUM3iw7u39qVuNX+KlOLb/dHMit3pYL9b03Ce7dMDk8nEwp2xTN+8zSHNdeFhPNOnOxaTmcxzeYycswCA6r6+TB14G83r1UYpxbPLVrP7uG1/frdm4Uzp1wOTaPa/2Ohov0tEGM/07Y6P2cyZc3mMmqnZX/PEOM7+mU9hURGFRYq7P//GuX+66f7ZH8Onu+z806ELdza388/sT8i6cJ63etxOVERT0vPOcfu82Q62L4X9bs3DeaZfD8wmEwt3xPLFr0780ziMZ/pp/j9zLo/RMxaUHDOJsOAfwzmVnctDXy11msfFYtQ4bclTSnVw8vlUIARoq5Q6LyLVgSfLO09EIoCNSqn+IlIV2CUii5VSmy+ybDbc2ReGD4bJr1X+3KJC+OZjeOJ1CKoDrz0K7W+A+uGlaVZ+Bw2bwkP/geQk+PZj+NebpcfXLoHQhpB3znkeJpPw8Bv3MuWeD0k7eYYPfprMHz9Fk3QwxSHd2OfvYuf6fSWf5V8oYPLg9zl/7gJmi4l3fniK7ev2cmDHkdLzRHi5ay/u/3EBKWdzWDb4flYnJhCfmV6SZtqebUzbo33ZeoY34YG2ncm6cJ4qZjNTf9/A3rRU/H18+GHwSDYeP2pzrkmEF/pFMe7L7zmVncOCCcNZF5dAQlrpAo/qvr68cEcUE75aTHJ2DrWqVS059myfHmyMT+TxBcvxMZnw8/GxvW4Rnu8fxQNzNPvzJw1n/YEEEk5b2ffz5YX+UUz8cjHJWTnU8q9qY2P0rAVknnM+Mdckwss39+L+H3T/DNH9c8bKP7u3MW23lX/aa/4BWBi3lzmxu3i3Z7+/zP5zA6IYP0vzz7wHh7N+vxP/DIhi4hzn/hl5Y0cSTmcQ4FvFaR7ukH+VSvN4bDqSiFQDJgCPKqXOAyilcpRSL7pqQymVB+zGg7P9u7SHmtUv7twjcVCvPtQNBYsPdOkBe7bYpjmZBC07aP+HNoK0U5B9Rnt/5jTEbNVqqmXR4toITh45TcrRNAryC/llyXZu6NPeId3A8beyefkuMtNybD4/f+4CABYfMxaLGXsNqQ71QjiafYZjOVnkFxXxQ/wBekeUPTl+YNNWLIvfD8Dpc2fZm5YKwNn8fBIyMwjxD7BJ365BCEkZmRzP1Oyv2BtHz5a29vu3jWT1/niSs7WyZ5zLA8C/ShU6hzdg4S5tz4b8oiJyLlywtR+m2z+TRX5hESti4ohyYn/N/niSs3T7Z/PKvD57OtQL4WhWJfzTvBXLDu0veb81+XhJkPsr7LcNCyEpvdQ/K2PiiGpla/+OdpGs3ufcP8GBAXSPbMyiHU73zXCbQpTLryuJiw2cVUVkt9VrGNAMSFJK5bh43mL7gyIShLZA/9eLLJdHyUyHWnVL39esA2fSbNM0bAy79LrxkQOQcao0zbzPYMh4kHLWX9QJqcnpk2dK3qedPEPtkJo2aWqH1OCmvu1ZMcfRLSaT8NHaKXy79y12/bKfuJ2JNseDq1XnZG7pLUk+m0uwv/NfEj+Lhe4NI1h55JDDsbCAQFrXrsfuVNtmdHD1gJKACJCSnUtwddvgGlE7iMCqvswdPZRFE4YzqJ3WLG0YVIOMc3m8Pqg3308cwSsDelHVx7YRVK96AClZpfZPZecSHGhnv04QgX6+zBk7lIUPDmdQ+1YlxxQwY9RgFj44nLs7tXW4rmD/6pw8W0n/HHb0T1l43X6grX9SsnOpV4Z/Zj8wlAX/GM7ADqX+mdyvB+/8tJEiL9UMC5XrrysJjzXVRaSd3fuxwONAbeAmpdQxZ+fp3Cwi0UAk8IZSKsVJmkuOs2fJPgj2GQbzPoWX/wENGkPDZmAyQfTvUL0mhDeHuD3lZOI0qtpmPOmVu5k5dQlFRY4FKipSPNLzNfwDq/L87EmEt6zP0QOliyWcmVdl/Lr3Cm/K9lMnHWo41Sw+fNp7IC9vWU9u/p925a/YvsVkok1oMGPnLsTXYuG7B+5lz/FkLCYTrUPrMXXleqJPpDClTw8mdOvCh+tLq/VOy293Y8wmE23qBzN29kJ8fSx8N0Gzn5ieyfAv5nE65yy1/KsyY/QQjqRlsP3oifKKX75/Uhz9Ux5/hX37B9dsMtGmQTDjZmr++Xbivew5lkxEnSAyzp5j38lUujQOcznPyuC5WZyXF54cVY8HGolIdb2JPguYpe+dV9Gi2uI+zhbAJr2Pc7d9IhGZiL6W9dO36jFxZA0PFt+RoDqQcbr0fWaaNshjTVV/GKMPZSkFU0ZDnRDY9gvs+V0bXMr/U+vjnPEmPPC07flpyWeoWz+o5H2d+kGkp2TZpGneIZzJnz0AQGBtf7r0uobCwiK2rCyNyGez84jefIjOt7a2CZwpZ3OoH1Bawwn1DyD1bK7T6x3QtGVJM70Yi8nEZ70HsuTQfn5yUhM9lZ1LaGCp/ZDAAFJzztqkScnO5cy5PPLyC8jLL2B70gkiQ+qy4+gJTmXnEH1C+538ad8hJnTt7GA/pEap/WBX7Cdq9hPTMzmtp804m8ea/fG0DQuxCZwpZ3Oo7++if5o5+qcivG7fzj/O/H8qO5dMa/8cPUHLkLq0rl+PW1s24ZYWEfhaLPj7VuHNoX14euGqSpWhPAqdh/YrHo/1cSqlzgEzgI9ExA9ARMyAyz3OSqmDwOvA02Ucn6aU6qyU6uztoAkQEQmpJyAtBQryYdsGbXDImnO52jGATSuh+TVaMB08Dt76Gl6fCxOegZbtHYMmwMFdR6nfpB7BjWpj8THT/c7O/P5TtE2asV2eZ0yX5xjT5Tk2/bCLj5/+li0r91CjdgD+gVpHfxU/Hzre0pJj8baV9T2pKUTUCCKseg18TCYGNGvJ6qMJDuWoXqUK14eGsTrR9tib3W8nPjODGTE7nPoo5kQK4bWDaFAzEB+TiX5tIlkXd9gmzdq4BDo1aoBZBD+LhXYNQjh8OoO0s+dIzsqlcW3th+PGxg1tBpVK7NfS7ZtN9GsbyfoDtvbX7U+gU3gDzCbBz8dCuzDNflUfC9WqaINNVX0sdG0azqFTtn0te1JTiKhp55/EMvxTP4zVRxyPlYe37ccW+z9I809fF/2TcDqD91ZvJurtL7jtvzN5cv4K/jh8zKNBEyBficuvK4mLrXFWFZHdVu9XKaUmA88CrwCxIpID5AFzqNxC+8+Ap0SksVLqSIWpK+DJl2DrbsjMgh5D4ZGxMPQO1841m+G+h+H9KVBUBF17Q/0I+EWf8dO9vzaSPuttEJM22j7qicqVr6iwiE+f+Y6p3z2K2Wzi529/IykumX6jbgZgxdyNZZ4bFFyDpz4cjcksiMnExqU72LratpO/UCle2LSWuf2GYBYT8+NiOHQmnRGttAGor/drtdbbI5qz8fhR8op/BYDOIQ0Y0qIN+9NPs2LIKADe2rqRDceO2Nh/ZcU6Ztw/GJMIi3bvJf50OsM6aT0383ZEczgtg40JiSz9x0iKlGLhzlgOndZGlaeuXM/bg/viYzZx7EwWU5baTsUqLFJM/XEdX4wajMkkfL9Tt99Zt79ds7/pUCJLHhqJKrafmk5YUA3+d98AQKs5L48+wKb4o47+2biWuf11/xzQ/dNa988+3T+Nm7PxmK1/AD7sdQc31G9IkF9VtoycxHvbNjP/QOyls1+keHX5OqaP1vyzeMde4lPTGdZF98+2aA6f1v3ziO7/7bHEp6ZzKbhaa5xi3190pWBsK1c+xrZyFWNsK1c+nthWbk9SQ5e/p+0bHbtioqyxcsjAwMBrXK01TiNwGhgYeI3Cq3TnSiNwGhgYeI2iK2zQx1WMwGlgYOA1/lTe7wv/KzACp4GBgdcoMprqBgYGBpXDGBwyMDAwqCSFyqhxGhgYGFSKIqPGeXnh7QnqN/t51/7red69APnzyn9gzV6+x+Zz3q0NKR/vLi6RAq+a9wh/qis2xJTL1XlVBgYGlwXG4JCBgYFBJSk05nEaGBgYVA5j5ZCBgYFBJSkyRtUNDAwMKodR4zQwMDCoJPl/9yWXZWmpO0m3AXhKKbXd7vMxwNvACcAH2A+MUkqdE5F/AeOBAuA0ME4pZbvjbBlcCt3z8nBXtx2gU69r+MebwzGZTaya8yvz31vhNF2Laxvz3trneH3Mp2xaqrn3iY/HcX2f9mSezubBG56vMK9bGkXwn1tuxSTCvH2xfLbDTuO7Y2cGRVppfAfVotMXn5arg+OOrvrax8dx9kI+hUrTPR863VH3vGuLcCYP6oFZTCzaGsuMDU50w5uE8fTAUt3wsZ8toIrFzJwH76GKxYzZZGJ1zCE+Xr3F4dxbIiJ4/lbN/rzYGD7f6mj/+rAwnru1BxaTiTN55xk+fz4AYzp2ZFg7TQRuXkwMs3fuKtNPJfmFR/CCfg/m73W8BxOudbwHnaeXfQ+6tQhn8gDdP9ti+eIX5/6Z3L87FrOZM2fzGDPNVld9/qPDOZWVy8NzPKurbkyAL1torQRdKqM85imlHtHTfgMMA2YBu4DOehD9B/CWfqxcLoXueUW4o9sOuq76f0cyZdA7pJ3I4MMNL/D7it0kxZ10SDfupbvZsdZ2h/fVX2/ih2lreerz8RXnJcLLPXoycslCUnJzWDpsBGsOxxN/plSuYtqu7UzbpQXlnhFNGNehU7lB011ddYBRcxaQWca8VpMIz90VxYTp35OSlcO8R4ezfl8Ch1NtdcOfuyuKSTMWk5JZqhv+Z0Eh46YtJO/PfCwmE3MfuoeNcUeITkqxsf9izyhGL1xESk4Oi0eMYG18AvEZtuV/qVdPxi76nuScHGpX1ey3qF2bYe3actfX35BfWMisIYPZcPgIiZmZ5frrpR49GbVYuwdLho1gzZF4m/ym79zO9J3aPYhqXP49MInw7KAoJsz4nlNZOcx7RNdVt/PP84OimDSzDF31rh05nJqBvxd01T05AV5E+gAfoGmYfWFfcdNVcmcCTYHzaBUwr+geu/1zICKJIvKCiGwC7tY/vl9EfhORWBG5zsk5FsAfOAOglFqvaxYB/A64JLl3KXTPK8Id3XaAyM5NSD6cSkriaU1XfdFWbryjo0O6gQ/2YvOy7WSdzrb5PPa3g+SccS7+ZU/74BCOZmZyLFvX+D4Yx21NmpWZfkCLlvxw6EC5Nt3RVXeFtg1DSErL5HhGFgWFRazcE0dUG1v7/TpGsiY2npRMR93wvD81KQqL2YTFbHJQLm0fovskSyv/8rgD9Gpma39gy5b8fOgQyTma/fQ8zX7T2rXYlZzM+YICCpVi6/Hj9G5etj/B8R4sP1T+PRjYoiU/HCz7HrRtGMKxdM0/+YVFrNgTx62t7XTVO0SyZm/Zuuq3tGzMom1e0lVXJpdf5aFXyj4G+gKtgftEpLVdsinAbqVUO2AUWpD1CpUJnM601Is5r5TqppT6Tn/vr5S6CXgI7RegmGG6VtEJoBbwg5N8HgBWulKgS6F77m1qhwZx+nhp7SDtZAa1rVQvtTQ1uan/tfw4Y71beYX4B5BspbGekptDSECA07R+FgvdwyNYGV++xrc7uuqgKYPOGDmYRROGc8+1jrrn9WrY6apnlaEbXtWXWZOGMu+x4Qy8ttS+SYSF/xzBry9MYsvBJGKO2YrZBQcElAREgJScXIIDbH8JGwcFEejnx9f33M3S+0dwV2vN/sG0dK5rEEZNPz/NX40bE1q9/F/RkADbe5Ccm0Owf9n34JbwCFaVcw+CAwNKAiJo/nGqO1/Vl1kThzL/EVv/TB7Qg/+u9KKuOiaXXxVwHRCvlDqslPoT+A4YZJemNbAWQCl1AIgQkWBPXxN4rqk+z+79twBKqV9FJFBEahanU0o9IiKC9uvxb6Ckui0i9wOdge6uFOiS6J57GVd0wx98Yzgz/7PAqa565fJyzKys70vPxk3ZkeyCxrcbuuqJGZkMnzmP1Nyz1KpWlZkjh3A4LYPtSZXTPTebTLRuEMz4aZpu+NeP3MuepGSOpmVSpBRD3/+a6n6+fDB6AM2CaxN/qlSozPmPpqP9a+oFM3LBAvx8LCy87z52JSeTkJHB59u2MWfoEM7l53Pg9GkKiipSEndyD8pI6dI9cMH/xf55YLrmn28e0vwTUSeIjNxz7DuRSpcmXtJV99wE+AbAMav3x4Hr7dLsAQajSYxfB4SjtV5PeaoQxXhqVP2s3Xv7Z8HmvVJKicgPwKPogVNEeqGpZHZXSl1wlom1rvqTr9ajdYcaXtc99zZpJ89QN6xWyfs69WuRkZxpk6Z5xwiemfkPAAJrB9CldzsKCwrZ8mPFAxHWJOfmEGpVmwoJqM6psjS+m0eyrJwmYjHu6KonZmSSmqvrnp/LY82BeNo1CLEJnKey7HTVawRwOttONzzLVjd8x+ETRIbW5WhaZkmanPMX2JZwnG6RETaBMyUn16aWGFI9gFO5tj5Jyc3hTF4eeQUF5BUUsPX4CVrVrUvimUwWxMayIFZr5j7ZrSspOeV3m6TY3YPQgOpl6qz3bxHJD3Hl34NTWbmE2vkn1Yl/bPx/RPNP6/r16NG6CTe3LNVVf2NYHybP85xEcH4l1qpbf791pimlphUfdnKKfZx5A/hAb9XGoI2deGVFv7eGvIYBiEg3IEspleUkTTcgQU/XEfgcGKiUSi3LqLWu+oDhNS6J7rm3idtxRNNVD6+j6aoPuY7fV9gGxDHt/o/Rbf/N6Lb/ZtPS7Xz0ry8rHTQBok+lEFGzJmGBmgb6gBaRrHGi4129ShWubxDG6sPxFdp0R1e9qo8Ffzvd84Optn0tscdTaFRH0w23mE30bR/J+n229tfvS+DaiFLd8LaNQjicmkGQf1Wq+/kC4Gsxc0PzRhw5bavbHp1i65P+kS1Zm2Brf018Al0alJa/Q2gICemaneKBotDq1bm9eXN+OFB+oLO/B/2bR7Lm8MXfg9jjKTSy0lXv58Q/6/Yl0MnKP+0aav55/6fN9Hz9C3q/OZOnvl3BHwnHPBo0QduP09WX9fdbf02zMnUcaGj1Pgw72XGlVLZSaqzeMh4F1AXclhh3RmVqnGVpqTvjjIj8BgQC46w+H6YHUxOaI8bon78NBAAL9OZkklJqYEUFuhS65xXhjm47aLrqn/z7a15d/CQms4mfv9zI0QMn6TeuBwArZm4o9/zJMyfRrltLAmsH8OX+//LVa0v46UvnWuyFSvGfX9Yxd+AQTCYTC/bFcigjneHXaBrc38RGA9C7SXM2Jh0lr6DiH2t3dNXDatbgo2Ga7rnZZGJ57AE2JdjpnhcpXlu6js/HD8ZsEhZv20vCqXTuuUGzP//3aA6nZrD5YCLfP6HZX7Q1lvhT6bQIqcOrw27HbBJEhJ+iD/LL/iMO5X9p3XpmDxmCySQsjI3lUHo697XT7H8bHU1CRga/Jiby4+hRKKWYFxPDwXSt1vrxwAHUrFqVgsIiXly7luwLThtLNvm9uGEdcwbp92BvGfegqWv3oLBI8eqydUwbp+uqb99LQmo691yv++cPXVf9YCKLH9f9sy3WptbtTTy4cmgb0FxEGqONkdwLDLdOoHcJntP7QMcDvyqlsu0NeYIrVlf9l0Tv6qp7e1u5fi26etV+3KvXeNW+b4b35+dZ7DuAPExesHeffW9vK1f1pHfvwd433NdVf31fP5ed8EzrFeXmJyL9gPfRpiPNVEq9KiIPAiilPhORG4G5QCGwD3hAKXXmYsteHsbKIQMDA6/hybXqSqkVwAq7zz6z+n8L0NxjGZaDETgNDAy8xt9+yaWBgYFBZTGWXBoYGBhUEg/O47ysMAKngYGB1zC2lTMwMDCoJEaN08DAwKCSGGJtBgYGBpUkv8gInJcVb1zf06v2va17vuLgZq/a73eNj1fti5+XVwgA6ryXtedr1vCq/YLDiV61b6lXt+JE7uCwTXnlMTSHDAwMDCpJoQc3Mr6cMAKngYGB1zAGhwwMDAwqidFUNzAwMKgkntQcupwwAqeBgYHXyC8y1qobGBgYVAqjj9PAwMCgklytTfWL7rkVkUdEJF5ElIjUsfq8pYhsEZELIvKU3Tl9RCROP6+s3eMrRadbWzN984vM+P0l7n60d5npWnQIZ/nJj+nWX5Pe9fG18P6qp/l43bN89svz3P/v/s7t97qGL3a8xszdb3DPE/3Ktn9tY348M4NugzqXfPbEx+P4LuEDPvv9lYu8Onj2Deg6CAaMuWgTdIpqwxe/v8zMrVO557E+ZaZr0TGcH099RrcB1wJQp34Qby55kmm/vcTnm15k0MQo5/Z7tGL6L88yY9Pz3P1wr7Ltt2/E8qPv0+2ODjafm0zCR6v+jxdnT3R6ntfLf0sk03/+NzPWPs3dk24t237bMJbHvUm3PqVqnLM3PMMnP/6Lj5Y9wQeLH3N6XufbOzBz/wfMPvg/hj19p8PxGwd25vPd7/DZzrf5eOsbtOnasuTYXY/1Y1r0f5ke8y53Pe78+et0a2umb/oPM7a8yN2PVPAdOPGR7Xdg5f/x8dopfPbLc9z/70pIF7hIkRKXX1cS7tQ4NwPLgQ12n2cAjwF3Wn9opYt8G5psxjYRWaaU2nexBTCZhIffuJcp93xI2skzfPDTZP74KZqkgykO6cY+fxc715dmlX+hgMmD3+f8uQuYLSbe+eEptq/by4EdR2zt/3ckUwa9Q9qJDD7c8AK/r9hNUtxJB/vjXrqbHWtttalXf72JH6at5anPx1/sJXJnXxg+GCa/dnHnm0zCw28OZ8rQ90g7eYYPV0/h91V7SDqY7JBu3AtD2LFub8lnRYVFTH9hAfHRSVQN8OV/a59j14b9NueaTMLDU+9myvCPSUvO5IMfn+KPn2NJOuTkHkwZyM5f9juUcdADPUiKT6FagOOk+ktS/hfvYsroaaSlZPHB94/xx9q9JMWnOtgf+393sHNjnEMZJ9//Gdlnzjl8rp1n4tGPHuDp3q+QdjyDj7a+zpZl20naf7wkza61sWxZptUxGrdtxHPz/sUDrf9JRJuG9B3fk0evf4b8Pwt4feWzbP1xJyfiU6zsCw+/Pkz7DiRn8sGqp/nj5zK+A8/dyc4Ndt+BIR+UfgeWPcn2tXs5sDPR6bVcDFfrqHqFVyUiESJyQETmiEi0iCwUkWpKqV1KqUT79EqpVKXUNiDf7lCZusgiMkFEtonIHhFZJCLVXCl8i2sjOHnkNClH0yjIL+SXJdu5oU97h3QDx9/K5uW7yEzLsfn8/DlNH8biY8ZiMTvI8kZ2bkLy4VRSEk9r9hdt5cY7Ojraf7AXm5dtJ+u0rbxJ7G8HyTlTvuphRXRpDzXLl+oul8hrG5N8JLXUR4u3cWNfJz6aEMXmH3aSZeWjjFNZxEcnAZCXe4FjB5OpHVrT5rwWHcI5mXialKR0zf7SndzQ21EffeDY7mxesYfMNFt/1AmtyXU9W/PTN1v+mvK3b8TJo2mkHMvQ7P+4mxt6tXG0P6orm3+KITO9cnoekdc142R8CilHUinIL2DDvM3cZNUqATh/tnSFlJ+/X4lmc6NWDTjwxyEu5P1JUWER0b/uo+td19mWv6P+HSj2/5Id3HC7E/880IPNP7ryHajU5VVIgTK5/LqScLW0kWhSne2AbOChi8jLmS5yA/3/75VSXZRS7YH9wAOuGKwTUpPTJ0slRdJOnqF2SE2bNLVDanBT3/asmPOrw/kmk/DR2il8u/ctdv2ynzi7X9raoUGcPl6qiph2MoPa9YPs0tTkpv7X8uOM9a4U+ZJTO7Qmp09aX0MmtUPtriGkJjfd0ZEfZ/9Spp3ghrVp2rYRcTtsxc7qhNbktJWccVpKJrVDbZcyavegHSu+3ORgd9KLg5nx6jKKyvjGer38wYF25c+idrBd+YMDuan3NaxwEtyVgldnT+DDJY/Td5i9zDfUaVCL08dLhdHSjmdQp0Fth3Rd77yOGfveZ+ryZ3jngU8BSIw9RtubW1G9VgC+VatwXd9rqduwjs15dULtvgPJZ5z7v18HVsxxFPEzmYSP1jzDt7FvsuvXA8TtSnRI4w5/96b6MaVU8eLqr9Ca4u9UMq/ydJGvEZGpQE00tcufnBqw0l1uU/0WkGvLMakx6ZW7mTl1CUVFjl/MoiLFIz1fwz+wKs/PnkR4y/ocPVDaDBcnJbavlT74xnBm/meBU/uXA+LkIhyu4dVhzHxpUZnX4Ofvy3OzH+TzZ+dxLteF9eN29ie9OJiZry1zsH9dzzZkpuUQH3OMtjc2+2vK7/wm25b/uYHMfGuFU/tPDvuYjNRsatTy57U5Ezl2OJXYbaXB2ZVnCGDzkq1sXrKVtje3YszLw3i69yskHTjBvLeW8ubPz5OXe57D0YkUFhTald/JBduZn/TK3cx8ZXHZ34Fer2vfgVmTCG8ZytEDyQ7pLpYrLSC6iquB097jFxMlytNFng3cqZTaIyJjgB5OC6HpLE8D6Bv8D5WWfIa6VjXAOvWDSE+xlXBv3iGcyZ9pFdjA2v506XUNhYVFbFm5pyTN2ew8ojcfovOtrW0CZ9rJM9QNq2VlvxYZVrUTgOYdI3hm5j90+wF06d2OwoLCi9I99wZpJ89Qt771NdQkIyXTJk3zDuE8M30CAIG1AjQfFRSxZeVuzBYzz896kPUL/2Czk2tKS86krlXzt05ITdJTbLssmrdrxOSPR5faj2pNYUEhkR0juKF3W7pEtcbH14dq1f3494cjefuxLy9d+VOy7Mpfg/RUu/Jf05DJ74/Q7Af506VHS83+mr1k6GmzMs7y2+pYIts1sgmcp49nUDestIZZJ6wW6Sdttd2tidm4n9CmIQTWrk52eg6rZq5j1cx1AIx79T6b2qvmn0zb70Cok+9A+0ZM/lz/DtTyp0tP3T+r7L4Dvx2k861tjMDpAq4GzkYicqOuIncf4NjmqpjydJGrA8ki4gOM0I9XyMFdR6nfpB7BjWqTnpxJ9zs78+Y/ZtqkGdvl+ZL///XBKLaujmHLyj3UqB1AQX4hZ7PzqOLnQ8dbWrLgI9uKbtyOI5r98DqknzxD9yHX8eYDn9ukGdPu/0r+f/LTB/hj1Z7LJmgCxO1KtPXRXV14c9IXNmnGdJpS8v+T/xvDHz9Hs2XlbgCe+GAUSQeT+f7TNU7tH9yTRP3GdQluWIv0lCy6D7qWNx+ZY5Nm7E0vlfz/r3dHsHXtXrb8FMOWn2KY/cYPALS9sRlDJkXZBM1LUv7oY9QPr0NwWBDpp7LpfkcH3vzXN7blv/X10vK/OYyt6/exZc1efKv6YDKZyDt7Ad+qPlzbrQXffGSbT9y2eBo0DyUkoh5pJzLoMawrr4/4wCZN/aYhnEzQBnOadWyMTxUL2elaX2TNuoFkns6mbsM6dL3reh6/6Vnb8u+2/w504s2HZtmW/7oXSsv/wUi2ro5lyyon34GbW7Lg45+d+uli+bsHzv3AaBH5HDgEfCoijwH/B4QA0SKyQik1XkRCgO1AIFAkIv8EWiulskXkEbRmeLEucvEQ6PPAH8BRIAYtkFZIUWERnz7zHVO/exSz2cTP3/5GUlwy/UbdDMCKuY59OsUEBdfgqQ9HYzILYjKxcekOtq62HRUvKizik39/zauLn8RkNvHzlxs5euAk/cb10OzP3FBu+SbPnES7bi0JrB3Al/v/y1evLeGnL8sukzOefAm27obMLOgxFB4ZC0MrMWukqLCITyZ/y6sL/onJZOLnbzZzNC6ZfmNu0a5htmPfbzFtrm9Gr2E3cmTvcT5er/0AzX51MdvWlPqpqLCIT59fyNSvH8JsMvHzvN9JOphCv/s13fgVX7m3fd4lKf9LS5g6a4L2DC3YStKhU/S77wbN/re/l2k/qE51nv9Eq0mbLSY2LNvFjl9tR92LCov46NEZvL7qWUxmEz/NWs/RfcfpP+k2AJZ/vpqbh1xPr5HdKcwv5ELen0y9972S819Y+BSBtatTkF/AR498QW7mWQf7n06Zx9RvH9G/A1tc/w7Uq8FTH47CZDYhJmHjMsfvgLtcrfM4xVl/i00CkQhguVLqmktSIhfpG/wPr3Yqqit+P84eXrVv7MdZMVf6fpwrUz5xO+rdtuEJl7+nq3u8d8VEWWPlkIGBgdf42zbV9bmal1Vt08DA4Mrgbxs4DQwMDC4WdZUGzitrur6BgcEVRRHi8qsiKtrrQkRqiMgP+grEvSIy1isXhVHjNDAw8CKeaqq7uNfFw8A+pdQAEakLxInI1/oSb49i1DgNDAy8RmGRyeVXBZS514UVCqgu2nKzALQNhwrKMyoi4SLSS/+/qoi4NBXSCJwGBgZeQylx+VUB5e11UcxHQCu0FYkxwONKqaKyDIrIBGAhULyqJQxY4sp1XbFN9f0vN/WqffnTu53a3tY9XxG7wav2I2f9w6v2AcwXvGs/P9C7+wsUVgv2qn2/lMtflqIyTXXrvSh0punLrMGlVfncDuwGooCmwGoR2aiUyrY/UedhtJrsHwBKqUMiUs+Vsl6xgdPAwODypzLb1FnvReGE8va6KGYs8IbSVvXEi8gRoCWwtQybF5RSfxZvJCMiFlzch8NoqhsYGHgND46ql+x1ISJV0Pa6WGaXJgnoCSAiwWjbYR4ux+YvIjIFqCoitwELgB9cuS6jxmlgYOA1XBj0cQmlVIGzvS5E5EH9+GfAK8BsEYlBa9o/rZRKK8fsZLS9f2OAScAK4Ity0pdgBE4DAwOv4ckd5ZVSK9CCm/Vnn1n9fxIoW3TJkapoAXg6lEx5qgo410GxwmiqGxgYeA0Pjqp7g7VogbKYqoDz/QftMGqcBgYGXuMyX3Lpp5QqEcFSSuW6qndm1DgNDAy8xmWuOXRWpFR/R0Q6AXmunOjRGqeI5CqlAvT/+wEfoI1yjQMmAKcBf7TO2OeKl0uJyAYgFDgP/AlMUErtdiXP7g0jeOGmKMwizDsQw6e7bWceTGzfhTubtQLAbDLRrGYtrp37CdUsPrx7a1/qVvOnSCm+3R/NrNidFeZ3S6MI/nPLrZhEmLcvls922OXXsTODIq3yC6pFpy8+JetC2XtLdopqwz9eG4bJZGLVV5uY/+Eqp+ladAznvVXP8Pr4aWz6YSd16gfx70/GEVQvEFWkWDH3V5ZOW1fhNVjz7BuwYQvUCoIfZlfq1BJubhLOc716YDaZmL87lmm/b3NIc12jMJ7r1R2LycyZvDxGfL2AxrWC+ODOUq3whjVr8MHGLczeZruDfrdm4Tzbpwcmk4mFO2OZvsmJ/Ygwnumj2c88l8fI2QsAWPvPcZy9kE+hKqKwSDF02jcO594SEcHzPbTyz4uJ4fNtjvavDwvjuR49sJhMnDl/nuHz5wMwpmNHhrXVVD3nxcQwe5fj7v/dG0bwQlf9Gd1fxjPa3O4ZnfMJWRfO81aP24kKb0p63jlunz/bwfal8I87eFo108P8E1ggIsXTmkKBYa6c6JWmuoj0BP4H9FZKJenzpN5TSr2jHx8GrBORtkqp0/ppI5RS2/WF+W+jrUktF5MIL3ftxf0/LiDlbA7LBt/P6sQE4jNLdVmm7dnGtD3ag9QzvAkPtO1M1oXzVDGbmfr7BvampeLv48MPg0ey8fhRm3Od5tejJyOXLCQlN4elw0aw5nA88WdKNWSm7drOtF3btfwimjCuQ6dyg6a3dcMrwm3ddhFe7B3FmO++JyU7h0VjhrPuUALx6aU+qe7ry0u3RzFu3mKSs3OoVU3rVjqScYaBM78usbPpkQn8HBfvYP+FflGM+/J7TmXnsGDCcNbFJZBw2sq+ny8v3BHFhK8Wk5yVQy3/qjY2Rs1ZQOY55/fAJMKLUVGMXrSIlJwcFo8YwdqEBOIz7Mrfsydjv/+e5JwcalfV7LeoXZthbdty1zffkF9YyKzBg9lw5AiJmZk29l/u1ov7l1s9o0cTiD9TzjParnPJM7Mwbi9zYnfxblTpD8yl9I+7FHloVN0bKKW2iUhLtGlLAhxQStnLmjvF41clIjcD04E7lFIJztIopeYBP1OqOWTNFhyXUjmlQ70Qjmaf4VhOFvlFRfwQf4DeEWWvKBrYtBXL4vcDcPrcWfampQJwNj+fhMwMQvwDys2vfXAIRzMzOZat53cwjtuaOFdnBBjQoiU/HDpQrk1v64ZXhLu67e3qh3D0TCbHMjWf/Lg/jp4tbO/BgDaR/BwXT3K2VvaMc46toZsiGpKUmcXJbFvd73YNQkjKyOT4mSzyC4tYERtHz0hb+/3bRrJ6fzzJWbr9sy61tgBoH6Lf0yyt/MsPHKBXU1v7A1u25OdDh0jO0eyn52n2m9aqxa7kZM4XFFCoFFuPH6d3M9vnweEZTajgGW1W+owCbE0+Xu4Pr7f94y6qEq+/iC5AO6AjcJ+IjHLlJE8HTl9gKZpiZfkRA3aizeq3pw8urhcNrladk7mlX7Tks7kE+zuPAn4WC90bRrDyyCGHY2EBgbSuXY/dqeXX1EL8A0i2yi8lN4eQAOfB1s9ioXt4BCvjHfOzxtu64d4mJCCgJCACpOTkElzd1ieNawUR6OfLV8OHsnjMcO68ppWDnTtaRbJ8n+MjExxoZz87l+BAW/sRtTX7c8cMZdHE4QxqX2pfKZgxcjCLJg7nnk5tHe0HBJQERICU3FyCq9s+Q42Dggj08+Pru+9m6YgR3NVKs38wPZ3rwsKo6een3e/GjQm1OzfY3+4ZzXXhGT1c/jNjY9/L/nGXy3lUXUS+RJM574YWQLsAnV0519NN9XzgN7RJpY9XkNbeU1+LiD/a5FZnguk2a1lrjRiCNGnhkEaV8dvVK7wp20+ddPj1rmbx4dPeA3l5y3py88vffcq5xrfztD0bN2VHsmN+rtn0su65J3FBN9xsMnFNSDCjvl2In8XC/FH3svtkMokZmQD4mExENW/KOxtc02Gyt28xmWhTP5ixcxbi62PhuwfuZc/xZBLTMxk+cx6pOWep5V+VmSOHcDgtg+1HS0VUnX5dnZU/OJiRCxbgZ7Gw8L772JWcTEJGBp9v28acIUM4l5/PgdOnKSiy3VPC6QLrMh6aXuFN2Z5S8TNTEZ70j9tc3n2cndGEJCtdSk8HziLgHmCNiExRSpXXc9YRTQ2zmBHAHuANtH33BtufYL2WNeLzd1TK2RzqB5T+eof6B5B6Ntf+NAAGNG1p0wQC7YH6rPdAlhzaz09OaqL2JOfmEGqVX0hAdU6VlV/zSJYdrKjS7X3dcG+TkpNLaKCVT6oHkJprq8SYkp3LmXN55OUXkJdfwLZjJ2hZr25J4LylaQT7TqWSfs5x3vGpbDv7gQGk5pRvf/vRE0QG1yUxPbMkbcbZPNYciKddgxCbwJCSm2tTSwwJCOBUru09TcnJ4UxeHnkFBeQVFLD1xAla1a1LYmYmC2JjWRCrKUM+2bUrKfbn2j+jAQGknivjmWnm+IxWhLf94y6X+XSkWDSV3koLyXu8j1MpdQ7oD4wQkQecpRGRIWgz/L+1OzcfeA64QUQc23N27ElNIaJGEGHVa+BjMjGgWUtWH3XsVq1epQrXh4axOtH22Jvdbyc+M4MZMTtcurboUylE1KxJWGCgll+LSNYcKSO/BmGsPhzvxIot1rrhFh8z3e/qwu+r9tikGdNpCqOv1V6bftjJR//3jcu64d4m5mQKEUFBhNXQfHJHq0jWHrJdHrz2UAKdGzbALIKfxUL7+iEkpJV2T/Rv3ZLle53/yMScTCG8dhANagbiYzbR75pI1sXZ2T+QQKdGDTCbBD8fC+3CQjiclkFVHwv+VbRdqKr6WOjaNJyDqbYr8KJTbO9p/5YtWXvY1v6ahAS6NCgtf4eQEBL0waPigaLQ6tW5vXlzfjhgex0Oz2jTlg7PIZT9jFaEt/3jLkVF4vLrL6AOsE9EfhKRZcUvV070yqi6UipDRPoAv4pI8Z14QkTuR5uOFAtEWY2oW5+bJyL/BZ5Ca/KXSaFSvLBpLXP7DcEsJubHxXDoTDojWmmDK1/v1wLQ7RHN2Xj8KHkFpQNmnUMaMKRFG/ann2bFEK0/+K2tG9lwrOw+wkKl+M8v65g7cAgmk4kF+2I5lJHO8GvaAfBNbDQAvZs0Z2PSUfIKyt1DFfC+bnhFuKvbXqgUL61ex8x7B2MWYWH0XuLT0rmvo+aTb3dFk5CewcbDiSwfP5IipViwJ5ZDadqosp/FQtfGjXh+lfPAX1ikeGXFOmaMHIxJhEW79hJ/Op1hnTX787ZHczgtg43xiSz9h2Z/4c5YDqWmExZUg4+GDQC05vbymANsij/qWP7165k9ZAgmERbGxnIoPZ372unlj44mISODXxMT+XHUKJRSzIuJ4WC6Vv6PBwygZtWqFBQV8eLatWRfuOBg/4VNa5l7h90z2lp/Rvfpz2hjx2cU4MOed3BD/YYE+VVly/2TeG/7ZuYfKL2/3vaP21zeNc4XL/bECnXVL1ciPn/HqwX39n6ckS/FedW+sR9nxXh/P84y99D1CN7ej/PAi0+4/SVo8u1rLjv58H1TLusoa83lO8nKwMDgyucyno8kIjeIyDYRyRWRP0WkUETK2vTYBmOtuoGBgde4zAeHPkLb13MB2gj7KKC5KycagdPAwMB7XOY9gUqpeBExK6UKgVki8psr5xmB08DAwGuov2a03FXO6bvJ7xaRt9CmJfm7cqLRx2lgYOBFpBKvS85ItBj4CHAWTdPIYf64M4zAaWBg4D0u48EhtKXh55VS2Uqpl5RS/0Kbg14hRuA0MDDwHpd34Bzt5LMxrpxo9HEaGBh4j8twVF1E7kPbma2x3UqhQKDsfSWtuGIDp7cn/3ob8fPzqn1vT1CPG/upV+0DtPnYu9dguuDdL7Vv2pX9jHqCy3R9zW9oA0F1gP9afZ4DRLti4IoNnAYGBlcAl+GoulLqKHBURHoBeUqpIhFpgbbNZYwrNow+TgMDA68hyvXXX8CvgJ+INEBTvBwLzHblRCNwGhgYeI/Le3BI9N3cBgP/U0rdBbR25UQjcBoYGHgPJa6/Lj0iIjei7QX8o/6ZS92XRh+ngYGB97g8B4eK+SfwDLBYKbVXRJoA61050QicBgYG3sO7O+u5hVLqF+AXq/eHgcdcOfeiA6eIFKKNQAlQCDyilPpNRCKA/UAcUAVNHuOBYtlNEbEAKcB0pdQzVvY2oOkaF0vwTVVKLayoHN2a2mlKb3aiKR1upyk9R9OUru7ry9SBt9G8Xm2UUjy7bDW7jyd7zP7ax+00q6c716zu1KMVD740GJPZxKpvt7DgY+eb+rZo34h3l/2LNx6azaYfd5d8bjIJH674N2kpmbw4ZprDed7WPS8PT+i2d2sWzpQ7emASEwt3xPLFRsfyd4kI45l+3fExmzlzNo9RM7V7sOZf4zj7Zz6FRdo9uPszx3vgdV345uE801+zv3BbLF/86qT8jcN45o7uWMxmzpzLY/T0BSXHTCIseHg4p7JzeWjuUkf/eNm+W3iwCa5vjv4Bmi7ZF0qpN+yO/xut2Q1abGsF1FVKZdile18p9U8R+QEndWKl1MCKyuJOjTNPKdVBL8jtwOtAd/1YglKqg4iYgdVoOkRf68d6owXVe3RdIuuCj1BKWesQlUuZmtJptprYJZrSVpreAM/26cHG+EQeX7AcH5MJPx8fj9oHXbM6rwJd9al3M2X4x6QlZ/LBj0/xx8+xJB1KcUg3dspAdv7iqEkz6IEeJMWnUC3AcW6ot3XPK8ITuu3PD4jigdnaPZj/4HDWH3CiGz4giolzneuGj55Zga66l3XhnxsYxfiZWvnnPaSXP9Wu/IOimDjLeflH3tSRhNMZBPhWcVp+b9p3F0+Nluux5GPgNuA4sE1Eliml9hWnUUq9Dbytpx8APGEfNHW+1P++c7Hl8dTgUCBwxv5DfaumrdjqpN+H9quRBNzgTqYlmtK6pveKvXH0bFmGprSdprd/lSp0Dm/Awl2aDEF+URE5drIH7th3lRYdwjmZeJqUpHRNV33pTm7o7SjTOnBsdzav2ENmmq3QV53QmlzXszU/fbPFqX1v655XhNu67WEhJKVb6YbHxBHVyu4etItkzb6L0w33tn/a2pV/ZbRj+e9oH8nqvc7LHxwYQPeWjVm0zbkcirftu43nRtWvA+KVUoeVUn8C3wGDykl/H3aaZiVFUmqH/vcXZy9XLsudGmdVEdkN+KE1saPsE4iIH3A9ulSwiFQFegKTgJpoF2f9jf9aRIrvak+lVLnLn4KrO2pKt28QYpMmonYQFrOJuaOH4l+lCnP/2MXS6P00DKpBxrk8Xh/Um8jguuxNPsVrqzaQl1/gEftQqlmNgnk7Ypi/03FubZ3QmpxOzix5n5aSSWTHcJs0tUNqcFPfdky+53+0aD/c5tikFwcz49VlVA3wdeojZ7rn7evbXkPjWkFYTCa+Gq5dw5ztu1gSa1uzLUv33NvUCwwgJau0/KeycmkX5vwezBmnlf/L33exdLd+D4AZowejFMzbHsOC7bb3wNv+Ca5hW/6UrFzaNbQrfx2t/LPHD8Xftwpf/raLZbs0+5P79+CdlRvxL6M26G37lxJr+W+dabqyLWiVr2NWx46jxRZndqoBfdB2PXJ2PIZyQrVSql1FZfVUU/1GYK6IXKMfa6oH1ebAQqVU8TKm/sB6pdQ5EVkEPC8iT+g1U6hkU92ppredPywmE21Cgxk7dyG+llJNaYvJROvQekxduZ7oEylM6dODCd268OF6qzjuhv3EDF2zOvcstapZaVYnuSC9ardObdKLg5n52jIHXfXrerYhMy2H+JhjtL2xmXNbf4HuuSdxqkuOY/nb1A9m7CxdN3zivew5puuGT5/HaV03fMaYIRw5bacb7mX/OO/hc17+cTO08n/74L3sSUomok4QGbnn2HcylS6Nw5xa8rZ9d6lMU91a/tuZKWenlJF2ALC5jGY6lO6A9LD+t7jpPgJw1Kh2gkdG1ZVSW0SkDlBX/6i4jzMU2CAiA5VSy9BqmF1FJFFPVxu4FXBJ29b6Fym4/92cCgutvKZ00gkiQ+qy4+gJTmXnEH1C60v8ad8hJnTtbHPuRWlW6/YTMzJL9MUzzllpVtsFzrTkTOqG1ix5XyekJukptrInzds1YvLH2kYugbUC6BLVmsKCQiI7RnBD77Z0iWqNj68P1ar78e8PR/L2Y1+WnOtt3XNvcyo7l5AapeUPruHCPUjU70F6JqetdcP3xdM2zE5X3cv+ScmyLX9IjQBSs23tn8rKJdOu/C1D69K6fj1ubdWEWyIj8LVY8Petwpt39+HpBasumX238dySy+No+2UWEwacLCPtvZTRTIeSJZeISFelVFerQ5NFZDPwckWF8Ugfp4i0RBvpsmlaK6WSgcnAMyISCHQDGimlIpRSEWgR/z5X81FKTVNKdVZKda7Z+UZiTlhpSptM9GvjRFM6TteU1jWx2zUI4fDpDNLOniM5K5fGtYMAuLFxQ5tBH8At+65qVh/ck0T9xnUJblhL01UfdC2/r7ZtTo696SXG3Ki9Nv24m4+fXcCWn2KY/cYPjOzyAmNufIk3Hp7Nns0HbYImeF/33NvY3AOziX5tI1l/wLb86w4k0CncTjdcvwfVrO9Bs3AOnbK9B972T+yJFMLrBNEgSCt/33aRrN9vV/79CXSKsCp/wxASTmfw3s+biXrzC257eyZPfreCPw4fcwhq3rbvNp7r49wGNBeRxvqu7fcCDhroIlIDbZDalekB/iLSzercm3BxB3hP9HGCVo0erZQqFHH4hVmCpl/8OLBOKWU9ArMUeEtEnHfQVUCh0jWl79c1pXfrmtKddE3pHbqmdIKdpvRpLb5PXbmetwf3xcds4tiZLKYs/dlj9sNq2mlWxx5gU4KjZnVRYRGfPr+QqV8/hNlk4ud5v5N0MIV+92s/hCu+cq957G3d84pwW7e9SDF1+Tq+GD0Yk0n4fude4lPTGdZFvwfbojl8OoNNhxJZ8vBIlFIs3FGqG/6/4do9sJhMLI8uQ1fdy7rwry5bx/Sx2jO0eIde/uv08m/Vy38wkSWP6c/QtljiT7m0u5nX7buLp0bVlVIFIvII8BNaJW2mPmn9Qf34Z3rSu4CflVJnyzBlzQPATD3YKiALGOdKea5YXfWWL713ZRZcp/H0I161H/9wY6/avxq2lSuo5lXz+FRuAsJlx77X3NdVb/rfd13+niY8+a+/at1lIFoszHL1HGPlkIGBgfe4Aqo3SimXtNStMQKngYGB1/iLtovzOkbgNDAw8B6X4UbGnsDYVs7AwMBrXM4bGYtINRF5XkSm6++bi4ihcmlgYPAXc3lvZDwLuADcqL8/Dkx15UQjcBoYGHiNy7nGCTRVSr0F5AMopfIoazGWHUYfp4GBgfe4vAeH/tT3z1AAItIUrQZaIUbgNDAw8BpyGW9kDPwHWAU0FJGvga7AGFdOvGIDpxRWnMYdzGVvoekR1HnvZmB26Xfz4vH25HSAvQ97d5J9iy8f9Kr9Il/vjijnNSioOJFBmSilVovITrTtLQV4XCnluC7aCUYfp4GBgfe4jAeHRKQrcF4p9SPaNpdTRCS8/LM0jMBpYGDgNS7zwaFPgXMi0h74N3AUmOvKiUbgNDAw8B6XcY0TKNClewYBHyqlPgBc0iu4Yvs4DQwMrgAu71H1HBF5BrgfuEXXNfKp4BzAqHEaGBh4ESly/fUXMAxt+tEDSqkUNHmOt1050ahxGhgYeI3LeZMPPVi+a/U+CRf7OC8qcIpICPA+0AUtYicC/wT2AAfQBNxygI+VUnP0c8YAnZVSj4iICW25UyHwKDAfaKq//0EpNdnVsnRrFs6Ufrrm9s5yNLf76prb56w0t5+w09z+3FFzu2uLcCYP6oFZTCzaGsuMDU7sNwnj6YG65va5PMZ+toAqFjNzHryHKhYzZpOJ1TGH+Hi1cyXKTlFt+MdrwzCZTKz6ahPzP3S+C3eLjuG8t+oZXh8/jU0/7KRO/SD+/ck4guoFoooUK+b+ytJp65z6yEYbfpMT3fAIO2342bo2/D/ttOGnOfrI27rnFeGudvstERE811O7x/OjY/h8q2P5r28YxrNRPfAxmTiTd57h380HYGyna7mn3TUoBXFpaTy98if+LLSdK9etqZ3/Nzvxf7id/+do/qnu68vUgbfRvF5tlFI8u2w1u48n25zbPSyC/9zQE7MI38VF82n0Vpvjk9p2YVCz1gBYRGhWszYdv/6YahYf3uvej7rV/ClSim8O7GHW3p2Vd2B5XMaBU0RuAP6Hpr9eBW2D5FylVI2Kzq104BRti/fFwByl1L36Zx2AYDStoY76Z02A70XEpJSaZXf+Z2h9CWPRguw7Sqn1+pb4a0Wkr1JqZUVlMYnwfP8oHpija25PKkNzu38UE78sQ3N7Vvma28/dFcWE6d+TkpXDvEeHs35fAoftNKufuyuKSTMWk5JZav/PgkLGTVtI3p/5WEwm5j50DxvjjhCd5KiX/vCbw5ky9D3STp7hw9VT+H3VHpIOJjukG/fCEHas21vyWVFhEdNfWEB8dBJVA3z539rn2LVhv825ZWrD2/uoWBveiY9GzSnfR97UPXcFd7TbTSK8eFsUo+cvIiUnh+9HjmBtghNd9V49Gbvwe5JzSnXVgwMCGHVtR/rMmsOFggI+HHAH/VtG8v3efTb2nfo/zdZ+if+tdNsBnu3Tg43xiTy+YDk+JhN+PrZdcCYRXrnpNkasnE/K2RyWDRrJmqQEDmWW7vD+ecw2Po/RgnXPRk0Zf00nsi6cx9dkZuof64lNT8Xfx4fld45i04mjNue6zWUcOIGP0CQ4FgCdgVFoApMVcjF9nLcC+VZb1aOU2o2tdCdKqcPAv4DH7M7/AE2kbZRSqkgpdU4ptV4/509gJ5oQU4W0C9N1z601t53onq/Zf3Ga220bhpCUlsnxjCwKCotYuSeOqDa29vt1jGRNbDwpmY728/7MB8BiNmExm+zFKwGIvLYxyUdSSTmapumqL97GjX3bO6QbOCGKzT/sJCutdFvxjFNZxEcnaXnlXuDYwWRqWwm/gZU2fLGPYuPoGVmGNvzF6JJ7WffcFdzRbm8fquuqZ+m66gcO0KuZbfkHtmrJT4cOkZzjqKtuMZnws1g0PSIfH1LP2io2lPhf121fsTeOnk6e0dX7HXXb/atUoXN4Axbu0jTP84uKyLlgu7KhQ91QErPPcCxHs//D4QPcFl6G4ikwqElLliZo+kipeWeJTU8F4Gx+PvGZ6QT7B7jmOBe5zKcjoZSKB8xKqUK9gtfDlfMupql+DbDDxbQ7gZZW74cD+4EeSimHZQ8iUhNN2vMDV4zXq26nuZ3tRHO7jqaJPWesrim9ZRdL91hpbo8ajALmbYthwQ5bkbR6NRw1vduWoVk9a9JQqvlW4etNu1i2U7NvEmH+48NpVLsm3/62h5hjtrVNgNqhNTl9srT2kXYyk8hOtrIXtUNqctMdHZl8539p0THCqS+CG9amadtGxO2wleQIDnSiDe9Ml9xkYu4YK234Yh8pO214ex95Wffc2wQHBJQERNB11UNDbdJEBAXhYzbx9bC78a9Shdk7d7Jk735O5ebyxbbt/DppPBcKCtiYeJRNibaaRsHVnfi/gXP/zB1t5f/o/TQMqkHGuTxeH9SbyOC67E0+xWurNpCXX/rVCakWQPLZUvvJZ3PoWNe2/MX4mS10D2vM81vWOhwLCwikTe1gdqcmOznTDS7vGuc5vZW7W0TeApK5BGJtrmC/5qw4kF4H2KiQiYgFTdLzQ722WrFxFzWx29QPZuxsXXN7gq57np7J8C+sNLdHD+FImq3mtqua3q0bBDN+mmb/60c0zeqjaZkUKcXQ97+mup8vH4weQLPg2g4iWU7E7Ryu4cFXhzHzpUUOuurF+Pn78tzsB/n82Xmcy624yWtv31Lsozm6jx6w8tHMeaTqPirRhr8IH1207rmXcaX8FpOJa4KDGTl/AX4WCwtG3Mfuk8lknMujV7Om3DptBtkXLvC/gf0Z1LoVS/ftLzcDZ/bbhAYzdu5CfC2l/reYTLQOrcfUleuJPpHClD49mNCtCx+ut+ord2rfOb3Cm7I99QRZF2yfkWoWHz7rNYiXf19Hbv6fZZx9cVzma9VHorW6HwGeQJMfHuLKiRcTOPcCQ11M2xGthlnMAeAFYL6I3K6U2mt1bBpwSCn1flnGrHXVQ+64m1MNQ201t13RPS9Lc3u/o+b2qSxHTe/TFWhW7zh8gsjQuhxNyyxJk3P+AtsSjtMtMsIhcKadPEPd+rVK3tepX5OMlEybNM07hPPM9AmArqve6xoKC4rYsnI3ZouZ52c9yPqFf7D5x10OPrsobfijJ4gM1nyUau2jYm14ax95Wffc26Tk5hJa3V5XPdc2TU4OZ/JsddVb1a0LwPGsbDLytKb1T4cOcW39UJvAeVH+T9L8s+PoCU5l5xB9Qmup/LTvEBO6drY992wuof6l9kP9q3PqnG35ixnQpBXLEmxljC1i4rNeg1gSv59ViYfKd9bFcBnXOIv11YHzwEuVOfdi+jjXAb4iMqH4AxHpAtis8RSRCOAdtFEr68L+BjwI/CgijfS0U4EaaCPzZWKjq36trqteqwLN7f0uam43ddTcjj2eQiNds9piNtG3fSTr99naX78vgWutNKvbNgrhcGoGQf5Vqe6nqR77Wszc0LwRR6wGTIqJ25VI/Sb1CG5UW9NVv6sLv6/aY5NmTKcpjL5We236YScf/d83bFm5G4AnPhhF0sFkvv/UuTxtzEk7XfJrnGjDH9C14a19lOaaNry3dc+9TXRyCuFBNUt11Vu2ZG28bfnXxCfQOcxKVz00hPiMDE7m5NChfgh+Fq3+cVOjRjaDSmDnH5OJfm2c+D9O979uv10DzT9pZ8+RnJVL49pBANzYuKHNoBLAntPJNA4MomFADXxMJgY0acnqo/EO11ndpwo3hITxs92xt27pQ3xmOl/Ebr84B1bA5dzHKSJdRWS1iBwUkcPFL1fOrXSNUymlROQu4H0RmYwWrRPRgl5TEdlF6XSk/1mPqFvZWC4idYFVItIXeBatNrpTb7p+pJT6oqKyFBYppv64ji9GWWlun05nWGddU3q7pnu+6VAiSx7SNbd3Wmlu31eB5naR4rWl6/h8/GDMJmHxtr0knErnnhs0+/N/j+ZwagabDyby/ROaZvWirZpmdYuQOrw67HbMJkFE+Cn6IL/st+1/BG1k/JPJ3/Lqgn9iMpn4+ZvNHI1Lpt+YWwBYMfvXMq+/zfXN6DXsRo7sPc7H658HYPari9m2JtbmGl5ZsY4ZI3Vt+F3OfbQx3k4bXveRjTZ8jHMfeVP33BXc0W4vVIqX1qxn1tAhmE3CgphYDqWnc197XVd9TzQJGRn8eiSRH8eMokgp5sfElOiqrzp4iKWj7qewqIh9qanMi45xsP/KinXMuF/3/27d/510/+zQ/Z9g5//Tmv2pK9fz9uC++JhNHDuTxZSlPzvYf+G3NcztO1SbTnUwhkOZ6YxoqQ0wfn1A+xG+PaI5v55IJK8gv+TczsENGNK8DfszTrPirtEAvL3tV9Yfd3xOL5rLuMYJzEBrou9AmwrpMlesrnqrF7yrq+7tbeXCZu6vOJEbJD7Syqv2vb2tH1z528pZzl3Z28odHf9vty+g7b9c/57GvOu+jntlEJE/lFLXX8y5xsohAwMDr3E5rxwC1ovI28D3WO38rpSqcBWAETgNDAy8xmUeOItrm9YjbgqIquhEI3AaGBh4j8s4cCqlbr3Yc43AaWBg4D08GDhFpA/a4hgz8IVS6g0naXqg7aPhA6Qppbo7SXO/UuorEfmX0yIr9a6zz60xAqeBgYHX8FRTXd8r82PgNjT9820iskwptc8qTU3gE6CPUipJROqVYa54dZCzhbouldgInAYGBt7DczXO64D44lWFIvId2s7t+6zSDAe+17eHQymVWoatH/XjDpPeRWSAK4UxNjI2MDDwGpXZyFhEJorIdqvXRCtTDbDdSOi4/pk1LYAgEdkgIjtEZFQZxVqrL9CxLavIWLRmfoUYNU4DAwOvUZmmulJqGtrSa6emnJ1i994CdAJ6AlWBLSLyu1LqoF26J4DVItJPKXUIQJfQGA449Ik644oNnHmh3p2BbT7n3cq41Kxwr1S3yA/07nCm6YL35yp7e4L6wZGfVZzIDZp9693y+yVfAV9fzz2Gx9E24SgmDDjpJE2aUuoscFZEfgXaAzaBUym1QkQuACtF5E5gPNqm7Lcopc64UhijqW5gYOA9PKdyuQ1oLiKN9a3g7gWW2aVZCtwsIhYRqYY2T9PpEj2l1FpgDLABaAL0dDVowhVc4zQwMLj88dSoulKqQEQeAX5Cm440Uym1V0Qe1I9/ppTaLyKrgGigCG3KUqy9LRHJQQvVAviiNe1TdXUKpZQKrKg8RuA0MDDwHh7sMVJKrQBW2H32md37t6lAqVIpdZF6AaUYgdPAwMBrSBmbb1/pGIHTwMDAa1zma9UvGiNwGhgYeA8jcLqOiOQqpRzk8vQJqf+H1ikraB2874jIbGC5UmqhiNQC1qJpDzlsgmxP94YRvNAtCrMI8/bH8OkuW03piR26cGdzbW9Ks8lEs5q1uHb2J2RdOM9bPW4nKqIp6XnnuH3ebKf2b4mI4PlbNc3tebFlaG6HhfHcrT2wFGtuz9c0t8d07Miwdm0BmBcTw+ydjtIWAJ1uieTB5wZiMptYNX8rCz5f7zRdi7ZhvLvwUd54/Cs2rdI2zJ294RnOnb1AUaGisLCQx+/60Pk19OiB2WRiXkwMn28r4xp66Ndw3u4a2lpdwy7Ha7i5STjP9dLsz98dy7TfneiGNwrjuV669nxeHiO+XkDjWkF8cGe/kjQNa9bgg41bmL3NNg9v655XhNu67eERvNBD01WfHxvDZ2X4//nuPbCYtfLft8DK/9e0RUTz/yxn/m8azrO3a7r2C3bFMv0357rtU3p3x2I2c+ZcHiPnWum2D7iNFnVro1BMWbaa3Sc8J9hm1DjdRN/p/Z9Ab6XUSRHxQxNLsk5TA23UbJorQdMkwss39+L+HxZomtJD7md1YgLxZ0p1fabt3sa03bqmdHgTHmjfuUSsamHcXubE7uLdnv3KtP9izyhGL9Q0txePGMHa+ATiM5xobi/SNLdrV9U0sVvUrs2wdm256+tvyC8sZNaQwWw4fITEzEzbPEzCwy/exZTR00hLyeKD7x/jj7V7SYpPdUg39v/uYOfGOIdyTr7/M7LPnCv7GqKiGL3I6hoSnFxDz56M/d7JNbRty13f6NcweDAbjtheg0mEF3tHMea770nJzmHRmOGsO+REl/z2KMbNs9UNP5JxhoEzvy6xs+mRCfwcZyvt4G3dc1dwV7f9pagoRn2vlX/J8BGsceL/l6N6Mnbx95y09/81bbnrW83/swcPZr0T/7/QJ4qxX2u67QvHD2fdQUfd9v/0jWL8N05022/XddsXOtdtd5urNHBeynmczwBPKaVOAiilziulplsdDwBWAt8opVza+rtDvRCOZllpSscfoHdE0zLTD2zeimWHSqd1bU0+7qD4Z037kBCOZpZqbi+Pc6K53bIlP1tpbqfrwl1Na9diV3Iy5wsKKFSKrceP07u5o951i/aNOHk0jZRjGZqu+o+7uaFXG8eyj+rK5p9iyEw/63CsPByu4cABejV18RpqObmGZrbX0K6+rkuu64b/uD+Oni1s7Q9oE8nPcY664dbcFNGQpMwsTlpJ6YL3dc9dwS3ddifP0G12/h8U2ZKf4g9x0on/d1v5/49y/F+s2/7j3jh6Rtr5/5pIVh9wrtvepVEDFu4uW7fdXSqz5PJK4lIGzor02N8FNiml3nPVYLB/dU7aaErnEuzv/An3s1jo3jCClYddV/JzprkdHGBrv3FQEIF+fnx9z90svX8Ed7XWugUOpqVzXYMwavr5aXk3bmyjplhMneBATidnlrxPS8midrDtqqLawYHc1PsaVnyzBXuUgldnT+DDJY/Td5ijCoDDNeTmEly9jGu4+26WjhjBXa30a0hP57qw8q8hJMBONzwnl+Dqtr00jWsFEejny1fDh7J4zHDuvMZR1uOOVpEs33fA4XNX7kFEUBA1/Pz4etjdLBk5gjvbaPatdc+3PDSJnAsXHHTPvU2IXfmTc50/QzV8/fhm6N0sHV62/3tENCbU7tzgwABSrPx/KtvR/xG1Nf/PHTmUReOHM6idZr9Et31gbxZPGMHU/r2o6uPZRujlLNbmDpfT4NA6YJCIvFPOriY2uKKJXUyv8KZsTzlZbg3Twb7TVYWOmuHX1Atm5IIF+PlYWHjffexKTiYhI4PPt21jztAhnMvP58Dp0xQUOflZdS4Ob/N20nMDmfnWCqe66k8O+5iM1Gxq1PLntTkTOXY4ldhtpWJbzi/ByTUE69dgcXINQ8q5Bhe17a8JCWbUtwvxs1iYP+pedp9MJjEjEwAfk4mo5k15Z8NmB1te1z3/C3Dqn+Bg7l+olX/Rvfex28r/cwfr/k87TaGy9b9T/zix3yY0mDFfaf7/bqytbvsrq9YTfTKFZ3v3YGLXLnywwfEH2o2L9Zyty4hLGTj3oi3AX1fG8e+ATcAKEblVKZVjn8BaV73W8CGkBIdS30ZTOoDUs2VoSjdrybL4yn1hUnIcNbdP2Wtu5+qa2wUF5BUUsPW4prmdeCaTBbGxLIjVmkFPdutKSo5j2dJSsqgbWrPkfZ2QGqSnZtukaX5NQya/PwKAwCB/uvRoqemqr9lLhp42K+Msv62OJbJdI5vA6aAbHuDkGnLsruGEfg2ZdtfQtSspDufa6YZXDyA1t3zd8G3HTtCyXt2SwHlL0wj2nUol/ZxjP623dc+9jX35QwMcn1GHZ+jECVrWrcuRzEzm741l/l7N/091dXyGUrJzCbHyf3Bgxf7fnnSClsF12Z50gpTsHKJParrtq/YfYqKdbru7XGk1SVe5lE3114G3RCQEQER8ReQx6wRKqffRRtQX6+tRsTteoqtevdsN7ElNIaJmEGHVdU3pZi1ZnZjgkHH1KlW4vn4Yq484HiuP6JQUImrWJCxQ08TuH9mStQmOmttdGpRqYncIDSFBH7go7uQPrV6d25s354cDjk3Rg9HHqB9eh+CwIE1X/Y4O/L7WdvBi7K2vM6aH9tq0KoaP//M9W9bsxbeqD1X9de32qj5c260FiYdSyr+Gli1Ze9juGhLsriEkhIQM164h5mQKEUFBpbrkrSJZe8hON/xQAp0bWumS1w+xGbzo37oly/c6+ga8r3vubaJTUogIsn2G1tj5f7Wd/9s78X/96tW5vVlzlsU58X+tIMJ03fY72kSy7qCd/w8m0NlOtz0hTdNtT8m2020/7WH/eG6t+mWFt2qc1UTkuNX7d5VS74pIMLCmeE0oMNP+RKXU0yIyC/hSRO5TSpXZbVyoFC9sXMvc/kO0qSoHYjh0Jp0RrXVN6X26pnTj5mw8dtRGUxrgw153cEP9hgT5VWXLyEm8t20z8w/E2th/ad16Zg8ZgskkLIzVNbfb6Zrb0brmdmIiP44ehVKKeTExHEzXRvU/HjiAmlWrUlBYxItr15LtpOO9qLCIT19awtRZEzCbTfy8YCtJh07R774bAFjx7e9lOjmoTnWe/0TTwzZbTGxYtosdv9qOuhcqxUvr9WuQCq5hlJNrGKBfQ5HzayhUipdWr2PmvYMxi7Awei/xaenc11G3vyuahPQMNh5OZPl4TTd8wZ7YEl1yP4uFro0b8fyqNWXeY2/qnruCu7rtL65bz5zBmv8X7NXKP1z3/ze6/39JTGTFSL38saX+/2TAAGr6af7/zzrn/n951Tq+GK75f9EeTbf93ms1+9/tLNVtXzZJ123fVarb/sqq9bxzp67bnpnFM8tsddvd5Uob9HGVK1ZXPeLTd7yrq+7lbeVafOq5uXLOOPhQqFftX4pt5ZTFu8/mlb6tnE+ud+9B3PPu65x3vfu/Lt/EzQuevKS66u5wOQ0OGRgYXG1coRWzijACp4GBgde4WgeHjMBpYGDgPYzAaWBgYFA5jBqngYGBQSUx9uM0MDAwqCxXZ9w0AqeBgYH3MJrqBgYGBpXFaKr/vVA+3r3hBYcTvWq/sFqwV+37ppm9ah+gyNe786G9PUE9/j7vTrBv9+4/vGrfI1ydcdMInAYGBt7DaKobGBgYVBJjVN3AwMCgslydcdMInAYGBt5DjLXqBgYGBpXkKt1WzgicBgYGXsOocbqAiCjgK6XUSP29BUgG/lBK9ReRMcDbwAmr00YDc/T/GwFZ+itNKdWrojy9ratuzy3hEbxwy62YRJi/N5bPdtjmN+HazgyKtMovqBadp39artZR59s78ND7YzGZTaycsZZ5by6xOX7jwM6MefleVJGisKCQT56Yzd7N2k7gdz3Wj77jeyIirPhiDYs/WOHcR12tfLTbzkftnfhojpWPwnUfzXfuo27Nw3mmv6arvnBbLF/86qjr3aVxGM/cUarrPXr6gpJjJhEWPDycU9m5PDR3qaP9puE820fTJV+4M5bpm53rhj/TR9NtzzyXx8g5VrrhA2+jeb3aKKV4dtlqdh+33QvV27rnFeGubnvXFuFMHqTpzi/aGsuMDU783ySMpwfquvbn8hj72QKqWMzMefAeqljMmE0mVscc4uPVHtQbAo/2cYpIH+ADwAx8oZR6w+54D2ApUKwd871S6mXPlaAUT9c4zwLXiEhVpVQecBu2QRJgnlLqEbvPOgCIyGxguVJqoSuZeVtX3Vl+L/XoyajFC0nJzWHJsBGsORJvo5E9fed2pu/cDkBU4yaM69Cp3KBpMpl49KMHeLr3K6Qdz+Cjra+zZdl2kvaXbqC/a20sW5Y9BUDjto14bt6/eKD1P4lo05C+43vy6PXPkP9nAa+vfJatP+7kRHypfIZJhJe79eL+5bqPBt/P6qN2PtqzjWl7rHzUzomPosrWnn9uYBTjZ2q63vMeGs76AwkkpFrpevv58sKgKCbOWkxyVg61/Kva2Bh5U0cSTmcQ4OuglqLphveLYtyXmv0FE4azLs5RN/yFO6KY8JUT3fA+um74Aue64d7WPXcFd3Xbn7srignTvyclK4d5jw5n/b4EDtv5/7m7opg0YzEpmaX+/7OgkHHTFpL3Zz4Wk4m5D93DxrgjRCellJVdpfHUqLqImIGP0WLKcWCbiCxTSu2zS7pRKdXfI5mWgze2OV8JFAsL3Ad864U8AO/rqtvTPljXyM7WNbIPxXFbE0et9JL8WrTkh4POtXSKibyuGSfjU0g5kkpBfgEb5m3mpkG2glnnz5aW0c/fr2Rz2EatGnDgj0NcyPuTosIion/dR9e7rrM5t0O9EI5mW/kooQIfNWtlI2pXkY/ahoWQlJ7J8TNZ5BcWsTI6jqhWtvbvaB/J6r3xJGfput5nS3XPgwMD6N6yMYu2xeKMdg1CSMoo1Q1fsTeOni1t7fdvG8nq/c51wzuHN2DhrrJ1w72te+4K7ui2t20YQlJaJsczsigoLGLlnjii2tiWv1/HSNbExpOS6ej/vD81ORmL2YTFbPL8vsNKuf4qn+uAeKXUYaXUn2jijoM8XFqX8Ubg/A64V0T8gHbAH3bHh4nIbqtXVUcTruFtXXV7QgICSM611sjOIdg/wGlaP4uFW8IjWBVffn51GtTi9PHS2l/a8QzqNKjtkK7rndcxY9/7TF3+DO888CkAibHHaHtzK6rXCsC3ahWu63stdRvWsTkv2L86J3PtdL09qT1fI4CULCvd86xc6gXa6XrXCSKwqi+zxw9lwcPDGdixVFd9cv8evLNyI0VlfHGCq9vptpelG17Vl7mjh7JoghPd8EG9+X7iCF4Z4Kgb7m3dc29Tz87/p8rx/6xJQ5n32HAGXlvqf5MIC/85gl9fmMSWg0nEHPNcbRM0zSGXXyITRWS71WuilakGwDGr98f1z+y5UUT2iMhKEWnj0YuxwuODQ0qpaBGJQKttOna4OW+qXxTe1lV3Jceyfid7Nm7KjuSK83Muq+5odfOSrWxespW2N7dizMvDeLr3KyQdOMG8t5by5s/Pk5d7nsPRiRQWFFZQYuf24SK1551+6kTXu34w42YsxNfHwrcP3suepGQi6gSRkXuOfSdT6dI4zOUMnOmqtwkNZuzchfhaLHz3gK1u+NSV64k+kcKUPj2Y0K0LH64vvx/Pk7rn3saV74DZZKJ1g2DGT9P8//Ujmv+PpmVSpBRD3/+a6n6+fDB6AM2CaxN/Kt2J1YukElVYpdQ0YFoZh51fqi07gXClVK6I9AOWAM1dLkAl8Nao+jLgHaAH4Fh9ukguta66PSm5OTY1itCA6mXm179FJD/Eld9MBzh9PIO6YaUuqhNWi/STZUu0xmzcT2jTEAJrVyc7PYdVM9exaqYmVT/u1ftsaq8AKWdzqB9gp+t9zoPa81m5hNSw0j2vEUBqtq2u96msXDKtdb0TT9AytC6t69fj1lZNuCUyAl+LBX/fKrx5dx+eXrCq9NxsO932wABScyrWDY8MqcuOoyc4lZ1D9AmtFvXTvkNMsNMN97buubc5Zef/4BoBnK7A/zsOnyAytC5H0zJL0uScv8C2hON0i4zwcOD0mKXjQEOr92HASZuslMq2+n+FiHwiInWUUmkeK4WOt6QcZwIvK6Uqr8VaDpdaV92e6FN2GuXNI1lzuIz8GoSx+nB8hTbjtsXToHkoIRH1sPhY6DGsK1uWbbdJU79pSMn/zTo2xqeKhex0rXlWs24gAHUb1qHrXdez/tvNNufuSU0hooaVj5qW46PQMKfHyiP2RArhdYJoEBSIj9lE33aRrN9vq+u9bn8CnSIaYDYJfj4W2jUMIeF0Bu/9vJmoN7/gtrdn8uR3K/jj8DGboAkQcyKF8NpBNNB1w/u1iWRdnJ1ueFwCnex0ww+f1nTDk7PsdMPTbH+UvK177m1ij6fQSPe/xWyib/tI1u+zLf/6fQlca+X/to1COJyaQZB/Var7+QLgazFzQ/NGHPGwrroUFbn8qoBtQHMRaSwiVYB70SpopXmJhOjS44jIdWjxzYO/AqV4pcaplDqONm3AGcNEpJvV+4eUUr9dTD7e1lV3lt+LG9YxZ9AQTCaTppGdkc7wa3SN7NhoAHo3bc7GpKPkFRRUeA1FhUV89OgMXl/1LCaziZ9mrefovuP0n3QbAMs/X83NQ66n18juFOYXciHvT6be+17J+S8sfIrA2tUpyC/go0e+IDfTtrZRqBQvbFrL3Dt0H8WV46PjTnzU08pH90/ive122vNFileXrWP62MGYRFi8Yy/xqekMu07zybyt0Rw+ncGmg4kseUzX9d4W63KtplApXlmxjhn3a/YX7dZ0w4d10u3vKNUNX/oP3f7OUt3wqSvX8/ZgXTf8TBZTlv7sYN+buueu4JZue5HitaXr+Hz8YMwmYfG2vSScSueeG7Tyz/89msOpGWw+mMj3T2j+WbRV83+LkDq8Oux2zCZBRPgp+iC/7D9SQY6VxEM9F0qpAhF5BPgJbTrSTKXUXhF5UD/+GTAU+IeIFAB5wL3KS/rnhq56GZjyvbulWdN//u5V+4c+ud6r9qslXYpt5bxr/89A7z77V/q2crFvua+rfnuXl1x28k/b/mPoqhsYGBgYuuoGBgYGlcUInAYGBgaVxNjkw8DAwKByuDBafkViBE4DAwPvYTTVDQwMDCqJETgNDAwMKsnV2VI3AqeBgYH3MDYyvsyodsK7E7Cl4kU/bmGpV9er9v1SvD9B3dvkNfDuTfBL9u7j7+0J6tH/+tSr9uEJ900YgdPAwMCgkhRenW11I3AaGBh4D6PGaWBgYFBJjMBpYGBgUEk8pDl0uWEETgMDA+9xiXfEv1QYgdPAwMB7GINDBgYGBpXE6ON0DRGZAXRGE1c6CIzRxZNqAF8BjfR831FKzXI3v27Nw3mmXw/MJhMLd8Tyxa/bHNJ0aRzGM/26YzGZOXMuj9EzFpQcM4mw4B/DOZWdy0NfLXW03yKcyQN6YBYTi7bF8sUvTuw3CWNy/+5YzGbOnM1jzDRb+/MfHc6prFwenuNoH6DTra158JW7MZmFVV//xoKPfnaarkWHcN798d+8MWkGm5bvwsfXwttL/oVPFQtmi4lNy3fx1ds/Ol5Ds3Ce7dMDk8nEwp2xTN/keA3XRYTxTB/NR5nn8hg5W7uGtf8cx9kL+RSqIgqLFEOnfeNov3k4z/TX78G2cu7BHbqPzuUxerrdPXhYvwdzHX3UPSyC/9zQE7MI38VF82n0Vpvjk9p2YVCz1gBYRGhWszYdv/6YahYf3uvej7rV/ClSim8O7GHW3p0O9m9uGs6zt/fAJCYW7Ipl+m9O/BMexpTepeUfOVcrf3VfX6YOuI0WdWujUExZtprdJ5Jtzu3aIpzJg/RnaGssMzY4f4aeHlj6jI79bAFVLGbmPHgPVSxmzCYTq2MO8fHq8oXmnPHsG7BhC9QKgh9mV/p09zACp8s8USyaJCLvAo8AbwAPA/uUUgNEpC4QJyJf6xrJF4VJhOcGRDF+1vecys5h3oPDWb8/gQQr3ZTqfr68MCCKiXMWk5yVQy1/WzXikTd2JOF0BgG+VZzaf3ZQFBNmfM+prBzmPaLbT7W1//ygKCbNLMN+144cTs3A34l9AJNJePj1YUy550PSkjP5YNXT/PFzNEkHUxzSjX3uTnZu2FfyWf6FAiYP+YDz5y5gtph4Z9mTbF+7lwM7E22u4YV+UYz7UvPRggnDWRfnxEd3RDHhK+fXMGrOAjLPOVe+NInw3MAoxs/U78FDw1l/wNFHLwyKYuKsMnx0U/n34JWbbmPEyvmknM1h2aCRrElK4FBmqfTG5zHb+DxGC0Y9GzVl/DWdyLpwHl+Tmal/rCc2PRV/Hx+W3zmKTSeO2pxrEuGFPlGM/Vor/8Lxw1l3MMFGm6i6ry//6RvF+G8Wk5ydQ61qpeV/9vYebIxP5PGFy/ExmfDz8XH0z11RTJj+PSlZOcx7dDjr9yVw2M4/z90VxaQZi0nJLPXPnwWFjJu2kLw/87GYTMx96B42xh0hOqlyEr539oXhg2Hya5U6zTNcpYHzosXaRCRCRA6IyBwRiRaRhSJSzSpoClCVUp07BVTXPw8AMoACPe0SEdkhInvttJTLpW1YCEnpmRw/k0V+YRErY+KIatXUJs0d7SJZvS+eZF17OuNsXsmx4MAAukc2ZtEO5zpDbRuGcCw9k+MZmv0Ve+K4tbWd/Q6RrNlbtv1bWjZm0baydYxadIzg5JHTpCSlU5BfyC9LdnDD7e0d0g18oAebf9xFZlqOzefnz2kaNxYfMxaL2eE5bdcghKSMUh+tiI2jZ6TtNfRvG8nq/c6voSIc7kG0k3vQPpLV5fioezk+6lA3lMTsMxzLySK/qIgfDh/gtvBmZZZnUJOWLE3QBNNS884Sm54KwNn8fOIz0wn2t9Ucb1c/hKNnMjmeqdn/ca+jfwZcE8nqA/El+u4Z57Ty+1epQpdGDVi4Wyt7flEROXaaQ20bhpCUpj1DBYVFrNwTR1QbW/v9OkayJjaelExH/+T9qWlAWcwmLGbTRcWhLu2h5qWVey+lqMj11xWEuyqXkcA0pVQ7IBt4CEBEZgEpQEvgf3raj4BWaJKeMcDjSpUMuY1TSnVCa+I/JiIuSQoHBwaQklUaSFKyc6kXaPvFiKgTRKCfL7MfGMqCfwxnYIdWJccm9+vBOz9tpKiMpzE4MKDkyw6azGqwM/tVfZk1cSjzHxnOwGut7A/owX9Xlm0foE5oTU6fPFPyPi35DLVDa9ikqR1Sg5v6dWDFnI0O55tMwkdrnuHb2DfZ9esB4nYlOl5Dtq2PHK6htuajuWOGsmjicAa1L70GpWDGyMEsmjicezq1dcg/uIbdPcgq4x5U9WX2+KEseHg4Azta+ah/D94px0ch1QJIPltqP/lsDiHVApym9TNb6B7WmJWJBx2OhQUE0qZ2MLtTbZvRwYEBpFj551R2LsHVy/DPyKEsGj+cQe208jcMqkHGuTxeH9ibxRNGMLV/L6r62Dbi6tn551Q5/pk1aSjzHrN9hkwiLPznCH59YRJbDiYRc6xytc2/HKVcf11BuNtUP6aUKtaj/Qp4DK3vcqyImNGC5jBgFnA7sBuIApoCq0Vko15DfUxE7tLtNEQTkXeQQbTWVQ/pezfSxonWvN0NMJtMtGkQzLiZC/H1sfDtxHvZcyyZiDpBZJw9x76TqXRpHOb86pxIRykc7bduEMwD0zX73zx0L3uSdPu559h3IpUuTcqwX0Ye9lrUk165m5mvLKbIyZy4oiLFI71exz+wKs/PmkR4y1COHkh2SGdj3s5HFpOJNvWDGTtHu4bvHriXPceTSUzPZPjMeaTmnKWWf1VmjhzC4bQMth89UW7x7S/ArNsfN0O/Bw/a+ajS98A5vcKbsj31BFkXbLsVqll8+KzXIF7+fR25+bY9Q07d7+wZCg1mzFcL8bNY+G6s5h+LyUTr0Hq8smo90SdTeLZ3DyZ27cIHG0r7IZ3fXufP0Phpmn++fkTzz9G0TIqUYuj7X1Pdz5cPRg+gWXBtz+qeextjVN0p9s9wyXulVKGIzAP+jRY4xwJv6HKd8SJyBGgpItWAXsCNSqlzIrIB8HOamVLTgGkArZ97T6Vk5xJSo7QNEhIYQGqOrTzuqexcMs/lkZdfQF5+AduPnqBlSF1a16/HrS2bcEuLCHwtFvx9q/Dm0D48vbBU1/tUVi6hVvaDawSQmm1nPyuXM9b2j5wgMlSz36N1E25uWWr/jWF9mDzPVjc87WQmdesHlbyvExpEekqWTZrm7Rsx+fMHAAis5U+XntdQWFDEllV7StKczc4j+reDdL61jU3gPJWdS2hg+T5Kyba7hqMniAyuS2J6ZknajLN5rDkQT7sGITaBMyXL7h6U4SObe5B4gpa6j25t1YRbIq3uwd19bLTVU87mEupfaj/UvzqnzuXijAFNWrEswVbX3CImPus1iCXx+1mVeMjhnJTsXEKs/BMcGEBqbgX+STpBy+C6bE86QUp2DtEntVrgqv2HmNi1s8O1h9g9Q6cr8M+Ow9ozdDQtsyRNzvkLbEs4TrfIiCsqcKqrdB6nu031RiJyo/7/fcAmEWkGJX2cA4DiJzkJ6KkfC0Zr5h8GagBn9KDZErjB1cxjT6QQXjuIBkGB+JhN9G0byfoDh23SrNufQKfwBphNgp+PhXZhISSczuC91ZuJevsLbvvvTJ6cv4I/Dh+zCZoAscdTaGRlv1/7SNbvs7O/L4FOEVb2G4ZwODWD93/aTM/Xv6D3mzN56tsV/JFwzCFoAhzcfZT6TeoR3Kg2Fh8z3e/sxO8/R9ukGXvdC4zp8jxjujzPpuW7+Hjyd2xZtYcatQPwD9QGEqr4+dDx5pYci7dtysWc1H1UU7+GayJZF2d7DWsPJNCpka2PDqdlUNXHgn8VbbCjqo+Frk3DOZia5ngP6ljdg3aRrN/v5B7Y+SjhdAbv/byZqDe/4La3Z/Lkd/o9WGDroz2nk2kcGETDgBr4mEwMaNKS1UfjHfxY3acKN4SE8bPdsbdu6UN8ZjpfxG53OKfYPxG1ggirGYiPycQdbSJZd9DOPwcT6NyoAWYR/CwW2jUIISEtg7Sz50jJzqVxbe2H78bGDW0G3UB/hnT/WMwm+jp5htbvS+BaK/+0baQ9Q0H+Vanup2kk+1rM3NC8EUfs7F/2FCnXX1cQ7tY49wOjReRz4BDwKVoTPBCtlbIHKN5b6xVgtojE6MeeVkqlicgq4EERiQbiAJcFxwuLFK8uX8f00YMxmYTFO/YSn5rOsC7tAJi3LZrDpzPYdCiRJY+MpEgpFm6PJT7VtV/swiLFq8vWMW2cbn/7XhJS07nnes3+/D90+wcTWfy4Zn/RtthK1QiKCov4dMo8pn77CGaziZ+/3UJSXDL9Rt0MwIq5jv2axQTVq8FTH47CZDYhJmHjsh1sXW07yFJYpHhlxTpmjByMSYRFu/YSfzqdYZ11H22P5nBaBhvjE1n6D91HO2M5lJpOWFANPho2ANCak8tjDrAp/qhTH00fq9kvuQfX6fa3lvpoyWO6/Ur4qFApXvhtDXP7DsUsJuYfjOFQZjojWmoDaF8f0Grdt0c059cTieQV5Jec2zm4AUOat2F/xmlW3DUagLe3/cr640ds7L+8ah1fDB+MWYRFezT/3HutVv7vdur+SUhk2SS9/LtiOXRaK/8rq9bzzp198TGbOJaZxTPLbKeSFRYpXlu6js/HD8ZsEhZv20vCqXTuuUF/hn6P5nBqBpsPJvL9E/oztFXzT4uQOrw67HbMJkFE+Cn6IL/sP0JlefIl2LobMrOgx1B4ZCwMvaPSZi6OK6zv0lXEvj/H5RNFIoDlSqlrPFoiF2n93HtevSPe3o+z0WzHZqMnOfKgk/5fD2K66ElkrnO2yZW9H6dPTsVp3MHb+3GaQg4678KuBH1qjHP5e7oqa6bb+V0qjJVDBgYG3uMqrXFedB+nUirxr6ptGhgYXBmowkKXXxUhIn1EJE5E4kVkcjnpuohIoYgM9ejFWGHUOA0MDLyHhwZ99OmNHwO3AceBbSKyTCm1z0m6N4GfPJJxGbg7qm5gYGBQNqrI9Vf5XAfEK6UO68u0vwMGOUn3KLAISPXshdhiBE4DAwOvoYqUy68KaAAcs3p/XP+sBBFpANwFfObRi3CCETgNDAy8RyVqnCIyUUS2W72s961wYY0d76NNc6y4w9RNjD5OAwMDr+HKoE9JWquVgU44jrYcu5gwtH0vrOkMfKetvaEO0E9ECpRSS1wuhKsopf4WL2CiYf/qtX81XMOVbt/LZbegrTRsDFRBW1zTppz0s4Gh3irP36mp7vJ2dYb9K9L+pcjDsP8XoZQqQNvb9ye0FYvzlVJ7ReRBEXnwUpfHaKobGBhcESilVgAr7D5zOhCklBrjzbL8nWqcBgYGBh7h7xQ4y+p0NuxfHfYvRR6GfQPAjU0+DAwMDP6u/J1qnAYGBgYewQicBgYGBpXECJwGBgYGleRvFzhFJPyvLoOBgcGVzVUbOEXkRhEZKiL19PftROQbYNNfXDSXERE/EXlYRD4RkZnFLy/mFyki0z1gZ7DV/0HlpXUjj9tF5AFdicD683Eesj+6jM99RORbD9j/ueJUnkFEgkTkOhG5pfh1qfK+WrkqA6eIvA3MBIYAP4rIf4DVwB9o0sPu2m8oIt+JyEYRmSIiPlbHlrhr34ovgRA0aeVf0Nbnui3IoP+I/CwisSIyVUSCRWQRsBbYV9H5LvCc1f9rPWDPBhF5DXgWaAusFZFHrQ4/4qFsHrfbZAIR8UebgH3OA/bresBGhYjIeOBXtBU3L+l/X7wUeV/NXK0rh+4AOiqlzus1npNAO6WUp4R+ZqLt+fc78ADwi4gMUEqlA57sCmimlLpbRAYppeboNWZPbNA6HU1YbwvQB9gJfAOMUEqdL+9EF5Ey/vcUA9Dub4GIvAh8IyJNlFJPeDC/XsAqEfFTSn0oInXRguZapVSZu49XghrWNXN7lFLfeyAPgMeBLsDvSqlbdSXZlzxk+2/L1Ro484oDgFLqjIjEeTBoAtS1Wur1qIjcD/wqIgNx3OrKHYolGzNF5BogBYjwgF1fpdRs/f84EXkKmKw8tx1XVRHpiNai8dP/LwloSqmdbtq36GuXUUplisgAYJqILEDbAMJtlFIZItILWCki9dE2zf1UKfWhJ+yjyWL3p+zt0jwVOM/rFQhExFcpdUBEIj1k+2/L1Ro4m4rIMqv3EdbvlVID3bTvo9dEioPzVyKSglYb9HfTtjXT9Brz88AyIED/313sg1ku0E70/bg8ENiSgXf1/1Os/gctKES5aT9BRLorpX4B0AP+AyIyFa17xm2saoPT0Mq/Fjhe/LkHaoRHlVIe6Y+tgOMiUhNYgibdfQbH7dgMKslVuXJIRLqXd7z4C+eG/SeAnfZ29GD0llLqNnfsexsRWV/OYaWUcjewlZe3j1Iqv+KU5dqohlbOPCfHGimlktyxr9uZVc5h5W7QE5FdSqmO7ti4iDy7o9V0VylNfsLgIrlaA6dHvjx/JXpf1CA0eQCFVktYqpQ68JcW7CLQa7K3AsOBAUqpYDftfaGUGu/k8zC0oHDZq6+KSDulVLT+v69S6oLVsRuUUr97II+SLg0RCQBaAoeVUhnu2v67c1WOqqM1SwDQR4s9ij5NaLSIDBSNp0VkuYh8ICJ1PGD/aTQxKgG2Atv0/7+TcmRRK5lHbRF5VEQ+1l+PiEgtT9i2yuN6EfkAOIrW1bAR7cvrLhYR+UpESp5fEWml23/HA/YRkX+JyANOPn9URP7pgSxmW/2/xe7YJ+4aF5ExwCkROSgifYFoNPXHPSJyn7v2/+5crTXOkmaQN5pEIjIfbeDGHwgCYoEfgG5AB6VUfzftH0Tb3Trf7vMqwF6llFtTqvQgsw6tT3YXWlDuiCa9GuVurVZEXgXuAZKAb4HFwHalVGN37FrZF+BzNN/fC1wPzAMeVEr96KE8YoFr7Zu0IuILbFNKtXPTfpnPqCeeWRGJQavlV0fbLb2jUipBRIKB1e6W/+/O1To4pMr431O0VkpdIyIW4LhSqrhPdZWI7PGA/SKgPlpNzZpQ/Zi7vAI8rpSab/2hiAwBXsX9AZaJQBzalKfl+qiux+6D0n7tJ+q12Q1oU8Du9kTz1i4bh35ApdSF4kE0d+2X8b+z9xdDoVIqDUgTkVylVAKAUuqUZ4r/9+ZqDZztRSQbrSZVVf8f/b1SSgW6af9PNEMFImI/QumJKT3/RJvYfYhSSdRGQDM8M8G7rVJqqP2HSqlFok0ud5cQoDdwH/C+PhhV1brPzR1E5H9owUWA1mjzUIeLyHAApdRj7uah5xOslDpl/5knbANhIvIh2jUU/4/+vkHZp7lMkoi8jlbjPCAi/0Wb4tQLbdaDgRtclYFTKWX2chZefeiVUqtEpAVwnW5P0FT+tnloruXZizzmEnoZV6LNgfRDm69YDTghImuVUsPdzGJ7Gf97krfRVp09iRaYAToBbwH/9YD9f1v9b38Nnrim+4GHgSxgMtrqs2fQuk/GeMD+35qrso/THtGE6ouD6Ul3az1SxjrmYpRSc9yxX0HeAUqpXDdtHMd2bmXJIeCfSqmGTo65jYhUBx5TSr3qDfueRh9UmQxcg1bD3Qu8oZRa+ZcWzOAv56oMnCLyDOCjlHpZf5+E9svrA8xRSr3u4fwC0boA3F5H7kJeSUqpRm7a+E95x5VSbi3JExEz2uBQA7TpQbEi0h+YAlT1xGCd/uP1OFC8CmY/8KFSaq67tl3I+59KqffdtLGsvOPuLtLQ57o+ghbw/wcMQ+u7PgC87O6P79+dqzVw7gRuVkqd1d/vUkp11L/Qvyilunkon87ALLR+JAEygXFKqR1u2v1XWYeAZ5VSbk0bEpEwpdTxMo4NUEr94Kb92UBDtKlU16MNct2ItqxziTu2dfujgCeAf6E1owW4Fq15/YG3g6eHfrxOo/Vff4u2+YzNiI0HFmnM1+1XRftx2Q/MR1vnH6KUGumO/b87V23gVEpda/V+TPHabBHZoZTq5KF8ooGHlVIb9ffdgE88MFXlPFoQcNal8IRSqqab9uOA25VSiXafjwWeU0o1ddN+LNqmKkV6H2ca2oYlKe7YtbL/O3Cvk/JHAN8ppW7wRD7l5H/M3e4M/Uf8NrQBtHbAj8C3Sqm9HigiIrJbKdVBnwGQDIQqpZT+fo8xHck9rsrBISBArJb2WQVNX8DdEXVrcoqDpp7PJhHxRHN9J7DEWc1VtG3C3OUJtHXL/ZS++YnevTEcKHe5qov8qZQqAtCnIh30VNDUCbQPmnpeiXq3ibdxu7ahD6CtQpvC5osWQDeIyMtKqf+5a98qHyUiK/QpXMXvr77a0iXmag2cC4HPReQRpdQ5KNlL8SP9mFuISHFtdquIfI7W3FJo/Ugb3LUPjAXSyzjW2V3jSqkVInIBbdT7TmA82tZjtyilzrhrH2ip18ZBa4I21d8XTwdzt7bjsEbdxWMuo/8AOgswgtb89UQevmhbIN6HtuvVh3huV6TtxQOJympdvYg0xQN7uv7duVqb6ma0idzjKZ1E3giYgdYUdXdU/S/bJMOT6F0LS4DfgHuUZ/biRCqQJ1FK2U/sr6z9c0C8s0NAE6WUJ3eo8goiMgdttH4lWvdCrJfy8QMeQlvVptAUED711L3+u3JVBs5iRKQq2qRxgHjlZDcdN2ybgKH2q2+8jYhMU0pNrDhluTaKa1MC+KItHy3EcwsEnOVZB0hXHnjgRKQ5EEzp4oBiwtGmmzkLqpcVIlJE6ZxZa5949B7og0Q5wFf6R/cBNZVS93jC/t+Vq3KTDxH5PwA9ULZUSsUUB00PrYxB78PzlEyDDSJSq4xXbaCfu/aVUtWVUoH63ypKKX+r925/YUXkBhHZICLfi0hHfbAoFm3TiT7u2gfeA7KVUketX2iSFu95wL7XUUqZdH8X34tAT94DKyKVUg8opdbrr4mUTuEyuEiuyhqn9ai6kxF2m/du5vM8Wp/aPKxW3Cg3t+0SkUK0LgbrKSrFNcQGSimP7HLuLURkO9qczRpoGwH3VUr9LtpWed+6O49TRGJVGVvHiUiMUqqtO/avJvSpYZ8pfR2/iFwPjFZKPfSXFuwK52odHCpP88aTOxwUd7o/bPWZApq4afcw0FM52VNUROybp5cjFqXUzwD6KPHvAEqTbfCEfb9yjnlk4OYq4npglL4IBLS+/v2i7Z7kiYG6vyVXa+D09s4zmiEPbZPmhPfRtkxzthnzW17K05NY7+Bk36/sCf9vE5EJSikbKWPR9s90a/HBVYgnukYM7Lham+qFaE3n4qkjxXKuAvgppXzKOtdF+/+nlHpL//9updQCq2OvKaWmuGPfytYVOSJ6CfwfjLbH55+UBsrOaEJtd3l4zqiBgQNXZeD0NpewD9UYES0HEbkVbUoPaBs8r/sry2Pw9+Fqbap7m0vVhxqplGpv9X69eGaj5KsCpdR6oLw5tQYGXuGqnI50CbgkfajALhEpWXetj4hu9qB9AwODi8Boql8E3u7Ds8pnP9qcO5sRUbTBF2NE1MDgL8IInJcx3l66aGBgcHEYgdPAwMCgkhh9nAYGBgaVxAicBgYGBpXECJwGBgYGlcQInAYGBgaVxAicBgYGBpXk/wHVGB9LbwSkbQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAU4AAAESCAYAAACSHzzlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAB9sElEQVR4nO2dd3hU1daH3zUzIYGEQGhJIJBQQ5EmYAMFAyIgRQFFQaoUr/V69X4ilmvB7rVdK0i10qSIgFIVEKWThBJIIISSEJKQBgFT9vfHOUmmJZkwMwh43ueZJ5k5+6y9zzpn1uz+E6UUBgYGBgauY/qrC2BgYGBwpWEETgMDA4NKYgROAwMDg0piBE4DAwODSmIETgMDA4NKYgROAwMDg0piBE4DA4MrAhGZKSKpIhJbxnERkQ9FJF5EokXkWm+VxQicBgYGVwqzgT7lHO8LNNdfE4FPvVUQI3AaGBhcESilfgUyykkyCJirNH4HaopIqDfKYgROAwODq4UGwDGr98f1zzyOxRtGLwVFKS28ulZ043lvWoc3ru/pVfv7X27qVft+KWav2geQQu/azwv1cgZeptoJ796DfVOfEHdtVOZ7ag49NAmtiV3MNKXUtEpk56y8XokTV2zgNDAwuPwposjltHqQrEygtOc40NDqfRhw0g17ZWI01Q0MDLxGvip0+eUBlgGj9NH1G4AspVSyJwzbY9Q4DQwMvEZlapwVISLfAj2AOiJyHPgP4AOglPoMWAH0A+KBc8BYj2VuhxE4DQwMvEahB7etVErdV8FxBTzssQzLwQicBgYGXqPIO2MzfzlG4DQwMPAahUbgLEVECoEYq4++U0q9ISIW4GXgbuCsfmyBUurVMs67E4gAlgKHgarAcqXUUxdTLmc8+wZs2AK1guCH2ZU/P3YbzPsMigqhW1/oO8z2+NkcmPMunE4GHx8Y/SQ0iCg9XlQIrz4KNWvDo684z6PTra15cOo9mMzCqq83s+B/PztN16JDOO+u+D/emPgFm5bvwsfXwttLn8SnigWz2cSm5bv46u3lDud1bxjBCzdFYRZh3oEYPt291eb4xPZduLNZKwDMJhPNatbi2rmfUM3iw7u39qVuNX+KlOLb/dHMit3pYL9b03Ce7dMDk8nEwp2xTN+8zSHNdeFhPNOnOxaTmcxzeYycswCA6r6+TB14G83r1UYpxbPLVrP7uG1/frdm4Uzp1wOTaPa/2Ohov0tEGM/07Y6P2cyZc3mMmqnZX/PEOM7+mU9hURGFRYq7P//GuX+66f7ZH8Onu+z806ELdza388/sT8i6cJ63etxOVERT0vPOcfu82Q62L4X9bs3DeaZfD8wmEwt3xPLFr0780ziMZ/pp/j9zLo/RMxaUHDOJsOAfwzmVnctDXy11msfFYtQ4bclTSnVw8vlUIARoq5Q6LyLVgSfLO09EIoCNSqn+IlIV2CUii5VSmy+ybDbc2ReGD4bJr1X+3KJC+OZjeOJ1CKoDrz0K7W+A+uGlaVZ+Bw2bwkP/geQk+PZj+NebpcfXLoHQhpB3znkeJpPw8Bv3MuWeD0k7eYYPfprMHz9Fk3QwxSHd2OfvYuf6fSWf5V8oYPLg9zl/7gJmi4l3fniK7ev2cmDHkdLzRHi5ay/u/3EBKWdzWDb4flYnJhCfmV6SZtqebUzbo33ZeoY34YG2ncm6cJ4qZjNTf9/A3rRU/H18+GHwSDYeP2pzrkmEF/pFMe7L7zmVncOCCcNZF5dAQlrpAo/qvr68cEcUE75aTHJ2DrWqVS059myfHmyMT+TxBcvxMZnw8/GxvW4Rnu8fxQNzNPvzJw1n/YEEEk5b2ffz5YX+UUz8cjHJWTnU8q9qY2P0rAVknnM+Mdckwss39+L+H3T/DNH9c8bKP7u3MW23lX/aa/4BWBi3lzmxu3i3Z7+/zP5zA6IYP0vzz7wHh7N+vxP/DIhi4hzn/hl5Y0cSTmcQ4FvFaR7ukH+VSvN4bDqSiFQDJgCPKqXOAyilcpRSL7pqQymVB+zGg7P9u7SHmtUv7twjcVCvPtQNBYsPdOkBe7bYpjmZBC07aP+HNoK0U5B9Rnt/5jTEbNVqqmXR4toITh45TcrRNAryC/llyXZu6NPeId3A8beyefkuMtNybD4/f+4CABYfMxaLGXsNqQ71QjiafYZjOVnkFxXxQ/wBekeUPTl+YNNWLIvfD8Dpc2fZm5YKwNn8fBIyMwjxD7BJ365BCEkZmRzP1Oyv2BtHz5a29vu3jWT1/niSs7WyZ5zLA8C/ShU6hzdg4S5tz4b8oiJyLlywtR+m2z+TRX5hESti4ohyYn/N/niSs3T7Z/PKvD57OtQL4WhWJfzTvBXLDu0veb81+XhJkPsr7LcNCyEpvdQ/K2PiiGpla/+OdpGs3ufcP8GBAXSPbMyiHU73zXCbQpTLryuJiw2cVUVkt9VrGNAMSFJK5bh43mL7gyIShLZA/9eLLJdHyUyHWnVL39esA2fSbNM0bAy79LrxkQOQcao0zbzPYMh4kHLWX9QJqcnpk2dK3qedPEPtkJo2aWqH1OCmvu1ZMcfRLSaT8NHaKXy79y12/bKfuJ2JNseDq1XnZG7pLUk+m0uwv/NfEj+Lhe4NI1h55JDDsbCAQFrXrsfuVNtmdHD1gJKACJCSnUtwddvgGlE7iMCqvswdPZRFE4YzqJ3WLG0YVIOMc3m8Pqg3308cwSsDelHVx7YRVK96AClZpfZPZecSHGhnv04QgX6+zBk7lIUPDmdQ+1YlxxQwY9RgFj44nLs7tXW4rmD/6pw8W0n/HHb0T1l43X6grX9SsnOpV4Z/Zj8wlAX/GM7ADqX+mdyvB+/8tJEiL9UMC5XrrysJjzXVRaSd3fuxwONAbeAmpdQxZ+fp3Cwi0UAk8IZSKsVJmkuOs2fJPgj2GQbzPoWX/wENGkPDZmAyQfTvUL0mhDeHuD3lZOI0qtpmPOmVu5k5dQlFRY4FKipSPNLzNfwDq/L87EmEt6zP0QOliyWcmVdl/Lr3Cm/K9lMnHWo41Sw+fNp7IC9vWU9u/p925a/YvsVkok1oMGPnLsTXYuG7B+5lz/FkLCYTrUPrMXXleqJPpDClTw8mdOvCh+tLq/VOy293Y8wmE23qBzN29kJ8fSx8N0Gzn5ieyfAv5nE65yy1/KsyY/QQjqRlsP3oifKKX75/Uhz9Ux5/hX37B9dsMtGmQTDjZmr++Xbivew5lkxEnSAyzp5j38lUujQOcznPyuC5WZyXF54cVY8HGolIdb2JPguYpe+dV9Gi2uI+zhbAJr2Pc7d9IhGZiL6W9dO36jFxZA0PFt+RoDqQcbr0fWaaNshjTVV/GKMPZSkFU0ZDnRDY9gvs+V0bXMr/U+vjnPEmPPC07flpyWeoWz+o5H2d+kGkp2TZpGneIZzJnz0AQGBtf7r0uobCwiK2rCyNyGez84jefIjOt7a2CZwpZ3OoH1Bawwn1DyD1bK7T6x3QtGVJM70Yi8nEZ70HsuTQfn5yUhM9lZ1LaGCp/ZDAAFJzztqkScnO5cy5PPLyC8jLL2B70gkiQ+qy4+gJTmXnEH1C+538ad8hJnTt7GA/pEap/WBX7Cdq9hPTMzmtp804m8ea/fG0DQuxCZwpZ3Oo7++if5o5+qcivG7fzj/O/H8qO5dMa/8cPUHLkLq0rl+PW1s24ZYWEfhaLPj7VuHNoX14euGqSpWhPAqdh/YrHo/1cSqlzgEzgI9ExA9ARMyAyz3OSqmDwOvA02Ucn6aU6qyU6uztoAkQEQmpJyAtBQryYdsGbXDImnO52jGATSuh+TVaMB08Dt76Gl6fCxOegZbtHYMmwMFdR6nfpB7BjWpj8THT/c7O/P5TtE2asV2eZ0yX5xjT5Tk2/bCLj5/+li0r91CjdgD+gVpHfxU/Hzre0pJj8baV9T2pKUTUCCKseg18TCYGNGvJ6qMJDuWoXqUK14eGsTrR9tib3W8nPjODGTE7nPoo5kQK4bWDaFAzEB+TiX5tIlkXd9gmzdq4BDo1aoBZBD+LhXYNQjh8OoO0s+dIzsqlcW3th+PGxg1tBpVK7NfS7ZtN9GsbyfoDtvbX7U+gU3gDzCbBz8dCuzDNflUfC9WqaINNVX0sdG0azqFTtn0te1JTiKhp55/EMvxTP4zVRxyPlYe37ccW+z9I809fF/2TcDqD91ZvJurtL7jtvzN5cv4K/jh8zKNBEyBficuvK4mLrXFWFZHdVu9XKaUmA88CrwCxIpID5AFzqNxC+8+Ap0SksVLqSIWpK+DJl2DrbsjMgh5D4ZGxMPQO1841m+G+h+H9KVBUBF17Q/0I+EWf8dO9vzaSPuttEJM22j7qicqVr6iwiE+f+Y6p3z2K2Wzi529/IykumX6jbgZgxdyNZZ4bFFyDpz4cjcksiMnExqU72LratpO/UCle2LSWuf2GYBYT8+NiOHQmnRGttAGor/drtdbbI5qz8fhR8op/BYDOIQ0Y0qIN+9NPs2LIKADe2rqRDceO2Nh/ZcU6Ztw/GJMIi3bvJf50OsM6aT0383ZEczgtg40JiSz9x0iKlGLhzlgOndZGlaeuXM/bg/viYzZx7EwWU5baTsUqLFJM/XEdX4wajMkkfL9Tt99Zt79ds7/pUCJLHhqJKrafmk5YUA3+d98AQKs5L48+wKb4o47+2biWuf11/xzQ/dNa988+3T+Nm7PxmK1/AD7sdQc31G9IkF9VtoycxHvbNjP/QOyls1+keHX5OqaP1vyzeMde4lPTGdZF98+2aA6f1v3ziO7/7bHEp6ZzKbhaa5xi3190pWBsK1c+xrZyFWNsK1c+nthWbk9SQ5e/p+0bHbtioqyxcsjAwMBrXK01TiNwGhgYeI3Cq3TnSiNwGhgYeI2iK2zQx1WMwGlgYOA1/lTe7wv/KzACp4GBgdcoMprqBgYGBpXDGBwyMDAwqCSFyqhxGhgYGFSKIqPGeXnh7QnqN/t51/7red69APnzyn9gzV6+x+Zz3q0NKR/vLi6RAq+a9wh/qis2xJTL1XlVBgYGlwXG4JCBgYFBJSk05nEaGBgYVA5j5ZCBgYFBJSkyRtUNDAwMKodR4zQwMDCoJPl/9yWXZWmpO0m3AXhKKbXd7vMxwNvACcAH2A+MUkqdE5F/AeOBAuA0ME4pZbvjbBlcCt3z8nBXtx2gU69r+MebwzGZTaya8yvz31vhNF2Laxvz3trneH3Mp2xaqrn3iY/HcX2f9mSezubBG56vMK9bGkXwn1tuxSTCvH2xfLbDTuO7Y2cGRVppfAfVotMXn5arg+OOrvrax8dx9kI+hUrTPR863VH3vGuLcCYP6oFZTCzaGsuMDU50w5uE8fTAUt3wsZ8toIrFzJwH76GKxYzZZGJ1zCE+Xr3F4dxbIiJ4/lbN/rzYGD7f6mj/+rAwnru1BxaTiTN55xk+fz4AYzp2ZFg7TQRuXkwMs3fuKtNPJfmFR/CCfg/m73W8BxOudbwHnaeXfQ+6tQhn8gDdP9ti+eIX5/6Z3L87FrOZM2fzGDPNVld9/qPDOZWVy8NzPKurbkyAL1torQRdKqM85imlHtHTfgMMA2YBu4DOehD9B/CWfqxcLoXueUW4o9sOuq76f0cyZdA7pJ3I4MMNL/D7it0kxZ10SDfupbvZsdZ2h/fVX2/ih2lreerz8RXnJcLLPXoycslCUnJzWDpsBGsOxxN/plSuYtqu7UzbpQXlnhFNGNehU7lB011ddYBRcxaQWca8VpMIz90VxYTp35OSlcO8R4ezfl8Ch1NtdcOfuyuKSTMWk5JZqhv+Z0Eh46YtJO/PfCwmE3MfuoeNcUeITkqxsf9izyhGL1xESk4Oi0eMYG18AvEZtuV/qVdPxi76nuScHGpX1ey3qF2bYe3actfX35BfWMisIYPZcPgIiZmZ5frrpR49GbVYuwdLho1gzZF4m/ym79zO9J3aPYhqXP49MInw7KAoJsz4nlNZOcx7RNdVt/PP84OimDSzDF31rh05nJqBvxd01T05AV5E+gAfoGmYfWFfcdNVcmcCTYHzaBUwr+geu/1zICKJIvKCiGwC7tY/vl9EfhORWBG5zsk5FsAfOAOglFqvaxYB/A64JLl3KXTPK8Id3XaAyM5NSD6cSkriaU1XfdFWbryjo0O6gQ/2YvOy7WSdzrb5PPa3g+SccS7+ZU/74BCOZmZyLFvX+D4Yx21NmpWZfkCLlvxw6EC5Nt3RVXeFtg1DSErL5HhGFgWFRazcE0dUG1v7/TpGsiY2npRMR93wvD81KQqL2YTFbHJQLm0fovskSyv/8rgD9Gpma39gy5b8fOgQyTma/fQ8zX7T2rXYlZzM+YICCpVi6/Hj9G5etj/B8R4sP1T+PRjYoiU/HCz7HrRtGMKxdM0/+YVFrNgTx62t7XTVO0SyZm/Zuuq3tGzMom1e0lVXJpdf5aFXyj4G+gKtgftEpLVdsinAbqVUO2AUWpD1CpUJnM601Is5r5TqppT6Tn/vr5S6CXgI7RegmGG6VtEJoBbwg5N8HgBWulKgS6F77m1qhwZx+nhp7SDtZAa1rVQvtTQ1uan/tfw4Y71beYX4B5BspbGekptDSECA07R+FgvdwyNYGV++xrc7uuqgKYPOGDmYRROGc8+1jrrn9WrY6apnlaEbXtWXWZOGMu+x4Qy8ttS+SYSF/xzBry9MYsvBJGKO2YrZBQcElAREgJScXIIDbH8JGwcFEejnx9f33M3S+0dwV2vN/sG0dK5rEEZNPz/NX40bE1q9/F/RkADbe5Ccm0Owf9n34JbwCFaVcw+CAwNKAiJo/nGqO1/Vl1kThzL/EVv/TB7Qg/+u9KKuOiaXXxVwHRCvlDqslPoT+A4YZJemNbAWQCl1AIgQkWBPXxN4rqk+z+79twBKqV9FJFBEahanU0o9IiKC9uvxb6Ckui0i9wOdge6uFOiS6J57GVd0wx98Yzgz/7PAqa565fJyzKys70vPxk3ZkeyCxrcbuuqJGZkMnzmP1Nyz1KpWlZkjh3A4LYPtSZXTPTebTLRuEMz4aZpu+NeP3MuepGSOpmVSpBRD3/+a6n6+fDB6AM2CaxN/qlSozPmPpqP9a+oFM3LBAvx8LCy87z52JSeTkJHB59u2MWfoEM7l53Pg9GkKiipSEndyD8pI6dI9cMH/xf55YLrmn28e0vwTUSeIjNxz7DuRSpcmXtJV99wE+AbAMav3x4Hr7dLsAQajSYxfB4SjtV5PeaoQxXhqVP2s3Xv7Z8HmvVJKicgPwKPogVNEeqGpZHZXSl1wlom1rvqTr9ajdYcaXtc99zZpJ89QN6xWyfs69WuRkZxpk6Z5xwiemfkPAAJrB9CldzsKCwrZ8mPFAxHWJOfmEGpVmwoJqM6psjS+m0eyrJwmYjHu6KonZmSSmqvrnp/LY82BeNo1CLEJnKey7HTVawRwOttONzzLVjd8x+ETRIbW5WhaZkmanPMX2JZwnG6RETaBMyUn16aWGFI9gFO5tj5Jyc3hTF4eeQUF5BUUsPX4CVrVrUvimUwWxMayIFZr5j7ZrSspOeV3m6TY3YPQgOpl6qz3bxHJD3Hl34NTWbmE2vkn1Yl/bPx/RPNP6/r16NG6CTe3LNVVf2NYHybP85xEcH4l1qpbf791pimlphUfdnKKfZx5A/hAb9XGoI2deGVFv7eGvIYBiEg3IEspleUkTTcgQU/XEfgcGKiUSi3LqLWu+oDhNS6J7rm3idtxRNNVD6+j6aoPuY7fV9gGxDHt/o/Rbf/N6Lb/ZtPS7Xz0ry8rHTQBok+lEFGzJmGBmgb6gBaRrHGi4129ShWubxDG6sPxFdp0R1e9qo8Ffzvd84Optn0tscdTaFRH0w23mE30bR/J+n229tfvS+DaiFLd8LaNQjicmkGQf1Wq+/kC4Gsxc0PzRhw5bavbHp1i65P+kS1Zm2Brf018Al0alJa/Q2gICemaneKBotDq1bm9eXN+OFB+oLO/B/2bR7Lm8MXfg9jjKTSy0lXv58Q/6/Yl0MnKP+0aav55/6fN9Hz9C3q/OZOnvl3BHwnHPBo0QduP09WX9fdbf02zMnUcaGj1Pgw72XGlVLZSaqzeMh4F1AXclhh3RmVqnGVpqTvjjIj8BgQC46w+H6YHUxOaI8bon78NBAAL9OZkklJqYEUFuhS65xXhjm47aLrqn/z7a15d/CQms4mfv9zI0QMn6TeuBwArZm4o9/zJMyfRrltLAmsH8OX+//LVa0v46UvnWuyFSvGfX9Yxd+AQTCYTC/bFcigjneHXaBrc38RGA9C7SXM2Jh0lr6DiH2t3dNXDatbgo2Ga7rnZZGJ57AE2JdjpnhcpXlu6js/HD8ZsEhZv20vCqXTuuUGzP//3aA6nZrD5YCLfP6HZX7Q1lvhT6bQIqcOrw27HbBJEhJ+iD/LL/iMO5X9p3XpmDxmCySQsjI3lUHo697XT7H8bHU1CRga/Jiby4+hRKKWYFxPDwXSt1vrxwAHUrFqVgsIiXly7luwLThtLNvm9uGEdcwbp92BvGfegqWv3oLBI8eqydUwbp+uqb99LQmo691yv++cPXVf9YCKLH9f9sy3WptbtTTy4cmgb0FxEGqONkdwLDLdOoHcJntP7QMcDvyqlsu0NeYIrVlf9l0Tv6qp7e1u5fi26etV+3KvXeNW+b4b35+dZ7DuAPExesHeffW9vK1f1pHfvwd433NdVf31fP5ed8EzrFeXmJyL9gPfRpiPNVEq9KiIPAiilPhORG4G5QCGwD3hAKXXmYsteHsbKIQMDA6/hybXqSqkVwAq7zz6z+n8L0NxjGZaDETgNDAy8xt9+yaWBgYFBZTGWXBoYGBhUEg/O47ysMAKngYGB1zC2lTMwMDCoJEaN08DAwKCSGGJtBgYGBpUkv8gInJcVb1zf06v2va17vuLgZq/a73eNj1fti5+XVwgA6ryXtedr1vCq/YLDiV61b6lXt+JE7uCwTXnlMTSHDAwMDCpJoQc3Mr6cMAKngYGB1zAGhwwMDAwqidFUNzAwMKgkntQcupwwAqeBgYHXyC8y1qobGBgYVAqjj9PAwMCgklytTfWL7rkVkUdEJF5ElIjUsfq8pYhsEZELIvKU3Tl9RCROP6+s3eMrRadbWzN984vM+P0l7n60d5npWnQIZ/nJj+nWX5Pe9fG18P6qp/l43bN89svz3P/v/s7t97qGL3a8xszdb3DPE/3Ktn9tY348M4NugzqXfPbEx+P4LuEDPvv9lYu8Onj2Deg6CAaMuWgTdIpqwxe/v8zMrVO557E+ZaZr0TGcH099RrcB1wJQp34Qby55kmm/vcTnm15k0MQo5/Z7tGL6L88yY9Pz3P1wr7Ltt2/E8qPv0+2ODjafm0zCR6v+jxdnT3R6ntfLf0sk03/+NzPWPs3dk24t237bMJbHvUm3PqVqnLM3PMMnP/6Lj5Y9wQeLH3N6XufbOzBz/wfMPvg/hj19p8PxGwd25vPd7/DZzrf5eOsbtOnasuTYXY/1Y1r0f5ke8y53Pe78+et0a2umb/oPM7a8yN2PVPAdOPGR7Xdg5f/x8dopfPbLc9z/70pIF7hIkRKXX1cS7tQ4NwPLgQ12n2cAjwF3Wn9opYt8G5psxjYRWaaU2nexBTCZhIffuJcp93xI2skzfPDTZP74KZqkgykO6cY+fxc715dmlX+hgMmD3+f8uQuYLSbe+eEptq/by4EdR2zt/3ckUwa9Q9qJDD7c8AK/r9hNUtxJB/vjXrqbHWtttalXf72JH6at5anPx1/sJXJnXxg+GCa/dnHnm0zCw28OZ8rQ90g7eYYPV0/h91V7SDqY7JBu3AtD2LFub8lnRYVFTH9hAfHRSVQN8OV/a59j14b9NueaTMLDU+9myvCPSUvO5IMfn+KPn2NJOuTkHkwZyM5f9juUcdADPUiKT6FagOOk+ktS/hfvYsroaaSlZPHB94/xx9q9JMWnOtgf+393sHNjnEMZJ9//Gdlnzjl8rp1n4tGPHuDp3q+QdjyDj7a+zpZl20naf7wkza61sWxZptUxGrdtxHPz/sUDrf9JRJuG9B3fk0evf4b8Pwt4feWzbP1xJyfiU6zsCw+/Pkz7DiRn8sGqp/nj5zK+A8/dyc4Ndt+BIR+UfgeWPcn2tXs5sDPR6bVcDFfrqHqFVyUiESJyQETmiEi0iCwUkWpKqV1KqUT79EqpVKXUNiDf7lCZusgiMkFEtonIHhFZJCLVXCl8i2sjOHnkNClH0yjIL+SXJdu5oU97h3QDx9/K5uW7yEzLsfn8/DlNH8biY8ZiMTvI8kZ2bkLy4VRSEk9r9hdt5cY7Ojraf7AXm5dtJ+u0rbxJ7G8HyTlTvuphRXRpDzXLl+oul8hrG5N8JLXUR4u3cWNfJz6aEMXmH3aSZeWjjFNZxEcnAZCXe4FjB5OpHVrT5rwWHcI5mXialKR0zf7SndzQ21EffeDY7mxesYfMNFt/1AmtyXU9W/PTN1v+mvK3b8TJo2mkHMvQ7P+4mxt6tXG0P6orm3+KITO9cnoekdc142R8CilHUinIL2DDvM3cZNUqATh/tnSFlJ+/X4lmc6NWDTjwxyEu5P1JUWER0b/uo+td19mWv6P+HSj2/5Id3HC7E/880IPNP7ryHajU5VVIgTK5/LqScLW0kWhSne2AbOChi8jLmS5yA/3/75VSXZRS7YH9wAOuGKwTUpPTJ0slRdJOnqF2SE2bNLVDanBT3/asmPOrw/kmk/DR2il8u/ctdv2ynzi7X9raoUGcPl6qiph2MoPa9YPs0tTkpv7X8uOM9a4U+ZJTO7Qmp09aX0MmtUPtriGkJjfd0ZEfZ/9Spp3ghrVp2rYRcTtsxc7qhNbktJWccVpKJrVDbZcyavegHSu+3ORgd9KLg5nx6jKKyvjGer38wYF25c+idrBd+YMDuan3NaxwEtyVgldnT+DDJY/Td5i9zDfUaVCL08dLhdHSjmdQp0Fth3Rd77yOGfveZ+ryZ3jngU8BSIw9RtubW1G9VgC+VatwXd9rqduwjs15dULtvgPJZ5z7v18HVsxxFPEzmYSP1jzDt7FvsuvXA8TtSnRI4w5/96b6MaVU8eLqr9Ca4u9UMq/ydJGvEZGpQE00tcufnBqw0l1uU/0WkGvLMakx6ZW7mTl1CUVFjl/MoiLFIz1fwz+wKs/PnkR4y/ocPVDaDBcnJbavlT74xnBm/meBU/uXA+LkIhyu4dVhzHxpUZnX4Ofvy3OzH+TzZ+dxLteF9eN29ie9OJiZry1zsH9dzzZkpuUQH3OMtjc2+2vK7/wm25b/uYHMfGuFU/tPDvuYjNRsatTy57U5Ezl2OJXYbaXB2ZVnCGDzkq1sXrKVtje3YszLw3i69yskHTjBvLeW8ubPz5OXe57D0YkUFhTald/JBduZn/TK3cx8ZXHZ34Fer2vfgVmTCG8ZytEDyQ7pLpYrLSC6iquB097jFxMlytNFng3cqZTaIyJjgB5OC6HpLE8D6Bv8D5WWfIa6VjXAOvWDSE+xlXBv3iGcyZ9pFdjA2v506XUNhYVFbFm5pyTN2ew8ojcfovOtrW0CZ9rJM9QNq2VlvxYZVrUTgOYdI3hm5j90+wF06d2OwoLCi9I99wZpJ89Qt771NdQkIyXTJk3zDuE8M30CAIG1AjQfFRSxZeVuzBYzz896kPUL/2Czk2tKS86krlXzt05ITdJTbLssmrdrxOSPR5faj2pNYUEhkR0juKF3W7pEtcbH14dq1f3494cjefuxLy9d+VOy7Mpfg/RUu/Jf05DJ74/Q7Af506VHS83+mr1k6GmzMs7y2+pYIts1sgmcp49nUDestIZZJ6wW6Sdttd2tidm4n9CmIQTWrk52eg6rZq5j1cx1AIx79T6b2qvmn0zb70Cok+9A+0ZM/lz/DtTyp0tP3T+r7L4Dvx2k861tjMDpAq4GzkYicqOuIncf4NjmqpjydJGrA8ki4gOM0I9XyMFdR6nfpB7BjWqTnpxJ9zs78+Y/ZtqkGdvl+ZL///XBKLaujmHLyj3UqB1AQX4hZ7PzqOLnQ8dbWrLgI9uKbtyOI5r98DqknzxD9yHX8eYDn9ukGdPu/0r+f/LTB/hj1Z7LJmgCxO1KtPXRXV14c9IXNmnGdJpS8v+T/xvDHz9Hs2XlbgCe+GAUSQeT+f7TNU7tH9yTRP3GdQluWIv0lCy6D7qWNx+ZY5Nm7E0vlfz/r3dHsHXtXrb8FMOWn2KY/cYPALS9sRlDJkXZBM1LUv7oY9QPr0NwWBDpp7LpfkcH3vzXN7blv/X10vK/OYyt6/exZc1efKv6YDKZyDt7Ad+qPlzbrQXffGSbT9y2eBo0DyUkoh5pJzLoMawrr4/4wCZN/aYhnEzQBnOadWyMTxUL2elaX2TNuoFkns6mbsM6dL3reh6/6Vnb8u+2/w504s2HZtmW/7oXSsv/wUi2ro5lyyon34GbW7Lg45+d+uli+bsHzv3AaBH5HDgEfCoijwH/B4QA0SKyQik1XkRCgO1AIFAkIv8EWiulskXkEbRmeLEucvEQ6PPAH8BRIAYtkFZIUWERnz7zHVO/exSz2cTP3/5GUlwy/UbdDMCKuY59OsUEBdfgqQ9HYzILYjKxcekOtq62HRUvKizik39/zauLn8RkNvHzlxs5euAk/cb10OzP3FBu+SbPnES7bi0JrB3Al/v/y1evLeGnL8sukzOefAm27obMLOgxFB4ZC0MrMWukqLCITyZ/y6sL/onJZOLnbzZzNC6ZfmNu0a5htmPfbzFtrm9Gr2E3cmTvcT5er/0AzX51MdvWlPqpqLCIT59fyNSvH8JsMvHzvN9JOphCv/s13fgVX7m3fd4lKf9LS5g6a4L2DC3YStKhU/S77wbN/re/l2k/qE51nv9Eq0mbLSY2LNvFjl9tR92LCov46NEZvL7qWUxmEz/NWs/RfcfpP+k2AJZ/vpqbh1xPr5HdKcwv5ELen0y9972S819Y+BSBtatTkF/AR498QW7mWQf7n06Zx9RvH9G/A1tc/w7Uq8FTH47CZDYhJmHjMsfvgLtcrfM4xVl/i00CkQhguVLqmktSIhfpG/wPr3Yqqit+P84eXrVv7MdZMVf6fpwrUz5xO+rdtuEJl7+nq3u8d8VEWWPlkIGBgdf42zbV9bmal1Vt08DA4Mrgbxs4DQwMDC4WdZUGzitrur6BgcEVRRHi8qsiKtrrQkRqiMgP+grEvSIy1isXhVHjNDAw8CKeaqq7uNfFw8A+pdQAEakLxInI1/oSb49i1DgNDAy8RmGRyeVXBZS514UVCqgu2nKzALQNhwrKMyoi4SLSS/+/qoi4NBXSCJwGBgZeQylx+VUB5e11UcxHQCu0FYkxwONKqaKyDIrIBGAhULyqJQxY4sp1XbFN9f0vN/WqffnTu53a3tY9XxG7wav2I2f9w6v2AcwXvGs/P9C7+wsUVgv2qn2/lMtflqIyTXXrvSh0punLrMGlVfncDuwGooCmwGoR2aiUyrY/UedhtJrsHwBKqUMiUs+Vsl6xgdPAwODypzLb1FnvReGE8va6KGYs8IbSVvXEi8gRoCWwtQybF5RSfxZvJCMiFlzch8NoqhsYGHgND46ql+x1ISJV0Pa6WGaXJgnoCSAiwWjbYR4ux+YvIjIFqCoitwELgB9cuS6jxmlgYOA1XBj0cQmlVIGzvS5E5EH9+GfAK8BsEYlBa9o/rZRKK8fsZLS9f2OAScAK4Ity0pdgBE4DAwOv4ckd5ZVSK9CCm/Vnn1n9fxIoW3TJkapoAXg6lEx5qgo410GxwmiqGxgYeA0Pjqp7g7VogbKYqoDz/QftMGqcBgYGXuMyX3Lpp5QqEcFSSuW6qndm1DgNDAy8xmWuOXRWpFR/R0Q6AXmunOjRGqeI5CqlAvT/+wEfoI1yjQMmAKcBf7TO2OeKl0uJyAYgFDgP/AlMUErtdiXP7g0jeOGmKMwizDsQw6e7bWceTGzfhTubtQLAbDLRrGYtrp37CdUsPrx7a1/qVvOnSCm+3R/NrNidFeZ3S6MI/nPLrZhEmLcvls922OXXsTODIq3yC6pFpy8+JetC2XtLdopqwz9eG4bJZGLVV5uY/+Eqp+ladAznvVXP8Pr4aWz6YSd16gfx70/GEVQvEFWkWDH3V5ZOW1fhNVjz7BuwYQvUCoIfZlfq1BJubhLOc716YDaZmL87lmm/b3NIc12jMJ7r1R2LycyZvDxGfL2AxrWC+ODOUq3whjVr8MHGLczeZruDfrdm4Tzbpwcmk4mFO2OZvsmJ/Ygwnumj2c88l8fI2QsAWPvPcZy9kE+hKqKwSDF02jcO594SEcHzPbTyz4uJ4fNtjvavDwvjuR49sJhMnDl/nuHz5wMwpmNHhrXVVD3nxcQwe5fj7v/dG0bwQlf9Gd1fxjPa3O4ZnfMJWRfO81aP24kKb0p63jlunz/bwfal8I87eFo108P8E1ggIsXTmkKBYa6c6JWmuoj0BP4H9FZKJenzpN5TSr2jHx8GrBORtkqp0/ppI5RS2/WF+W+jrUktF5MIL3ftxf0/LiDlbA7LBt/P6sQE4jNLdVmm7dnGtD3ag9QzvAkPtO1M1oXzVDGbmfr7BvampeLv48MPg0ey8fhRm3Od5tejJyOXLCQlN4elw0aw5nA88WdKNWSm7drOtF3btfwimjCuQ6dyg6a3dcMrwm3ddhFe7B3FmO++JyU7h0VjhrPuUALx6aU+qe7ry0u3RzFu3mKSs3OoVU3rVjqScYaBM78usbPpkQn8HBfvYP+FflGM+/J7TmXnsGDCcNbFJZBw2sq+ny8v3BHFhK8Wk5yVQy3/qjY2Rs1ZQOY55/fAJMKLUVGMXrSIlJwcFo8YwdqEBOIz7Mrfsydjv/+e5JwcalfV7LeoXZthbdty1zffkF9YyKzBg9lw5AiJmZk29l/u1ov7l1s9o0cTiD9TzjParnPJM7Mwbi9zYnfxblTpD8yl9I+7FHloVN0bKKW2iUhLtGlLAhxQStnLmjvF41clIjcD04E7lFIJztIopeYBP1OqOWTNFhyXUjmlQ70Qjmaf4VhOFvlFRfwQf4DeEWWvKBrYtBXL4vcDcPrcWfampQJwNj+fhMwMQvwDys2vfXAIRzMzOZat53cwjtuaOFdnBBjQoiU/HDpQrk1v64ZXhLu67e3qh3D0TCbHMjWf/Lg/jp4tbO/BgDaR/BwXT3K2VvaMc46toZsiGpKUmcXJbFvd73YNQkjKyOT4mSzyC4tYERtHz0hb+/3bRrJ6fzzJWbr9sy61tgBoH6Lf0yyt/MsPHKBXU1v7A1u25OdDh0jO0eyn52n2m9aqxa7kZM4XFFCoFFuPH6d3M9vnweEZTajgGW1W+owCbE0+Xu4Pr7f94y6qEq+/iC5AO6AjcJ+IjHLlJE8HTl9gKZpiZfkRA3aizeq3pw8urhcNrladk7mlX7Tks7kE+zuPAn4WC90bRrDyyCGHY2EBgbSuXY/dqeXX1EL8A0i2yi8lN4eQAOfB1s9ioXt4BCvjHfOzxtu64d4mJCCgJCACpOTkElzd1ieNawUR6OfLV8OHsnjMcO68ppWDnTtaRbJ8n+MjExxoZz87l+BAW/sRtTX7c8cMZdHE4QxqX2pfKZgxcjCLJg7nnk5tHe0HBJQERICU3FyCq9s+Q42Dggj08+Pru+9m6YgR3NVKs38wPZ3rwsKo6een3e/GjQm1OzfY3+4ZzXXhGT1c/jNjY9/L/nGXy3lUXUS+RJM574YWQLsAnV0519NN9XzgN7RJpY9XkNbeU1+LiD/a5FZnguk2a1lrjRiCNGnhkEaV8dvVK7wp20+ddPj1rmbx4dPeA3l5y3py88vffcq5xrfztD0bN2VHsmN+rtn0su65J3FBN9xsMnFNSDCjvl2In8XC/FH3svtkMokZmQD4mExENW/KOxtc02Gyt28xmWhTP5ixcxbi62PhuwfuZc/xZBLTMxk+cx6pOWep5V+VmSOHcDgtg+1HS0VUnX5dnZU/OJiRCxbgZ7Gw8L772JWcTEJGBp9v28acIUM4l5/PgdOnKSiy3VPC6QLrMh6aXuFN2Z5S8TNTEZ70j9tc3n2cndGEJCtdSk8HziLgHmCNiExRSpXXc9YRTQ2zmBHAHuANtH33BtufYL2WNeLzd1TK2RzqB5T+eof6B5B6Ntf+NAAGNG1p0wQC7YH6rPdAlhzaz09OaqL2JOfmEGqVX0hAdU6VlV/zSJYdrKjS7X3dcG+TkpNLaKCVT6oHkJprq8SYkp3LmXN55OUXkJdfwLZjJ2hZr25J4LylaQT7TqWSfs5x3vGpbDv7gQGk5pRvf/vRE0QG1yUxPbMkbcbZPNYciKddgxCbwJCSm2tTSwwJCOBUru09TcnJ4UxeHnkFBeQVFLD1xAla1a1LYmYmC2JjWRCrKUM+2bUrKfbn2j+jAQGknivjmWnm+IxWhLf94y6X+XSkWDSV3koLyXu8j1MpdQ7oD4wQkQecpRGRIWgz/L+1OzcfeA64QUQc23N27ElNIaJGEGHVa+BjMjGgWUtWH3XsVq1epQrXh4axOtH22Jvdbyc+M4MZMTtcurboUylE1KxJWGCgll+LSNYcKSO/BmGsPhzvxIot1rrhFh8z3e/qwu+r9tikGdNpCqOv1V6bftjJR//3jcu64d4m5mQKEUFBhNXQfHJHq0jWHrJdHrz2UAKdGzbALIKfxUL7+iEkpJV2T/Rv3ZLle53/yMScTCG8dhANagbiYzbR75pI1sXZ2T+QQKdGDTCbBD8fC+3CQjiclkFVHwv+VbRdqKr6WOjaNJyDqbYr8KJTbO9p/5YtWXvY1v6ahAS6NCgtf4eQEBL0waPigaLQ6tW5vXlzfjhgex0Oz2jTlg7PIZT9jFaEt/3jLkVF4vLrL6AOsE9EfhKRZcUvV070yqi6UipDRPoAv4pI8Z14QkTuR5uOFAtEWY2oW5+bJyL/BZ5Ca/KXSaFSvLBpLXP7DcEsJubHxXDoTDojWmmDK1/v1wLQ7RHN2Xj8KHkFpQNmnUMaMKRFG/ann2bFEK0/+K2tG9lwrOw+wkKl+M8v65g7cAgmk4kF+2I5lJHO8GvaAfBNbDQAvZs0Z2PSUfIKyt1DFfC+bnhFuKvbXqgUL61ex8x7B2MWYWH0XuLT0rmvo+aTb3dFk5CewcbDiSwfP5IipViwJ5ZDadqosp/FQtfGjXh+lfPAX1ikeGXFOmaMHIxJhEW79hJ/Op1hnTX787ZHczgtg43xiSz9h2Z/4c5YDqWmExZUg4+GDQC05vbymANsij/qWP7165k9ZAgmERbGxnIoPZ372unlj44mISODXxMT+XHUKJRSzIuJ4WC6Vv6PBwygZtWqFBQV8eLatWRfuOBg/4VNa5l7h90z2lp/Rvfpz2hjx2cU4MOed3BD/YYE+VVly/2TeG/7ZuYfKL2/3vaP21zeNc4XL/bECnXVL1ciPn/HqwX39n6ckS/FedW+sR9nxXh/P84y99D1CN7ej/PAi0+4/SVo8u1rLjv58H1TLusoa83lO8nKwMDgyucyno8kIjeIyDYRyRWRP0WkUETK2vTYBmOtuoGBgde4zAeHPkLb13MB2gj7KKC5KycagdPAwMB7XOY9gUqpeBExK6UKgVki8psr5xmB08DAwGuov2a03FXO6bvJ7xaRt9CmJfm7cqLRx2lgYOBFpBKvS85ItBj4CHAWTdPIYf64M4zAaWBg4D0u48EhtKXh55VS2Uqpl5RS/0Kbg14hRuA0MDDwHpd34Bzt5LMxrpxo9HEaGBh4j8twVF1E7kPbma2x3UqhQKDsfSWtuGIDp7cn/3ob8fPzqn1vT1CPG/upV+0DtPnYu9dguuDdL7Vv2pX9jHqCy3R9zW9oA0F1gP9afZ4DRLti4IoNnAYGBlcAl+GoulLqKHBURHoBeUqpIhFpgbbNZYwrNow+TgMDA68hyvXXX8CvgJ+INEBTvBwLzHblRCNwGhgYeI/Le3BI9N3cBgP/U0rdBbR25UQjcBoYGHgPJa6/Lj0iIjei7QX8o/6ZS92XRh+ngYGB97g8B4eK+SfwDLBYKbVXRJoA61050QicBgYG3sO7O+u5hVLqF+AXq/eHgcdcOfeiA6eIFKKNQAlQCDyilPpNRCKA/UAcUAVNHuOBYtlNEbEAKcB0pdQzVvY2oOkaF0vwTVVKLayoHN2a2mlKb3aiKR1upyk9R9OUru7ry9SBt9G8Xm2UUjy7bDW7jyd7zP7ax+00q6c716zu1KMVD740GJPZxKpvt7DgY+eb+rZo34h3l/2LNx6azaYfd5d8bjIJH674N2kpmbw4ZprDed7WPS8PT+i2d2sWzpQ7emASEwt3xPLFRsfyd4kI45l+3fExmzlzNo9RM7V7sOZf4zj7Zz6FRdo9uPszx3vgdV345uE801+zv3BbLF/86qT8jcN45o7uWMxmzpzLY/T0BSXHTCIseHg4p7JzeWjuUkf/eNm+W3iwCa5vjv4Bmi7ZF0qpN+yO/xut2Q1abGsF1FVKZdile18p9U8R+QEndWKl1MCKyuJOjTNPKdVBL8jtwOtAd/1YglKqg4iYgdVoOkRf68d6owXVe3RdIuuCj1BKWesQlUuZmtJptprYJZrSVpreAM/26cHG+EQeX7AcH5MJPx8fj9oHXbM6rwJd9al3M2X4x6QlZ/LBj0/xx8+xJB1KcUg3dspAdv7iqEkz6IEeJMWnUC3AcW6ot3XPK8ITuu3PD4jigdnaPZj/4HDWH3CiGz4giolzneuGj55Zga66l3XhnxsYxfiZWvnnPaSXP9Wu/IOimDjLeflH3tSRhNMZBPhWcVp+b9p3F0+Nluux5GPgNuA4sE1Eliml9hWnUUq9Dbytpx8APGEfNHW+1P++c7Hl8dTgUCBwxv5DfaumrdjqpN+H9quRBNzgTqYlmtK6pveKvXH0bFmGprSdprd/lSp0Dm/Awl2aDEF+URE5drIH7th3lRYdwjmZeJqUpHRNV33pTm7o7SjTOnBsdzav2ENmmq3QV53QmlzXszU/fbPFqX1v655XhNu67WEhJKVb6YbHxBHVyu4etItkzb6L0w33tn/a2pV/ZbRj+e9oH8nqvc7LHxwYQPeWjVm0zbkcirftu43nRtWvA+KVUoeVUn8C3wGDykl/H3aaZiVFUmqH/vcXZy9XLsudGmdVEdkN+KE1saPsE4iIH3A9ulSwiFQFegKTgJpoF2f9jf9aRIrvak+lVLnLn4KrO2pKt28QYpMmonYQFrOJuaOH4l+lCnP/2MXS6P00DKpBxrk8Xh/Um8jguuxNPsVrqzaQl1/gEftQqlmNgnk7Ypi/03FubZ3QmpxOzix5n5aSSWTHcJs0tUNqcFPfdky+53+0aD/c5tikFwcz49VlVA3wdeojZ7rn7evbXkPjWkFYTCa+Gq5dw5ztu1gSa1uzLUv33NvUCwwgJau0/KeycmkX5vwezBmnlf/L33exdLd+D4AZowejFMzbHsOC7bb3wNv+Ca5hW/6UrFzaNbQrfx2t/LPHD8Xftwpf/raLZbs0+5P79+CdlRvxL6M26G37lxJr+W+dabqyLWiVr2NWx46jxRZndqoBfdB2PXJ2PIZyQrVSql1FZfVUU/1GYK6IXKMfa6oH1ebAQqVU8TKm/sB6pdQ5EVkEPC8iT+g1U6hkU92ppredPywmE21Cgxk7dyG+llJNaYvJROvQekxduZ7oEylM6dODCd268OF6qzjuhv3EDF2zOvcstapZaVYnuSC9ardObdKLg5n52jIHXfXrerYhMy2H+JhjtL2xmXNbf4HuuSdxqkuOY/nb1A9m7CxdN3zivew5puuGT5/HaV03fMaYIRw5bacb7mX/OO/hc17+cTO08n/74L3sSUomok4QGbnn2HcylS6Nw5xa8rZ9d6lMU91a/tuZKWenlJF2ALC5jGY6lO6A9LD+t7jpPgJw1Kh2gkdG1ZVSW0SkDlBX/6i4jzMU2CAiA5VSy9BqmF1FJFFPVxu4FXBJ29b6Fym4/92cCgutvKZ00gkiQ+qy4+gJTmXnEH1C60v8ad8hJnTtbHPuRWlW6/YTMzJL9MUzzllpVtsFzrTkTOqG1ix5XyekJukptrInzds1YvLH2kYugbUC6BLVmsKCQiI7RnBD77Z0iWqNj68P1ar78e8PR/L2Y1+WnOtt3XNvcyo7l5AapeUPruHCPUjU70F6JqetdcP3xdM2zE5X3cv+ScmyLX9IjQBSs23tn8rKJdOu/C1D69K6fj1ubdWEWyIj8LVY8Petwpt39+HpBasumX238dySy+No+2UWEwacLCPtvZTRTIeSJZeISFelVFerQ5NFZDPwckWF8Ugfp4i0RBvpsmlaK6WSgcnAMyISCHQDGimlIpRSEWgR/z5X81FKTVNKdVZKda7Z+UZiTlhpSptM9GvjRFM6TteU1jWx2zUI4fDpDNLOniM5K5fGtYMAuLFxQ5tBH8At+65qVh/ck0T9xnUJblhL01UfdC2/r7ZtTo696SXG3Ki9Nv24m4+fXcCWn2KY/cYPjOzyAmNufIk3Hp7Nns0HbYImeF/33NvY3AOziX5tI1l/wLb86w4k0CncTjdcvwfVrO9Bs3AOnbK9B972T+yJFMLrBNEgSCt/33aRrN9vV/79CXSKsCp/wxASTmfw3s+biXrzC257eyZPfreCPw4fcwhq3rbvNp7r49wGNBeRxvqu7fcCDhroIlIDbZDalekB/iLSzercm3BxB3hP9HGCVo0erZQqFHH4hVmCpl/8OLBOKWU9ArMUeEtEnHfQVUCh0jWl79c1pXfrmtKddE3pHbqmdIKdpvRpLb5PXbmetwf3xcds4tiZLKYs/dlj9sNq2mlWxx5gU4KjZnVRYRGfPr+QqV8/hNlk4ud5v5N0MIV+92s/hCu+cq957G3d84pwW7e9SDF1+Tq+GD0Yk0n4fude4lPTGdZFvwfbojl8OoNNhxJZ8vBIlFIs3FGqG/6/4do9sJhMLI8uQ1fdy7rwry5bx/Sx2jO0eIde/uv08m/Vy38wkSWP6c/QtljiT7m0u5nX7buLp0bVlVIFIvII8BNaJW2mPmn9Qf34Z3rSu4CflVJnyzBlzQPATD3YKiALGOdKea5YXfWWL713ZRZcp/H0I161H/9wY6/avxq2lSuo5lXz+FRuAsJlx77X3NdVb/rfd13+niY8+a+/at1lIFoszHL1HGPlkIGBgfe4Aqo3SimXtNStMQKngYGB1/iLtovzOkbgNDAw8B6X4UbGnsDYVs7AwMBrXM4bGYtINRF5XkSm6++bi4ihcmlgYPAXc3lvZDwLuADcqL8/Dkx15UQjcBoYGHiNy7nGCTRVSr0F5AMopfIoazGWHUYfp4GBgfe4vAeH/tT3z1AAItIUrQZaIUbgNDAw8BpyGW9kDPwHWAU0FJGvga7AGFdOvGIDpxRWnMYdzGVvoekR1HnvZmB26Xfz4vH25HSAvQ97d5J9iy8f9Kr9Il/vjijnNSioOJFBmSilVovITrTtLQV4XCnluC7aCUYfp4GBgfe4jAeHRKQrcF4p9SPaNpdTRCS8/LM0jMBpYGDgNS7zwaFPgXMi0h74N3AUmOvKiUbgNDAw8B6XcY0TKNClewYBHyqlPgBc0iu4Yvs4DQwMrgAu71H1HBF5BrgfuEXXNfKp4BzAqHEaGBh4ESly/fUXMAxt+tEDSqkUNHmOt1050ahxGhgYeI3LeZMPPVi+a/U+CRf7OC8qcIpICPA+0AUtYicC/wT2AAfQBNxygI+VUnP0c8YAnZVSj4iICW25UyHwKDAfaKq//0EpNdnVsnRrFs6Ufrrm9s5yNLf76prb56w0t5+w09z+3FFzu2uLcCYP6oFZTCzaGsuMDU7sNwnj6YG65va5PMZ+toAqFjNzHryHKhYzZpOJ1TGH+Hi1cyXKTlFt+MdrwzCZTKz6ahPzP3S+C3eLjuG8t+oZXh8/jU0/7KRO/SD+/ck4guoFoooUK+b+ytJp65z6yEYbfpMT3fAIO2342bo2/D/ttOGnOfrI27rnFeGudvstERE811O7x/OjY/h8q2P5r28YxrNRPfAxmTiTd57h380HYGyna7mn3TUoBXFpaTy98if+LLSdK9etqZ3/Nzvxf7id/+do/qnu68vUgbfRvF5tlFI8u2w1u48n25zbPSyC/9zQE7MI38VF82n0Vpvjk9p2YVCz1gBYRGhWszYdv/6YahYf3uvej7rV/ClSim8O7GHW3p2Vd2B5XMaBU0RuAP6Hpr9eBW2D5FylVI2Kzq104BRti/fFwByl1L36Zx2AYDStoY76Z02A70XEpJSaZXf+Z2h9CWPRguw7Sqn1+pb4a0Wkr1JqZUVlMYnwfP8oHpija25PKkNzu38UE78sQ3N7Vvma28/dFcWE6d+TkpXDvEeHs35fAoftNKufuyuKSTMWk5JZav/PgkLGTVtI3p/5WEwm5j50DxvjjhCd5KiX/vCbw5ky9D3STp7hw9VT+H3VHpIOJjukG/fCEHas21vyWVFhEdNfWEB8dBJVA3z539rn2LVhv825ZWrD2/uoWBveiY9GzSnfR97UPXcFd7TbTSK8eFsUo+cvIiUnh+9HjmBtghNd9V49Gbvwe5JzSnXVgwMCGHVtR/rMmsOFggI+HHAH/VtG8v3efTb2nfo/zdZ+if+tdNsBnu3Tg43xiTy+YDk+JhN+PrZdcCYRXrnpNkasnE/K2RyWDRrJmqQEDmWW7vD+ecw2Po/RgnXPRk0Zf00nsi6cx9dkZuof64lNT8Xfx4fld45i04mjNue6zWUcOIGP0CQ4FgCdgVFoApMVcjF9nLcC+VZb1aOU2o2tdCdKqcPAv4DH7M7/AE2kbZRSqkgpdU4ptV4/509gJ5oQU4W0C9N1z601t53onq/Zf3Ga220bhpCUlsnxjCwKCotYuSeOqDa29vt1jGRNbDwpmY728/7MB8BiNmExm+zFKwGIvLYxyUdSSTmapumqL97GjX3bO6QbOCGKzT/sJCutdFvxjFNZxEcnaXnlXuDYwWRqWwm/gZU2fLGPYuPoGVmGNvzF6JJ7WffcFdzRbm8fquuqZ+m66gcO0KuZbfkHtmrJT4cOkZzjqKtuMZnws1g0PSIfH1LP2io2lPhf121fsTeOnk6e0dX7HXXb/atUoXN4Axbu0jTP84uKyLlgu7KhQ91QErPPcCxHs//D4QPcFl6G4ikwqElLliZo+kipeWeJTU8F4Gx+PvGZ6QT7B7jmOBe5zKcjoZSKB8xKqUK9gtfDlfMupql+DbDDxbQ7gZZW74cD+4EeSimHZQ8iUhNN2vMDV4zXq26nuZ3tRHO7jqaJPWesrim9ZRdL91hpbo8ajALmbYthwQ5bkbR6NRw1vduWoVk9a9JQqvlW4etNu1i2U7NvEmH+48NpVLsm3/62h5hjtrVNgNqhNTl9srT2kXYyk8hOtrIXtUNqctMdHZl8539p0THCqS+CG9amadtGxO2wleQIDnSiDe9Ml9xkYu4YK234Yh8pO214ex95Wffc2wQHBJQERNB11UNDbdJEBAXhYzbx9bC78a9Shdk7d7Jk735O5ebyxbbt/DppPBcKCtiYeJRNibaaRsHVnfi/gXP/zB1t5f/o/TQMqkHGuTxeH9SbyOC67E0+xWurNpCXX/rVCakWQPLZUvvJZ3PoWNe2/MX4mS10D2vM81vWOhwLCwikTe1gdqcmOznTDS7vGuc5vZW7W0TeApK5BGJtrmC/5qw4kF4H2KiQiYgFTdLzQ722WrFxFzWx29QPZuxsXXN7gq57np7J8C+sNLdHD+FImq3mtqua3q0bBDN+mmb/60c0zeqjaZkUKcXQ97+mup8vH4weQLPg2g4iWU7E7Ryu4cFXhzHzpUUOuurF+Pn78tzsB/n82Xmcy624yWtv31Lsozm6jx6w8tHMeaTqPirRhr8IH1207rmXcaX8FpOJa4KDGTl/AX4WCwtG3Mfuk8lknMujV7Om3DptBtkXLvC/gf0Z1LoVS/ftLzcDZ/bbhAYzdu5CfC2l/reYTLQOrcfUleuJPpHClD49mNCtCx+ut+ord2rfOb3Cm7I99QRZF2yfkWoWHz7rNYiXf19Hbv6fZZx9cVzma9VHorW6HwGeQJMfHuLKiRcTOPcCQ11M2xGthlnMAeAFYL6I3K6U2mt1bBpwSCn1flnGrHXVQ+64m1MNQ201t13RPS9Lc3u/o+b2qSxHTe/TFWhW7zh8gsjQuhxNyyxJk3P+AtsSjtMtMsIhcKadPEPd+rVK3tepX5OMlEybNM07hPPM9AmArqve6xoKC4rYsnI3ZouZ52c9yPqFf7D5x10OPrsobfijJ4gM1nyUau2jYm14ax95Wffc26Tk5hJa3V5XPdc2TU4OZ/JsddVb1a0LwPGsbDLytKb1T4cOcW39UJvAeVH+T9L8s+PoCU5l5xB9Qmup/LTvEBO6drY992wuof6l9kP9q3PqnG35ixnQpBXLEmxljC1i4rNeg1gSv59ViYfKd9bFcBnXOIv11YHzwEuVOfdi+jjXAb4iMqH4AxHpAtis8RSRCOAdtFEr68L+BjwI/CgijfS0U4EaaCPzZWKjq36trqteqwLN7f0uam43ddTcjj2eQiNds9piNtG3fSTr99naX78vgWutNKvbNgrhcGoGQf5Vqe6nqR77Wszc0LwRR6wGTIqJ25VI/Sb1CG5UW9NVv6sLv6/aY5NmTKcpjL5We236YScf/d83bFm5G4AnPhhF0sFkvv/UuTxtzEk7XfJrnGjDH9C14a19lOaaNry3dc+9TXRyCuFBNUt11Vu2ZG28bfnXxCfQOcxKVz00hPiMDE7m5NChfgh+Fq3+cVOjRjaDSmDnH5OJfm2c+D9O979uv10DzT9pZ8+RnJVL49pBANzYuKHNoBLAntPJNA4MomFADXxMJgY0acnqo/EO11ndpwo3hITxs92xt27pQ3xmOl/Ebr84B1bA5dzHKSJdRWS1iBwUkcPFL1fOrXSNUymlROQu4H0RmYwWrRPRgl5TEdlF6XSk/1mPqFvZWC4idYFVItIXeBatNrpTb7p+pJT6oqKyFBYppv64ji9GWWlun05nWGddU3q7pnu+6VAiSx7SNbd3Wmlu31eB5naR4rWl6/h8/GDMJmHxtr0knErnnhs0+/N/j+ZwagabDyby/ROaZvWirZpmdYuQOrw67HbMJkFE+Cn6IL/st+1/BG1k/JPJ3/Lqgn9iMpn4+ZvNHI1Lpt+YWwBYMfvXMq+/zfXN6DXsRo7sPc7H658HYPari9m2JtbmGl5ZsY4ZI3Vt+F3OfbQx3k4bXveRjTZ8jHMfeVP33BXc0W4vVIqX1qxn1tAhmE3CgphYDqWnc197XVd9TzQJGRn8eiSRH8eMokgp5sfElOiqrzp4iKWj7qewqIh9qanMi45xsP/KinXMuF/3/27d/510/+zQ/Z9g5//Tmv2pK9fz9uC++JhNHDuTxZSlPzvYf+G3NcztO1SbTnUwhkOZ6YxoqQ0wfn1A+xG+PaI5v55IJK8gv+TczsENGNK8DfszTrPirtEAvL3tV9Yfd3xOL5rLuMYJzEBrou9AmwrpMlesrnqrF7yrq+7tbeXCZu6vOJEbJD7Syqv2vb2tH1z528pZzl3Z28odHf9vty+g7b9c/57GvOu+jntlEJE/lFLXX8y5xsohAwMDr3E5rxwC1ovI28D3WO38rpSqcBWAETgNDAy8xmUeOItrm9YjbgqIquhEI3AaGBh4j8s4cCqlbr3Yc43AaWBg4D08GDhFpA/a4hgz8IVS6g0naXqg7aPhA6Qppbo7SXO/UuorEfmX0yIr9a6zz60xAqeBgYHX8FRTXd8r82PgNjT9820iskwptc8qTU3gE6CPUipJROqVYa54dZCzhbouldgInAYGBt7DczXO64D44lWFIvId2s7t+6zSDAe+17eHQymVWoatH/XjDpPeRWSAK4UxNjI2MDDwGpXZyFhEJorIdqvXRCtTDbDdSOi4/pk1LYAgEdkgIjtEZFQZxVqrL9CxLavIWLRmfoUYNU4DAwOvUZmmulJqGtrSa6emnJ1i994CdAJ6AlWBLSLyu1LqoF26J4DVItJPKXUIQJfQGA449Ik644oNnHmh3p2BbT7n3cq41Kxwr1S3yA/07nCm6YL35yp7e4L6wZGfVZzIDZp9693y+yVfAV9fzz2Gx9E24SgmDDjpJE2aUuoscFZEfgXaAzaBUym1QkQuACtF5E5gPNqm7Lcopc64UhijqW5gYOA9PKdyuQ1oLiKN9a3g7gWW2aVZCtwsIhYRqYY2T9PpEj2l1FpgDLABaAL0dDVowhVc4zQwMLj88dSoulKqQEQeAX5Cm440Uym1V0Qe1I9/ppTaLyKrgGigCG3KUqy9LRHJQQvVAviiNe1TdXUKpZQKrKg8RuA0MDDwHh7sMVJKrQBW2H32md37t6lAqVIpdZF6AaUYgdPAwMBrSBmbb1/pGIHTwMDAa1zma9UvGiNwGhgYeA8jcLqOiOQqpRzk8vQJqf+H1ikraB2874jIbGC5UmqhiNQC1qJpDzlsgmxP94YRvNAtCrMI8/bH8OkuW03piR26cGdzbW9Ks8lEs5q1uHb2J2RdOM9bPW4nKqIp6XnnuH3ebKf2b4mI4PlbNc3tebFlaG6HhfHcrT2wFGtuz9c0t8d07Miwdm0BmBcTw+ydjtIWAJ1uieTB5wZiMptYNX8rCz5f7zRdi7ZhvLvwUd54/Cs2rdI2zJ294RnOnb1AUaGisLCQx+/60Pk19OiB2WRiXkwMn28r4xp66Ndw3u4a2lpdwy7Ha7i5STjP9dLsz98dy7TfneiGNwrjuV669nxeHiO+XkDjWkF8cGe/kjQNa9bgg41bmL3NNg9v655XhNu67eERvNBD01WfHxvDZ2X4//nuPbCYtfLft8DK/9e0RUTz/yxn/m8azrO3a7r2C3bFMv0357rtU3p3x2I2c+ZcHiPnWum2D7iNFnVro1BMWbaa3Sc8J9hm1DjdRN/p/Z9Ab6XUSRHxQxNLsk5TA23UbJorQdMkwss39+L+HxZomtJD7md1YgLxZ0p1fabt3sa03bqmdHgTHmjfuUSsamHcXubE7uLdnv3KtP9izyhGL9Q0txePGMHa+ATiM5xobi/SNLdrV9U0sVvUrs2wdm256+tvyC8sZNaQwWw4fITEzEzbPEzCwy/exZTR00hLyeKD7x/jj7V7SYpPdUg39v/uYOfGOIdyTr7/M7LPnCv7GqKiGL3I6hoSnFxDz56M/d7JNbRty13f6NcweDAbjtheg0mEF3tHMea770nJzmHRmOGsO+REl/z2KMbNs9UNP5JxhoEzvy6xs+mRCfwcZyvt4G3dc1dwV7f9pagoRn2vlX/J8BGsceL/l6N6Mnbx95y09/81bbnrW83/swcPZr0T/7/QJ4qxX2u67QvHD2fdQUfd9v/0jWL8N05022/XddsXOtdtd5urNHBeynmczwBPKaVOAiilziulplsdDwBWAt8opVza+rtDvRCOZllpSscfoHdE0zLTD2zeimWHSqd1bU0+7qD4Z037kBCOZpZqbi+Pc6K53bIlP1tpbqfrwl1Na9diV3Iy5wsKKFSKrceP07u5o951i/aNOHk0jZRjGZqu+o+7uaFXG8eyj+rK5p9iyEw/63CsPByu4cABejV18RpqObmGZrbX0K6+rkuu64b/uD+Oni1s7Q9oE8nPcY664dbcFNGQpMwsTlpJ6YL3dc9dwS3ddifP0G12/h8U2ZKf4g9x0on/d1v5/49y/F+s2/7j3jh6Rtr5/5pIVh9wrtvepVEDFu4uW7fdXSqz5PJK4lIGzor02N8FNiml3nPVYLB/dU7aaErnEuzv/An3s1jo3jCClYddV/JzprkdHGBrv3FQEIF+fnx9z90svX8Ed7XWugUOpqVzXYMwavr5aXk3bmyjplhMneBATidnlrxPS8midrDtqqLawYHc1PsaVnyzBXuUgldnT+DDJY/Td5ijCoDDNeTmEly9jGu4+26WjhjBXa30a0hP57qw8q8hJMBONzwnl+Dqtr00jWsFEejny1fDh7J4zHDuvMZR1uOOVpEs33fA4XNX7kFEUBA1/Pz4etjdLBk5gjvbaPatdc+3PDSJnAsXHHTPvU2IXfmTc50/QzV8/fhm6N0sHV62/3tENCbU7tzgwABSrPx/KtvR/xG1Nf/PHTmUReOHM6idZr9Et31gbxZPGMHU/r2o6uPZRujlLNbmDpfT4NA6YJCIvFPOriY2uKKJXUyv8KZsTzlZbg3Twb7TVYWOmuHX1Atm5IIF+PlYWHjffexKTiYhI4PPt21jztAhnMvP58Dp0xQUOflZdS4Ob/N20nMDmfnWCqe66k8O+5iM1Gxq1PLntTkTOXY4ldhtpWJbzi/ByTUE69dgcXINQ8q5Bhe17a8JCWbUtwvxs1iYP+pedp9MJjEjEwAfk4mo5k15Z8NmB1te1z3/C3Dqn+Bg7l+olX/Rvfex28r/cwfr/k87TaGy9b9T/zix3yY0mDFfaf7/bqytbvsrq9YTfTKFZ3v3YGLXLnywwfEH2o2L9Zyty4hLGTj3oi3AX1fG8e+ATcAKEblVKZVjn8BaV73W8CGkBIdS30ZTOoDUs2VoSjdrybL4yn1hUnIcNbdP2Wtu5+qa2wUF5BUUsPW4prmdeCaTBbGxLIjVmkFPdutKSo5j2dJSsqgbWrPkfZ2QGqSnZtukaX5NQya/PwKAwCB/uvRoqemqr9lLhp42K+Msv62OJbJdI5vA6aAbHuDkGnLsruGEfg2ZdtfQtSspDufa6YZXDyA1t3zd8G3HTtCyXt2SwHlL0wj2nUol/ZxjP623dc+9jX35QwMcn1GHZ+jECVrWrcuRzEzm741l/l7N/091dXyGUrJzCbHyf3Bgxf7fnnSClsF12Z50gpTsHKJParrtq/YfYqKdbru7XGk1SVe5lE3114G3RCQEQER8ReQx6wRKqffRRtQX6+tRsTteoqtevdsN7ElNIaJmEGHVdU3pZi1ZnZjgkHH1KlW4vn4Yq484HiuP6JQUImrWJCxQ08TuH9mStQmOmttdGpRqYncIDSFBH7go7uQPrV6d25s354cDjk3Rg9HHqB9eh+CwIE1X/Y4O/L7WdvBi7K2vM6aH9tq0KoaP//M9W9bsxbeqD1X9de32qj5c260FiYdSyr+Gli1Ze9juGhLsriEkhIQM164h5mQKEUFBpbrkrSJZe8hON/xQAp0bWumS1w+xGbzo37oly/c6+ga8r3vubaJTUogIsn2G1tj5f7Wd/9s78X/96tW5vVlzlsU58X+tIMJ03fY72kSy7qCd/w8m0NlOtz0hTdNtT8m2020/7WH/eG6t+mWFt2qc1UTkuNX7d5VS74pIMLCmeE0oMNP+RKXU0yIyC/hSRO5TSpXZbVyoFC9sXMvc/kO0qSoHYjh0Jp0RrXVN6X26pnTj5mw8dtRGUxrgw153cEP9hgT5VWXLyEm8t20z8w/E2th/ad16Zg8ZgskkLIzVNbfb6Zrb0brmdmIiP44ehVKKeTExHEzXRvU/HjiAmlWrUlBYxItr15LtpOO9qLCIT19awtRZEzCbTfy8YCtJh07R774bAFjx7e9lOjmoTnWe/0TTwzZbTGxYtosdv9qOuhcqxUvr9WuQCq5hlJNrGKBfQ5HzayhUipdWr2PmvYMxi7Awei/xaenc11G3vyuahPQMNh5OZPl4TTd8wZ7YEl1yP4uFro0b8fyqNWXeY2/qnruCu7rtL65bz5zBmv8X7NXKP1z3/ze6/39JTGTFSL38saX+/2TAAGr6af7/zzrn/n951Tq+GK75f9EeTbf93ms1+9/tLNVtXzZJ123fVarb/sqq9bxzp67bnpnFM8tsddvd5Uob9HGVK1ZXPeLTd7yrq+7lbeVafOq5uXLOOPhQqFftX4pt5ZTFu8/mlb6tnE+ud+9B3PPu65x3vfu/Lt/EzQuevKS66u5wOQ0OGRgYXG1coRWzijACp4GBgde4WgeHjMBpYGDgPYzAaWBgYFA5jBqngYGBQSUx9uM0MDAwqCxXZ9w0AqeBgYH3MJrqBgYGBpXFaKr/vVA+3r3hBYcTvWq/sFqwV+37ppm9ah+gyNe786G9PUE9/j7vTrBv9+4/vGrfI1ydcdMInAYGBt7DaKobGBgYVBJjVN3AwMCgslydcdMInAYGBt5DjLXqBgYGBpXkKt1WzgicBgYGXsOocbqAiCjgK6XUSP29BUgG/lBK9ReRMcDbwAmr00YDc/T/GwFZ+itNKdWrojy9ratuzy3hEbxwy62YRJi/N5bPdtjmN+HazgyKtMovqBadp39artZR59s78ND7YzGZTaycsZZ5by6xOX7jwM6MefleVJGisKCQT56Yzd7N2k7gdz3Wj77jeyIirPhiDYs/WOHcR12tfLTbzkftnfhojpWPwnUfzXfuo27Nw3mmv6arvnBbLF/86qjr3aVxGM/cUarrPXr6gpJjJhEWPDycU9m5PDR3qaP9puE820fTJV+4M5bpm53rhj/TR9NtzzyXx8g5VrrhA2+jeb3aKKV4dtlqdh+33QvV27rnFeGubnvXFuFMHqTpzi/aGsuMDU783ySMpwfquvbn8hj72QKqWMzMefAeqljMmE0mVscc4uPVHtQbAo/2cYpIH+ADwAx8oZR6w+54D2ApUKwd871S6mXPlaAUT9c4zwLXiEhVpVQecBu2QRJgnlLqEbvPOgCIyGxguVJqoSuZeVtX3Vl+L/XoyajFC0nJzWHJsBGsORJvo5E9fed2pu/cDkBU4yaM69Cp3KBpMpl49KMHeLr3K6Qdz+Cjra+zZdl2kvaXbqC/a20sW5Y9BUDjto14bt6/eKD1P4lo05C+43vy6PXPkP9nAa+vfJatP+7kRHypfIZJhJe79eL+5bqPBt/P6qN2PtqzjWl7rHzUzomPosrWnn9uYBTjZ2q63vMeGs76AwkkpFrpevv58sKgKCbOWkxyVg61/Kva2Bh5U0cSTmcQ4OuglqLphveLYtyXmv0FE4azLs5RN/yFO6KY8JUT3fA+um74Aue64d7WPXcFd3Xbn7srignTvyclK4d5jw5n/b4EDtv5/7m7opg0YzEpmaX+/7OgkHHTFpL3Zz4Wk4m5D93DxrgjRCellJVdpfHUqLqImIGP0WLKcWCbiCxTSu2zS7pRKdXfI5mWgze2OV8JFAsL3Ad864U8AO/rqtvTPljXyM7WNbIPxXFbE0et9JL8WrTkh4POtXSKibyuGSfjU0g5kkpBfgEb5m3mpkG2glnnz5aW0c/fr2Rz2EatGnDgj0NcyPuTosIion/dR9e7rrM5t0O9EI5mW/kooQIfNWtlI2pXkY/ahoWQlJ7J8TNZ5BcWsTI6jqhWtvbvaB/J6r3xJGfput5nS3XPgwMD6N6yMYu2xeKMdg1CSMoo1Q1fsTeOni1t7fdvG8nq/c51wzuHN2DhrrJ1w72te+4K7ui2t20YQlJaJsczsigoLGLlnjii2tiWv1/HSNbExpOS6ej/vD81ORmL2YTFbPL8vsNKuf4qn+uAeKXUYaXUn2jijoM8XFqX8Ubg/A64V0T8gHbAH3bHh4nIbqtXVUcTruFtXXV7QgICSM611sjOIdg/wGlaP4uFW8IjWBVffn51GtTi9PHS2l/a8QzqNKjtkK7rndcxY9/7TF3+DO888CkAibHHaHtzK6rXCsC3ahWu63stdRvWsTkv2L86J3PtdL09qT1fI4CULCvd86xc6gXa6XrXCSKwqi+zxw9lwcPDGdixVFd9cv8evLNyI0VlfHGCq9vptpelG17Vl7mjh7JoghPd8EG9+X7iCF4Z4Kgb7m3dc29Tz87/p8rx/6xJQ5n32HAGXlvqf5MIC/85gl9fmMSWg0nEHPNcbRM0zSGXXyITRWS71WuilakGwDGr98f1z+y5UUT2iMhKEWnj0YuxwuODQ0qpaBGJQKttOna4OW+qXxTe1lV3Jceyfid7Nm7KjuSK83Muq+5odfOSrWxespW2N7dizMvDeLr3KyQdOMG8t5by5s/Pk5d7nsPRiRQWFFZQYuf24SK1551+6kTXu34w42YsxNfHwrcP3suepGQi6gSRkXuOfSdT6dI4zOUMnOmqtwkNZuzchfhaLHz3gK1u+NSV64k+kcKUPj2Y0K0LH64vvx/Pk7rn3saV74DZZKJ1g2DGT9P8//Ujmv+PpmVSpBRD3/+a6n6+fDB6AM2CaxN/Kt2J1YukElVYpdQ0YFoZh51fqi07gXClVK6I9AOWAM1dLkAl8Nao+jLgHaAH4Fh9ukguta66PSm5OTY1itCA6mXm179FJD/Eld9MBzh9PIO6YaUuqhNWi/STZUu0xmzcT2jTEAJrVyc7PYdVM9exaqYmVT/u1ftsaq8AKWdzqB9gp+t9zoPa81m5hNSw0j2vEUBqtq2u96msXDKtdb0TT9AytC6t69fj1lZNuCUyAl+LBX/fKrx5dx+eXrCq9NxsO932wABScyrWDY8MqcuOoyc4lZ1D9AmtFvXTvkNMsNMN97buubc5Zef/4BoBnK7A/zsOnyAytC5H0zJL0uScv8C2hON0i4zwcOD0mKXjQEOr92HASZuslMq2+n+FiHwiInWUUmkeK4WOt6QcZwIvK6Uqr8VaDpdaV92e6FN2GuXNI1lzuIz8GoSx+nB8hTbjtsXToHkoIRH1sPhY6DGsK1uWbbdJU79pSMn/zTo2xqeKhex0rXlWs24gAHUb1qHrXdez/tvNNufuSU0hooaVj5qW46PQMKfHyiP2RArhdYJoEBSIj9lE33aRrN9vq+u9bn8CnSIaYDYJfj4W2jUMIeF0Bu/9vJmoN7/gtrdn8uR3K/jj8DGboAkQcyKF8NpBNNB1w/u1iWRdnJ1ueFwCnex0ww+f1nTDk7PsdMPTbH+UvK177m1ij6fQSPe/xWyib/tI1u+zLf/6fQlca+X/to1COJyaQZB/Var7+QLgazFzQ/NGHPGwrroUFbn8qoBtQHMRaSwiVYB70SpopXmJhOjS44jIdWjxzYO/AqV4pcaplDqONm3AGcNEpJvV+4eUUr9dTD7e1lV3lt+LG9YxZ9AQTCaTppGdkc7wa3SN7NhoAHo3bc7GpKPkFRRUeA1FhUV89OgMXl/1LCaziZ9mrefovuP0n3QbAMs/X83NQ66n18juFOYXciHvT6be+17J+S8sfIrA2tUpyC/go0e+IDfTtrZRqBQvbFrL3Dt0H8WV46PjTnzU08pH90/ive122vNFileXrWP62MGYRFi8Yy/xqekMu07zybyt0Rw+ncGmg4kseUzX9d4W63KtplApXlmxjhn3a/YX7dZ0w4d10u3vKNUNX/oP3f7OUt3wqSvX8/ZgXTf8TBZTlv7sYN+buueu4JZue5HitaXr+Hz8YMwmYfG2vSScSueeG7Tyz/89msOpGWw+mMj3T2j+WbRV83+LkDq8Oux2zCZBRPgp+iC/7D9SQY6VxEM9F0qpAhF5BPgJbTrSTKXUXhF5UD/+GTAU+IeIFAB5wL3KS/rnhq56GZjyvbulWdN//u5V+4c+ud6r9qslXYpt5bxr/89A7z77V/q2crFvua+rfnuXl1x28k/b/mPoqhsYGBgYuuoGBgYGlcUInAYGBgaVxNjkw8DAwKByuDBafkViBE4DAwPvYTTVDQwMDCqJETgNDAwMKsnV2VI3AqeBgYH3MDYyvsyodsK7E7Cl4kU/bmGpV9er9v1SvD9B3dvkNfDuTfBL9u7j7+0J6tH/+tSr9uEJ900YgdPAwMCgkhRenW11I3AaGBh4D6PGaWBgYFBJjMBpYGBgUEk8pDl0uWEETgMDA+9xiXfEv1QYgdPAwMB7GINDBgYGBpXE6ON0DRGZAXRGE1c6CIzRxZNqAF8BjfR831FKzXI3v27Nw3mmXw/MJhMLd8Tyxa/bHNJ0aRzGM/26YzGZOXMuj9EzFpQcM4mw4B/DOZWdy0NfLXW03yKcyQN6YBYTi7bF8sUvTuw3CWNy/+5YzGbOnM1jzDRb+/MfHc6prFwenuNoH6DTra158JW7MZmFVV//xoKPfnaarkWHcN798d+8MWkGm5bvwsfXwttL/oVPFQtmi4lNy3fx1ds/Ol5Ds3Ce7dMDk8nEwp2xTN/keA3XRYTxTB/NR5nn8hg5W7uGtf8cx9kL+RSqIgqLFEOnfeNov3k4z/TX78G2cu7BHbqPzuUxerrdPXhYvwdzHX3UPSyC/9zQE7MI38VF82n0Vpvjk9p2YVCz1gBYRGhWszYdv/6YahYf3uvej7rV/ClSim8O7GHW3p0O9m9uGs6zt/fAJCYW7Ipl+m9O/BMexpTepeUfOVcrf3VfX6YOuI0WdWujUExZtprdJ5Jtzu3aIpzJg/RnaGssMzY4f4aeHlj6jI79bAFVLGbmPHgPVSxmzCYTq2MO8fHq8oXmnPHsG7BhC9QKgh9mV/p09zACp8s8USyaJCLvAo8AbwAPA/uUUgNEpC4QJyJf6xrJF4VJhOcGRDF+1vecys5h3oPDWb8/gQQr3ZTqfr68MCCKiXMWk5yVQy1/WzXikTd2JOF0BgG+VZzaf3ZQFBNmfM+prBzmPaLbT7W1//ygKCbNLMN+144cTs3A34l9AJNJePj1YUy550PSkjP5YNXT/PFzNEkHUxzSjX3uTnZu2FfyWf6FAiYP+YDz5y5gtph4Z9mTbF+7lwM7E22u4YV+UYz7UvPRggnDWRfnxEd3RDHhK+fXMGrOAjLPOVe+NInw3MAoxs/U78FDw1l/wNFHLwyKYuKsMnx0U/n34JWbbmPEyvmknM1h2aCRrElK4FBmqfTG5zHb+DxGC0Y9GzVl/DWdyLpwHl+Tmal/rCc2PRV/Hx+W3zmKTSeO2pxrEuGFPlGM/Vor/8Lxw1l3MMFGm6i6ry//6RvF+G8Wk5ydQ61qpeV/9vYebIxP5PGFy/ExmfDz8XH0z11RTJj+PSlZOcx7dDjr9yVw2M4/z90VxaQZi0nJLPXPnwWFjJu2kLw/87GYTMx96B42xh0hOqlyEr539oXhg2Hya5U6zTNcpYHzosXaRCRCRA6IyBwRiRaRhSJSzSpoClCVUp07BVTXPw8AMoACPe0SEdkhInvttJTLpW1YCEnpmRw/k0V+YRErY+KIatXUJs0d7SJZvS+eZF17OuNsXsmx4MAAukc2ZtEO5zpDbRuGcCw9k+MZmv0Ve+K4tbWd/Q6RrNlbtv1bWjZm0baydYxadIzg5JHTpCSlU5BfyC9LdnDD7e0d0g18oAebf9xFZlqOzefnz2kaNxYfMxaL2eE5bdcghKSMUh+tiI2jZ6TtNfRvG8nq/c6voSIc7kG0k3vQPpLV5fioezk+6lA3lMTsMxzLySK/qIgfDh/gtvBmZZZnUJOWLE3QBNNS884Sm54KwNn8fOIz0wn2t9Ucb1c/hKNnMjmeqdn/ca+jfwZcE8nqA/El+u4Z57Ty+1epQpdGDVi4Wyt7flEROXaaQ20bhpCUpj1DBYVFrNwTR1QbW/v9OkayJjaelExH/+T9qWlAWcwmLGbTRcWhLu2h5qWVey+lqMj11xWEuyqXkcA0pVQ7IBt4CEBEZgEpQEvgf3raj4BWaJKeMcDjSpUMuY1TSnVCa+I/JiIuSQoHBwaQklUaSFKyc6kXaPvFiKgTRKCfL7MfGMqCfwxnYIdWJccm9+vBOz9tpKiMpzE4MKDkyw6azGqwM/tVfZk1cSjzHxnOwGut7A/owX9Xlm0foE5oTU6fPFPyPi35DLVDa9ikqR1Sg5v6dWDFnI0O55tMwkdrnuHb2DfZ9esB4nYlOl5Dtq2PHK6htuajuWOGsmjicAa1L70GpWDGyMEsmjicezq1dcg/uIbdPcgq4x5U9WX2+KEseHg4Azta+ah/D94px0ch1QJIPltqP/lsDiHVApym9TNb6B7WmJWJBx2OhQUE0qZ2MLtTbZvRwYEBpFj551R2LsHVy/DPyKEsGj+cQe208jcMqkHGuTxeH9ibxRNGMLV/L6r62Dbi6tn551Q5/pk1aSjzHrN9hkwiLPznCH59YRJbDiYRc6xytc2/HKVcf11BuNtUP6aUKtaj/Qp4DK3vcqyImNGC5jBgFnA7sBuIApoCq0Vko15DfUxE7tLtNEQTkXeQQbTWVQ/pezfSxonWvN0NMJtMtGkQzLiZC/H1sfDtxHvZcyyZiDpBZJw9x76TqXRpHOb86pxIRykc7bduEMwD0zX73zx0L3uSdPu559h3IpUuTcqwX0Ye9lrUk165m5mvLKbIyZy4oiLFI71exz+wKs/PmkR4y1COHkh2SGdj3s5HFpOJNvWDGTtHu4bvHriXPceTSUzPZPjMeaTmnKWWf1VmjhzC4bQMth89UW7x7S/ArNsfN0O/Bw/a+ajS98A5vcKbsj31BFkXbLsVqll8+KzXIF7+fR25+bY9Q07d7+wZCg1mzFcL8bNY+G6s5h+LyUTr0Hq8smo90SdTeLZ3DyZ27cIHG0r7IZ3fXufP0Phpmn++fkTzz9G0TIqUYuj7X1Pdz5cPRg+gWXBtz+qeextjVN0p9s9wyXulVKGIzAP+jRY4xwJv6HKd8SJyBGgpItWAXsCNSqlzIrIB8HOamVLTgGkArZ97T6Vk5xJSo7QNEhIYQGqOrTzuqexcMs/lkZdfQF5+AduPnqBlSF1a16/HrS2bcEuLCHwtFvx9q/Dm0D48vbBU1/tUVi6hVvaDawSQmm1nPyuXM9b2j5wgMlSz36N1E25uWWr/jWF9mDzPVjc87WQmdesHlbyvExpEekqWTZrm7Rsx+fMHAAis5U+XntdQWFDEllV7StKczc4j+reDdL61jU3gPJWdS2hg+T5Kyba7hqMniAyuS2J6ZknajLN5rDkQT7sGITaBMyXL7h6U4SObe5B4gpa6j25t1YRbIq3uwd19bLTVU87mEupfaj/UvzqnzuXijAFNWrEswVbX3CImPus1iCXx+1mVeMjhnJTsXEKs/BMcGEBqbgX+STpBy+C6bE86QUp2DtEntVrgqv2HmNi1s8O1h9g9Q6cr8M+Ow9ozdDQtsyRNzvkLbEs4TrfIiCsqcKqrdB6nu031RiJyo/7/fcAmEWkGJX2cA4DiJzkJ6KkfC0Zr5h8GagBn9KDZErjB1cxjT6QQXjuIBkGB+JhN9G0byfoDh23SrNufQKfwBphNgp+PhXZhISSczuC91ZuJevsLbvvvTJ6cv4I/Dh+zCZoAscdTaGRlv1/7SNbvs7O/L4FOEVb2G4ZwODWD93/aTM/Xv6D3mzN56tsV/JFwzCFoAhzcfZT6TeoR3Kg2Fh8z3e/sxO8/R9ukGXvdC4zp8jxjujzPpuW7+Hjyd2xZtYcatQPwD9QGEqr4+dDx5pYci7dtysWc1H1UU7+GayJZF2d7DWsPJNCpka2PDqdlUNXHgn8VbbCjqo+Frk3DOZia5ngP6ljdg3aRrN/v5B7Y+SjhdAbv/byZqDe/4La3Z/Lkd/o9WGDroz2nk2kcGETDgBr4mEwMaNKS1UfjHfxY3acKN4SE8bPdsbdu6UN8ZjpfxG53OKfYPxG1ggirGYiPycQdbSJZd9DOPwcT6NyoAWYR/CwW2jUIISEtg7Sz50jJzqVxbe2H78bGDW0G3UB/hnT/WMwm+jp5htbvS+BaK/+0baQ9Q0H+Vanup2kk+1rM3NC8EUfs7F/2FCnXX1cQ7tY49wOjReRz4BDwKVoTPBCtlbIHKN5b6xVgtojE6MeeVkqlicgq4EERiQbiAJcFxwuLFK8uX8f00YMxmYTFO/YSn5rOsC7tAJi3LZrDpzPYdCiRJY+MpEgpFm6PJT7VtV/swiLFq8vWMW2cbn/7XhJS07nnes3+/D90+wcTWfy4Zn/RtthK1QiKCov4dMo8pn77CGaziZ+/3UJSXDL9Rt0MwIq5jv2axQTVq8FTH47CZDYhJmHjsh1sXW07yFJYpHhlxTpmjByMSYRFu/YSfzqdYZ11H22P5nBaBhvjE1n6D91HO2M5lJpOWFANPho2ANCak8tjDrAp/qhTH00fq9kvuQfX6fa3lvpoyWO6/Ur4qFApXvhtDXP7DsUsJuYfjOFQZjojWmoDaF8f0Grdt0c059cTieQV5Jec2zm4AUOat2F/xmlW3DUagLe3/cr640ds7L+8ah1fDB+MWYRFezT/3HutVv7vdur+SUhk2SS9/LtiOXRaK/8rq9bzzp198TGbOJaZxTPLbKeSFRYpXlu6js/HD8ZsEhZv20vCqXTuuUF/hn6P5nBqBpsPJvL9E/oztFXzT4uQOrw67HbMJkFE+Cn6IL/sP0JlefIl2LobMrOgx1B4ZCwMvaPSZi6OK6zv0lXEvj/H5RNFIoDlSqlrPFoiF2n93HtevSPe3o+z0WzHZqMnOfKgk/5fD2K66ElkrnO2yZW9H6dPTsVp3MHb+3GaQg4678KuBH1qjHP5e7oqa6bb+V0qjJVDBgYG3uMqrXFedB+nUirxr6ptGhgYXBmowkKXXxUhIn1EJE5E4kVkcjnpuohIoYgM9ejFWGHUOA0MDLyHhwZ99OmNHwO3AceBbSKyTCm1z0m6N4GfPJJxGbg7qm5gYGBQNqrI9Vf5XAfEK6UO68u0vwMGOUn3KLAISPXshdhiBE4DAwOvoYqUy68KaAAcs3p/XP+sBBFpANwFfObRi3CCETgNDAy8RyVqnCIyUUS2W72s961wYY0d76NNc6y4w9RNjD5OAwMDr+HKoE9JWquVgU44jrYcu5gwtH0vrOkMfKetvaEO0E9ECpRSS1wuhKsopf4WL2CiYf/qtX81XMOVbt/LZbegrTRsDFRBW1zTppz0s4Gh3irP36mp7vJ2dYb9K9L+pcjDsP8XoZQqQNvb9ye0FYvzlVJ7ReRBEXnwUpfHaKobGBhcESilVgAr7D5zOhCklBrjzbL8nWqcBgYGBh7h7xQ4y+p0NuxfHfYvRR6GfQPAjU0+DAwMDP6u/J1qnAYGBgYewQicBgYGBpXECJwGBgYGleRvFzhFJPyvLoOBgcGVzVUbOEXkRhEZKiL19PftROQbYNNfXDSXERE/EXlYRD4RkZnFLy/mFyki0z1gZ7DV/0HlpXUjj9tF5AFdicD683Eesj+6jM99RORbD9j/ueJUnkFEgkTkOhG5pfh1qfK+WrkqA6eIvA3MBIYAP4rIf4DVwB9o0sPu2m8oIt+JyEYRmSIiPlbHlrhr34ovgRA0aeVf0Nbnui3IoP+I/CwisSIyVUSCRWQRsBbYV9H5LvCc1f9rPWDPBhF5DXgWaAusFZFHrQ4/4qFsHrfbZAIR8UebgH3OA/bresBGhYjIeOBXtBU3L+l/X7wUeV/NXK0rh+4AOiqlzus1npNAO6WUp4R+ZqLt+fc78ADwi4gMUEqlA57sCmimlLpbRAYppeboNWZPbNA6HU1YbwvQB9gJfAOMUEqdL+9EF5Ey/vcUA9Dub4GIvAh8IyJNlFJPeDC/XsAqEfFTSn0oInXRguZapVSZu49XghrWNXN7lFLfeyAPgMeBLsDvSqlbdSXZlzxk+2/L1Ro484oDgFLqjIjEeTBoAtS1Wur1qIjcD/wqIgNx3OrKHYolGzNF5BogBYjwgF1fpdRs/f84EXkKmKw8tx1XVRHpiNai8dP/LwloSqmdbtq36GuXUUplisgAYJqILEDbAMJtlFIZItILWCki9dE2zf1UKfWhJ+yjyWL3p+zt0jwVOM/rFQhExFcpdUBEIj1k+2/L1Ro4m4rIMqv3EdbvlVID3bTvo9dEioPzVyKSglYb9HfTtjXT9Brz88AyIED/313sg1ku0E70/bg8ENiSgXf1/1Os/gctKES5aT9BRLorpX4B0AP+AyIyFa17xm2saoPT0Mq/Fjhe/LkHaoRHlVIe6Y+tgOMiUhNYgibdfQbH7dgMKslVuXJIRLqXd7z4C+eG/SeAnfZ29GD0llLqNnfsexsRWV/OYaWUcjewlZe3j1Iqv+KU5dqohlbOPCfHGimlktyxr9uZVc5h5W7QE5FdSqmO7ti4iDy7o9V0VylNfsLgIrlaA6dHvjx/JXpf1CA0eQCFVktYqpQ68JcW7CLQa7K3AsOBAUqpYDftfaGUGu/k8zC0oHDZq6+KSDulVLT+v69S6oLVsRuUUr97II+SLg0RCQBaAoeVUhnu2v67c1WOqqM1SwDQR4s9ij5NaLSIDBSNp0VkuYh8ICJ1PGD/aTQxKgG2Atv0/7+TcmRRK5lHbRF5VEQ+1l+PiEgtT9i2yuN6EfkAOIrW1bAR7cvrLhYR+UpESp5fEWml23/HA/YRkX+JyANOPn9URP7pgSxmW/2/xe7YJ+4aF5ExwCkROSgifYFoNPXHPSJyn7v2/+5crTXOkmaQN5pEIjIfbeDGHwgCYoEfgG5AB6VUfzftH0Tb3Trf7vMqwF6llFtTqvQgsw6tT3YXWlDuiCa9GuVurVZEXgXuAZKAb4HFwHalVGN37FrZF+BzNN/fC1wPzAMeVEr96KE8YoFr7Zu0IuILbFNKtXPTfpnPqCeeWRGJQavlV0fbLb2jUipBRIKB1e6W/+/O1To4pMr431O0VkpdIyIW4LhSqrhPdZWI7PGA/SKgPlpNzZpQ/Zi7vAI8rpSab/2hiAwBXsX9AZaJQBzalKfl+qiux+6D0n7tJ+q12Q1oU8Du9kTz1i4bh35ApdSF4kE0d+2X8b+z9xdDoVIqDUgTkVylVAKAUuqUZ4r/9+ZqDZztRSQbrSZVVf8f/b1SSgW6af9PNEMFImI/QumJKT3/RJvYfYhSSdRGQDM8M8G7rVJqqP2HSqlFok0ud5cQoDdwH/C+PhhV1brPzR1E5H9owUWA1mjzUIeLyHAApdRj7uah5xOslDpl/5knbANhIvIh2jUU/4/+vkHZp7lMkoi8jlbjPCAi/0Wb4tQLbdaDgRtclYFTKWX2chZefeiVUqtEpAVwnW5P0FT+tnloruXZizzmEnoZV6LNgfRDm69YDTghImuVUsPdzGJ7Gf97krfRVp09iRaYAToBbwH/9YD9f1v9b38Nnrim+4GHgSxgMtrqs2fQuk/GeMD+35qrso/THtGE6ouD6Ul3az1SxjrmYpRSc9yxX0HeAUqpXDdtHMd2bmXJIeCfSqmGTo65jYhUBx5TSr3qDfueRh9UmQxcg1bD3Qu8oZRa+ZcWzOAv56oMnCLyDOCjlHpZf5+E9svrA8xRSr3u4fwC0boA3F5H7kJeSUqpRm7a+E95x5VSbi3JExEz2uBQA7TpQbEi0h+YAlT1xGCd/uP1OFC8CmY/8KFSaq67tl3I+59KqffdtLGsvOPuLtLQ57o+ghbw/wcMQ+u7PgC87O6P79+dqzVw7gRuVkqd1d/vUkp11L/Qvyilunkon87ALLR+JAEygXFKqR1u2v1XWYeAZ5VSbk0bEpEwpdTxMo4NUEr94Kb92UBDtKlU16MNct2ItqxziTu2dfujgCeAf6E1owW4Fq15/YG3g6eHfrxOo/Vff4u2+YzNiI0HFmnM1+1XRftx2Q/MR1vnH6KUGumO/b87V23gVEpda/V+TPHabBHZoZTq5KF8ooGHlVIb9ffdgE88MFXlPFoQcNal8IRSqqab9uOA25VSiXafjwWeU0o1ddN+LNqmKkV6H2ca2oYlKe7YtbL/O3Cvk/JHAN8ppW7wRD7l5H/M3e4M/Uf8NrQBtHbAj8C3Sqm9HigiIrJbKdVBnwGQDIQqpZT+fo8xHck9rsrBISBArJb2WQVNX8DdEXVrcoqDpp7PJhHxRHN9J7DEWc1VtG3C3OUJtHXL/ZS++YnevTEcKHe5qov8qZQqAtCnIh30VNDUCbQPmnpeiXq3ibdxu7ahD6CtQpvC5osWQDeIyMtKqf+5a98qHyUiK/QpXMXvr77a0iXmag2cC4HPReQRpdQ5KNlL8SP9mFuISHFtdquIfI7W3FJo/Ugb3LUPjAXSyzjW2V3jSqkVInIBbdT7TmA82tZjtyilzrhrH2ip18ZBa4I21d8XTwdzt7bjsEbdxWMuo/8AOgswgtb89UQevmhbIN6HtuvVh3huV6TtxQOJympdvYg0xQN7uv7duVqb6ma0idzjKZ1E3giYgdYUdXdU/S/bJMOT6F0LS4DfgHuUZ/biRCqQJ1FK2U/sr6z9c0C8s0NAE6WUJ3eo8goiMgdttH4lWvdCrJfy8QMeQlvVptAUED711L3+u3JVBs5iRKQq2qRxgHjlZDcdN2ybgKH2q2+8jYhMU0pNrDhluTaKa1MC+KItHy3EcwsEnOVZB0hXHnjgRKQ5EEzp4oBiwtGmmzkLqpcVIlJE6ZxZa5949B7og0Q5wFf6R/cBNZVS93jC/t+Vq3KTDxH5PwA9ULZUSsUUB00PrYxB78PzlEyDDSJSq4xXbaCfu/aVUtWVUoH63ypKKX+r925/YUXkBhHZICLfi0hHfbAoFm3TiT7u2gfeA7KVUketX2iSFu95wL7XUUqZdH8X34tAT94DKyKVUg8opdbrr4mUTuEyuEiuyhqn9ai6kxF2m/du5vM8Wp/aPKxW3Cg3t+0SkUK0LgbrKSrFNcQGSimP7HLuLURkO9qczRpoGwH3VUr9LtpWed+6O49TRGJVGVvHiUiMUqqtO/avJvSpYZ8pfR2/iFwPjFZKPfSXFuwK52odHCpP88aTOxwUd7o/bPWZApq4afcw0FM52VNUROybp5cjFqXUzwD6KPHvAEqTbfCEfb9yjnlk4OYq4npglL4IBLS+/v2i7Z7kiYG6vyVXa+D09s4zmiEPbZPmhPfRtkxzthnzW17K05NY7+Bk36/sCf9vE5EJSikbKWPR9s90a/HBVYgnukYM7Lham+qFaE3n4qkjxXKuAvgppXzKOtdF+/+nlHpL//9updQCq2OvKaWmuGPfytYVOSJ6CfwfjLbH55+UBsrOaEJtd3l4zqiBgQNXZeD0NpewD9UYES0HEbkVbUoPaBs8r/sry2Pw9+Fqbap7m0vVhxqplGpv9X69eGaj5KsCpdR6oLw5tQYGXuGqnI50CbgkfajALhEpWXetj4hu9qB9AwODi8Boql8E3u7Ds8pnP9qcO5sRUbTBF2NE1MDgL8IInJcx3l66aGBgcHEYgdPAwMCgkhh9nAYGBgaVxAicBgYGBpXECJwGBgYGlcQInAYGBgaVxAicBgYGBpXk/wHVGB9LbwSkbQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -868,7 +868,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEGCAYAAABLgMOSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAaZUlEQVR4nO3de7wdZX3v8c8X5CIkIUrEIJfGWm94AG1RawVFBUHQAhWLlwoGq5VKW1rx1PZ4O6darVJKhaIebaFSUTQiqKB4qRcEEUILpCi1iFxjwKCAoaAk/PrHzJblYidZe/Zlrb3zeb9e82KveZ6Z/XuyIF+embXmSVUhSdJEbTbsAiRJs5MBIknqxACRJHVigEiSOjFAJEmdPKTLQYsWLaolS5ZMcSmSNLddfvnlq6vqEcOuY6p0CpAlS5awfPnyqa5Fkua0JDcMu4ap5CUsSVInBogkqRMDRJLUiQEiSerEAJEkdWKASJI6MUAkSZ0YIJI0IpJcn+TnSRb17b8iSSVZkuT0ts+anu3KJPv0vL677d/bZ9eprtcAkaTR8gPgZWMvkuwOPLSvz3uqal7PtmdVXTj2GnhS229hT58bp7rQTt9El2at5afBimXDrkLakDOAI4GT29dHAR8B3jG0itbDGYg2LSuWwaoVw65C2pBLgAVJnphkc+AI4F+GXNO4nIFo07N4d1h63rCr0Kbo6Azac2wW8nXgGuCWvvbjkxzb8/rcqjpq8gVOjAEiSaPnDOAbwKNpLl/1O6Gq3jyzJT2Yl7AkacRU1Q00N9MPAs4ecjnr5QxEkkbTq4GHVdXdSUby72pnIJI0gqrq+1W1voWX/nffdzxWz2hxrZFMNUnaFFXVkvXsXwuM3YF/Vbtt6DzX9/SfNs5AJEmdGCCSpE4MEElSJwaIJKkTA0SS1ImfwtLc1v/wxFVXweI9hlePNIc4A9Hc5sMTpWnjDERzX+/DE087eLi1SHOIMxBJUicGiCSpEwNEktSJASJJ6sQAkSR1YoBIkjoxQCRpRCS5Psl+Pa9fmuQnSZ6dpHrW/7g1yeeS7D/O8fe0fVYlOT3JvOmq1wCRpBGU5CjgH4CDgRva3Qurah6wJ/Al4NNJXtV36IvaPk8GngL8xXTVaIBI0ohJ8lrgb4EDquri/vaqWlVVfw+8HfibJA/6u7yqVgEX0ATJtPCb6Nr0rFrhN9I1yo4B9gaeV1VXbqTv2cB7gccD3+1tSLIz8ALgX6ejSDBAtKnZ/fBhVyBtzP7AV4FBHuK2sv3nw3v2nZOkgHk04fG2qS3vAQaINi17LW02aRiOHmiZ8tcBbwE+nOTVVVUb6LtT+88f9+w7tKq+nOTZwJnAIuCODtVulPdAJGm03AY8D9gHOHUjfQ9r+/9nf0NVfR04HThhiuv7BQNEkkZMVa0EngscmOTv+tuTPDLJsTSXp/6iqu5fz6lOAvZP8uTpqNNLWJI0gqrqpiTPBb4BLG5335EkwN3AcuAlVfWFDZzjR0k+QnNJ7MVTXaMBIkkjoqqW9L3+AbBL+/JlEz2+3XfMVNQ2Hi9hSZI6MUAkSZ0YIJKkTgwQSVInBogkqRM/haXZb/lpsGLZ+G2rroLFe8xsPdImwhmIZr8Vy5oHJEqaUc5ANDcs3h2Wnvfg/T51V5o2zkAkSZ0YIJKkTgwQSVInBogkqRMDRJLUiQEiSerEAJGkWSjJq5J8c5g1GCCSNCKSXJ/kniRrerZTOp7ra0nubc9xZ5JvJNm9p/2oJJcnuSvJzUnek2RC3w00QCRptLyoqub1bMf2d5jAX/THVtU8YHvga8AZPW3bAMcBi4Cn06zDfvxECvWb6JLmvg09L20WSPIq4DXApcBRwKnAtU1TTgaOBH4IvL6qvtJ/fFWtTfJx4E09+97f0+WWJB8FnjORupyBSJr75sbz0p4OXAfsALyzb98i4G3A2Uke3n9gki2BVwCXbOD8zwKunkhBzkAkbRrW97y0mXR0Bul1TpK1Pa/fCNwHrKyqk9t9a5MA3AacVFUFnJXkDcDBPHCp6n1JTqC5XHUP8Dvj/cIkS4G9gN+fyHCcgUjSaDm0qhb2bB9q9980Tt9b2vAYcwPwqJ7Xf1xVC4GtgRcCy5L80voGSQ4F3g28oKpWT6RQA0SSZocaZ99OaacirV2BlQ86sOr+qrqQ5r7J88f2JzkQ+BDNjfsJX+MzQCRp9toB+OMkWyR5CfBE4PzxOiZ5BrAb7X2OJM8FPgq8uKou7fLLvQciSaPls0nW9bz+EnDuevp+G3gssBq4FTi8qm7vaT8lyUntz6uAN1fV59vXbwG2A87vmcRcWFUvGLRQA0SSRkRVLdlA8+l9fU/v2feg74pU1b4b+V0T+sjueLyEJUnqxACRJHVigEiSOjFAJEmdeBNdc9+qFXDawcOuQsO06ipYvMfG+2lCDBDNbbsfPuwKpDnLANHcttfSZtOmzRnotPAeiCSpEwNEktSJASJJ6sR7IJp5U706nJ+wkYbCGYhm3txYHU7a5DkD0XBM5epwfsJGGgpnIJKkTgwQSRoRSa5Pck+SNT3bKW3bjkk+lGRlu/+6JKcneULbviRJ9R17Zdv2qiTr2n13JbkyyQsnW6+XsCRptLyoqr7cuyPJ9sDF7bYPcB3NYlCHAfsD1/R0X1hVa8c577eqau8kmwGvAT6eZOequqNroQaIpE3D7H4m2p8CdwGvrKr72313AKdN9ERVdX+SM4AP0KxmeFnXogwQSXPf7H8m2n7Ap3vCo7MkmwNLgfuAGyZzLgNE0tw3Ks9EOzob7wPnJOm9BPVGYBHNmuYAJPlt4CPA5jSXpp7f0391zxrn76iqE9qffzPJHcC2wFrg96rqti7DGONNdEkaLYdW1cKe7UPA7cCOYx2q6jNVtZDm0taWfccv6jn2hJ79l7THPAz4DM29lEkxQCRp9H0FOLS9AT4pVbUG+EPglUmeMplzGSCSNPpOpJk5nJHkMWnMB57c5WRVdTvwYeCtkynKAJGk0fLZvu9yfLqqVgO/CdwLfBP4KXAFMB84puPvOQk4KEnnB8l5E12SRkRVLdlA20rg1Rtovx4Y9y59VZ0OnN6372Zgq4lX+QBnIJKkTgwQSVInBogkqRMDRJLUiQEiSerEAJEkdWKASJI6MUAkSZ0YIJKkTgwQSVInBogkqRMDRJLUiQEiSerEp/Fqei0/DVYs++V9q66CxZ2fIC1pRDgD0fRasQxWrRh2FdKskOT6JPuNs39BkpOS3NiuEXJt+3rReMcleWmSnyR59nTW6wxE02/x7rD0vAden3bw8GqRZpkkW9IsaXsHcCBwDbAI+APgacD5ff2PolnB8OCqung6azNANDesWmEwaa46EtgVeE67njnAbcBf9XdM8lrgr4EDqmr5dBdmgGj22/3wYVcgTaf9gC/0hMf6HAPsDTyvqq6c/rIMEM0Fey1tNmnUHT3uirMbsz1w+QD99ge+CszYTUdvokvSaLsd2HGAfq8DHgd8OEmnpJooA0SSRtuXgQOSbLuRfrcBzwP2AU6d9qowQCRp1GyRZOuxDTgDuAn4VJInJNksyfZJ/jLJQb0HVtVK4LnAgUn+broLNUAkabScD9zTs72F5kb6NcCXgLuAS2k+yvvt/oOr6iaaEDk8ybums1BvokvSiKiqJRtoPq7dNnpcVf0A2GWKylovZyCSpE4MEElSJwaIJKkTA0SS1IkBIknqxACRJHVigEiSOjFAJEmdGCCSpE4MEElSJwaIJKkTA0SS1IkBIknqxACRJHVigEjSiEhyfZJ7kqxJ8pMk5yXZpW07PcnP27YfJ/lSkieMc46vtcdu1be/9/ix7YjJ1GuASNJoeVFVzaNZB/1W4OSetve0bTsBtwD/2HtgkiU0S9oW8NvjnPs9VTWvZztrMoW6oJSGY9UKOO3gYVchjayqujfJMuCkcdruSfIJ4JN9TUcCl9CsVHjUOO1TygDRzNv98GFXII28JNsAR9AEQn/btsDLgGv7mo4ETqQJkEuSPLKqbp2uGg0Qzby9ljabtKk5OoP0OifJWmAecBtwQE/b8UmOBRYANwCHjDUk2Rv4FeATVbU6yfeBlwN/N87xAGuralHnseA9EEkaNYdW1UJgK+BY4OtJFrdtJ7RtS4B7gMf3HHcU8MWqWt2+PrPd1+uEqlrYbpMKD3AGIkkjqarWAWcn+SCwd1/bjUn+BPjnJJ9rd/8usHmSVe3rrYCFSfasqiuno8YZD5Azv30j515xy0z/Wg3LqkM4a9dzh12FNOskCc0nqR4GfBd4YW97VX0pyUrgtTSXutYBuwM/7+n2CZr7Im+YjhpnPEDOveIWvvPDu9htxwUz/aslaTb4bJJ1NB/FvQE4qqqubvLkQd5Lc9P8e8BpVXVjb2OSU4D3Jfnz6Sh0KJewdttxAWf9wTOG8as10057x7ArkGaNqlqygbZXjbPvLGC93+Woqk/QzEIAHnT8ZHkTXZLUiQEiSerEAJEkdWKASJI6MUAkSZ0YIJKkTgwQSVInBogkqRMDRJLUiQEiSerEAJEkdWKASJI6MUAkSZ0YIJKkTgwQSRpxSXZLsjzJT9rty0l262nfKskHktya5MdJPptkp+muywCRpNG3EjgceDiwCPgM8PGe9j8BngHsATwKuAM4ebqLck10aflpsGLZsKuQSHI98EHglcCOwDnAMVV1B00ojC11uw74tZ5DHw1cUFW3tn0+TrNS4dh5/x74HWA74L+A46rqwsnW6wxEWrEMVq0YdhXSmFcABwCPAR4HvHmsIckdwL00s4u/7jnmH4FnJnlUkm3ac3y+p/0y4Mk0M5gzgU8m2XqyhToDkQAW7w5Lzxt2FZrrjh53XfN+p1TVTQBJ3kkTFm8GqKqFSbYFjqJZL33M94AbgVtoZicrgGPHGqvqX3r6/m2SNwOPB67sPBacgUjSqLmp5+cbaO5p/EJV3Q18APhIkh3a3e8Htga2B7YFzqZnBpLkDUm+m+TOdhazHc29lEkxQCRptOzS8/OuNDfQ+20GbAOMfdJqT+D0qvpxVf2MZtbytCSLkuwD/Dnwu8DDqmohcCcw0HRoQwwQSRotr0+yc5KHA38JnJVk/yRPSbJ5kgU0N8h/Any3PeYy4Mgk2yXZAvhDYGVVrQbmA2uBHwEPSfJWYMFUFGqASNJoORP4InBdu70DWAh8jGbm8H2aT2AdWFX3tsccT3Nz/b9oguIg4LC27QKay1nfo7kkdi+/fJmsM2+iS9Jouayq3tW375PtNq6qup3mk1fjta0DXt1uY94z2SLBGYgkqSMDRJLUiZewJGlEVNWSYdcwEc5AJEmdOAPR9Fu1Ak47eNhVrN+qq2DxHsOuQpp1DBBNr90PH3YFkqaJAaLptdfSZhtlozw7kkaY90AkSZ0YIJKkTgwQSVInBogkqRMDRJLUiQEiSerEAJEkdWKASNKISfLyJMuTrEnywySfT7J3krcnuS/JT9vte0lOSbJjz7H7Jrm55/WWSc5OclGSBUmOSnJ5kruS3JzkPUk6fSfQAJGkEZLkz4CTgL8GHkmzrO2pwCFtl7Oqaj7wcJpFoxYDl/eGSM+5tqJZH30h8PyquotmKdzjaNZEfzrwPJoFqSbMAJGkEZFkO+D/Aa+vqrOr6u6quq+qPltVb+zt2+6/GjiCZhXCN/Sdaxvgs8AWwMFVdXd73Pur6sKq+nlV3QJ8FHhml3p9lIkEo//AR20qngFsDXx60AOqal2Sc4EDenZvRbOM7Z3AS6rqZxs4xbOAqzvUaoBIPvBRI2R7YHVVrZ3gcStpLmmNmU8TRi/bUHgkWQrsBfz+RAsFA0SaHQ981NxwdDbW43ZgUZKHTDBEdgJ+3PN6NfDHwEeSrKmqC/oPSHIo8G5gv6paPYHf9QveA5Gk0fEt4F7g0EEPSLIZ8CLgwt79VXU28BpgWZLn9B1zIPAh4EVVtaJrsc5AJGlEVNWdSd4K/EOStcAXgfuA/YDnAP891jfJFsCvAW+n+STWieOc72NJtgTOTfKCqrooyXNpbpwfVlWXTqZeZyCSNEKq6kTgz4A303y66ibgWOCctssRSdYAdwCfobns9RtVtXI95/tnmk9onZfkacBbgO2A89vvmaxJ8vkutToDkaQRU1UfpZkl9LuYZsaxoWO/Buzct+9DNJesoJnJTAlnIJKkTgwQSVInBogkqRMDRJLUiQEiSerEAJEkdWKASJI6MUAkSZ0YIJKkTgwQSVInBogkqRMDRJLUiQEiSerEAJEkdWKASJI6MUAkacQl2TLJsiTXJ6kk+/a1PyfJV5PcmeT6cY5f0rb/d5Jrkuw3FXUZIJI0O3wT+D1g1ThtdwP/BLxxPcd+DPh3YHvg/9Csk/6IyRY0lBUJv/PDuzjig98axq+WpJHVzh4+CLwS2JFmGdtjqupe4KS2z7r+49q1zS8db2aR5HHArwPPr6p7gE8lOQ54MfCBJI+hWa1wT6CAC4DXV9UdG6t3xmcghzx5J3bbccFM/1pJmi1eARwAPAZ4HM3a6JPxJOC6qvppz74r2/0AAd4FPAp4IrALG1k2d8yMz0Be/vRdefnTd53pXytJQ/eJ1w3U7ZSqugkgyTuBk5lciMwD7uzbdyewE0BVXQtc2+7/UZITgbcNcuKhXMKSJK3XTT0/30AzM5iMNUD/ZZ8FwE8BkuwAvA/YB5hPc2XqJ4Oc2JvokjRadun5eVdg5STPdzXwq0nm9+zbs90PzeWrAvaoqgU0N+ozyIkNEEkaLa9PsnOShwN/CZwFkGSrJFu3fbZMsnWStG2btW1bNC+zdZItAarqe8AVwNva/YcBewCfas81n2aWckeSnVj/J7kexACRpNFyJvBF4Lp2e0e7/z+Be2juXVzQ/vwrbduz2tfn08xa7mnPMealwF40l6beDRxeVT9q2/4vzae07gTOA84etFDvgUjSaLmsqt7Vv7OqlqzvgKr6Ghu47FRV1wP7rqftauA3+nb/7cbLdAYiSerIAJEkdeIlLEkaERu6TDWKnIFIkjoxQCRJnaSqJn5Q8iOab0guAlZPdVEjZC6Pby6PDeb2+Bzb7PX4qpq/8W6zQ6d7IFX1CIAky6tqr6ktaXTM5fHN5bHB3B6fY5u9kiwfdg1TyUtYkqRODBBJUieTDZD/PyVVjK65PL65PDaY2+NzbLPXnBpfp5vokiR5CUuS1IkBIknqZKAASXJgkv9Mcm2SN62nz75JrkhydZKvT22Z02djY2vHdWc7tiuSvHUYdXY1yHvX9ntqknVJDp/J+iZjgPfukCRXte/b8iR7D6POrgYY3yva8V2V5OIkew6jzi4GGNsTknwryc+SHD+MGidjgPElyfva9quS/Pow6py0qtrgBmwOfB/4VWBLmsXYd+vrsxD4DrBr+3qHjZ13FLYBx7Yv8Llh1zpd4+vp9680awkcPuy6p/C9m8cD9/n2AK4Zdt1TPL7fAh7W/vwC4NvDrnsKx7YD8FTgncDxw655GsZ3EPB5mkew/+Zsee/6t0FmIE8Drq2q66rq58DHgUP6+rwcOLuqbgSoqtsGOO8oGGRss9mg4/sjmtXJZsv7BgOMrarWVPtfK7AtzbKds8Ug47u4qsbWrr4E2HmGa+xqkLHdVlWXAfcNo8BJGuS/u0OAj1TjEmBhkh1nutDJGiRAduKXF3m/ud3X63HAw5J8LcnlSY6cqgKn2SBjA3hGkiuTfD7Jk2amtCmx0fG1S1geBnxgBuuaCgO9d0kOS3INzUprR89QbVNh0H83x7ya5v9oZ4OJjm22GWR8c+LPYJBHmYy3ylX//8k9hGZFq+cBDwW+leSSatbiHWWDjO3fgF+pqjVJDgLOAR473YVNkUHGdxLw51W1rl1eebYYZGxU1aeBTyd5FvBXwH7TXdgUGWh8AEmeQxMgs+Uez8Bjm6UGGd+c+DMYJEBuBnbpeb0zsHKcPqur6m7g7iTfAPYERj1ANjq2qrqr5+fzk5yaZFFVzYYHvg3y3u0FfLwNj0XAQUnWVtU5M1Jhd4OM7Req6htJHjPH3juS7AF8GHhBVd0+Q7VN1oTeu1lo0L8zZ/+fwQA3hB5Cs7D7o3nghtCT+vo8EfhK23cb4D+A/zXsGzxTNLbFPHAj9mnAjWOvR30bZHx9/U9n9txEH+S9+7We9+7XgVvm0nsH7ApcC/zWsOud6rH19H07s+8m+iDv3cH88k30S4ddd5dtozOQqlqb5FjgAppPF/xTVV2d5HVt+weq6rtJvgBcBdwPfLiq/mNj5x62QcYGHA4ck2QtcA/w0mr/DRh1A45vVhpwbC8GjkxyH817d8Qce+/eCmwPnNrOINfWLHiS7SBjS7IYWA4sAO5PchzNJ5nuWt95R8WA7935NJ/Euhb4b2DpsOqdDB9lIknqxG+iS5I6MUAkSZ0YIJKkTgwQSVInBogkqRMDREPVPgF47CnOVyb5sySbtW17JXnfBo5dkuTlM1etpF5+jFdDlWRNVc1rf94BOBO4qKreNsCx+9J8yeyF01qkpHE5A9HIqOYpzq8Fjm3XS9g3yecAkjy7Z02Wf08yH3g3sE+770/bGcmFSf6t3X6rPXbf9kGfy5Jck+Sjab95166DcnE7+7k0yfwkmyd5b5LL2rUa/mBYfybSKBvkWVjSjKmq69pLWDv0NR0PvL6qLkoyD7gXeBM9M5Ak2wD7V9W9SR4LfIzmWV8ATwGeRPO8oYuAZya5FDiL5hvqlyVZQPON9VcDd1bVU5NsBVyU5ItV9YPpHLs02xggGkXjPan0IuDEJB+lWXvm5nGeHrwFcEqSJwPraJYZGHNpVd0MkOQKYAlwJ/DDatadYOwxGUmeD+yRB1Zn3I7mCcwGiNTDANFISfKrNH/530bzkE4AqurdSc6jeX7QJUnGeyz7nwK30jwJejOaWcqYn/X8vI7m3/0w/iO0A/xRVV0wiaFIc573QDQykjyCZmGrU/ofepjkMVW1oqr+huYhe08AfgrM7+m2Hc2M4n7glTQPstuQa4BHJXlq+zvmJ3kIzUPwjkmyRbv/cUm2nfwIpbnFGYiG7aHtJaUtgLXAGcCJ4/Q7rl04aR3wHZpHYd8PrE1yJc2j6E8FPpXkJcBXgbs39Iur6udJjgBOTvJQmvsf+9Gsr7EE+Lf2ZvuPgEMnNUppDvJjvJKkTryEJUnqxACRJHVigEiSOjFAJEmdGCCSpE4MEElSJwaIJKmT/wHP3t2wAgH2UQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEGCAYAAABLgMOSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAaZUlEQVR4nO3de7wdZX3v8c8X5CIkIUrEIJfGWm94AG1RawVFBUHQAhWLlwoGq5VKW1rx1PZ4O6darVJKhaIebaFSUTQiqKB4qRcEEUILpCi1iFxjwKCAoaAk/PrHzJblYidZe/Zlrb3zeb9e82KveZ6Z/XuyIF+embXmSVUhSdJEbTbsAiRJs5MBIknqxACRJHVigEiSOjFAJEmdPKTLQYsWLaolS5ZMcSmSNLddfvnlq6vqEcOuY6p0CpAlS5awfPnyqa5Fkua0JDcMu4ap5CUsSVInBogkqRMDRJLUiQEiSerEAJEkdWKASJI6MUAkSZ0YIJI0IpJcn+TnSRb17b8iSSVZkuT0ts+anu3KJPv0vL677d/bZ9eprtcAkaTR8gPgZWMvkuwOPLSvz3uqal7PtmdVXTj2GnhS229hT58bp7rQTt9El2at5afBimXDrkLakDOAI4GT29dHAR8B3jG0itbDGYg2LSuWwaoVw65C2pBLgAVJnphkc+AI4F+GXNO4nIFo07N4d1h63rCr0Kbo6Azac2wW8nXgGuCWvvbjkxzb8/rcqjpq8gVOjAEiSaPnDOAbwKNpLl/1O6Gq3jyzJT2Yl7AkacRU1Q00N9MPAs4ecjnr5QxEkkbTq4GHVdXdSUby72pnIJI0gqrq+1W1voWX/nffdzxWz2hxrZFMNUnaFFXVkvXsXwuM3YF/Vbtt6DzX9/SfNs5AJEmdGCCSpE4MEElSJwaIJKkTA0SS1ImfwtLc1v/wxFVXweI9hlePNIc4A9Hc5sMTpWnjDERzX+/DE087eLi1SHOIMxBJUicGiCSpEwNEktSJASJJ6sQAkSR1YoBIkjoxQCRpRCS5Psl+Pa9fmuQnSZ6dpHrW/7g1yeeS7D/O8fe0fVYlOT3JvOmq1wCRpBGU5CjgH4CDgRva3Qurah6wJ/Al4NNJXtV36IvaPk8GngL8xXTVaIBI0ohJ8lrgb4EDquri/vaqWlVVfw+8HfibJA/6u7yqVgEX0ATJtPCb6Nr0rFrhN9I1yo4B9gaeV1VXbqTv2cB7gccD3+1tSLIz8ALgX6ejSDBAtKnZ/fBhVyBtzP7AV4FBHuK2sv3nw3v2nZOkgHk04fG2qS3vAQaINi17LW02aRiOHmiZ8tcBbwE+nOTVVVUb6LtT+88f9+w7tKq+nOTZwJnAIuCODtVulPdAJGm03AY8D9gHOHUjfQ9r+/9nf0NVfR04HThhiuv7BQNEkkZMVa0EngscmOTv+tuTPDLJsTSXp/6iqu5fz6lOAvZP8uTpqNNLWJI0gqrqpiTPBb4BLG5335EkwN3AcuAlVfWFDZzjR0k+QnNJ7MVTXaMBIkkjoqqW9L3+AbBL+/JlEz2+3XfMVNQ2Hi9hSZI6MUAkSZ0YIJKkTgwQSVInBogkqRM/haXZb/lpsGLZ+G2rroLFe8xsPdImwhmIZr8Vy5oHJEqaUc5ANDcs3h2Wnvfg/T51V5o2zkAkSZ0YIJKkTgwQSVInBogkqRMDRJLUiQEiSerEAJGkWSjJq5J8c5g1GCCSNCKSXJ/kniRrerZTOp7ra0nubc9xZ5JvJNm9p/2oJJcnuSvJzUnek2RC3w00QCRptLyoqub1bMf2d5jAX/THVtU8YHvga8AZPW3bAMcBi4Cn06zDfvxECvWb6JLmvg09L20WSPIq4DXApcBRwKnAtU1TTgaOBH4IvL6qvtJ/fFWtTfJx4E09+97f0+WWJB8FnjORupyBSJr75sbz0p4OXAfsALyzb98i4G3A2Uke3n9gki2BVwCXbOD8zwKunkhBzkAkbRrW97y0mXR0Bul1TpK1Pa/fCNwHrKyqk9t9a5MA3AacVFUFnJXkDcDBPHCp6n1JTqC5XHUP8Dvj/cIkS4G9gN+fyHCcgUjSaDm0qhb2bB9q9980Tt9b2vAYcwPwqJ7Xf1xVC4GtgRcCy5L80voGSQ4F3g28oKpWT6RQA0SSZocaZ99OaacirV2BlQ86sOr+qrqQ5r7J88f2JzkQ+BDNjfsJX+MzQCRp9toB+OMkWyR5CfBE4PzxOiZ5BrAb7X2OJM8FPgq8uKou7fLLvQciSaPls0nW9bz+EnDuevp+G3gssBq4FTi8qm7vaT8lyUntz6uAN1fV59vXbwG2A87vmcRcWFUvGLRQA0SSRkRVLdlA8+l9fU/v2feg74pU1b4b+V0T+sjueLyEJUnqxACRJHVigEiSOjFAJEmdeBNdc9+qFXDawcOuQsO06ipYvMfG+2lCDBDNbbsfPuwKpDnLANHcttfSZtOmzRnotPAeiCSpEwNEktSJASJJ6sR7IJp5U706nJ+wkYbCGYhm3txYHU7a5DkD0XBM5epwfsJGGgpnIJKkTgwQSRoRSa5Pck+SNT3bKW3bjkk+lGRlu/+6JKcneULbviRJ9R17Zdv2qiTr2n13JbkyyQsnW6+XsCRptLyoqr7cuyPJ9sDF7bYPcB3NYlCHAfsD1/R0X1hVa8c577eqau8kmwGvAT6eZOequqNroQaIpE3D7H4m2p8CdwGvrKr72313AKdN9ERVdX+SM4AP0KxmeFnXogwQSXPf7H8m2n7Ap3vCo7MkmwNLgfuAGyZzLgNE0tw3Ks9EOzob7wPnJOm9BPVGYBHNmuYAJPlt4CPA5jSXpp7f0391zxrn76iqE9qffzPJHcC2wFrg96rqti7DGONNdEkaLYdW1cKe7UPA7cCOYx2q6jNVtZDm0taWfccv6jn2hJ79l7THPAz4DM29lEkxQCRp9H0FOLS9AT4pVbUG+EPglUmeMplzGSCSNPpOpJk5nJHkMWnMB57c5WRVdTvwYeCtkynKAJGk0fLZvu9yfLqqVgO/CdwLfBP4KXAFMB84puPvOQk4KEnnB8l5E12SRkRVLdlA20rg1Rtovx4Y9y59VZ0OnN6372Zgq4lX+QBnIJKkTgwQSVInBogkqRMDRJLUiQEiSerEAJEkdWKASJI6MUAkSZ0YIJKkTgwQSVInBogkqRMDRJLUiQEiSerEp/Fqei0/DVYs++V9q66CxZ2fIC1pRDgD0fRasQxWrRh2FdKskOT6JPuNs39BkpOS3NiuEXJt+3rReMcleWmSnyR59nTW6wxE02/x7rD0vAden3bw8GqRZpkkW9IsaXsHcCBwDbAI+APgacD5ff2PolnB8OCqung6azNANDesWmEwaa46EtgVeE67njnAbcBf9XdM8lrgr4EDqmr5dBdmgGj22/3wYVcgTaf9gC/0hMf6HAPsDTyvqq6c/rIMEM0Fey1tNmnUHT3uirMbsz1w+QD99ge+CszYTUdvokvSaLsd2HGAfq8DHgd8OEmnpJooA0SSRtuXgQOSbLuRfrcBzwP2AU6d9qowQCRp1GyRZOuxDTgDuAn4VJInJNksyfZJ/jLJQb0HVtVK4LnAgUn+broLNUAkabScD9zTs72F5kb6NcCXgLuAS2k+yvvt/oOr6iaaEDk8ybums1BvokvSiKiqJRtoPq7dNnpcVf0A2GWKylovZyCSpE4MEElSJwaIJKkTA0SS1IkBIknqxACRJHVigEiSOjFAJEmdGCCSpE4MEElSJwaIJKkTA0SS1IkBIknqxACRJHVigEjSiEhyfZJ7kqxJ8pMk5yXZpW07PcnP27YfJ/lSkieMc46vtcdu1be/9/ix7YjJ1GuASNJoeVFVzaNZB/1W4OSetve0bTsBtwD/2HtgkiU0S9oW8NvjnPs9VTWvZztrMoW6oJSGY9UKOO3gYVchjayqujfJMuCkcdruSfIJ4JN9TUcCl9CsVHjUOO1TygDRzNv98GFXII28JNsAR9AEQn/btsDLgGv7mo4ETqQJkEuSPLKqbp2uGg0Qzby9ljabtKk5OoP0OifJWmAecBtwQE/b8UmOBRYANwCHjDUk2Rv4FeATVbU6yfeBlwN/N87xAGuralHnseA9EEkaNYdW1UJgK+BY4OtJFrdtJ7RtS4B7gMf3HHcU8MWqWt2+PrPd1+uEqlrYbpMKD3AGIkkjqarWAWcn+SCwd1/bjUn+BPjnJJ9rd/8usHmSVe3rrYCFSfasqiuno8YZD5Azv30j515xy0z/Wg3LqkM4a9dzh12FNOskCc0nqR4GfBd4YW97VX0pyUrgtTSXutYBuwM/7+n2CZr7Im+YjhpnPEDOveIWvvPDu9htxwUz/aslaTb4bJJ1NB/FvQE4qqqubvLkQd5Lc9P8e8BpVXVjb2OSU4D3Jfnz6Sh0KJewdttxAWf9wTOG8as10057x7ArkGaNqlqygbZXjbPvLGC93+Woqk/QzEIAHnT8ZHkTXZLUiQEiSerEAJEkdWKASJI6MUAkSZ0YIJKkTgwQSVInBogkqRMDRJLUiQEiSerEAJEkdWKASJI6MUAkSZ0YIJKkTgwQSRpxSXZLsjzJT9rty0l262nfKskHktya5MdJPptkp+muywCRpNG3EjgceDiwCPgM8PGe9j8BngHsATwKuAM4ebqLck10aflpsGLZsKuQSHI98EHglcCOwDnAMVV1B00ojC11uw74tZ5DHw1cUFW3tn0+TrNS4dh5/x74HWA74L+A46rqwsnW6wxEWrEMVq0YdhXSmFcABwCPAR4HvHmsIckdwL00s4u/7jnmH4FnJnlUkm3ac3y+p/0y4Mk0M5gzgU8m2XqyhToDkQAW7w5Lzxt2FZrrjh53XfN+p1TVTQBJ3kkTFm8GqKqFSbYFjqJZL33M94AbgVtoZicrgGPHGqvqX3r6/m2SNwOPB67sPBacgUjSqLmp5+cbaO5p/EJV3Q18APhIkh3a3e8Htga2B7YFzqZnBpLkDUm+m+TOdhazHc29lEkxQCRptOzS8/OuNDfQ+20GbAOMfdJqT+D0qvpxVf2MZtbytCSLkuwD/Dnwu8DDqmohcCcw0HRoQwwQSRotr0+yc5KHA38JnJVk/yRPSbJ5kgU0N8h/Any3PeYy4Mgk2yXZAvhDYGVVrQbmA2uBHwEPSfJWYMFUFGqASNJoORP4InBdu70DWAh8jGbm8H2aT2AdWFX3tsccT3Nz/b9oguIg4LC27QKay1nfo7kkdi+/fJmsM2+iS9Jouayq3tW375PtNq6qup3mk1fjta0DXt1uY94z2SLBGYgkqSMDRJLUiZewJGlEVNWSYdcwEc5AJEmdOAPR9Fu1Ak47eNhVrN+qq2DxHsOuQpp1DBBNr90PH3YFkqaJAaLptdfSZhtlozw7kkaY90AkSZ0YIJKkTgwQSVInBogkqRMDRJLUiQEiSerEAJEkdWKASNKISfLyJMuTrEnywySfT7J3krcnuS/JT9vte0lOSbJjz7H7Jrm55/WWSc5OclGSBUmOSnJ5kruS3JzkPUk6fSfQAJGkEZLkz4CTgL8GHkmzrO2pwCFtl7Oqaj7wcJpFoxYDl/eGSM+5tqJZH30h8PyquotmKdzjaNZEfzrwPJoFqSbMAJGkEZFkO+D/Aa+vqrOr6u6quq+qPltVb+zt2+6/GjiCZhXCN/Sdaxvgs8AWwMFVdXd73Pur6sKq+nlV3QJ8FHhml3p9lIkEo//AR20qngFsDXx60AOqal2Sc4EDenZvRbOM7Z3AS6rqZxs4xbOAqzvUaoBIPvBRI2R7YHVVrZ3gcStpLmmNmU8TRi/bUHgkWQrsBfz+RAsFA0SaHQ981NxwdDbW43ZgUZKHTDBEdgJ+3PN6NfDHwEeSrKmqC/oPSHIo8G5gv6paPYHf9QveA5Gk0fEt4F7g0EEPSLIZ8CLgwt79VXU28BpgWZLn9B1zIPAh4EVVtaJrsc5AJGlEVNWdSd4K/EOStcAXgfuA/YDnAP891jfJFsCvAW+n+STWieOc72NJtgTOTfKCqrooyXNpbpwfVlWXTqZeZyCSNEKq6kTgz4A303y66ibgWOCctssRSdYAdwCfobns9RtVtXI95/tnmk9onZfkacBbgO2A89vvmaxJ8vkutToDkaQRU1UfpZkl9LuYZsaxoWO/Buzct+9DNJesoJnJTAlnIJKkTgwQSVInBogkqRMDRJLUiQEiSerEAJEkdWKASJI6MUAkSZ0YIJKkTgwQSVInBogkqRMDRJLUiQEiSerEAJEkdWKASJI6MUAkacQl2TLJsiTXJ6kk+/a1PyfJV5PcmeT6cY5f0rb/d5Jrkuw3FXUZIJI0O3wT+D1g1ThtdwP/BLxxPcd+DPh3YHvg/9Csk/6IyRY0lBUJv/PDuzjig98axq+WpJHVzh4+CLwS2JFmGdtjqupe4KS2z7r+49q1zS8db2aR5HHArwPPr6p7gE8lOQ54MfCBJI+hWa1wT6CAC4DXV9UdG6t3xmcghzx5J3bbccFM/1pJmi1eARwAPAZ4HM3a6JPxJOC6qvppz74r2/0AAd4FPAp4IrALG1k2d8yMz0Be/vRdefnTd53pXytJQ/eJ1w3U7ZSqugkgyTuBk5lciMwD7uzbdyewE0BVXQtc2+7/UZITgbcNcuKhXMKSJK3XTT0/30AzM5iMNUD/ZZ8FwE8BkuwAvA/YB5hPc2XqJ4Oc2JvokjRadun5eVdg5STPdzXwq0nm9+zbs90PzeWrAvaoqgU0N+ozyIkNEEkaLa9PsnOShwN/CZwFkGSrJFu3fbZMsnWStG2btW1bNC+zdZItAarqe8AVwNva/YcBewCfas81n2aWckeSnVj/J7kexACRpNFyJvBF4Lp2e0e7/z+Be2juXVzQ/vwrbduz2tfn08xa7mnPMealwF40l6beDRxeVT9q2/4vzae07gTOA84etFDvgUjSaLmsqt7Vv7OqlqzvgKr6Ghu47FRV1wP7rqftauA3+nb/7cbLdAYiSerIAJEkdeIlLEkaERu6TDWKnIFIkjoxQCRJnaSqJn5Q8iOab0guAlZPdVEjZC6Pby6PDeb2+Bzb7PX4qpq/8W6zQ6d7IFX1CIAky6tqr6ktaXTM5fHN5bHB3B6fY5u9kiwfdg1TyUtYkqRODBBJUieTDZD/PyVVjK65PL65PDaY2+NzbLPXnBpfp5vokiR5CUuS1IkBIknqZKAASXJgkv9Mcm2SN62nz75JrkhydZKvT22Z02djY2vHdWc7tiuSvHUYdXY1yHvX9ntqknVJDp/J+iZjgPfukCRXte/b8iR7D6POrgYY3yva8V2V5OIkew6jzi4GGNsTknwryc+SHD+MGidjgPElyfva9quS/Pow6py0qtrgBmwOfB/4VWBLmsXYd+vrsxD4DrBr+3qHjZ13FLYBx7Yv8Llh1zpd4+vp9680awkcPuy6p/C9m8cD9/n2AK4Zdt1TPL7fAh7W/vwC4NvDrnsKx7YD8FTgncDxw655GsZ3EPB5mkew/+Zsee/6t0FmIE8Drq2q66rq58DHgUP6+rwcOLuqbgSoqtsGOO8oGGRss9mg4/sjmtXJZsv7BgOMrarWVPtfK7AtzbKds8Ug47u4qsbWrr4E2HmGa+xqkLHdVlWXAfcNo8BJGuS/u0OAj1TjEmBhkh1nutDJGiRAduKXF3m/ud3X63HAw5J8LcnlSY6cqgKn2SBjA3hGkiuTfD7Jk2amtCmx0fG1S1geBnxgBuuaCgO9d0kOS3INzUprR89QbVNh0H83x7ya5v9oZ4OJjm22GWR8c+LPYJBHmYy3ylX//8k9hGZFq+cBDwW+leSSatbiHWWDjO3fgF+pqjVJDgLOAR473YVNkUHGdxLw51W1rl1eebYYZGxU1aeBTyd5FvBXwH7TXdgUGWh8AEmeQxMgs+Uez8Bjm6UGGd+c+DMYJEBuBnbpeb0zsHKcPqur6m7g7iTfAPYERj1ANjq2qrqr5+fzk5yaZFFVzYYHvg3y3u0FfLwNj0XAQUnWVtU5M1Jhd4OM7Req6htJHjPH3juS7AF8GHhBVd0+Q7VN1oTeu1lo0L8zZ/+fwQA3hB5Cs7D7o3nghtCT+vo8EfhK23cb4D+A/zXsGzxTNLbFPHAj9mnAjWOvR30bZHx9/U9n9txEH+S9+7We9+7XgVvm0nsH7ApcC/zWsOud6rH19H07s+8m+iDv3cH88k30S4ddd5dtozOQqlqb5FjgAppPF/xTVV2d5HVt+weq6rtJvgBcBdwPfLiq/mNj5x62QcYGHA4ck2QtcA/w0mr/DRh1A45vVhpwbC8GjkxyH817d8Qce+/eCmwPnNrOINfWLHiS7SBjS7IYWA4sAO5PchzNJ5nuWt95R8WA7935NJ/Euhb4b2DpsOqdDB9lIknqxG+iS5I6MUAkSZ0YIJKkTgwQSVInBogkqRMDREPVPgF47CnOVyb5sySbtW17JXnfBo5dkuTlM1etpF5+jFdDlWRNVc1rf94BOBO4qKreNsCx+9J8yeyF01qkpHE5A9HIqOYpzq8Fjm3XS9g3yecAkjy7Z02Wf08yH3g3sE+770/bGcmFSf6t3X6rPXbf9kGfy5Jck+Sjab95166DcnE7+7k0yfwkmyd5b5LL2rUa/mBYfybSKBvkWVjSjKmq69pLWDv0NR0PvL6qLkoyD7gXeBM9M5Ak2wD7V9W9SR4LfIzmWV8ATwGeRPO8oYuAZya5FDiL5hvqlyVZQPON9VcDd1bVU5NsBVyU5ItV9YPpHLs02xggGkXjPan0IuDEJB+lWXvm5nGeHrwFcEqSJwPraJYZGHNpVd0MkOQKYAlwJ/DDatadYOwxGUmeD+yRB1Zn3I7mCcwGiNTDANFISfKrNH/530bzkE4AqurdSc6jeX7QJUnGeyz7nwK30jwJejOaWcqYn/X8vI7m3/0w/iO0A/xRVV0wiaFIc573QDQykjyCZmGrU/ofepjkMVW1oqr+huYhe08AfgrM7+m2Hc2M4n7glTQPstuQa4BHJXlq+zvmJ3kIzUPwjkmyRbv/cUm2nfwIpbnFGYiG7aHtJaUtgLXAGcCJ4/Q7rl04aR3wHZpHYd8PrE1yJc2j6E8FPpXkJcBXgbs39Iur6udJjgBOTvJQmvsf+9Gsr7EE+Lf2ZvuPgEMnNUppDvJjvJKkTryEJUnqxACRJHVigEiSOjFAJEmdGCCSpE4MEElSJwaIJKmT/wHP3t2wAgH2UQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -991,7 +991,7 @@ " pd.DataFrame\n", " Kinase distance matrix with sorted columns/rows.\n", " \"\"\"\n", - " # Remove kinases from ordered kinase set that are not \n", + " # Remove kinases from ordered kinase set that are not\n", " # present in input kinase matrix\n", " kinase_names = [name for name in kinase_names if name in kinase_distance_matrix_df.columns]\n", " print(f\"Kinases present in {label} kinase matrix:\\n {kinase_names}\")\n", @@ -1106,7 +1106,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABL0AAAJRCAYAAACgF8ViAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydZ3QUVQOGn9lNJ5X0hBJ6r9JFCb0LAlJVBGyo2AuKigUVUUSxoCgoKNLBQu+994QSkhDSe+9ld74fs2R3kw0kuPu5wn3O2QPZvfPOre8tc2dGkmUZgUAgEAgEAoFAIBAIBAKB4E5C9W9HQCAQCAQCgUAgEAgEAoFAIDA3YtFLIBAIBAKBQCAQCAQCgUBwxyEWvQQCgUAgEAgEAoFAIBAIBHccYtFLIBAIBAKBQCAQCAQCgUBwxyEWvQQCgUAgEAgEAoFAIBAIBHccYtFLIBAIBAKBQCAQCAQCgUBwxyEWvQQCwW0jSdJSSZJSJEkKreJ3SZKkhZIkRUiSdEGSpI7/7zgKBIK7A+FHAoHAGhBeJBAIrAHhRXrEopdAIPgn/AIMusnvg4Emus+TwKL/Q5wEAsHdyS8IPxIIBP8+vyC8SCAQ/Pv8gvAiQCx6CQSCf4AsyweAjJsEGQEslxWOAe6SJPn/f2InEAjuJoQfCQQCa0B4kUAgsAaEF+kRi14CgcCSBAKxBn/H6b4TCASC/zfCjwQCgTUgvEggEFgDd40X2fzbERAIBP8/tElN5ZqEV/uHP4Wy3fUGi2VZXlwDCcnEdzWKg0AguPP4F7wIhB8JBIIK1NSLQIyNBAKB+RFeZFnEopdAcBehRVuj8DrjrOnE0pA4oK7B33WAhH+gJxAI7gD+BS8C4UcCgaACNfUiEGMjgUBgfoQXWRZxe6NAcBehkbU1+piBv4BHdW8H6QZky7KcaA5hgUDw3+Vf8CIQfiQQCCpQUy8SYyOBQGAJhBdZFrHTSyC4i9CaeceqJEkrgWDAS5KkOGA2YAsgy/L3wBZgCBABFABTzBoBgUDwn8TcXgTCjwQCQc0RXiQQCKwB4UWWRZLlO/K2TYFAYIL8xPo1avC1/KNN3estEAgE/wjhRQKBwBqoqReB8COBQGB+hBdZFrHTSyC4i9CIRW6BQGAFCC8SCATWgPAigUBgDQgvsixi0UsguIuwxNZZgUAgqCnCiwQCgTUgvEggEFgDwossi1j0EgjuIjTCUAUCgRUgvEggEFgDwosEAoE1ILzIsohFL4HgLkJcRRAIBNaA8CKBQGANCC8SCATWgPAiyyIWvQSCuwhxv7hAILAGhBcJBAJrQHiRQCCwBoQXWRax6CUQ3EVo/+0ICAQCAcKLBAKBdSC8SCAQWAPCiyyLWPQSCO4ixP3iAoHAGhBeJBAIrAHhRQKBwBoQXmRZxKKXQHAXoRF+KhAIrADhRQKBwBoQXiQQCKwB4UWWRSx6CQR3EWLrrEAgsAaEFwkEAmtAeJFAILAGhBdZFrHoJRDcRWiQ/u0oCAQCgfAigUBgFQgvEggE1oDwIssiFr0EgrsIrdg6KxAIrADhRQKBwBoQXiQQCKwB4UWWRSx6CQR3EeIqgkAgsAaEFwkEAmtAeJFAILAGhBdZFrHoJRDcRQhDFQgE1oDwIoFAYA0ILxIIBNaA8CLLIha9BIK7CK0sDFUgEPz7CC8SCATWgPAigUBgDQgvsixi0UsguIsQVxEEAoE1ILxIIBBYA8KLBAKBNSC8yLKIRS+B4C6iVFb/21EQCAQC4UUCgcAqEF4kEAisAeFFlkUsegkEdxHiKoJAILAGhBcJBAJrQHiRQCCwBoQXWRax6CUQ3EVoZNW/HQWBQCAQXiQQCKwC4UUCgcAaEF5kWcSil0BwF6FFGKpAIPj3EV4kEAisAeFFAoHAGhBeZFnEopdAcBchts4KBAJrQHiRQCCwBoQXCQQCa0B4kWURi14CwV2E2DorEAisAeFFAoHAGhBeJBAIrAHhRZZFLHoJBHcRWnEVQSAQWAHCiwQCgTUgvEggEFgDwossy3920Uub1FQ2t+bBInMrKszt2tfsmpc/aGR2TQCHJMu8LlXSmF+z0N8CohbCKd4y+Xppzks1ckiNuF/c7FjCi5oeeNTckgA0nmMZkwt7vZbZNeVcW7NrAuBoft9QO5aZXRNAU2J+37CNtze7JkD4TOFF/zaW8CKABpsfN7um5ynLtO/MnhbwuEw782sCk4MPmF3zeEaQ2TUBwpO8za5Z3zvD7JoAu3t/IbzoX8ZSXtRw+zSza7aYFW92TYDEBxuYXTM/wOySADRamW52zfxG7mbXBFCVWaRqkV3f/Esi574R4yJr4j+76CUQCGqO2DorEAisAeFFAoHAGhBeJBAIrAHhRZZFLHoJBHcR4s0gAoHAGhBeJBAIrAHhRQKBwBoQXmRZxKKXQHAXoZHF/eICgeDfR3iRQCCwBoQXCQQCa0B4kWURi14CwV2EuF9cIBBYA8KLBAKBNSC8SCAQWAPCiyzLbS16SZKkAUIMvloly/JcSZJsgA+Ah4B83W9rZVn+qIrjRgJBwJ/ANcAR2CTL8qu3Ey9DZs2FfUehtgf8/cvt64SehNXfg1YDPQfD4HHGv+fnwrIvIDURbG1h8isQGKT85uF4H41rz2LJMWe2rTjM2q93VNJ/+qOxdO7biuLCEuY/v5zIkFgAfjk5h4L8IrQaLZoyLS8MnAvApFeHMujhnqTYlgCw9dpVRjZtiVqSWH0lhEXnThjpd/Ovy+KBI4nLzQZgW1Q4C88cxV6tZvUD47FXq1FLKrZGXWXBqSMA9GxUn1mDglGpVKw7E8qPh0+azJvWAb6snjael9dtYfvlcOzUan6bMhY7tRq1SsWOy+F8ve9oefiejevz1pBgVJKi+9PBqnVXPTmel9dsYcelcPxcnZk7ehBezk7IMqw5FcKvx84C0KtuEO/27KOk/3IIi85WSH9AXRYPMkj/tXAWnj6Kfy0Xvug7GG+nWmhlmZWXLvBzyJny4yyh27NJfd4cEoxapWLd6VB+OlBF+gN9WfnUeF5ZvYUdF8MBmPNgf3o1a0hGfgEjvv7V5HHVQXuH3S/+X/AiMI8f3e/XkLfbD0QtSayJOscPV45UCtPVuz6z2vfHVqUms7iAifsq15V77m3C9DeGoFKp2LbhNGuWGj9MuU6QF698OIpGLQJY9vVO1i87DICtnQ2f//w4tnZq1GoVB3dd5Lfv9ujj59+Q2Z37oZJUrI44x/cXjxnHzbcei3uNJi5P12Ziw/g6RNGe2rwz4xq3QwbCslJ57cgmirn9dmivVrN6hM7fVCq2XrvKgpP6/OoV2IB3u/RFLalYHX6eRSHHjXX96rK4z2ji8rIU3eirLDyvHO9qZ8/cHoNp5uGFLMPrh7dwPi/GZHm902GAEvdr5/jhytFKYbp61+PtDgOwUamU8tr7W6UwvQIa8G6nfkpcI86zqEK+dvOtx+LgUfp8jbnKQl2+TmvRmXGN2yr5mpnKa0c2o9Udd1+D+rzdT/GjNedDWXzMtB+18fNl7aPjefHPLWwLU/zIxd6ejwf3p4m3J8gyM7fsNHnszRBe9N/yol6BDZjdrS9qlcSqsAssulC5zfzYfxSxuVkAbLsezsJzSps5NPYp8ktL0MhaNFqZ4X8tB6BHy/q8OjYYtaRi4+FQftlhXAd7tW3IM8N7oJVlNFqZz9fu41xkAnY2an56ZSx2Nkr73n02nO836dvX/f4Nmd3JwIsuVfAiHxNeFGrgRY0MvOjoJkqA++sFMfu+3qgkidWXQvn+jLEXdQ2sw+IhI4nL0XvR1yeV837aZyB9ghqSXljAoJXLjI5LOJvHmaUpyFqZRn3daTnK0+j3knwNR79KoCCtDK1GpsWI2jTs4w7AsW8TSTiVh4ObmiFfNjQ67h6P5jzdaBQqScW2pGOsjd1l9PvoOn3o7XMPAGpJTV0nX8YfnUVeWQEvNZ1Al9qtyCrNY/rpuZjCXP1RRTrXbs6zTUaiQsWWxGOsitlj9PvYur3p69tRF28V9Wr5MvrQu+SWFdxSuyqEF/3HvCigQv8dWsGLfE303xeO0NC1Nt/0eqA8XJCLBwVlpZT0KmDbyqOs/da4jQA8/cFoOvdpqczRXlpBZGgcgQ19eHPRY+Vh/Ot58evnW/hjyT4eeXUI3Qe2QauVSVFp+Ov4RZ4a3A2VSsXGo6H8vNPY44LbNOSZoT2QZZkyrcxn6/dx7loCAFvem0p+cSlarZYyrcykz34vP+6+hgb997mb9N/+uv77jwr99xDj/juX9NseG3r5uvHaR6Px8HJG1spsWX+KP1fo/bhLhyBemNYHlUpi064QVmww9s7+97dg0oNdACgoKmH+D7uIvJ4KwJofnqCgsAStVkaj0fLEa8oYqUvHIGY80ReVSmLzzgv8vs5Ys1+vFkwc3RWAwqISvvhuJ5HXU7GzVbNw7gRsbZVx7P7DV/n598Plx/VoUZ/Xxyjz341HqiivYQbltc6gvN6vUF7zfqem3GleZG3c7k6vQlmW25v4fg7gB7SRZblIkiQX4JWbHSdJUhBwUJblYZIkOQJnJUnaKMvyYf4BIwfDxFEw8+Pb19Bq4Pdv4aVPwMMLPp4B7bpBQH19mK2roG4jeGY2JMbAym/h5U8BVDSpPZsLyVOYc18Lvto+k+PbLxBzNan82M59WxHQwIdp3WbT/J4GPDdvAi8Nnlf++8xRC8jJyKcif/ywmzn+Uagkib3jpvHw5rUk5efy16iH2Xk9kogs47dwnEyKY9q2jUbfFWs0TPx7DQVlpdioVKx7YAL7YqIIS07l3SF9mPrrBpJzcln7xET2hEUSmWb8lh2VJPFqv54ciowu/65Eo+GxZesoKFU0V0wZy4HwKM7HJ6GSJN4Z1odpyxTdNU9NZO+VSCJTK+u+MqAnhyP0uhqtzLxtB7iUmIKTnS3rn57EkchoLklpfHBfPx7+W5f+0br0Z1ZIf2Ic07Yap79M1jLnyD4upqVQy9aWv8c8wsG4aCIy01FJktl1kxKyeXt4Hx7/WUn/6qcnsvey6fS/PLAnh8Ojjb7fePYSK46dZ+6YgfwT7sCrCFbvRfDP/UglSbzXcTCT968gqTCHDf2msTvhKhE5aeVhXGzteb/jIKYcXEliQQ617Z0q66gknn1rOG89+TNpyTksXPk0x/ZdJuZaanmY3JxCFs3dTPc+LYyOLS0p443Hl1JUWILaRsX8ZU9w6tBVrlyIU9pMlwE8snsVSQU5/Dn4MXbFhRORXaHNpMTx+L61Rt/5OjrzWPNO9P/7R4o1ZXxz30iGB7Vkw4Ww226HxRoNE/8y8LeRir+dTU5U4tq1Pw/vWE1SQS5/DZvMzpiIynFNjmXa7vWV8nB2l77sj7/GM/v+wFalwtHGFiq8ZFElSbx3zyAm7/udpMIcNvafyu6E8Mrldc8gphxYRWJBDp6mykuXrw/vWqXEdfBj7KwiX6ftXWciX++h318/6fJ1BMODWvJn7FUlfgP68NiqDSTl5rL+sYnsCY8kIr2yH73WuycHo4z96O1+wRy4dp0Zf2zCVqXCwbbmb+ITXlT1cdbmRSpJ4sMe/Zi0bY3SFh94lF0xEYSbGGtM3Vm5zQCM37KKzOJCI803xvfhmYUbSM7M5beZE9l/IZKoJH0dPBEWy/4LyiSnSaAXcx8fyuj3l1FSpuGpL9dRWKy07yWvjuXwxShCopSxxgedB/DIHp0XDdJ5UU6FuKZW4UXNOtF/k86LeipetDHjKh/06ssjf64jKS+XP8dOYldUBBGZxu3lZGIcj2/6o1La118JZXnIWeb3G2z0vVYjc/rHZHq/WxdHT1t2vHGdwM7OuNXVv2E1fFsmbnXt6fVWXYqyy9j8/DXq3+eG2laiYbAbTQd7cGxhgnF5IfFs44d4K+Q70oqz+KrDKxxPDyGmIFkfp7g9rI9TFpS61m7FyDrB5OkWjnYmn+CvhIO82uxhk2Vprv6oki4Szzcdxevnvie1OJvvOr3E0bSLRBvEe03sXtbE7gWgu2dLRtft9Y8WvEB40c2Os0Yv+qCbQf89dDI7Y6vov/cYe9G1nAyG6FbXbFQqwia9wuRdayh65jRfbX6V4ztCiQk3mKP1aUlAA2+m9fyQ5h2DeO6Tsbw0/Avir6Xw3EBlrqZSSfx66kOObDsPwPrv9/Dr51sA6P3lg8wa15dxn64gOSuXFa9NZH9IJNcMPO54WCz7QnQeF+DFvKlDeXCOfmH8iYVryco3fiOtUf+dc4v+O9hE/91f139v1Pfffv9gbKjVaPhx/lYiLifi6GTH16ue4ezRCC5Tikol8fKT/XjpvbWkpufy47yHOXwikutx+vJKTM7mubdXkZdfTNeODXh9+gCeemNF+e8vvLOG7FyDvkMl8eLT/XnlnTWkpufywxePcPh4JNGxxprPv7lS0bynAa8+N4Dpr66gpFTDS7NWU1hUilqt4ptPJ3D89DUuhSljwzfH9uHpbzbcfnl9Vbm8asId6EVWhdlyV5IkJ+AJYIYsy0UAsiznyrL8XnU1ZFkuBM4Bgf80Pp3bgbvLP9OICgOfAPD2Bxtb6BwM5ytcrE+Igebtlf/714O0ZMjJBFf7thSWRVNUFktZqYb9f5yi26B2Rsd2G9SO3WuVK4FXTkfh7OqEh49rtePX3seP6JxMYnOzKdVq+TviCgOCGlX7+IKyUkAxfxuVChmZtoF+xGRkEZelaG65GEbf5pU1H+7Snh2XI8jINx5sFJQaaKpV3HixbNs6Ot3MbEo1WraEhNHHlG639uy8FEG6gW5qXj6XElMU/ZJSIlMz8HV1VtKffXvpTy3I52KaoplfWkpkZgZ+tZwBLKLbpo4fMen69G8NCaNPi8qak7q1Z+dF4/QDnL4eT3bhP38Vu0aWavT5L2JtXgT/3I/a1Q4gOi+D2PwsSrVaNsdcpF9AU6MwD9Rrzfb4MBILcgDIKK48EWjWug6JMekkxWdSVqZh/7YQuvc2HsBkZ+Rz9WI8mjJtpeOLCpUdpjY2amxs1Mi6Bt7OM4Do3Exi85T4/X39Mv3rNK10fFWoJRUOahvUkoSD2paUwrx/1A7BhL/pItvey5/o3Cxi83S6UZcZUK9JtTSdbe3o4luX1eEXACjVaskpKa4Url3tAKJz9eW1KeYS/QIrlFf91uyI05dXuonyau/pr8tXXVyjLzGgbvXiCsb56mhjS3JhLgBt/f2IzswiNlvR3XwpjL5NKufto/e0Z3tYBBkF+rg529nRuW4gay+EludBbnHlPLgVwouqhzV4UXtvf67nZOnb4rXL9K/X+B/Fo3WQH3GpWcSnZVOm0bL9VBjB7YzrYGFxafn/He1sKTccg99s1LqxRlVeFH2Z/nVv04tsbEkpyKOdrx/R2VnE5ujSHx5G/4bVT/+JhHiyiir33xkRRTj72eHsZ4faVqJeT1fiTuYZB5IkSgu1ys6CIi12zmpUukV2n1ZO2DlXHsY3dalPQmEqSUXplMka9qeeoZtnmyrj18vnHvan6He6h2ZHklta9UKSufqjijR3rUd8YRqJRRmUyRr2Jp+lh1frKsP39u3InuSzt9S9FTX1ov+iH90xXuTlT3ROhf67Bn3iDR5p1oG80hJOpsQrc7Q/z9BtgHEb6TagDbt1O4iunLmOs6tjpTla+57NSIxOIyU+E4CCPH07D/KtTV5RCfHpOo87HUZwmwoeV2LscbKBx1VF2wBd/62bp22+HEbfpib67066/jvfRP993rj//idjw4y0PCIuJyrpKSghNioVT10+tWjiR3xiJonJ2ZSVadl96Ao9uxjHNTQsgbx8ZQxxMSwBb0/nm6a/RRN/I809B67Qs6uxH1+8YqB5JQFvL31FKyzS9R02KqNxbOsgP2LTsvTldSaM4LY3KS97W2RuXV414W7won+T2130cpQk6ZzBZxzQGIiRZTm3msdtrPijJEkeQBPgQOVD//9kpUNtb/3f7l6QmWYcpm4DOKu73hF1BTKSlTB2al+Ky/RXDNISMvH0czc61tPfnTSdUQKkJWbi5a+EkZH5aPXzLNzxJoMf6Wl03PCpwWwdM5lXO/ckrVBvZon5efjWqtyDdPQNYOuYR/ll8GiaeOi3zqskiS2jH+X0o89wKD6acylJ+Lo4k5ijL8KknDx8XYwNyMelFv2bN2bVqQuVzqWSJDY+NYnDrz3FkWsxXIhP0h3jTFK2Xjc5Jw9f18q6/Vo0ZtXJyro3CHB3pYW/N+fjkvCt5UJCvl6zyvT7BbD1oUf5Zahx+m9Qx8WVll4+nEtWTNsSur6uxulPysnDx1T6WzZm9Ymq0/9P0aKq0ec/wF3hRb6OLuWTB4Ckwlx8HY3rZJBLbdzsHFgR/Ah/9JvGyPqVJzmevq6kJmeX/52WnFM+OKkOKpXEt2ueZdW+mZw5GkFYSBwAfk7OxvEryMXPyUSb8Q5ky9Cp/Nx7LE3cvABILszjx0vHOfzgsxwf/Ty5pcUcTIz6x+1QJUlseehRTj/2DIfiFH8D8HVyISE/x0A3F1+nyoOsjt6BbH1gCr/0e4gm7kpc67m4k15UwOc9h7B5+GPM7TFI2elVAV9HFxILDdp7QU6l8mrgUhtXOwdW9H6YP/tP5cGgyuWlxNUwDyqXe3lch07llz4PVcjXExwZ9QwnxszQ5et1APxcnEnMNYhfbmWf93WuRf+mjVl51tiP6rq7kVFQyKdDB/DnlEl8NLgfjrY13zQuvMjkcVbpRX5OziQa1sOCXPxMtUWfALaOfIxlA8bQxN2wT5T5bdBYNo14lAnNlIt/3u7OJGXqNVMy8/Bxr9wOe7drxPrZk/nq2ZG8/6v+NlqVJLHyrUnsmvcUxy/HEHpdad9+jia8yFSb8QpkyxATXnT5OIdHPsvxUc+TW1LMwaQo/GpVaC95ueUXyYw0/QLYMv4Rfh4+iia1K48JKlKQUYqTl77tONW2oTC91ChM08Hu5MSV8MfjEWx9OYqOU32RVDef6HjZu5FanFX+d1pxFp52bibD2qts6eTRnENp528Z3xuYqz8yGe8ifbxTi7Pwsq863p1rN+dg6j8fL9XUi/4DfnTHelGl/rsgF19TbdE7kK3Dp/BLX33/bUj/uk2MdoelJWXh6W9c1zz93EhLyNKHSczCy884TK8HOrL/z9NG301+fSjLT7zPfa0acDoirvz75KwqPK5tIza+PZmvnx7Jeyv0HicDi54dxe+vTWR0D3378XOuME8zQ//9T8eG5ecNcKdRc//ysaF3bRdS0vRxTU3Pw8uz6pXOYf3acPxMVPnfsgxfzB7DT58/zPD+bQHw8nSuoJmL100WyoYOaMvx03pNlUrip68m88evz3Lq7HUuX1Xmfj5uxn1ScmYePm41KC8ZFj03it9fn8joe2/td6a4A73IqjDb7Y2SJLWt8PcU4AXAE+ghy3KsqeN03CdJ0gWgGTBXluUkE2H+75hacJcqjDUGjYPVi+CD6RDYAOo2BpUKwNSgxFjQZAhdkFeGfU5GcjZuXi58vOZ5YsOTCD0WweZlB1j5xRYuvdeQ7/o/QHsf/wpnMD5HaFoy965YTEFZKcF1G7B44Eh6r1oCgFaWGbJ+Oa529vwwYARNPbxMRqqi5lsDg/l810G0JjJIK8s8+MMKXOzt+WbccJp4exKeml4p35S0Gh//5uBg5u8wrQvgZGfLwvHDmLt1P/nFJVXkcIX0pyZz76+69NdrwOJBI+m9cole08aWRQMf4IPDe8krVXaxWELX5BC1YvqHBjN/e9XpNweaO+9+8bvCiyQTNahiLbGRVLT28OORfStwUNuwtu8UzqXHcz1PvzXbtOdUv75ptTLPjv2WWi4OvLtgIvUb+xAdkWI6fhV0L2Yk0XPjt0qbCWjED71G0+evH3C1c6B/3Sbc/8d35JQU8+39DzKyQSuK8ypJ1qgdamWZIWt1/jZoBE1re3E1I60azgyh6cncu26RohvYkMV9HqT3hh9RSypae/rx3vFdnEtLZHaXvkxv042vruw1Ot70lNT4LGpJReva/jyyVymvdf0e42xaNcqrYlwzkrh3w3e6fG3I4uBR9P5zMa529vSv24T7Ni4ip6SY73qNZGSDVmyOj6gidsbKs/oF89m+yn6kVqlo5efDhzv3cj4xibf7BfNUt84mNW+G8KL/khfdun2HpifTY/X3FJSV0rtOQ37sN4rgdT8CMGrT76QU5OHp4MRvg8YSmZ2OlFBJ0qQX7T0fyd7zkXRsHMj0B3ow/SvlliWtLDPh4xU4O9oz/6nhNArwJDIhHcnEYKNi3b6YkUTPPwy86P7R9Plb50V1mnD/nzovuu9BRga1oiTn1v57MSWFnst+pKC0lOD6DfhhyAj6/La0ciJvJgKVsjrxXD4eDezp835d8pJK2ftBLD4tHLF1Ups4uAqRm9DVszWXcqLKb22sDubqj0wpV9Y13T9192rFxeyof3xrIwgv4j/kRTebN90gNCOZe9cb9N+9H6T3xh/Lf7dVqWjj6cfuuIibCpn0EoMgNrZqug5ozc9z/zYKs2zeZpbN28yMjdNp6OdZ4XgTHnchkr0XIunYKJBnhvXg6W8Uj3vsi9Wk5uTj4ezI98+NJio5g4OF8abnabKJ/nvvLfrvBF3/3b0zWRuiqEhNxoYADo52vP3FBH6Yt4WC/GLAsXoFpqND67oM7deGZ99aWf7dM2/+TnpmPu5uTiyYPYaY+AyT88mqNlx1aFOXof3b8Nwb+udrabUyj7+wDOda9sx5ayQN6nkRFZNmep5qQtiovIYalNeC1aRmG5RX0s28zjR3oBdZFebM3Qignu4ecWRZ/llnntlUeuJJJQ7KstwWaANMlySpvalAkiQ9KUnSKUmSTi3+NdtUELPi4QUZ+tuZyUoD9woX7xxrwWOvwruLYOprkJcNXn5QoknC3savPJxXgAfpScZxTkvMwivQQx/G34P0pCwAMnQr7tlpuRzZco5mHYKUOKTmotUqzfCP8EtGVzj8azmTkm88U8wrLSm/zWdfbBS2KhUeDo5GYXJKijmWGEuvukEk5+Th76pfhfdzdSYl1/i5Yq0DfPlizBB2vzCVAS2b8O7QPvRtZrwFNLe4mBPRcdzXWIl3ck4efm56XV9TuoG+zH9oCLte0ukO61N+a6WNSsVX44fx94Ur7LysdFRJ+bkEGFxtvmX6Y4zTb6NS8f3AB/jj6mW2R4WXH2MJ3aQK6TeVr60CfZk/bgg7X5nKwFZNeGd4H/qauAXyn6BFqtHnP8od50VJhTn4O+mvuvk5upBSmFshTC4Hkq5RqCkls6SQk6kxtHD3NQqTlpyDt6/+SqWXrysZqTe78Gua/NwiLpyKotO9ym0FiQW5xvFzciG58CZtJiFSaTP2jvT0CyI2L5uM4kLKZC3bY8Lo6FXnH7fDG+SUFHMsQfE3UHZ+BNTSx9W/lgspBTfRjb+GrUqNh70jSQW5JBXkci5NuTK45XoYrWsb5zEoZeFvsPPBz8m1Un4kFeRwIDGyvLxOpMbQwt2nQpiKeVC53I3zVR9XJV+zyvN1W8xV7vFW7kpJys3D38Ugfi4m/NjPlwUjhrB3+lQGNmvCewP60K9JI5Jyc0nKzeV8ojLv2XYlnFa+xvGuDsKL/jtelFSQi79hPXRyIfkmbWZv3DVsdO0bKG9f6UUFbI8Op72XPymZefh56DV9PJxJza78DNMbnImIp46XG+61HIzPW1jM6fA4erQMAqrpRWXV9KLYMDp61yExP9e4vTi7kGzKi3SPd9gXbdqLKuLkaUtBWln53wUZZTjWNt45GrUnmzpdXZAkCRd/O2r52JITX3JT3bTiLLzt3cv/9rJ3J73EdN3o5d2RfQa3NlYHc/VHJuPtoI+3t7076cU5JsP29ulgllsboeZe9B/1ozvGi4z6b6fq9983CA5sSER2utFz5rz83ElPMq5raYlZeAW468P4u5NusBuqU++WRIbEkZVmegy181w49b31x/u638LjIuOpa+BxqTlK2My8Qvaej6B1fWVOmZRbYZ7m4kxKXoX+29+g/27ehPcGGvTfObmcTzDuv//p2FBto+KdLyawd/N5Du++VP59anouPga3Fnp7OpOWUfmKZqP6Xrzx7EDe+uQPcnL1t4imZyrpysou4MDxCFo08SM1La+CpotJzYZB3rw2YxBvzdlopHmDvPxizobE0uWeBoCyE8+wT/K9VZ9UsbyyDcrrQgStg/yqPLYq7hIv+tcw26KXLMsFwBLgG0mSHAAkSVIDdjXQuAp8ArxRxe+LZVnuJMtypycfMb3l2ZwENYOUeEhLgrJSOLlPeZC9IQV5ym8Ah7ZCk9bKQlhOcQiONkE42NTBxlZNr5GdOLbdeJvpse0X6PuQItj8ngbk5xaSmZKDvZMdjrWUB5naO9nRMbgF168ol0UN7yev6+IOQB0XN2xVKoY3bs7O6Eijc3g76k29nbcfEhKZRYXUdnDE1U53DrUN9wbWJzIrg5D4JOp7ehDo7oqtSsWQVs3YE3bNSLPfwqX0/Ur57LgUzgeb97A7LBIPJ0dc7HWaNmq6N6jHNd0D8EPik6hfW6erVjGkTTP2XjHW7b9gKf10nx2Xwvlg0x52X1HSM2dkf66lZrDsiH5wdj4liSB3D+P0X79J+n38kCQl/QCfBg8kIiuDJReMtyZbQjf0Rr56KOkfbCL9A+Yvpb/us/1iOB/+vYfdl43P+0/RyKoaff6L3IledCEjgfrOtalTyx1blYqh9VqxO+GqUZhd8WF08qqrey6WDe08A4weLAwQdjGegPqe+AZ6YGOjptegNhzbd6VacXDzcKKWi9K529nb0KFbI2KjFP0L6QkEuXhQp5auzQS1YFdcuNHxXg61yv/fztNfaTPFhSTk59DBKwAHtbLxuIdfEJE5af+oHVbytzqKvwGcT0skyNWDOs463QYt2BkbUUHXIK5e/opvFheSWphPQn4ODV1rA3BvQH3Csyvc845SXkEutcvzY1i9luyOr1heV+nsrS+v9p4BROYaP4z3fHqionMjrvVbVo5rpXxFydcC43y9169++e0cIYlJBNX2oI6b4vNDWzZjd4SxH/X5fim9Fymf7WHhvLdjD7vCI0nLLyAxJ48GtZULNt2D6lZ6gG51EF5UbY1/3YvOpybSwNWDujfqYcMW7Iy5WZvxQ6Vr3442ttSyVZLraGPL/YFBhGWmcTE6ibo+HgR4umKjVjGwUzP2XzCug3W99elpXtcHWxs1WflFuDs74uyoa9+2aro2r8d13VX1Sl5U/x96UXYaF5KTCHJzp46L0l6GN2nGrihjL/JyqnpMUBW1GzuQm1hCXnIJmlKZmEM51OlkfDuNk5ctySHKZKowq4zchBKcfW/+4oiruTEEOHrj61AbG0lNL++OHEsPrRTOSe1AG7dGHE0PMaFSNebqjypyJTeWQEdv/HTx7u3bgSNpleNdS+1AW/dGJn+7HWrqRf9FP7pjvMhU/x13kz7RoP++wQMNWrLq6vlyHRtbNb1GdOTYTuN2cGxHCH3HKG8VbN4xiPzcIjJT9AtjwSM6sq/CrY0BDfTPxPHzcAVJ0nvcPc3YH1LB47wMPK6OD7ZqxeMc7GxwslfauYOdDd2b1yciUWk/IQlJBHkY9N8tmrE7vEL/vcig/74SznvbDfrv3Ar9d1rGPxobArz0/oPERKWy4Vfjt7heCU+ijr8H/j5u2Nio6NuzOYdOGnunj5cLc94YwZwvtxCboH/kj4O9LY4OtuX/79y+Ptdi0rgSnkidAA/8fBXNPvc35/AJ4zrg4+3Ch2+O4KMvNhNnoOnm6oizbn5tZ2dDp/b1idE9VP9idBL1vA36pI4m+qSK5WVzk/JKuLnfmeJu8KJ/k9u9vdFRkqRzBn9vk2V5JjAL+BAIlSQpFygElgEmNrJXyffAq5IkNZBlufJ+y2ryyvtw4hxkZUPwGHhuCowZWjMNtRomPAtfvgVaLdw7AAKCYP8m5fdew5Q3Nv78GUgq5a2Oj75042gNERkf0MZ3CYsPObNj5RFiwhIZ8uh9AGxZfpCTu0Lp3Lc1S49/QFFhCQteUF7j7eHtyjs/P6WLg4p9G09yeq+ycj7t3VE0bF2HIh874nKzeevATpYPGY1aUrEmLITwzHQmtVCembHi8nkGN2zGwy3boZG1FJWVMWO3Enkfp1rM7z0YlaRCJUlsjgxjT8w1HGQ1H27Zw5KHR6GSJNafu0hEajrj7lF2Rq8+XfXzE7ydazF35EDUKglJkth28Sr7wpUi1Ghl5mzew0+PjkKlkthwRqfbSadr4vlgN+hYL4AR7VsSlpTKhumTAPhy12G250Xy7sHdLB+mS/8VXfpb6tJ/6TyDGzXj4Vbt0Gi1FGnKmLFTSX8nv0BGN2vF5fRUtjz0KADzjh9kX0wUGlk2u+6J+Bg+2rSHHycr6d94+iIRKemM66xL/02eYwbw2djBdGlQF3cnB/a89jjf7DnKhtMXb3qMKe7AN4NYvRfBP/cjjSzz/plt/Hz/BNSSirVR5wjPSWNCI+XV7SsjzxCZm86BpEg2D3gSLTJrrp0jPCfVSEer0fLdx5v4aNFkVGoVO/44TXRkCkMeUm5P27L2JB6ezixcNR2nWvbIWpmRD/fgqZELqe3lwitzRqNWq5BUEge2h3LiQFh5/Gaf3MnyvuNRSRJrIy8Qnp3GxCYdAPg9/CxD6jVnUtMO5V70/ME/ATiXnsDWmDA2DZlKmazlUkYyK8PPoZFVt90OfZxqMb/PYFQqnb9FhLEn+lp5XN89tpPl/ceiliTWRIQQnpXGpGbtFd2wcwyu34yHm+niqiljxv6/yvPwveO7+PL+Ydiq1MTmZfHqoS2VrpMr5bWdX3pNQCWpWHftvOnySrzG5oFPICOz+to5rmanVtJ598QOlvcdp4urkq+TmujiGq6La9MOaLQyRZpSZhxU4nouLZGt0WFsHjqFMlnLRV2+go0Svx17WDpuFGpJYt2Fi0SkpTOhveJHK8/d3I8+3LmX+cMHY6tWEZuVzczNO3i8a6ebHlMR4UX/HS/SyDLvHt3F8kEPKfXwagjhWelM0r3FZ8WVcwwJasrDLTpQdqMt7lXqoZejE4v7Pggou6D/jLzE/vgoPLW2fLpqD9/OUPrEv45c5FpiOqPvU+rg+oMX6NOhCcO6tqRMo6G4tIyZP20GwNutFu9PHohakpBUEjtPX+VgaFR5XGef2snyPrfwoib69v38oQpeNFjnRZnJrIw4h0ZWM/vAHpaPGI1KUrH2UijhGelMbKXE9feLFxjSqCmTWuvHWs9v31yef18NGEq3wDp4ODhy5LEn+fL4EdZcDkWlluj0uC/7PoxF1kLDPm641bMnfLsySWsy0INWD3ly/JtEtrwUBbJMu4e9sXdVhu6Hv4gn5WIBxbka/ngigjbjvKAjaNGyKGI9c1pPRy2p2JF0jJiCJIb43wvAlkTlQbQ9vNpyJjOMYq3xzrE3mj9KW7fGuNo682vX9/k1eivhSfqJqrn6o4poZS1fX93Ap+2eRCWp2Jp4guiCZIYFdAdgU4LyJqme3m04nRFGkfbmO96qi/Ci/5gXHd/J8n5jUask1oTr+u+m7QFYcfUcg4N0/fcNLzqg778d1Db09A/iraPbSC7MY3m/sTju1bJj9TFiriYx5GFdG/ntMCf3XKJzn1YsPfQuRUUlLHhZ/0ZBewdbOtzfnIUzVxvFb8qbw6nT0AdZlokpK+aj1btY9Iwyn/rz2EUik9IZc6/iG+sOX6Bv+yYM76J4XFFpGa//rPiGp0stvnhiOKD45tZTVzhyORoCdO1v5x6Wjq/Qf3fQ9d9nb9F/79jL/AeM+2/vfzA2bNDUj37DOxB1NYlv1zwLwC8Ld7IvMQWNVmbBj7uZP3s0KpWKzbtDuB6bzoiByjjuz+3nmTK2O24ujrz8VD+ljDVannjtNzzcnfj4jRGAMhfeefAyJ85eR6WV+fL7XXz+/hhUKhVbdoVwPSadB3Qvi/tr23kmj++Bm6sjL03vX6751Mu/4lnbmbdeVMaGkgr2HQrj6End2FArM3fNHhY9W6G8eurK65CuvLoalNdSE+WlNiivGnIHepFVIdX0nl1rQZvU1OwRP/jPX45nkrld+5pd8/IH5r3t7QYOSbfa5Xx7SBrzaxb6W0DUQjjFWyZfL815qUZ7W7+50qdG7ea55nvE3tlbYAkvanrgUXNLAtB4jmVMLuz1WrcOVEPk3JvvZrhtHM3vG2rHslsHug00Jeb3Ddt4e7NrAoTPFF70b2MJLwJosPlxs2t6nrJM+87saQGPy6z2ZpgaMTnY/M8DP54RZHZNgPAk71sHqiH1vWu+Q7Q67O79hUW9CIQf3QpLeVHD7dPMrtliVrzZNQESH2xgds38ALNLAtBoZfqtA9WQ/EbuZtcEUJVZZt0iu/7t7gOqmnPfWHZcBMKLaoL5S1ggEFgt4iqCQCCwBoQXCQQCa0B4kUAgsAaEF1kWseglENxFaMX93wKBwAoQXiQQCKwB4UUCgcAaEF5kWcSil0BwF6ERb/oQCARWgPAigUBgDQgvEggE1oDwIssiFr0EgrsIcRVBIBBYA8KLBAKBNSC8SCAQWAPCiyyLWPQSCO4ixFUEgUBgDQgvEggE1oDwIoFAYA0IL7IsYklRILiL0MqqGn2qgyRJgyRJCpMkKUKSpJkmfneTJOlvSZLOS5J0UZKkKWZPmEAg+E8hvEggEFgDNfWi6viR8CKBQFBThBdZFrHTSyC4iyiV1WbVkyRJDXwL9AfigJOSJP0ly/Ilg2DPApdkWR4uSZI3ECZJ0gpZlkvMGhmBQPCfQXiRQCCwBoQXCQQCa0B4kWX5zy56HSwyv+Z9DubXBPik0PyRlUr+W1sg1RYoL3WBZTYqyray2TWlMrNL3hYa898v3gWIkGX5GoAkSauAEYChocqAiyRJEuAMZABWkiP/nKYHHjW75tX7l5tdE2BgaDuL6NqH9zC7Zqmr+dshgFxkft+wu2Zndk0AjQX6JNtc82veDsKLzE+DzY9bRDdq6E9m1xz4hGW8yDa/u9k1NbZmlwRg/9/m981id8sM6109zO+bEZ0t45v0rllw4UXmp+H2aRbRvTZwidk1B06xjBeVOjcwu6bvKY3ZNQFkO/P7hlNcvtk1AaSr0RbRdawfYBHdmiC8yLL8Zxe9BAJBzdHKZl8sDQRiDf6OA7pWCPMN8BeQALgA42RZ1po7IgKB4L+D8CKBQGANCC8SCATWgPAiyyKe6SUQ3EVoUNXoI0nSk5IknTL4PFlB0pRDV9yiMxA4BwQA7YFvJElyNXviBALBfwbhRQKBwBqoqRdVw4+EFwkEghojvMiyiJ1eAsFdRE2vIsiyvBhYfJMgcUBdg7/roFwtMGQKMFeWZRmIkCQpCmgOnKhRZAQCwR2D8CKBQGAN3M7uilv4kfAigUBQY4QXWRax00sguIvQoqrRpxqcBJpIktRAkiQ7YDzKNllDYoC+AJIk+QLNgGtmTJZAIPiPIbxIIBBYAzX1omr4kfAigUBQY4QXWRax00sguIvQmPl+cVmWyyRJeg7YDqiBpbIsX5Qk6Wnd798DHwK/SJIUgrLV9g1ZltPMGhGBQPCfQniRQCCwBoQXCQQCa0B4kWWp9qKXJEkaIMTgq1WyLM81EW4f8Kosy6cqfP8Y8BkQD9gCl4FHZVkukCTpZeBxlLcFpAJTZVmu0esZQk/C6u9Bq4Geg2HwOOPf83Nh2ReQmgi2tjD5FQgMqskZFGbNhX1HobYH/P3LLQLb3YfkOoul52qxbdkB1izYUinI9HkT6TygLcUFJcyfvoSI89HY2tvw+bY3sbWzQW2j5uCfp/jt4z8AePTtB+k+pAOFvvakFxaw7vJFXujSHZUksfpSKN+fNt6N2DWwDouHjiQuJxuAbZHhfH3yGACf9h1In6CGpBcWMOj3ZeXH9GxUn1mDglGpVKw7E8qPh0+aTF7rAF9WTxvPy+u2sP1yOHZqNb9NGYudWo1apWLH5XC+3ne0PPy9Teszc0QwaknF+hOhLNlnrNu7ZUNmDOyBVpbRaGXm/rWPs9eVXZgP39uB0V1bIyGx7kQIvx06C8D9QUG801vRXB0awg8nTMe1ja8v6ydO4PlNm9kWHg7AlI4dGdumNQBhaWm8vm07JZrKb0a5v34Q797fG5UkseZiFXk8bCSxujzeHhnO1yeOmYyHIT2b1mfmcF1+nAzlp/1V5HMdX35/Zjyv/r6FHaHht9S9GRZ4SCKyLG8BtlT47nuD/ycAA8x1Pmv3ovv9GvJ2+4GoJYk1Uef44cqRSmG6etdnVvv+2KrUZBYXMHHfrzU5BVBDL6oBnQa255kvp6BSq9i6ZDerP/2jWsf1bFyfWYODUUk63zh0E994Yjwvr93C9kvh+Lk68+moQXg5O6GVYc3pEH49Ztn2fX/9IN4NVjxuTWgI3580rdvW15f14yfw/JbNbNXpPtahA+Nat0GSYHVICD+fPVue/reG6NP/08Gq07/qyfG8vGYLO3TpnztaSb8sw5pT+vQD3NewPrP6K3mw9nwoi49WkQf+vqyZPJ4X/9jC9itKXPc8M5X8klK0spYyrczon383eWzPpvWZOSwYtaoaXjR9PK+uFF4E1ulFvQIbMLtbX9QqiVVhF1h04bjR79386vJj/1HE5mYBsO16OAvPKR51aOxT5JeWoJG1aLQyw/+q3ltkrc2LurUJ4uWHlfb91/4Qlm8yrs8DuzfnkaGdASgsLmXeL7sIj1XG+OMGdGBEcBsk4M/9IazarrTF7q2DeHWC0r7/OBjCsq3Gmr3aN+LpkTfGL1rmr9zH+Qhl/PLulAH0bNuQzNwCxr1rnKedOzXguaf7olar2Lz1PCvXGJdXv94tGT9Wee5wYVEpX369nchrqQC8/vJgunVtRFZWAVOfWmp0XNd2Qbz4WG/UKom/94Ty65/G45YBPZvz8ANdynU/W7KLiOhU6vl78MGLw8rDBfq48ePaIyw/eo4eLevz6ljFJzYeDuWX7RXyoF1DnhmuH8N9vmYf5yITsLNR89OrY7GzUcaGu8+E8/0m/djw36izhggvspAXBTTg3S59lf47/DyLQiuUq29dFvcZTVxeFgDboq+y8MIRGrrW5pteD5SHq+vszoJzh1h62SjKJrE2LzLEnP1s1/ZBvDC1DyqVxKbdIfy20bh997+vBZMe1LXvwhLmL1baN8DaRU9QUFiCViuj0Wh5/I3flDR2b8zTrw5CrVKx9Y8zrFl2yEizbn0vXp49gsbN/Vn23R7W/aYf2y7760UKC4rRahTNGY/q77br1L0RT7+i0/3zDGuWHa6g68nL7+p0F+1h3W96b1j25wuKrlbG3t4WGRm1RsO25QdNz6k/nUjnAW2UOfUzS4g4H6PMqbfOxNbOFrWNSplTf/Jn+TEPPNmXB57si0aSiL6WSsOmvqhUKrZtOM2apQeM9OsEefHKh6No1CKAZV/vZL0uLV6+brz20Wg8vJyRtTJb1p/izxVHqSl3ghdZMzXZ6VUoy3L7mwWQJEl9C43Vsiw/pwv7OzAO+Bk4C3TSmet0YJ7ut2qh1cDv38JLn4CHF3w8A9p1g4D6+jBbV0HdRvDMbEiMgZXfwsufVvcMekYOhomjYObHtwqpQnKdjZw5hSc7N2Dhvnc5tuUcMWH6W2k7D2hLQCNfprafSfPODXluwSO82GcOpcVlvDFsHkX5xaht1Mzf8Sandl7gyslrrPtqK8vnbCTso9ZMaduBOcH9GLrqV5Lycvlz3CR2XYsgIjPDKCYnE+J4fNMflWK4/nIoyy+cZX7/wfpYSxLvDunD1F83kJyTy9onJrInLJLINGNNlSTxar+eHIrU93slGg2PLVtHQWkpNioVK6aM5UB4FOfjk1BJEm8/2IcnftxAUnYuq2dMZO+lSK6l6HWPRcSy95Jivk39vPj84aE88PkyGvt6MrprayZ8vZJSjYbvp43iwJUowqUs3uvbh8nr1pOUm8vGSZPYHRFJREbluL5x/30cvK6Pq6+zM5M7dmDgL8soLitj4bChDG/ejPUXL1U69v3gvjy6cR1Jebn8MW4Su6IiKp3jZEIcj/9dOY+rQiVJzBrRhyeWbCA5O5fVz01k7+VIIlMqx/3lwT05bKZX9GrN/zrcfwOr9SKVJPFex8FM3r+CpMIcNvSbxu6Eq0Tk6C+auNja837HQUw5uJLEghxq2ztVV96I6ntR9VGpVMz4ZhpvDPiQtLgMvjnxCUf/OkXM5bibHydJvDu0D1OX63zjSZ1vpJrwjf49ORShr88arcyn2w9wKTGFWna2rH9qEkcio7lakmGR9q2SJN7v04dHNyi6f0ycxK5I07qv97yPg9F63aaenoxr3YYHV/5OqUbDL6NGsTcqiuSsHN4Z1odpy5T0r3lqInuvmE7/KwN6crhC+udtU9LvZGfL+qeV9EemZqCSJGYP7MOUlRtIysll/ZSJ7A6vwo979+TQtco+8eiKtWQWFt207GY9oPOinFxWP3sTLxrUk8PhwosMsCovUkkSH/box6Rta0jKz+WvBx5lV0wE4VnpRuFOJsUxded6kxrjt6wis7jwFlE2xtq86LVH+zBj3npSMnL55f1JHDwTSVSCvj4npGYz/eM15BYU071tEDOn9mfa+ytpGOjJiOA2THnvd8rKNHz52igOn4siJjObNyb14dn560nOzGX5O5M4cC6SqES95onLMew/FwlA4zpezH16GGPe/gWAvw9fZPXuc3zw+KAKaZR44dn+vPbmalLTcvn+68kcORZBdIy+vBKTs3nxtd/JyyumS6eGvPLCIJ55QblIsm1HCBv/OsObrw2tlAevTu3LCx+tIyU9lyWfTOLgqQiuxxvkQUoOz76/mtz8Yrq1D+KNJ/rzxNu/E5OYyWNv/Fqu8+f3T3HgRLjisxP68MxXG0jOzOW3Nyey/0KFPLgSy/7zyhiuSaAXc58Yyuj3llFSpuGpBesoLFbGhkteG8vhi1HsI/Zfq7OGCC8qx6xe9EG3/jy8YzVJBbn8NXQyO2MjiMiuUK7JsUzbY1yu13IyGKJbsVJJEscfeobtMVdvEXUFa/IiIw0z9rMqlcTLT/TjpQ/WkpKey0+fPsyhk5FcjzPwjZRsZryzSmnfHRrw+tMDePLNFeW/Pz97Ddm5hUaaz74xhDef/ZW05By+Xv4Exw6EEROVWh4mJ6eQRZ9vpUdwc5Pxev2pZeRkF1SK67OvD+HN53S6y27o6sfEOTmFLJq/jR69qtB9ehl5uUUsWf8cbz73G+mHQlm418Scun8bZU7d4U2ad2rIc188yot9dXPq4Z/p59Tb3+TUzhCunLpG2/ua031oB6b3eBdNoC9LN7/MzMeXkpacw8KVT3Ns32VirunzIDenkEVzN9O9TwujOGo1Gn6cv5WIy4k4Otnx9apnOHs0wmR6bsYd4kVWyz/OXUmSrkuS9K4kSYeAh3RfPyxJ0hFJkkIlSepi4hgboBaQCSDL8l5Zlm+0lGMoD1qrNlFh4BMA3v5gYwudg+F8hQXWhBho3l75v389SEuGnMyanEWhcztwd6lGQNu2oIkGTSxlpRr2rz9B96EdjIJ0H9KB3SuVlfIrJ6/h7OZEbV83AIryiwGwsVVjY2ODrHvXQkGufvLS0KM2uSXFxOZkU6rV8vfVMPo3bFzttJxIiCeryHgy1DbQj5iMLOKyFM0tF8Po27xRpWMf7tKeHZcjyMg3NriC0lIl3ioVNmpV+Ssi2tT1IyYti7iMbMo0WraeD6NPK2PdwpLS8v872tlyI9ENfWpzISaRotIyNFqZU9fi6NuqMe38/IjOyiI2W4nrprAr9GtcOa6PdmjPtvBw0guM42qjUuFgY4NaknC0sSU5L7/Sse18defQ5fGm8JrlcVW0qetHbLqSH6UaLVvOh9G7ZeW4T+rRnp0hlfP5dtEg1ejzX8IavKhd7QCi8zKIzc+iVKtlc8xF+gU0NQrzQL3WbI8PI7EgB4CM4tsr22p7UQ1o1qUxCRFJJEWlUFZaxr7Vh+kxotMtjyv3jUxdfQ6twje6VvaN1Lx8LiWmAJBfUkpkWga+Ls4Wa9+mdPs3qqw7uX17tkeEk2ag26h2bc4lJlJUVoZGljkeF8eAxo1pW6dC+kPC6GMq/d3as/NSBOlVpL+gpJTI1Ax8XZ2VfA3wIzozi1idH2++FEa/JpV1H+nUnh1hEZXyoDqUe1GmgRe1qMKLQiPIyBNedCv+LS9q7+3P9ZwsYnN1Y4Jrl+lf75/3V7fCmryoZSM/4lKySEhVxho7j13h/o7G9TkkIpHcAmWMFRqRiI+HEvmggNqERiRSXKKMNc5eiaPXPY1p1dCP2JQs4tMUzR0nrtCrQ4XxS7HB+MXeFvnGoA04ezWenPzKC8/Nm/mTkJBFYlI2ZWVa9uy7zL3dmxiFuXgpnrw8Ja6XrsTj5aXP6AuhceTkVl7sadnYj7jkLBJSlPjuOhLGfZ2N60Ho1QRydePMi+GJ+Hg6V9Lp1KYe8clZJKXl0jpIydcbebD9ZBjBbW+SBwZjOMPfbNS6saHup3+rzhpSUy/6L/nRv+ZFXv5E52QRm6cr16jLDKjb5FaHVeJe//pE52YRn59TrfDW5EWGmLOfbdHYj7ikTBKSFd/YdegKPTsba4WGGbTvqwl4m2jfRmlsFUhCbAZJ8ZmUlWnYtyOU7r2aGYXJzszn6qUEysq01U22gW4WZWVa9u28SPcKi1vZmQU63cp32pjUKdWwf8Nxug9tbxSm+1CDOfWpm8ypbdXl/jNsWm/WLNhCaUkZzVrXIf56Wnke7N8WQvfexotb2Rn5XL0Yj6ZCHmSk5RFxORGAwoISYqNS8fSp+QsQ72QvsgZqsujlKEnSOYOP4Sp/kSzLPWVZXqX7u5Ysyz2AZwDDPdfjJEk6h7J9tjbwt4nzTAO21iBeZKVDbW/93+5ekFnhbtS6DeCsbkdl1BXISK4cxqyofEGTVP5nWkIGngEeRkE8A9xJjdOv8qfGZ5aHUakkvj30Pqsiv+LM3ouEndI/U27yO6M4/NiT9G7QkBPx+isNSXm5+DlXNraOfgFsmfAIPz8wiia1PW8abV8XZxJzcvWaOXn4uhhr+rjUon/zxqw6daFysiWJjU9N4vBrT3HkWgwX4pU88HFzJilbr5ucnYePa+W49m3ViL9encx3U0fyztqdAEQkp3NPgzq4OTngYGvDfc2D8HN3xtfZmcRcg7jm5uHrbNzb+To7M6BxE34/bxzX5Lw8fjp5ioNPPM7Rp58it6SYQ9GVr6z4OTuTmKc/R2JeLr61Kse7g18Amyc8wtJq5DGAr6sziRXyw7dCfvi41qJvq8asPl45n28XrSzV6GOlWK0X+Tq6lC9mASQV5uLraFwng1xq42bnwIrgR/ij3zRG1m9Tk1NYFK/A2qQaXC1Mi8vAK7Dm9TkpuwrfaNGYVSerrs+B7q608PPmfHySxdq3XwXdxDwTurUU3RUXjHWvpqfTpU4d3B0ccLCxITioAf7OLvi4VPC3HBPt2aUW/W6R/gB3V1r4e3M+TvFNXxdnknIq5EGFfPV1rkX/Zo1ZeaayrgwsnTCKDVMmMq696XpWyYty8vB1M+FFLYUXmcCqvMjPyZnEfIO6XZCLX63KM8COPgFsHfkYywaMoYm7YfuW+W3QWDaNeJQJzdrd6nQW5Xa9yMfDmeR0fR6kZOTh7VH1LPiBXq05eiEKgGvx6XRoXgdXZwfs7Wzo0a4Bvp4u+Lg7k5xhoJmZh4+JmXVwh8asm/MYX77wIB/8suPWafR0ISVV31+kpuXi5VX15HTIoHacOHnr5wt71zbOg9T0XLw9qtYd1rsNR89dr/R9vx7N2Xn4iqLp4UxSpkEeZOXhY0Kzd/tGrH9vMl89N5L3l+8s/14lSaycNYldnz3F8csxhF5XPM4a6mxNvchK/ciqvMjXyYUEg4WqxALTY+eO3oFsHT6FX/o+RBN3r0q/Dw9qwV9Rl291Ootyu15kiDn7We/aLqSkGbTvjDy8Pav2uGF923DsbFT537IMX7w7hiXzHuaB/m0B8PRxJTVZX15pKTl41WTRRpb5+NtH+ObXJxn84D3lX3t6uxjrJufg5V2DVUlZ5uNvHuGNDx7EwdFWrxOfiad/hTm1vwepBrtZUw3m3SqVxLcH32NVxJfKnPq04qOBjXxp1b0JX+5+mxffH0lJcZlRXG9n4co3wJ1Gzf0JC6n+TsAb3CFeZLWY6/bG1RX+Xgkgy/IBSZJcJUlyvxFOluXnJEmSgG+B14Dye84lSXoY6AT0qkG8DC8mlSNVqAeDxsHqRfDBdAhsAHUbg8qiuwgrV0S5QkSlipE0CKPVyjzbcza13Bx5d8UM6rcIJPpyPADLPtzAWw5X+XLAEBpXWGCpmBcXU1LouexHCkpLCa7fgB+GjqDPr8bPfrhFtJExFn1rYDCf7zqI1kTGa2WZB39YgYu9Pd+MG04Tb0/CU9NNrkVX1AXYfTGS3RcjuadBIM8N7METP67nWkoGS/ed5McnRlFQXMrVxDQ0WrlSGd9QNeTt4GDmHawcV1d7e/o1bkTwT0vIKS7mm+HDGNGiBX9erti5miijCn9fTE3hvl8M8njYCPosv0kem5atlB8zhwXzxVbT+Xy73CFbZ63Wi6Rq1BcbSUVrDz8e2bcCB7UNa/tO4Vx6PNfzMiod+//GVJuq6FvVpZJvDA7m851V12cnO1sWjhvGJ9v2k19c8n9q3zrVCse/ExzMpyZ0IzMy+OHkSZaPGk1BaSlX0lLRyNpq5dubg4OZv+MW6R8/jLlblfSDSZuonK/9g/lsj2ndCctXk5KXT20nR36ZMJrI9AzOX4o3ef6bxX3msGC+2Ca8yARW5kW3HneEpifTY/X3FJSV0rtOQ37sN4rgdT8CMGrT76QU5OHp4MRvg8YSmZ3OiaSaD9zNgSW96Ab3tKjL8F6teXKOUlTXEzJYvukkX78+msKiUsJjUtFotNXqrwH2nY1g39kIOjQN5OmRPXh2vunb8W5gOo2mw7ZvV48hA9vy/Mu/3VSzKuGqcq5jq7oM79Oap99dZfS9jVpFz3sasWjlQUXSxLGmymPvuUj2noukY+NApj/Qg+lfKXmglWUmfLQCZ0d75j89nEYBnqSTZFL5n9bZmiK8yPxeZLq+GP8dmpHMvesXUVBWSnBgQxb3fpDeG38s/91WpaJf3cbMO7P/VqezKOb0optpVLefrUl8OrSuy9C+bXhm1sry76bP+p30zHzcXZ34cvYYouMzkEqqr2mKl6YtJSMtFzePWsz99hFir6cRei6minlutWV56fGlZKTlMfCB9jz+fH9ad6jHRd3jXirPqatOg1Yr8+x97ylz6t+eK59Tq21UuLjX4sW+cxj7wTjGPx5s8vjq4uBox9tfTOCHeVso0O0uqwl3iBdZLeZ6e2PF+8Iq1hKjv2VZliVJ+huYgc5QJUnqB8wCesmybLKmSJL0JPAkwCsf+TB8orJt0cMLMvS33JKVBu4VFuEda8Fjr944P7w1Gbz8qpu820CbBGr9CbwCapORmGUUJC0+E+86tcv/9g70qBQmP7uQC4fC6NSvTfmi1w22RITxRf8h5X/7ObuQnJ9nFCavVO9k+6Kj+FDVFw8HRzKLTD//IDknD39X/Sq8n6szKbnGxds6wJcvxijndXdy5P4mDSjTatkdFlkeJre4mBPRcdzXOIjw1HSSs/Pwc9Pr+ro5k5pT+XbCG5yOiqeupxvuTg5kFRSx4eRFNpy8CMALg+4lKTuXpMI8/F0M4uriTHKecfrb+Pny1VAlrh6OjgQ3bIBG1mKjUhGbnUNGoZIP28PD6RjgX2lSnJSXi7/BLhB/ZxdSKuZxiXEef3CLPAZlZ5d/hfxIqZAfrer48vlEXdydHLmvmZLPey5Fcrto7/ytsP93L/J+4gFc+ykPRU4qzMHfSX9lyM/RhZTCXKNjkwpzyUwqpFBTSqGmlJOpMbRw97WKRa/UuAy86+jN06tObdITbh2v5Bzj+uznVgPfuBKJjUrFwnHD+PvCFXZeVp6DkJRrmfadlGes6+/sXKlNt/H1ZeEQA90GSlx3Rkay5mIoay6GAvDqvfeSlJtHck4FfzPlm4G+zH/IOP0ag/R/Nd44/TfywM/VOA8q6fr7smCk3id6NVJ0d12NJEV3S2dGQSE7r0bQNsCv0qJXxbLzdTXhRYG+fD5BeFEN+b970YD3ZzJ+atvy3/ydXEguqHpMsDfuGh+q+uNh70hmcSEpurDpRQVsjw6nvZf/v7bodbtelJKZh6/Brgef2s6kZeZVCte4rhdvTe3Pi/M3kJOnv/Xw7wOh/H1Aad/Tx9xLSmaeolnbQNPDmdSsypo3OHs1njre7rg5O5CdV/m2xvI0puXi463vL7y9XEhPr6zbsIE3r744iJlvryUnt2q9ct30XKM88PZ0MZkHjep58eaTA3h5rnEeAHTv0ICrUclk6p7Rk5KZh5/Bjjkfd2dSs6oew52JiKeOtxvutRzIMri1M6+wmNNX4+jRKogTWUkkFeTib7Czyxx1tqYIL7KAF334BuOn6Hfe+Tu5lJfVDYzmJ/HXmKMaUF6uAMGBDQnNSCatyDy31N8ut+tFhpizn01Jz8XH4DZn79rOpGWYaN/1vZg5fSCvzllv1L7TM5XzZuUUcOB4BC0b+xG+LwJvX70Xefm4kp6aW0mzKjJ0O8+yM/M5vO8KzVsFEnouhrSUHGNdX1fS02qiq6QrJiqNvJwimrcK5CLgFehBRlKWUdi0hEy8Aw3m1Cbm3fo5dWuiL8eTlpDJ4b9PAxBy8joTn1Th5uFEdmYBXr6uZNQgD9Q2Kt75YgJ7N5/n8O5Ltz7ABHeBF/2rWGpJcRyAJEk9gWxZlrNNhOkJROrCdQB+AB6QZTmlKlFZlhfLstxJluVONxa8AIKaQUo8pCVBWSmc3Kc8yN6QgjzlN4BDW6FJa2UhzGKUhoA6CNR1sLFV02t0F45tOWsU5NjWs/Sd0AOA5p0bkp9TSEZyNm6eLtRycwTAzsGWDsEtiQ1X7hUOaORbfnygsxuSBHVcXbFVqRjetBm7oozN0ctJ/5Dsdr5+SJJ008WYkPgk6nt6EOiuaA5p1Yw9Ycbb6fstXErfr5TPjkvhfLB5D7vDIvFwcsTF3h4Aexs13RvU45rugcuhcUnU8/Ig0MMVG7WKwe2asfeSsW5dT32Ztgj0wVatJqtAMeratZT88HN3oW/rxmw9F8aFpCSC3N3L0z+sWXN2RxprBv+0hF66z7ar4by7azc7IyJJyMmlvb8fDjbKum+PevWIzKjciV1IrnCOJs3Yda3qPG7r64fqFnlcnh+eSn7YqlUMMZEfA+ctZcCnymdHaDhz/tjzjyaZoLwOtyafOwCLe9GNBS+ACxkJ1HeuTZ1a7tiqVAyt14rdCcYPYN0VH0Ynr7qoJQkHtQ3tPAOMHnT/bxJ2MoLAJv74BflgY2tD8Lh7OfrXrd+YFJKQRP3aOt9QqxjSuhl7rlTwjS+X0lf3KfeNK0p9njOiP5GpGfxy9Ex5eEu17wtJSQR5GOvuumas22vpEu7XfbaGhzN7z252Ripx9XRUvCjAxYWBjZvwV9gVxTcN09+mGXsrpL//gqX00312XArng00G6R/Zn2upGSw7csbomJCEJII8PKjjpsR1aMtm7A431u373VL66D7br4Tz3vY97LoaiaOtDbXslNsBHG1tuLdBfcJTK9czQ28u96LLFbzos6UMmKd8doSGM+dP4UW3gcW9KLxObRq4elDX2U0ZEzRswc4Y44fpehsMfNp56fqr4kIcbWypZWsHgKONLfcHBhFm0WdA3Jzb9aLL15Ko6+uOv5cy1ujfrTkHzhrXZ19PF+Y+/wDv/bCV2AoTJw8Xx/IwwZ2asOPoFS5FKZoBOs0BXZpz4JyxZh0f9/L/N6vng62N+qYLXgBXwhIJDPTAz9cNGxsVfYJbcOSYcXn5eLvwwbsP8slnm4mLr96DaC9HJlHHzx1/byW+/Xo049Ap4/bq6+nCJ688wPvfbiU2sbJu/3ubs/PIlfK/L0YnUdfHgwBPRXNg52bsv1BhDOetH8M1r6vkQVZ+Ee7Ojjg76saGtmq6Nq/H9STFj8+nJv7rdbamXnQH+JHFvSiiXm2CXD2oc6NcG7RgZ1yFcnUwLFd/JCSjFxI80KAlf//LtzbC7XuRIebsZ69EJFHX3wN/H8U3+vVszuGK7dvLhY9eG8GHC7cYtW8He1scHWzL/9+5XX2uxaQRdimBwLqe+Aa4Y2OjJnhAa44dCKtW2uwdbHF0siv//z1dG3E9UqkmYZfiCax3Q1dFcP9Wt6V7/VoKXj6uZGfmK3PqUV05tuWcUfhjW87p59SdGpKfU1D1nPqqcnv1kc1naXe/8tyuvNxCbG3VODjZY2OjptegNhzbd4Xq8tL7DxITlcqGXyu/sb263IVe9H+lJju9HHX3et9gmyzLM6sImylJ0hHAFZhq8P04ncmqgDjgMd33nwHOwFrdVsgYWZYfoJqo1TDhWfjyLdBq4d4BEBAE+zcpv/capryx8efPQFIpb3V89KXqqhvzyvtw4hxkZUPwGHhuCowZaiqkBjnnAySPJSw+VYsdvx4k+koCQ6YGA7Bl6T5ObL9A5wFtWXr+U4oLSvjimSUA1PZz45XvH0etViGpJA5sPMmJbecBmPreGOo08aPIx5743Bxm7d3F8gdGo1KpWHsplPCMdCa2Vq70/h56gSGNmzKpdTs0spaisjKe37a5PIZfDRxKt8A6eDg4cmTKk3x5/Ah/HrrEh1v2sOThUagkifXnLhKRms64exTN1aervtfc27kWc0cORK2SkCSJbRevsi9cuY9co5X5+M89/PD4KNQqiY0nLxKZnM7YborummMX6N+mCQ90bEmZVkNRaRmvrtDHdcGjw3F3cqBMo+WjP/aQU1iMxlXm/T17+WX0aFQqiXWhoYSnpzOhraK58kLVcT2flMS28HD+euRhNFotF1NSWHUhpFI4jSzz3r49LBuhy+OLlfN4cOOmTGrTDo1WS5GmjOe3bq6kU0lXK/PRX3tYPHUUKpXExlMXiUxJZ2xXXX6Y8dk5htwhW2et1os0ssz7Z7bx8/0TUEsq1kadIzwnjQmNOgKwMvIMkbnpHEiKZPOAJ9Eis+baOcJzUm+hXJnqe1H10Wq0fDNjCZ9sm4VKrWL7z3uJvnTrnR4araz4xiNKfV5/VucbnXS+YeL5fzfoWC+Ake1bEpaUysanJwGwYPdhdidHWaR9a2SZ9/bsZdmo0agkSWnT6elM1On+fhNdgO+GD8fdwZEyrZbZe3aTU1yMvVZizuY9/PSokv4NZ2qW/hG69G+YrqT/y12HORB+HY0s88GOPSwZr/jmuvMXiUhLZ3wHRXfV2ap1vWrV4tvRwwFQq1T8ffEKB69FY1shnJEXSQZe1EXnRSeEF90Eq/IijSzz7tFdLB/0EGpJYs3VEMKz0pmke4vPiivnGBLUlIdbdKBM11/N2PsXAF6OTizu+yCgvATiz8hL7I+PqupURlibF32+fC8LX1fa998HQomKT+fB3kp93rj3AtNGdMPN2YHXJ/fVHaPlsdm/AzD3+eG4OTtSptHy2fLd5BYUo7GFz1bs5euXRqNWSfx1KJRrCemM7qVort9/gb73NGFI9xaUabQUl5bx5vebyuP00ZNDuKdZHdydHdn82RMs/vMofx4KRauVWfjtTuZ9PBaVSmLrjhCuR6cxXPeA5r83n+PRSffi6uLIi8/1V+Kq0fL0jOUAvD1zOO3b1sPNzZE1vz3DL78eYuPxS2i0Ml8s3cOCt0ajVqnYtC+UqLh0RvZT4vvHrgtMGdMdV2dHXp3Wt1x32lvK293s7Wzo3KY+ny7WP5NLo5X5dPUevn1e8bi/jlzkWmI6o+/T5cHBC/Tp0IRh3VpSptFQXFrGzB+VsZC3Wy3en6wfG+48fZWDIVHQ+d+rs4YILyrHvF50fCfL+41FrZJYEx5CeFYak5q2B2DF1XMMDmrGw806lI+dZxz4q/x4B7UNPf2DeOvotuqlXoc1eZEh5uxnNVqZL37azRfvKPOSzXtCiIpNZ8QAZWfdnzvO89hD3XFzceSVJ/opx2i0PP7Gb9R2d+Lj10cAoFar2HnwMsfPXaeWRsu3n23h468fQaWW2PHXWaKvpTJ0tPLA/s3rT+Hh6czXy5/EqZY9siwzckI3nhz7La7uTsz+bFy55t7tIZw6GgGShFYj8+28LXy88GGd7jlFd5Ty3K/NG07j4VmLr5cZ6I7vxpPjdLrzdLo2KvbvvMj4KfczcfK97PjtUOU59Q7dnPrcXGVO/azymBllTj0NtcpgTr1dmVPv+PUgL387le+PfkCZpGLZt7v4aNFkVGoVO/44TXRkCkMeUi5sb1l7Eg9PZxaumq7EVSsz8uEePDVyIQ2a+tFveAeiribx7ZpnAfhlod4/q8sd4kVWi2SO+5L/DfZfb2r2iN/nYG5FhSFN7zW7ZthHrc2uCWCfYZkGZ1P1LvjbptDXMnVXtjW/rmOCZfL14tyXarTM/8jxx2uUuF+7/iQuI9yCxmvmmL3CXL1/ubklARgYYJmHU8e+08PsmqWuFmrfFmiK9pmWaSYaC/RJttXfrV8jLn4ivOjfpv6SeRZpNFFDfzK7pqW8KOfh7mbX1FRcKTYTLnGltw5UQ4rdzfXUEmOKPMxvnOmdzZ9+gOhpr1vUi0D40a0IWvapRbzo2sAlZte0lBclvGH+cZHH1arfcPhPqBVd9e3at43pB7P+c9mrlV86ZhbqB5hdctuFOcKLrAjL9I4CgcAqEfeLCwQCa0B4kUAgsAaEFwkEAmtAeJFlEYteAsFdhHi9rUAgsAaEFwkEAmtAeJFAILAGhBdZFrHoJRDcRYj7xQUCgTUgvEggEFgDwosEAoE1ILzIsohFL4HgLkJcRRAIBNaA8CKBQGANCC8SCATWgPAiyyIWvQSCuwhxv7hAILAGhBcJBAJrQHiRQCCwBoQXWRax6CUQ3EWIqwgCgcAaEF4kEAisAeFFAoHAGhBeZFnEopdAcBchDFUgEFgDwosEAoE1ILxIIBBYA8KLLMt/dtFrbte+Ztf8pLDI7JoAW64eNrvmkNa2ZtcEkBwcLKIrF5k/byV3N7NrApRdu252TRsfb7NrAjC3ZsGFoZqfxnPMX7cHhrYzuybA9oTzFtEdGGj+h2/a1As0uyYAdnbm18zIMr8mIGs0ZteUHC3j8XxSs+DCi8yP5ynLjAsGPmF+P7KUFw29x8/smrKnZcYasYM9za5pm292SQCcE83vRZ5LS8yuCcC0mgUXXmR+WsyKt4juwCn/HS/qP76D2TUzWziaXROgwMf8Huf5wxGza1qU0LB/OwbCiyzMf3bRSyAQ1BxhqAKBwBoQXiQQCKwB4UUCgcAaEF5kWcSil0BwFyEekigQCKwB4UUCgcAaEF4kEAisAeFFlkUsegkEdxHiKoJAILAGhBcJBAJrQHiRQCCwBoQXWRax6CUQ3EUIQxUIBNaA8CKBQGANCC8SCATWgPAiyyIWvQSCu4gyrfkfOC4QCAQ1RXiRQCCwBoQXCQQCa0B4kWW57UUvSZKeA14EGgHesiyn6b5vDvwMdARmybL8ucExg4CvADXwkyzLNXz3HACDgK+WHHufbSsOs/brHZUCPP3RWDr3bUVxYQnzn19OZEgsAL+cnENBfhFajRZNmZYXBiqnf/Wbx+j1YCdkjZacjHy+nPEzJ3dcMNKcPm8inQe0pbighPnTlxBxPhpbexs+3/YmtnY2qG3UHPzzFL99/AcAj779IN2HdECrlZE8YpCzZ4I2pcpEzZoL+45CbQ/4+5ebpN7uPiTXWSw94cy23w6xZuG2SkGmfzyOzv3aKOmf8QsRF2LKf1OpJBbumkV6UhazJ34DQMPWdZi5+An86nsBsH3lUb57e13lfP1gNJ37tFR0X1pBZGgcgQ19eHPRY+Vh/Ot58evnW/hjyT56Dm3Pwy8Ppm4TX14Y8AmutZ2Z/vE4VCpVjeO+7MzHFOQVo9VosXeyA1lGZWvDtjUnWPvD3spxfWcEnYObU1xYyvw3VhN5UXmTzIjJPRk0riuSBNtWH+ePXw4BMOn5/gwa25XsjHwoKWHprN85sfVslcXQaWB7nvlyCiq1iq1LdrP60z9uGk5tZ8O2FUdY+42J+jrnIV19LWX+C/r6WsvVkRe/mET9ZgHIMix46VeunI5i2rsP0rV/G8pKNQAbgSlAVpWRNUC+A68i/IteVM499zZh+htDlLq94TRrlh4w+r1OkBevfDiKRi0CWPb1TtYvU97oamtnw+c/P46tnRq1WsXBXRf57bs91T5vdethTbipF+n8B9TIhWshf3Gl45/58jG6DO5AcUExn01dRMTZKF1c2/HMgsd0cd3D6nl/Gh035uVhPPXZI3w4bgGPfTAOJ/dayLJMblYhZaVlLPnkb84fjQDg6dkP0jm4BcVFJcx/dWV5+x459X4GjeuGLMtcD0vki9dWUVpSRoMWAcyYMwYHJ3tSErLYseEUU14ZhEolsW3tSdb+uN8oLnUaevPyx2No3CqQZQu2s37pwfLfXvp4DF2Cm5OVnsdP87bw9KzhqJDZ9tth1i7cXik/nv54LJ37tVb6jueXEXlB1x+d/oiCvCK0Wl1/1F95/eGk14Yx/PFgHGvZIwF7153gixkVCwKmfzKezv11Xvnsz5V9fs/bpCdmMXvC1wC89v1Ueo3qgqyRycnK56tXf+fknkvGcf1gNJ376PrOl34jMjQO0HnR5xN0XiSz4JUVXDl9nZmLplCnkc+Nw6+j+FD7SpE1gfCi8mPM6kU9Wtbn1bHBqCUVGw+H8suOk0a/92rbkGeG90Ary2i0Mp+v3ce5yATsbNT89MpY7GzUqFUqdp8N5/tNR6t93v+7F1VE501LDrmwbeVR1n67s1KQ267fajW1vZyp5eJIWnK2WT2+Z9P6zHxAKa/1J0P5aZ9xefVu2ZAZA3ogyzJlWplP/97HmesJADx8bwfGdGmNJEmsOxHCr4f0Y5YeLerz+phgVCoVG4+E8vNOY93gNg15Zphe97N1+zh3LaH8d5Uk8fvrE0nJzuP57xWv7to+iBem9kGlkti0O4TfNp4w0ux/XwsmPdgFgMLCEuYv3kVEdCoAaxc9QUFhCVqtjEaj5fE3fis/rlPXhjzz4kBUKomtf59j9W/Gb32rW8+TV2cNp3FTP35evI91K48peV6vNm9/MKo8nF+AB8t+Mvby6iC8qPwY883RDr2ja4e7KgWo6VzikVeH0H1gG7Ramaz4dD6b8i3piZlVRuBf9yIDOndpyLPP9Uelltiy+Tyrfjf21Lr1PHn9jaE0buLH0iX7Wbv6ePlvo8d0ZsjQ9shA1LUU5n26qfw3S/j8ndR3WELTkro3uBO9yJr4Jzu9DgObgH0Vvs8AngdGGn4pSZIa+BboD8QBJyVJ+kuW5UtUn3KNp+77IPKr7TM5vv0CMVeTygN07tuKgAY+TOs2m+b3NOC5eRN4afC88t9njlpATob+nc4qlUSX/q1Z/+1Ofv1gHQv3vUtydJrRSTsPaEtAI1+mtp9J884NeW7BI7zYZw6lxWW8MWweRfnFqG3UzN/xJqd2XuDKyWus+2ory+dsBGBLXEMk52eRc2ZXmbCRg2HiKJj58c2Sr0JynY2cOYUn723Kwp1vcWzbeWKuJurj2q81AQ19mdrlbSX9n03ixYH6d8mPfKovseGJOLnoX3s7bfYYnF2deLLHbBq0DeL1byazadkhYsIN8rVPSwIaeDOt54c07xjEc5+M5aXhXxB/LYXnBs4rz8tfT33IkW3K63+jwxL58IklPP/pOCSVxLOfTuStMQtIS8i8rbi/MXI+eVn5/HR8Dm+NWUB6gZavNjzP8d0XiYnQLyh27tWcgCAvpvX9lObt6/Hc+6N4aczX1G/iy6BxXXlx1EJKSzXMWfo4J/ZeIUFX3n/8fJD1S/ZTdu36zQoBlUrFjG+m8caAD0mLy+CbE59w9K9TxFyOqzJcVomKr7a9wfEdJuprQx+mdX9PyddPx/PSkM8AZTHs1J5LfPT4T9jYqrF3tAPg7P4r/PzRn2g1WrYmfXcVeBN446aR1nGHPiTx3/CiclQqiWffGs5bT/5MWnIOC1c+zbF9l4m5lloeJjenkEVzN9O9TwujY0tLynjj8aUUFZagtlExf9kTnDp0lYvVeHVydethTanai/T+gyYJyXM9ctFu0ESWh+gyuD2BTfx4rNkLtOjahOe/ncbzPd5GpZKY8fVU3hj4EWlx6Xxz/BOO/n2KmMvKYpV3HU/u6d+W5OhUnvh0Eq/1+5DarRry8ucTmDtjOZJKYs6yp3ik+/t0Dm6htO/eH9O8fX2emzOGlx78Ck9fN0Y8dh9P9Z9HSXEpb37zKL2Gd2DX+pO8+MlYfvrkb0KORzJwYg9e/Gg0z4/6hrTkbL5a9xzH91wmJlLvIblZBXz/0d9079uyUv7s3HCav347wqufjuXZd0fw1pQlpF2O5qsdb3J82wUTnubDtC7v6vqjibw06NPy32c++IVRfwQgSSABT937PqmxaSzcPYt6zfyJCaug28iHqZ1m0bxTQ56bP4kX+xv4/NP9iL2q93mln2vLuq+3s+KrHXy15TWSYzOMzqt4vA/Ten6g8/hxvDR8PqBMUk7tvcxHTy418qK5038uP35r/NfrgexKGVYFwoss4EWSxBvj+/DMwg0kZ+by28yJ7L8QSVSSvqxPhMWy/4Ky4NAk0Iu5jw9l9PvLKCnT8NSX6ygsLsVGpWLJq2M5fDGKkKikqk6nP+//3YsqxaDcm57q3YavtrzG8R0hJsYwt1e/JW931hx8i01rjrN0wQ6zePyVC3GoJIlZI/vwxE8bSM7OZfVzE9l7KZLIFH15HY+IZe8lpbya+nkxf9JQhs9fRmNfT8Z0ac34b1ZSqtHww9RR7L8cRWJ+FipJ4s2xfXj6mw0kZ+Wy4rWJ7A+J5JpBPTgeFsu+EF09CPBi3tShPDhnWfnvE3t3ICo5g1oOSl6oVBIvP9GPlz5YS0p6Lj99+jCHTkZyPS69/JjElGxmvLOK3PxiunVowOtPD+DJN1eU//787DVk5xYal5xKYsYrg3njxRWkpeTwzU/TOHroKjHX9ePw3JxCvl2wnXvvb2Z0bFxMBk8/9lO5zso/XuDw/jCeeWGAqUpSJcKLLDBH6/1x5FebX+X4jtB/PJdY//0efv18CwDDRrfn4XfH8NX0H01G4N/3IsO4SDz/wkBef3Ulqak5fPf9FI4eDic62rhuf7NwJ/f2bGp0rJeXMw+O7szUyYspKSnjndkP0qdPS1ZFR1jE5y9eTza7ZgK3xhLlZak6YCldQ+5QL7IabrmPTpKkIEmSrkiStEySpAuSJK2TJMlJluWzsixfrxheluUUWZZPAqUVfuoCRMiyfE2W5RJgFTBCd44nJEk6KUnSeUmS1kuS5FRFdLoAEcC1slIN+/84RbdB7YwCdBvUjt1rlatAV05H4ezqhIePa5Xpa9oxiNzMfHIz8ykr1bB//Qm6D+1gFKb7kA7sXqlcebpy8hrObk7U9nUDoCi/GAAbWzU2NjbIsnJMQW6RQSY6AXKVcQDo3A7cXW4aBGzbgiYaNLFKXDeepPtg4/R3H9ye3WuO6tPv5lgeVy9/dzr3b8O23w4ZHVPLxYGstBySotOwd7Ij4Xoq3Qa0MQrTbUAbdq9TrupdOXMdZ1fHSvnavmczEqPTSIlXrsDERiQTf02ZSNZvFkBiVApJ0Wm3FfcbNOvYwFhn8zm69WtlHNd+rdi98bSicy4GZ1cHPLxdqNvYlyvnoikuKkWr0RJy4ho9BrS+RaZXplmXxiREJJEUlUJZaRn7Vh+mx4hOtwinYf8fp+k2sEJ9HdiW3WuUKztKvir11cnZgdbdGrP9d6XelZVqyM9RBotn9l9Gq9HekDgG1Klu3LWyVKOPNWFlXlROs9Z1SIxJJyk+k7IyDfu3hdC9t/HEJzsjn6sX49GUaSsdX1RYAoCNjRobG3W5h9zyvNWshzWlSi8y8B8oRS7aDA79jIJ0f6Azu35VdkBcPh6Os3stavu5K3GNTC5vC/tWH6HHA53Lj3v6i0f58Y0V2NipSYpKISkqhasXYtmz8TTd+rcm+moSdvY22Nqp6da/Nbs3nALgyrloxYu8lQir1SrsHGxRqVXYO9iSkaKswdRp6EPIcWVxLjuzABtbNUlxGToPOU+3Cotb2Rn5XA2Jo8xEeYWeiiI3uxB7B1sSotP1On+cpNvgtkZhuw1qy+7VBv2RmyMevlX3RwCe/u7kZOTrPW7DSboPbm+cz0Pas3uVTvfUNZxd9X2SV4CH4vO/6n2+2T0NyM0y6Of+PE23gRU8fmAFj3dz1HtR18ZsX6l4s6EXVWAssPKmiTNAeBFgZi9qHeRHXGoW8WnZlGm0bD8VRnC7RkZhCov1UXC0s8XQcG78ZqNWYaNWWa8XVaTi2MjM9btZ6zrY2dmwafUJs3p8m7p+xKZnEZeRTalGy5bzYfRuaVxeBSXG5SXrxpINfWpzPiaRotIyNFqZU1Fx9GvdGFDqQWxaFvHpunpwJozgthXqgaGuvV4XwMfdmftaNWDDkdDy71o09iMuKZOE5GzKyrTsOnSFnp2NNUPDEsjVjYkvXk3A29O5Ul5UpFmLABLiMkhKyKKsTMu+3RfpcZ/xAkBWVgFXrySa9OMbdOjUgMT4TFKSq73uXk5Nvcia/MjKvMh4jvbnGbPMJQry9PMph1r2N/Wlf92LDGjePID4+EwSE5W6vXfPJXrc28QoTFZWAWFhiZRpKtdttVqFvb0NKrWEg4MNaWl5gGV8/k7qOyxVByyla8h/2Yv+C1T35tFmwGJZltsCOcAzt3GuQCDW4O843XcAG2RZ7izLcjvgMjCtOhppCZl4+rkbBfD0dyctXr/tNS0xEy9/JYyMzEern2fhjjcZ/EhPALz83CnILWL41GAWHfmAe/q1wS/I21gzwJ3UOP1qd2p8Jp4BHoCykv/tofdZFfkVZ/ZeJOzUtfJwk98Zxa+X5iM5DEfO/ermuVMdVL6g0V8xSUvIwtPfo1L6Uw3Sn5qQiacu/U99NI4l769H1hq70d4NJ/Bv4M2v5+fy+Dsj2bX2OJ7+xotNnn5upCVk6c+dmIWXn3GYXg90ZP+fp01G3d3LhdQEfR7WNO6yDB+ve5HXv5+m3N54QycpG88KC2Oevq6kJWYZhfHydSP6ahKtOzfExd0JewdbOgc3x9sgncMf6cF3m17mlSXTcXavZTIdAF6BtUk1uLqZFpeBV6DnrcMlZlbOV3930hIq11e/+l5kp+fx8leP8M3ON3lh/iSjdBswFdhaZWQrIMtSjT5WiLV4UTmevq6kGgy005Jz8LzJQntFVCqJb9c8y6p9MzlzNIKwkOpdNapuPTQbFfwHTRKSyrdCnDxIiTWMUzpegbWVuBp+H5+OV6DS/rsPv4f0+AyuXYhGpVYb+3dSFp5+bvQc3JbIi/GUlmgqt2+dF6UnZ7P+x30sP/wOvx9/j4LcIs4cvArA9auJdOuvLI736NcKW1v9Jue05Gw8b7EQZQq1jYrUJINyr8LTjNp3QhZeuj5LlmU+WvsCC3fp+yMAJ2dHPP3c+G7f27z09WRys/LLfVCv60FqvEGfZOjzH49jyXvrkLVag/DuFOQU8sDjvflu50w69W6Bfz3juuLpV9GLlHz1q++peNGCh/lm++u88NmE8p0wN2jdtRFAMhB+q3y7gfAiwMxe5O3uTFJmbvnfKZl5+LhXXnjo3a4R62dP5qtnR/L+r/rbAFWSxMq3JrFr3lMcvxxD6PVb7/KCf8GLKlJxbJSYVXls+A/qd4fujSgsKCEhRkmjuTze182ZxCx9eSVn5+HrVrm8+rZqxN+vTGbRlJG8s1Ypr4jkdDo1qIObkwMOtjbc1ywIP92xPm7G9SA5Mw8fE7q92zZi49uT+frpkby3Ql8PXhsdzJd/HEQ2mLl613YhJU2vmZqRh7dn1asAw/q24Zju1nZQxnBfvDuGJfMe5oH++osDXt4upKbklP+dlpKLl3cNVxeA4L4t2bvrYo2PU+JWMy+yQj+yFi8ynqMlZZltLjH59aEsP/E+fSbex7J3V1eZiH/diwzj4u1Caqq+bqemVr9up6XlsXb1cVaueY61618gL6+Y06eU9mQJn7+T+g5L1YH/R926A7zIqqnuolesLMuHdf//Deh5s8BVYKpkbvSorSVJOihJUggwCWhlImwVGvKtApSvOL8y7HNm9P+EdyZ+w7ApvWjdrTFIEjHhSUzt+g7P3Dub/OwCWnYzXomXpMqqNwYDWq3Msz1n83CLl2l2TwPqtwgsD7Psww080vIV5KK/kWo9UkWSakLV8bhVXLsMaENWWi4R52Mq/d6pdyuunIrikXYzWfzeRgZO6GG0gl+1rv7/NrZqug5ozcFN56ob9WrHHeDloZ/yXJ85rFqwhXpN/WndvYlhoGrpxEamsHbxXj5e9gQfLn2ca5cT0OiurmxecZSpfeby7PAFZCRm8dT8R02nA+X2o1ulpapwFTf8VRVXtY2Kxm3qsvmXgzzX/xOKCkoY+5zxlv3xLwwCKANWVBKpgjvgCoK1eNHNxap7mQudh4z9lof7f0az1nWo39jn1gdR/XpoPm5doauqz1X5h72jHRPefJBfZq+p8qwuro5MfWMYX89ae5NzgLOrI936t2bK/XOY1O097J3s6D3yHgAWvL6a4Y/0ZOFfL2HnYINWW+GqqrmyrQa++crQz5jR92PeGf8Nw6YG07q7skvjzP5LHPjzNM/2/oiMpGyCx3SpdNW0qrLvMqAtWak5lXxekiRiriYypeNbPDvgU/JzCmnZuWG14qpWq2jcpg6blx/kuYHzdF7U3yhcsJLP1d7lBcKLdJjXi6rpCXvPRzL6/WW88v1fTH+gR/n3WllmwscrGPTWT7QK8qNRQPUG9P9/L6oUA1MRMA7xD+p3qw71SaxwO7ClPN6U7u6LkQyfv4wZy/9ixgClvK6lZLBk/0l+enwUP0x9kLDENDS6C5omy8OEye29EMmDc5bx0uK/eGaoontf6wZk5hZwOdb4GbQ1KeMOresytG8bFv2qf+7Z9Fm/M+21X3llzgZGDWpPu5Z1dLo3H1tWBxsbFd17NmX/nss1O1DHHbC7wlq86JaFebtziWXzNvNol9ns+f0gI54bVFUarMCLbk51o+Ls7ECPe5swafx3jB29EEdHW/rpLtxZwufvpL7DUnXg/1G37gAvsmqqu+hVsVRvp5TjgLoGf9eB8lt+fwGek2W5DfA+4GBK4Nlnn73n0KFDD0mSdCq28BJeAR6kG1xpB91Vg0D91XYvfw/Sk7IAyNDtxshOy+XIlnM06xBEWmImbrWd0WplZFkmLjwRVw/jXT5p8Zl416ld/rd3oAcZBjsNAPKzC7lwKIxO/Yy38gJQ+DfY1+wZAybRJoHaT5+2AHcykozjkZaQibdB+r0DPMhIyqZVl8Z0G9SOZWc+ZubiJ2jXszmvL5oKQOseTctvlzu46SwBQV6kJ+UY6yZm4RXgrj+3vzvpBrtbOvVuSWRIHFkGVwINyUrNxTtAn4c1iTtQ/m9MWCJ52QU06xik6Pi5kZ5SIa5J2eW7+yqG2bH2JDNGfMXrExeRm11AvO65EVnpeeV1YMuPu2jWubHJdACkxmXgXUdv6F51apOekHHrcP4m6mtCJl4BFetrNmkJWaQlZhF29joAhzadoXHbeuXh+o3tSpf+rUEZgFS7Pd4BVxCswoskSXpSkqRTkiSduhh+Em+D3YZevq5kpJpuBzcjP7eIC6ei6FRh+3tVVLcemo0K/oPaD7nCyzlS4zLwqWsYJ0/SEzJJjUvH2/D7QOV7/0a++DXw4Yez8/g18mtcaztz3+iueOjys34TPzre34zPX/mdxBu7LCq2b50Xte/ZlOTYDLIz8tGUaTmyPYSWOp+Iu5bCrEd/4PkHFnB4RyilJWX6430re0h10JRp8Ta4Qu0V4F7e19ygUvsOcCc9WQlTuT9qAED0lQS8AtyRZZltyw9St7FfFV5p0Cfd8Pmujeg2uD3Lzn3CzJ+epN19zXj9+2mkJWTi5ulS7nGxESm4VNjNmpZY0YuUfE1LvOFF0QAc2nyOxm30zUelVtFDuVW96svvJhBeBJjZi66ePYqfh34ngY+HM6nZ+aYOA+BMRDx1vNxwr2UsnVdYzOnwOHq0DKpWIv7vXlSRimOjCuMT+Gf1u0mrQEqMPMM8Hp+cnYe/wT1Tvm7OpORUXV6no+Kp6+mGu5NSXhtOXuShhb8z+Ye1ZBcUEZ2m7GRLzsozqge+t6oHkfHU1dWD9g0D6NWmIVven8rcKUPo3LQuHz06iJT0XHy89JretZ1Jy8irpNWovhczpw/kzbl/kGNwW1p6pnL+rJwCDhyPoGVjpbxSU3LwNtg15+XjQnoV48iq6NytMRFXk8jKrDqNN+MO2F1hFV5kNEfLD8XLz93sc4k9vx+i56iuVSbiX/ciA9JSc/H21tdtb+/q1+2O9wSRlJhFdnYBGo2WgwfCaNlKWShOycwzu89bQrM6WKK8LFUH/h916w7wIqumuote9SRJ6q77/wTg0M0CV8FJoIkkSQ0kSbIDxgN/6X5zARIlSbJFmcSb5Ntvv327Z8+e6bIsP9TAtQ29Rnbi2Hbjtywe236Bvg91A6D5PQ3Izy0kMyUHeyc7HGvZA2DvZEfH4BZcv5LA1bPR1G3ii289T2xs1fQZ153w89HGmlvP0neCsqLdvHND8nMKyUjOxs3ThVpuyoOC7Rxs6RDckthw5WHDAY0Mbvtx6Auaa/xjSkNAHQTqOtjYqun1YGeO6R70WB7XbefpO7a7Pv26uP48ZyOPtH2DyR3fYu6TP3L+0BXmTV8KQGp8BkEtA/Gt58k99zdH1soc2xlirLsjhL5jlLfyNO8YRH5uEZkGE8XgER3ZV8WtjQAxYQkENPQpz+eaxN3eyQ5HZ6Xsrocl4OXvQXZanqIztD3Hdhs/Z/PY7ov0fVDZ4dG8fT0lrroBqlttZaLn7e/OvQPasP/vcwDlzwQCuPfBLlwPjaUqwk5GENjEH78gH2xsbQgedy9H/zp1i3Bqeo28h2MV3gp6bEcIfccqHbiSr0p9zUzNITU+k0Ddm9Ha39e8/AHZ9/RuyUPPDeD9yd8DFFQZURPcAVcQrMKLZFleLMtyJ1mWO2XFOhNQ3xPfQA9sbNT0GtSGY/uuVCsibh5O1HJRBg129jZ06NaI2Ki0WxylUN16aDYM/AdskRyGQvFuoyBH/z5Fv0fuB6BF1ybkZxeQkZRF2MlIAhv74RfkjY2tmuBxPTj69ymuh8Yy1v9JHmk0g0cazSA1Lp2slGzsHe1w86jFiCn3s/KbXVw6fb38HMd2hdJ3lPIchebt65e379SETJp3qI+9gy0A7Xs0ITYyGQA33bNlJEmia+8WlJVq8K3jofOQdhyr8BbD6lBcVEpAkKdeZ2Rnjm0z0R+NM+iPcorITK6qP1Ie6p+akElAA8Ure464B1s728peufU8fcfrdDvp+6SfP9zII61fZ3L7N5n7+GLOHwxj3tNLCDtznbpN/PCt56X0c6M6EVHB447tCDX2+JwinRflkpqQpfeink2NHtbf4b5mxEUkgzJpqjbCiwAze1G85E1dHw8CPF2xUasY2KkZ+y8Yjz3qeusXapvX9cHWRk1WfhHuzo44O+rqpK2ars3rcT2pegP6/7sXVaTi2GjEPRzbUXEMc/v1+3p4Mt5+bmb3+NC4JOp5ehDo4YqtWsWQds3Ye9m4vOp56surRYAPtmo1WQXKYlLtWsr409/dhX6tG7PlvPIClIvRSdTzNqgHHU3UAy+DelBHXw++/uswA9/5iSGzlzLz5y2cvBrLrOXbuBKRRF1/D/x93LCxUdGvZ3MOn4o00vT1cuGj10bw4cItxBq8Xc/B3hZHnS872NvSuV19rsUoeRB2JYHAOrXx83fHxkZFcN9WHD10tVp5e4Pe/Vuxd+ft3doId8TuCqvwIqM5mns7eo3oaJa5READ/SNnuj/QidgrVT8i/V/3IgOuhCUQWMcDPz+lzfTu05IjR6r3BICUlBxatAzE3l55FEPHjkHERCsX/i5GJ5nd5y2hWR0sUV6WqgP/j7p1B3iRVVPdtzdeBiZLkvQDyjM7FkmS9DzwOuAHXJAkaYssy49LkuQHnAJcAa0kSS8CLWVZztG9Qnc7yhs+lsqyfKOXegc4DkQDISgGa4oy4Dlg++JDs9mx8ggxYYkMefQ+ALYsP8jJXaF07tuapcc/oKiwhAUvLAfAw9uVd35+ClC2s+/beJLTe5WJTkJUKj8eeg8kSIxK4ctnlzJkarCiuXQfJ7ZfoPOAtiw9/ynFBSV88cwSAGr7ufHK94+jVquQVBIHNp7khG5yMvW9MdRp4oeslZHswm/65kaAV96HE+cgKxuCx8BzU2DM0IqhNMg5HyB5LGHxEWd2/H6Y6LBEhjymTDK3/HKAEztD6NyvNUtPfkRxYQlfPP/LTc8L8NVLv/Ly15P58egHAGxfdYyYq0kMefheRfe3w5zcc4nOfVqx9NC7FBWVsOBl/R119g62dLi/OQtnGl/o7zGoLdM/HINbbWfe++050hIz+Wjti6hUqhrF3cPblXeXTVfKzkbN/j9OMf7lIUx64wF2rD1BTHgyQyYoE8AtK49xct8VOge3YOmemUodeEN/69Tb3z6Kq0ctyko1fPfeRvJ0D6yd9sZQGrYIABmSrsbz5dM/VJlfWo2Wb2Ys4ZNts1CpVWz/eS/RlyrP9wzDqe1s2bHyaBX1tRVLj72vxPXFX8uPXzRrDa9/NwVbWxsSo9NY8KJSl5/5eCy2drZ8tHoGwDmUh9k/fZMiLseKdnnfLtbiReVoNVq++3gTHy2ajEqtYscfp4mOTGHIQ8qD2resPYmHpzMLV03HqZY9slZm5MM9eGrkQmp7ufDKnNF6D9keyokDt35z443zVqce1pSqvUjvP6BGLlwHZRHgOJ5hT9Vl0w+7OLHlLF0Hd2DZ1a8oLijh82mL9HF9fimfbH1LF9d9Vcb1p5m/88nWt3DzcUOlkug/pjOjn+gFwIzhCzi59zKde7dg6b63KCosZcHryl11YediOLT1PF9vehlNmZbIS/Fs1T2cOnh4B4Y9qvjZkZ2XmP/GWub8NBW1WsWO9aeIiUhhyHhl8XnLquN4eDmzcP0MnJzt0WplRk7uyVNDvqAgv5g35o+nbZeGuHrUIj+3iAWrn6Eot0jfH03Wte9lBzm5M1TxtBMfKu37eeXtaB7errzzi9Jk1TYq9m04yWndwtuUWSORVBI/HnkPjUbLn4v3EH0lgSGPKXmw5Zf9ilf2b8PS0zqvfO6Xm5apVqMlISqFn45/AJKk+MkrvzPkEZ3H/3qYk7sv0rlPS5YeflfJ15d/Kz9+0Ttref3rydjaqkmMSTf6rdeIe9j352nadK/eDsUbCC8yvxdptDKfrtrDtzNGoVJJ/HXkItcS0xl9n/IMpfUHL9CnQxOGdW1JmUZDcWkZM3/aDIC3Wy3enzwQtSQhqSR2nr7KwdCom52unP+/F1VKuX5stM+ZHat1Yxhz1e+tF0hNzDa7x2u0Mh/9uYfF05Ty2njyIpHJ6YztqpTXmuMX6N+6CQ/co5RXUWkZr/6+uTxuXz4yHHcnB8o0Wub8sYecwmJsdbpz1+xh0bOjUEkSfx67SGRSOmN6KrrrDl2gb/smDO+q1319qV7XZA5rZb74aTdfvDMalUrF5j0hRMWmM2KA8nKeP3ec57GHuuPm4sgrTygvONFotDz+xm/Udnfi49dHAMr4e+fByxw/dx1HQKuR+WbBNj75YoJSdzadIzoqjWEjOwKw6Y8zeNSuxbdLppXn7aixXXh80vcUFJRgb2/DPZ0b8OW8LbeuUFUgvMgCc7S9s/Tt8B/OJaa8OZw6DX2QZZmkiMQq39wI1uBFhnGR+fqrHXz62XhUKhVbt54n+noawx5QXpa26a+zeNSuxaIfpuDkZI8sy4weo7yx8crlBA7sv8L3P05Do9ESEZ7E5k1nobGdxXze3JrVucHREuVlqTpgKV1D7gAvsmqkW92PKklSELBJluWav+bOggz2nW72qiEXFt060G2w5erhWweqIUNaB5tdE0ByMLlr+R8jF5k/byV3t1sHug3Krl03u6aNj/etA90GW5O+q9Ey/z1bZ9Wo3Zwe/JHVXEawVi8a1PZts3uRJrR6C181ZXvC+VsHug0GBna4daAaYlMv8NaBbgc7ky+E+GdkZJlfE5A1GrNrSo6W8fit8V8LL/qX6Th9gUWGzJ4/HDG7pqW8aOg9A82uKXtaZqwRO9j8D9i2vb07/G6Jc6L5vcgxyTJj7p2H37aoF4H1+JG1etHgOs9bxIvKEhJvHaiGWMqL+o9/zOyamS0cza5pKSzRb/zX2Klde9d40X+B6u70EggEdwDi/m+BQGANCC8SCATWgPAigUBgDQgvsiy3XPSSZfk6YFVXEAQCwe3xX77/W3iRQHDnILxIIBBYA8KLBAKBNfBf9qL/AmKnl0BwFyHuFxcIBNaA8CKBQGANCC8SCATWgPAiyyIWvQSCuwixdVYgEFgDwosEAoE1ILxIIBBYA8KLLItY9BII7iKEoQoEAmtAeJFAILAGhBcJBAJrQHiRZRGLXgLBXYS4X1wgEFgDwosEAoE1ILxIIBBYA8KLLMt/dtHr8geNzK4plVimsg1pbWt2zS2h+8yuCdDs5+kW0VUXm1+z1NUyNz9rnHzNrumQpDa75u0g7hc3P2Gv1zK7pn14D7NrAgwMVFlEd3v8WbNrNl7Z1eyaAFo7CzQCGy/za2K5PskaEF5kfjJ7FllE1za/u9k1h97jZ3ZNgM2nt5tds/2nlhkXFbQ1f3kt7rHc7JoAzy990uyaKxYsNrumwts1Ci28yPwkPtjAIrqlzubX7T++g9k1AXau+sXsmk/GWWZseDCmodk1C/wsE9eigDKL6FJimfFxTRBeZFn+s4teAoGg5oitswKBwBoQXiQQCKwB4UUCgcAaEF5kWcSil0BwFyEMVSAQWAPCiwQCgTUgvEggEFgDwossi1j0EgjuIsTOWYFAYA0ILxIIBNaA8CKBQGANCC+yLP/+DawCgeD/hixLNfpUB0mSBkmSFCZJUoQkSTOrCBMsSdI5SZIuSpK036yJEggE/zmEFwkEAmugpl5UHT8SXiQQCGqK8CLLInZ6CQR3E2a+jCBJkhr4FugPxAEnJUn6S5blSwZh3IHvgEGyLMdIkuRj3lgIBIL/HMKLBAKBNSC8SCAQWAPCiyyKWRe9JEnKk2XZWff/IcBXQF9gKvAEkArUAkKAt29kuiRJ+wB/oAgoAZ6QZfncrc7Xq24Q7/bog1qSWH0lhEXnThj93s2/LosHjiQuNxuAbVHhLDxzFHu1mtUPjMderUYtqdgadZUFp44AcH+9IGbf3xuVJLH6UijfnzbW7BpYh8VDRxKXo9OMDOfrk8cA+LTvQPoENSS9sIBBvy8r13IYWsa23w6xZuG2SmmY/vE4OvdrQ3FhCfNn/ELEhZjy31QqiYW7ZpGelMXsid8A0LB1HWZ8/jCS50tAGXLO+1B6wWT+zJoL+45CbQ/4+5db5aae+xrW5+1+wahVKtacC2XxsZMmw7Xx92Xto+N58Y8tbAsLB8DF3p6Ph/SnibcnyDIzt+zkXHwiAD0b12fWoGBUKhXrzoTy4yHTuq0DfFn9+HheXreF7ZfCsbNR89uUsdip1ahVKnZcCufrfUcBuD8oiHeClbiuDgnhh5NVxNXXl/UTJvD85s1sC1fiOqVjR8a2bg1AWFoar2/fTolGA+jq1r26unXZRN0KMFG3Tuvq1ojx2KuUuG69pq9blkh/TbHA/eJdgAhZlq8BSJK0ChgBXDIIMxHYIMtyjBIHOcXckajI/9uL7vdvyOzO/VBJKlZHnOP7i8eMfu/qW4/FvUYTl6erL7FhfB1yGICpzTszrnE7ZCAsK5XXjmwqP65n4/rMGhyMSqpGnXliPC+vVeqMn6sz308aSUOv2gAciozmmd//rHTcM18+RpfBHSguKOazqYuIOBsFQKeB7XhmwWOo1Cq2LtnD6nnGx455eRhPffYIo30eJyc9F+x6ILm8CtgCpci586BEnwe360X31w/i3WClzawJDeH7Ktp3W19f1o+fwPNbNrNV174f69CBca3bIEmwOiSEn8/q3zDZq14Q7/bsjVql+PyiMxXbdx0WDzFo35HhLDx1DH9nF77oOwhvp1pokVl58QI/X1B0LdEfgXn7JKO8tZBudRFeZEEv6mTgRZcqeJGPCS8KNfCiRgZedHQTJVqlT+zWJoiXH1ba4l/7Q1i+ybgtDuzenEeGdgagsLiUeb/s4n/snXd4FFXbh+/ZTSeVlE2DBEIg9I40JYQeOiigICgWsL72LnbFggVfRUCRIiJVeq/SO6QQQgoQQnrvbXe+P2bJ7mY3kITdz7w693XtBZk98+yZ5zznN885c2Ym7kYWAJOHdmVsaEcE4MKVm3Rv2wzrMjU7Vx1n7Q97jI5h9ocT6RnWXsqLXvyNhKhkAJo42/PCVw8S0MYXURT55uWVXD57jTcWPIp/kJSnC56vg6YQMXusSf80VIv6hQTw+nhJizecjGLJPsPjD+3QkmdH9EUjiqg1Il/8eZDzV1MAcLKz5f0pQ2jl7Y6IyJxVe4i4LuVF5m4vU1w6I7JugYhGA32HCwydbNj3SgpFfvtGJCsFrG1g6ksCvoHG/bN/qwDeGqk9H52N4ufDtZyP/FT88eQUXlqznd3R0vlo7sTheDg5IIqw5nQkK07o9PjCaQXLf7RGo4GBI9SMnWL4draiQlg4z4b0FAEbG5j1cgXNWohkZwj8+IU1eTkCggIGhVcxYoLaZJ1uh6xFltGivm0DeG2ipBl/Ho/i1z01+kzHljw9si+iKFKlEfly/UEuJEp9Zvv7Mykur0Sj0VClEZn65e8mf6N/6wDeGCWNAdafjuLnQ7XEpL+K35+awiurtrM7Ks7o+569WvLMs0NQKAW2b7vIH78b5tjNmrvz2usjaRXszZJfDrF29cnq7ybe35PwkV0QgauJGXzx+VYqK+oWhw3Vo5yLuSSuuIaoEfEOVdFsjJ/B98lbb5JxVNJfUSNScrOU3j/1wNrRmqriKq4sTqAkuQQEgdZPBoEt3KsK4u1Ow1AICtZeO8/iK0eNfreXRwBvdRqGlUJBbnkpDx9ehre9M1/0GIeHrZQXrbl6juUJunyif1CNsc/R2+Sxj2nHPjFx2ChrjH1idGOfAf6BzOkzSMq3YiNYcNFEvjV0vF6+dYX553VtqhAEtox7mLSSIh7btaF6uyVyw/rwb9GivwuLrPQSBGEQ8D0wVDtrCPCNKIpfab+fDOwXBKGjKIqZ2t2miqJ4RhCER4EvkWYla0UhCHzYbzDTtq0lrbiQzROmsedaAvF52QblTqcl89jOPw22lavVPLRlDSVVlVgpFKwb8yAHk64ScTOdD0MH8fDGdaQVFbJp8lT2JsYTn5tjaDMlmce3bjSq0/qYKJZHnGfekBFS/bS2nN84y/w9b3Fi50WSrqRWl+85uAO+LVXM7PUOId1b8OyXU3lh2GfV34+bNYgbcak4ONlXb3vsvftZ+eVWPvzuv2AzAMHpVcSch036aNwIeGgCvPHp7TxpiEIQeH9oGI/8sYG0gkLWP/IQ++MSiM/OMSr3amh/Dl+9brD9nSGh/JV4jef+3Iq1QoGdtXV1+TnhYcxcsYH0gkLWPvEQ+2MTSMg0tvvKkP4cSdDZrahS88iydZRUSO21cuYk/oq/yrnCNN4PC2PG+vWkFRby59Sp7EtIID7H2Obr997L4es6mypHR2Z07cqwZcsor6pi/siRjG7ThvWXLklt138w07bqxdb1BOJzTcTWDhOxtVkvtsZKsRWbnmn247+YnHbbtjSFBV6H6wfc0Ps7GbinRpnWgLU2cXICvhNF0TLvVa/B/5sW9RrKw/v+IK2kgE0jHmFvchzx+TXiJSOZxw+uNdimsnfkkZAeDNmymHJ1Ff+9dxyjA9uxNTZO6jMjw5i5XBszT94hZuJ1MSOK4GpvR/h/l1FYWsbhV58ktHULEtANqHqN6IJfsDePtPkPbe8J5vkfHuP5vu+gUAg89/1MXh/2CVnJ2fz35Gcc33KGpJibAHj6u9N9SCfSr2fqKqHJRcydDZoMsApGcFuCmHlv9dcN1aIPwsKYvkHq3xsfmsreWvr3a/0N+3drd3cmd+jI+FW/U6lWs3TCBA5cvcq1vDypve4bxLTNks5vfmAqe66a0PnUZB7bttFgW5VGw8dHDxGdlUETa2u2TJrG4RvXSSzKMfv56HxGqsF55G7PSTV9Zgm79UHWIgtpUc+hPLxfq0XDtVpUUCMOM2vRojY9GLJVq0X9JS1anxgpne+nh/HcF+vJyClk6QdTOXwugaspunhJycznqU/XUFhSTp9OgbwxcwiPfbCKln7ujA3tyKPv/45GrWHvwmd4ad5Gbiw8ynfbX+Xk7kiS4nTnsp5h7fBt4cVj/T8kpFsgz342mRdHzwOkybAzB2L45MklWFkrsbW3AWDuU79W77/9SldETWGtPmqoFr01MYwnf9pAel4hq158iINRCSSm647/5JUbHIz6DYBgHw++mjGSsXOlCeHXJ4RyNOYaLy/dipVSgb1eXmTu9qqJRi2y5geRZz8VcPWAL58X6dgbfAJ0g6tdf4j4txR4co5A2g2p/PNzDQdfCkHg3dFhPLZUOh+tmf0QBy6bPh+9PLQ/R/XOR2qNyBc7/+JSagYONtasf2oqx7Q5jkYNv35vzVufV+DuIfL2s7Z076PGP0AnEJtWWREQpOHl96u4mSTw6/fWvPNlBQqlyLRZlbQIFiktgbeetqVjdw3dmt+hQWsga5FltOjNB8KY/YPUZ1a++hCHIhNITNPrM7E3OBip7TO+HnwxcyTjP9ZdRHli/lryistu+xtvjwnjiV+kmFz9zEMciEkgIcM4Jl8a3p+jcddN21EIPP+fYbz2yioyMwv48adHOX40juvXs6rLFBaU8t/5e+jXv7XBvh4ejoyf2JOZMxZRUVHFu++NJyysHbt2Rt7OPdU0RI9EjUjC0qt0eLMdtk1tuPBuJE27udHE36G6jP8oP/xHSRNh2edyuLkjFWtHSXcSVlyjaWdX2r3QBk2VBk25BkW2wJzOI3j0yG+klxawbuDj7E+NJaFQ5wMna1ve6xLO40dXklpaQFNb6ffUooa5kbu5lJdGEysb1g98gqMZiSRSXvvYL8tEHju4xthHrR37VGrHPo9O4q+4q5zmJh/2G8K07WukfGvcw9IYzVS+pTehpc+jHboTn5eNo42tQR3MnRvWl3+bFv1/Y/ZnegmCcC+wGBgpimKCqTKiKK4GdiPNLtbkOFIj3ZYuXt5cL8jlRmE+lRoNW+IvMzQwqM71LKmqBMBKocBKoUBEpLPKm+t5edwo0Nq8EsuQlq3qbPNUyk3yyiSB1rdVVanm0J+n6TOis0H5PiO6sG+NNPN8+exVHF3saapyAcDDx5WeQzqy87cjhj8iijg42Un/VziCuvYJ2Z6dwdWpztUHoJOvN9dz87iRJ/lgW0wsg1ob+3V6jy7sio0np7ikepujjQ09m/mx9mIUAJUaDYXl5ZJdP2+ScvJIzs2nUq1he1Qsg9oY2512Txd2XzK0C1BSoW0vpQIrpQJRhM7eWh/nS3Xdevkyg4NM1LVLF3bGxZFdYmjTSqHAzsoKpSBgb21NenExYCK2Eu4+tixx/A2hvveKC4LwpCAIZ/Q+T9YwaeqyRM3aWQHdgZHAMOBdQRBaG+1lZv6/tKizuy/XC3O5UZQnxcu1GIb41/3wlIICO6UUh3ZKazJKi4Ba+kxILTETYxgzPi5OxGdmk5ybT35ZOUk5+QwOMdSyPmN6snfFXwDEnIzD0bUJTb1dadOrFSkJ6aRdzaCqUs3B1cfoO6Zn9X6zv57O4tdXIuoHYVWMNOEFUBUHgg3Sqi+JhmiRUf+OvcwQE/17Rpcu7IqPI0uvfwc1bcqF1FTKqqpQiyInk5MZ2ko6/i5e3lzP19P5uFiGtqibzmeWFBOdJR1ncWUlCbk5eDdxssj5CDDrOUkfS9mtD7IWGWIRLboew5BmDdQiK2sySiQtahfkTXJGHimZ+VSpNew5cZn7uhnGd2R8KoUl0vk+Kj4VLzepwwf6NiUqPpXyiiratFCRmVtE2xYqKS/adJbewzoa2Ok9rCP71klX1y+fu4ajiz1uXs44ONrR4Z5W7Fol5UxVlWqKC0qND8JuBJSZXvEEDdOiDs29ScrK42a2dPw7z8cysIPh8Zdqz9EA9jbW1X24ia0N3Vv6seGklBdVqTUUlkl+slR76XMtFjx8wMNHwMpaoNsAgYgaC8XTkqBNF+n/3s0EctKhINew63Ty9yYpW+98FBlLWFsT56PeXdgTHU92kU6PM4uKuZQq6WZJRSUJmTmonB0BiI9V4O0rovIRsbKGPqFqzhxTGthMvq6gQ1cNAH7NRTLTBfJywc0dWgRL9bR3kL7Lyar/SomGPEfnDnr0r9eiDgHe3NDrM7vOxhLa8Q59pp6Jbcdm3tzQj8mLsQw0EZNT+3ZhT1Q8OUUlJqxASIgvN2/mkpqaR1WVhgP7L9G3X7BBmby8EmJjU6lSa4z2VyoV2NpaoVAK2NlZkZVl3A9royF6VJhQhJ3KDnsvOxRWCjx7e5BzNrfW8pnHsvDs4wFAVUkV+ZcLUIVKK2MVVgqsmljRqakf14tzSS7Jo1LUsC05mkE+bQzsjG7WkT0pl0ktLQAgp1zyZ2ZZEZfypAsXxVUVJBZmobJ3BvTyWO2Ycnt0LXlsL+M8FqCkUi83UioQgS6ePsZjtIC65y/eTRwJa9aSP2INJyYtkRvWl3+TFv0dmHvSyxbYBIwTRfHyHcqeA0JMbB8ObLzTD6kcnEgp0l3NSy0uQmUiwLqpfNlx/3SWjphIsJt79XaFILB94nTOTn+aIzevcyEjDe8mjqTq2UwrKsTb0dHYprcv2x98mF/HTCC4qbvR94CRrayUPNx93AzKuPu4knlTJ1SZKbm4+7gCMOuTyfzywXpEjWFs/vT2ah5//34Ez0MITm8gFs4z+fsNxdvRkdQCPR8UFqFyMvSByrEJQ1q3YtV5w9sqm7m6kFNSyucjh7Lp0al8MmIw9tbSYkKVcw27BUXVSc8tvJyaMCSkFX+cMb5dUyEI/Dl7KkdfncWxhCQibqahcnQktVC/vYpQORnGgMrRkaHBwfweYWgzvaiIn8+c4fDjj3N81iwKy8s5ol0pompSI7aK7hBb4SZi6/7pnJ3xNEeSpdiyxPE3CFGo10cUxUWiKPbQ+yyqYTEZaKb3tz+QYqLMTlEUi0VRzAL+AjpjWf7ftMjbwZHUkoLqv9NKCvF2MBEvnn5sHzmTXwdOIthFSkDSS4tYfOkkR8c/w8mJz1NYWc7hVOkWQ5WzI6n5ejGTb9wXvZyaMKRtK/44bRgz+vv6uTrj3sQBtWiYrHn4uZFxQ3dlLCs5Gw+/pnj4NSVTf/vNbDz8JO3qM7o72TdzSIy4zRUs22FQGQNU1l6mDnjX6N+pRUWoHGv07yaODG0VzMoa/ftKdja9/P1xtbPDzsqK0MAW+Gj3VTk61ujfhaiamNb5HZMfZuko0zrv7+RMOw8vLqSnWuR8BMbnkbs5J+ljKbv1QtYiU9ydFtmb0CJ7E3Ho4cf2cBNaFHOSo+Oe4eSE5ymsKOdwmqRFXm6OpGfr4iUjpwhPt9oT+jEDOnA8Qto38WY2XUP8cXa0w9fThSZ2NqjcpX2zUvNw93Y12Nfd25WsFF1elJWah4e3C94B7uRnF/HSN9P4767X+M+XD1av9LpFh3uCQJMF6vpfYb8dKldH0vN0x5+eX4SXi3F/CesYxKY3ZvDDE+OYs0q6bdPf3YWcolI+enAoq1+eyvuTB2NvI+VFlmovffKzwc1T97ebB+RnG+aVfi3hwlFp27VYkZx0yMsyKIKXsyNp+YY+MHU+GmzifKSPr6szbX08q1eq52aBu6euPu4eIrk1Jq4CWmo4fUSaCIu/LJCVLpCTaVgmM03gWrxAqxDjSYk7Uk8tqoMe/eu1yMvVkbRcvXjJK8LL1bjPDOwUxJ/vzOD72eN4f6XuVmcRWPDMBH5/9SEm9u1otB8Y50jpBUWoavRLL+cmDGrXitUna49JD08nMjN1/TAzsxAPz7pNWGRlFbF29UlWrXmWtev/Q1FROWfPGPdDc1KeU4Gtu26Fkk1TG8pzy02WVZeryY3Iw6OX9KiLsoxyrJ2suLIwgXNvXeTK4gTUZWpUdk6kleZX75deWoCqhhYFOjbF2dqO5fdOZ/3AxxnbvJPR7/k5uNDW1ZuLOdIt6SonE2MfU3ns7cY+s7Rjn0Tt2K9JjRyuuJYczsuXHRNmsHS4Yb41p3cYn506ZDTJaoncsN78e7Tob8Hck16VwDHgsTqUrTn7uFIQhGTgdaRlt7ff2cTcpVhj8jIqK51+KxcxYt1ylkadY9GwcdXfaUSR8PXL6fPbQjp7etPazQPBhNGaFx6iMzLov2wx4atWsOzieRaONP3cCNO2xDqV6TW0I3lZhcRfTDL6ftSjA1j4zhrEzAGIhZ8iuNRjTWxdMOXXGvV+e3AoXx44jKbGdqVCQXtvL34/H8HYX1dSWlnFrD49qY2adt8aHspXe43tgtRe439aSejXP9PJz5tgL3eT09c1G+yd0FC+OGxs09nWlsFBQYT+8gt9Fy3CwdqasW3bArVMi9fYPyoznX6/6cXW8HEGdQ1ft5w+KxbS2UuKLUscf0MQxfp96sBpIFgQhBaCINgAU4DNNcpsAu4VBMFKEAQHpKW1MQ06gLrz/6dFJiKmZttG56TR/88fCN+2hGWxZ1k4YCIAzjZ2DGkWzH0bf6T3+u9xsLJmXIv2tf5WTY17a0QoX+0xHTMADjbWzJ88ii2Rl6lUGz5jojb9qU0Hbe1tePDN8Sx9b02t9cOqlXTLdcG7tZe5C2r69d3QUD430b8TcnJYePo0yydMZOn4CVzOyqye9DPZXjX+jsrMoN/yxYxYvYKlkedZNMJQ5x2srVkwfAwfHjlAUWWFRc5HUFsbGf5d13OSPpayWx9kLTLJXeZFpmLbhBZt/IHw7Votuk9Pi/yDuW/Tj/TeoNWiwLpr0S26t23G6AEd+O+awwBcS8lh+dbTfP/aRGaOuYeC4jLU+qsl6pQXSaspWnX0Z9vywzw77AvKSiqY9KzhHVah47ojlm6rtc7mxNTx749MYOzcZbywZDPPhvcFpHq39fdizdEIJs9bSWlFFTMHSXnR/0d7mew7NX52yCSBkiL47GkNhzaJ+AeBQnnbXUzW9c3wUObtvsP5aMoo5u44RHF5RZ3rN2ZKFcWF8MYsW3ZttCKwlYhSr35lpfDNhzZMf6oShyYmf/q21FeL6qBHshaZ2GZqJdeBiATGf7yMFxdv5ulRfau3P/L1ah784neeWfAnk+7rTLegOy4uM/kbb4wK5eudtcdk7XbqVs7R0Y6+/YKZOuVHJk2cj729NYOH1K6bFsNUEgLknMvFubVz9a2Nokak6FoxPoNVdPu0M0pbBTe23KwlhzFEKSho7+bDrGOrePzoSp4OuZdAx6bV3zsorZl/zwN8GrGL4qoKbb1M2a2Rxw67w9hnoXbs4+tNsKfpsZ9RDpeVTr9VCxmxYRlLo8+xaMh4AMKatyS7rISorHQjG5bIDevLv0iL/hbMPemlASYBPQVBeOsOZbti6NSpQAvgd6Q3DRihv4Qv4egJfPWu+vs0cSSj2HBJaVFlRfVtIwdvXMVaocDNzt6gTEFFOSdSbzCgWSCpRYXVqwEAvB2dSDdlU7vc8uB10zYBI1sevq7kpOUZlMlKycXTT7f6y9PXjZy0fNr3akXv4Z1Zdu5T3lj0BJ37h/DagpkADJ7Sl6Nbz0k7lO0Aa+OZ9rshrbAIH2c9Hzg5klFUbFCmg4+Kb8aGc+CpmQwLCeb9YWEMDg4irbCQtIJCLqZIV/B2Xo6jvUpaQpteUMOusyMZhTXs+qr4+v5w9r0wk6HtgpkzMsxoGWxhWTmnriVzb6tA0oqK8HHSby9H0osM26ujSsV34eEceuwxhgcH8+GgQQwJCqJf8+bcKCggp7SUKo2GXXFxdPPxkXxQXGgYW46ORrcNGMRW0m1iK+UGA5oHWuT4G4RYz8+dzIliFfAssAupP68RRTFaEITZgiDM1paJAXYCEcAp4GdRFKMadgB15v9Piw6fxMfBufo7bwcn0ktvEy8pCVK82NrT3zuQG0X55JSXUiVq2JUUSzcPf0DbZ1z0Ysal7jGTXlCEr4uzNOEVcZmsomKjfTOTc/Bqpps89fB3Jzsll8zkbDz1t/tJ232CVHi38GLh+S9YkfA9nv7uLDgzFzftLdkoVAiuPyDmvwbqG9wtNfu3j6OxxndUqZgfHs5fMx9jRHAwH4QNqr4Fck10FGN+X8mUtWvIKyvjWm6e1m7N/u1k+txRi85bKRT8NHwMG6/EsCsxXrJZUzPMcD4C4/PI3ZyT9LGU3Xoha5EpLK9FVXXUohuxdPOUtCgjt6h6dRaAV1NHsnKNb+Fp1cyDt2YO4dVvN1FQpLv9dctfUcyYs5KPf9mNtZWSG+l5gPQYh+z0fAMbWam5ePjq8qJbZbJS88hKzSP2vLSK68i2C7TqqLuArVAq6DuiM5SZf9IrPa8Ild49SCoXRzLzi2stfzbxJs3cXXBtYkd6XiHp+YVEJkl50Z6LcbT1l/Ki1JJCi7SXPq4ekKv3+MXcLHBpaji4s28i8PDLCt78UcH0VwWK8sFdVcMHBUV4uxj6wOh85Kdi3qRw9r40k6Htg5kzKoxB2tvNrBQKvpsinY/2XIqv3qepJ2TrrdrKzhJwczfs8A5NYParlcxdWM7Tr1dSkA+e3lKZqir45gMb+oWp6XVvA1Z5Qf216A56JGuRcObKueN4660GVbnevs+cS7hJMw+pzwBkFkhlc4tKOXAxng4B3kb71MyRVM6OZBQY/kZ7PxVfPRjO7tdmMrRDMO+MDSOsnWFenZVZiKenrh96ejqRnVX7cwH16dY9kLTUPPLzS1CrNRz+K5Z27Y37oTmxbWpDebZuZVdFTgW2rjYmy2aeyMKzjy6fs21qg21TW5xbSX7z6OVO0bVi0koL8bZ3qS6nsncmo9TQB2mlhRxOT6BUXUluRSlnspIIcZGEwkpQML/3JLbciGJPim4RYb3GPv/Ry2NrPP6lsLycU9e1Y7/iohr5Vi05XM18y9aeHio/BjdvxZEpT/J92Gj6+jbnm9CR0vFZIDesN/8eLfpbMPszvURRLAFGAVMFQTB5NUEQhInAUGBVjX0rgXeA3oIgtDVhu3oJX7yvO4Eubvg7uWCtUDC6VQh7rhvenu5pr3uoX2dPbwQEcstKaWpnj7P24XW2Siv6+QWQkJdDRHoaga6u+Ds7SzZbt2HvVUObHg56NlXeCIJksyb6tqyslQwY35MTOy8alDmx8yKDJvUBIKR7C4oLSslJz+fXj//k4U6vM6PbW8x9cjEXj1zmi6eWAJCdlkenftpbbW36gPqaKRc3mMiUNALd3PB3kXwwsm0b9sUlGpQJW7CEgdrPrstxvL9rP3vjEsgqLiG1sIgWTbW3QgU2I177sMLIlDQC3N3wc3XGWqkgvEMb9sca2h383RIGfSt9dl+K48Nt+9l3OQE3B3uc7LTtZaWkT8vmJGblEJFm2F6jQkLYl2hoM/SXXxig/eyMi2POvn3sSUggpbCQLt7e2FlJtxn0bd6cBO0Dsi9mpBnGVlAIe67dJra8bhNb/gEk5OZY5PgbgqgR6vWpk01R3C6KYmtRFINEUfxEu+0nURR/0ivzpSiK7URR7CCK4rcNqnw9+X/TokBXAp3c8G+ijZfAtuxNNnw7kIed7vJzZ3cfSTfKS0kpLqCrhy92Sm0cegeSUCDdVxKZkkZA0xoxc7lGzHxrOmYiU9Lo0syH9IIiVp66YHLf41vOMPjh+wBoe08wxfkl5KTlEXs6Ab9W3ngHemJlrSR0cl+ObznDtagbTPJ5koeDnuPhoOfITM7mqR5vkJueD4ITgtti6XbrynN3bJu6EJGWRqCbXv9uE8LeGv17wJJfuE/72REXx3v7pf4N4G4vJSK+Tk4MaxXM5lgpEZP6tyv+TlqdD25j3L8davRvPZ3/fOBQ4nOz+eXi2eoyRpphhvMRYNZzkoFvLWS3PshaZIhFtCjgLrUoX9KimMQ0mqlc8fFwxkqpYEjvEP46b9gXVe5OzH1+DO8v3MGNGhf43LQv48nOL8arqRMRV25KedHY7pzYbfhclRO7oxh0fy8AQroFUlxQRm5GAbmZhWSm5OGnfUtjl/6tDV4M1PXeNiTHp4PG+Ar+3RJ9I40ATzf8mkrHP7xrGw5GGx5/Mw/dgLGtvxdWSiV5xWVkF5aQnldEoKeUF90T3Kz6Yd4R2SkWaS99AtpAZgpkpYlUVYqcOyTSqbdhmZIi6TuAYzuhVUdpIkyfyJs1cpiObThQ45wy5OslDNZ+dkfH8eHW/eyLkXTl4/FDSMzMYdkxw/NDUBsNaTcFMlIFqirh+EEl3fsYrkouLgLt+JX9O5S07ajBoYm0ymHRPGt8m4uMvN/wjY/1ob5aVBc9+rdrUbKVJ8093fB1l/rMsO5tOBRZe58J8ffCWttn7GyscLCVVibZ2VjRJySA+FTj2I5KTqO5hxt+btqY7NyGAzGGvzHsyyUM/UL67I6K4+NN+9l/yfBcdzk2BT9/N7y9XbCyUjAwrB3Hjhm/4dEUGRkFtG3nh62t1A+7dQsk6Xr2Hfa6O5xaOlKWVkZZRhmaKg2ZJ7Jo2t3NqFxVSRX5MQW4d9etxrJxtcHW3YaSFOlcnhedj4OfPZG5Nwl0bIq/gyvWgoKR/u3Zn3rFwN6+1Fh6uDfXPn/Wik5uftUPuv+k22gSCzNZGm/49lkD3VAoCG9vYuwzfwmDvpM+1XlsrHbsY6s39mkhjX0uZqYS6FxjjJZkOMnkaa+nm57e1br5xenD9Fn1E/3/WMRz+7dwLCWJFw9KF0oskRvWl3+TFv0dWOTtjaIo5giCMBz4SxCEW0r1oiAI05BehxsFhIm6t4Lo71sqCMI84BVuswRXLYrMObKP5eETUQoK1sRGEpebzdS2nQFYGXORES3bMK1dZ9SihrKqKp7bJz3c1MuhCfMGjkAhKFAIAtsSYtmflIggCrx3aD/Lx0xEoVCw9lIUcTnZPNRBWk31e1QE4a1aM7WDzubzO3VXFb8bNpLefv642dlz+JEn2BF/heVjJmJ73zh2/36U67GphD8iDTK3L/2LU3si6Tm4A0tOf0J5aQVfP7/0jr797sUVzP50MoL7KBDLEfNrv43o5Q/g1AXIy4fQ++HZR+H+kbe3rxZFPtiznyVTJqAUBNZFRBOflc2DXSUf1HyOV00+2n2AeWNGYK1UcCMvnze27ZbsakQ+2r6fXx6egEIQWH8+mvjMbCb3kOyuNnEv9y08nZowd9wwlAoBQRDYGX2Fg1euonYW+eDAAZZOnIhCEFgXFUVcdjYPdtLWNaJ2mxfT0tgZF8fmadNQazREZ2TwR2RktQ/mHNnH8pE1YqudNrYuaWOrfWfUGg1l6iqe26sXW2HGsWWnUZr9+BuCBV6H26j5/9Ki907vYfmgKSgEgbUJEcTlZ/FQcFcAfo87T3jzEKa27qrTjcObALiQncKOpFi2hs+kStRwKSedVXEXELA27DOK+sVMZ38fmtjaMLpTCKM7tSWvtBRfVyfazxoMwNaFezm1/Tz3jOjKsivfUV5SwVePLQBAo9bw3+eX8NmOt1AoFez69SDXLyXf3tEO00DZHMHxGXB8RvJf7qOgkQZ3DdWi9/cfYNkEqX+vjZb690Pa/l3zOX01+XH0aFzt7KnSaHhv/z4KtC/VUIsicw5LOq8UFKyJkXR+anvJ7sroCEYEtWZaB23/rqriud2Szvfw8WNiSHtisjLZPll6a+4XJ45w8Gai2c9Ht+pqrnPSsUef5NuTx1hzKcoiduuLrEWAJbTozB6Wh91Bi4K1WqSu4vkjNbRohFaLctNZFX9BsqsR+Wr5Aea/JvXFLX9FcfVmNuMHSvHy54EIHhvbGxdHO16bMUi7j4ZH3vsdgLnPj8bF0Z4qtYbFG47x6XOjsX5iBLtXnyDpShrhD/cDYPuKo5zeF03PsHYsOTqHstJKvnnpt+rjW/DuWl77fgbW1kpSk7INvhswtjsHN52l/Qu3b4cGaZFG5NP1+1kwawJKhcDGk9EkpGXzQF/p+Ncei2Bwp2BG92xHlVpNeWUVry3X9ZfP1h/gs4elvCg5O593V+22WHv1q/E0BaVSYNLT8MPbIqIGeg8V8AkUOLxNmuS6d6RAWhKs+EpEoRDxbg5TXzTum2qNyMdb9/PzDOl8tOFcNPEZ2UzuqT0f3eY5Xt2a+zK2Szti0zLZ8PRUAL7dc1RbP3jk2Uo+e9MGjQZCh6lpFiiyZ4t0/+KQ0WpuJilY8Lk1CqX0sPonX5ZuG4qNVnB4rxXNWmh4Y5Y0OJ48s7IBb2+UtQhza5FGZO7a/Sx4Wsp5N52Q+sz9/aR4WXc0gkFdghndS+ozZZVVvPar1GfcnZrw9ROjAWn1zI4zlzkWY/ycPrVG5JPN+1k0U/qNP89Ek5CRzaRe0m+sOXX7HOEWGrXI99/t5vMvp6BQKNix4yLXr2UxaozUD7duPo9b0yYsWPgoDg62iKLIxPulNzZejknhr0OX+WnxY6jVGuLj0ti29XydfhcapkeCUiDokRZEfR6DqBFRDfCiib8DqXul1aQ+g6VVcdmnc3Dt6IrSzvBe5aDpLYj9MQ5NlYi9ly3Bs1pxM1vkwws7+LnfVJSCwPrrF4gvzGRKi+4A/HH1LImFWRxOj2fzoNloRJF1184TV5BJd/dmjAvoTGx+OhvDpGeofx29n8OR6ahFbR47TTv2uaDNY7trdePsbcY+jibGPnFXUfuKzDm2l+Uj7q8932rRmmntuuhyuH1b7tgWlsgN68u/TYv+vxFM3WP9v0Dgwq/MXnGhwjLB1uaDWLPb3B510Ow2Adr8+pRF7CpNP2Pxrqh0tkzsqh0auET+NtilKe9cqAFcft9EdnobApfPrZfTrk1/Q1bgO9Dit8/MHoi2cXbmNglAs49P3LlQA9h1s+5JXl1ptWq22W0CaGwsoBtWltEiS52TLMHV516WtehvpsVK82sRgNcu2zsXqidN9zXsws2d2HZ2l9ltdvncMnlRYY+7ewOqKRb1tcyb5p9fUvNlqXfPyie+MbtNgG7NkyyqRSDr0Z3o8tw3FtGiSuPnit813sfNt4JZnz1/LDW7zSeT+965UAM4nNTS7DaFyPq/vbAulPk2fFXnbakw+81vXHvGsnkRyFpUHyyy0ktGRqaxImujjIxMY0DWIhkZmcaArEUyMjKNAVmLLIk86SUj82/if3Nhp4yMzD8NWYtkZGQaA7IWycjINAZkLbIo8qSXjMy/CVlQZWRkGgOyFsnIyDQGZC2SkZFpDMhaZFHkSS8ZmX8T8kMSZWRkGgOyFsnIyDQGZC2SkZFpDMhaZFHkSS8ZmX8R/6PvrZCRkfmHIWuRjIxMY0DWIhkZmcaArEWWRZ70kpH5NyELqoyMTGNA1iIZGZnGgKxFMjIyjQFZiyyKPOklI/NvQl46KyMj0xiQtUhGRqYxIGuRjIxMY0DWIovyPzvpZZem/LurUGcEOzuz22zz61NmtwkQ++gCi9ht/4P566sot4w42Gb978RWfRHkqwhmRyy0NrvNSmfLNJRVcz+L2G216h6z24x/8Cez2wQI2veo2W0qUm3NbhNAY2v+OFCWNY6kStYiC5BrYxGzavNLHKK7i/mNAl0+N3+uceF1y+RFrVfMNrvNZ3970uw2AezyzW9z6uIXzW8UiPmofuVlLTI/xb6Wsas6oza7zdy29ma3CfBkcl+z21zkf8zsNgFGjje/Hl963/xjX4B28/IsYpefii1jtx7IWmRZ/mcnvWRkZBqALKgyMjKNAVmLZGRkGgOyFsnIyDQGZC2yKPKkl4zMvwl56ayMjExjQNYiGRmZxoCsRTIyMo0BWYssijzpJSPzb0K+iiAjI9MYkLVIRkamMSBrkYyMTGNA1iKLIk96ycj8m5AFVUZGpjEga5GMjExjQNYiGRmZxoCsRRZFnvSSkfk3IQuqjIxMY0DWIhkZmcaArEUyMjKNAVmLLEqDJ70EQVADkYAAqIFnRVE8JghCIBADxAI2wBngMVEUK7X7WQFpwGJRFN/Us3cQ8AFKtZs+FkVx3e3q0D8ogLeHh6JQKFh3LorFR0+bLNfBV8Xqx6bw0rrt7IqJw0ap5LdHJ2GjVKJUKNgdE8f3B4+b3eb5Gym8PTwU2xlqdq46ztof9hrZmf3hRHqGtaO8tIJ5L64kISoZv5ZevLngkeoyPs09WPHVdjb+cpD+I7sw7aURNGvtzcSlq3BzsOOdwaEoFQrWXIhi0QnT9e3oo2Lt9Cm8sHE7O2PjAHCyteXT8CEEe7qDKPLG9j23c3c1b8+Fg8ehqRtsWVqnXQDo3yqAt0aGohAUrDsbxc+Ha/Gtn4o/npzCS2u2szs6Dm9nR+ZOHI6HkwOiCGtOR7LixHkA7m0ZYNbjv3Az1bjewQG8OUr6jXWno/j5r9rrveqpKbz8x3Z2R8Xd2R8Wsntb/oH3izcGLRrQLJA5/cNQCgKrYyJZcP6Uwfe9fZuxaPg4kgulV2DtTIxj/tnj2CqVrB47BVutbuxIvMI3p3Vv57kvMJB3B4aiFBSsjopk4ala4lulYv1DD/L81m3sjJNi5NFu3ZjUsQMAOaWlqJo4YjtRzc7VJ1j7034jG7PfG0/P0LaUl1Uw75VVJETfBGDczPsYPrk3oihyLTaVr1/9g8qKKlq09eW5j+/HzsGWRJsS1kVH82q//igUCtZERfLTadN17aRSsX7Kgzy/fRs7tHV9pGtXJnfoiCDA6shIfj1//nburqahWnSfT0ve6zEYhaBgdfwFfrp0wuD7e7yas2jARJKLtO11I5bvo44CMDOkJ5ODOiMCsXmZvHp8K1Vo2ypM21aRt2krb722uqJtq+66torNzOK1nbuoUEtvqbqveSDv3TcQhSCw+lIUP501jK17/PxZNHIcyQXauibE8f1p6Xg+HzSMsMCWZJeWMPz3ZYY+CAzknUFSfddE3L6+66Y+yH+2SPVt4ebGd2NGVn/f3MWFb4824I1SshZZRIvuax7Ie/fqxcs5E/ESrhcviXrxEqYXL6sM46VPh0BeeVA6f288HMmyHYbxMqBLELPH9UUjiqg1GuatOsjF+BQA5jw6lP6dWpJbWMLkOcur9+neL5inXg9HoVCwc8NZ1iz5y8Cmf6AHL380gaC2viz7fg/rl0l90NrGiq9+fRxrGyVKpYLDe6P57UedpvULCeD18VJdN5yMYsk+w7qGdmjJsyNu1VXkiz8Pcv6qVFcnO1venzKEVt7uiIjMWWXZvKih/RC0utGpA6IIsVlZvL5jF2o0ANwbFMDbwyQfrD0fxeJjtedGq2dO4cUNUi57C4UgsP7xh0gvKGL26k0A9G0bwOsTpPz4z+NRLNlbw68dW/JMuM6vX244yPlErV/tbXnvwSG08nFHFEXe+30PZ3KlfMsSuWG9kLXIIlpkqfz8ni6B/GdmGAqFwNZ9kfz2p6HGDbm3LVPH9wKgtLSCeYv2En89E4C1C56gpLQCjUZErdbw+Ou/AdC3XQCvTJL64Z9Ho1i6u4a+dWrJ06N1sf3V2oNcSEjBxkrJzy9PwsZKyuH2nY/jp63Hq/fLuZhL4opriBoR71AVzcYYvkE7eetNMo5mASBqREpultL7px5YO1pTVVzFlcUJlCSXgCDQ+skg8L+dxyXqpUU29yI4v80vh53YueoEa380MU79YIJ2nFrJvJf0xqk/zqgu49PcgxXztrPxl0O88eMM/Ft6UeZtjbONHRpRQ5VGRKkQ+CM2ggURJw3s9/ZuxuIhE7hRmAfAzmtxzL8g5RRHJs2iuLICtahBrREZvVk6f3TvH8zsN0ehUCrYue40a3+uce5o4clLn0ykVTtfln23m/W/HgHAw9uFVz57ADcPR0RRZMea02z6TZe/dHcLYXbQBBSCgp1pJ1h7w9AfE/3DGOjVHQCloKSZg4opx9+mqKqEF1s/SK+m7cmrLOKps3Pv4Pha+AdqUWPiblZ6lYqi2AVAEIRhwGfAAO13CaIodhEEQQnsASYBK7XfDUUS20mCILwliqL+vOZUURTP1OXHFYLAnPAwZq7YQHpBIWufeIj9sQkkZOUYlXtlcH+OJFyv3lahVvPIsnWUVFZipVCw8tFJ/BV3lciUdLPanNi1PdN+XYv9t5F8t+0VTu6OIikurXqfnmHt8G3hyWP9PyKkWyDPfjaJF0d/zc3EDJ4d9oX0WwqBFWc+4tjOiwBcj03loyd+4YkVM1AIAu8PDeORPzaQVlDI+kceYn9cAvHZxvV9NbQ/h69eN9j+zpBQ/kq8xnN/bsVaocDOum7vJR83Ah6aAG98Wqfi1XV4d3QYjy2VfLtm9kMcuJxAQqZxXV8e2p+j8bq6qjUiX+z8i0upGTjYWLP+qakcS7hOXEmuxY9fIQi8MyaMx5dI9V79tLbeGca/8dLw/hyNu25kozZ/WMLunfiHvg73b9eiD+8dzLQta0krLmTzxGnsuZZAfG62QbnTqck8tuNPg23lajUPbV5DSZWkG+vGPcjBpKtEXE2X+vegMGasW09aYSF/Tp3KvvgE4nOMY+T1++7l8DVdjKgcHZnRrSvDli6jUq3mwrPP8P3x4xx9YivfbXqRk3ujSYpPry7fM7QtvoEePDbwU0K6BPDsx/fz4vjvcFe5MPaRe5k15Asqyit587/TGTC6K3vXn+aFzybx82dbiDyZQOeFw5g7ZChjfl9JWmEhGx+ayt4E03V9rf+9HL6uq2trd3cmd+jI+FW/U6lWs3TCBA5cvVoX1zdYiz7sOZSH9/9BWkkBm4Y/wt7kOOILarRXZjKPH1xrsE1l78gjbXowZOtiytVV/Lf/OEYHtmNTShzvDw5jxlptW02byr4E01pUa1v9uozyqirmjx7J6JA2rI++JNU1dBAPb1xHWlEhmyZPZW9iPPG5hnZPpyTz+NaNRse6PiaK5RHnmTdkhFE93h8Sxow1Un03PFx7fV+rUd+rubmMWfZb9fdHn3qS3XHxvBM28A6eN0TWIgtp0YBBPLxJGy+TprL3qol4Sa0lXi5HsTzyPPMGG8fL61PDeGbeetJzC1n+7lT+upDA1VSd3VMxSRy6kABAK38P5s4exf3vLAVgy9FoVu+7wIePD9fZVAg889Zo3nryV7LSC5i/ajYnDsaQlJhZXaawoJQFc7fRJ6ytQX0qK6p4/fEllJVWoLRSMG/ZE5w5coXLEckoBIG3Jobx5E8bSM8rZNWLD3EwKoHEdF1dT165wcEoKYaDfTz4asZIxs6VJvlenxDK0ZhrvLx0K1ZKBfYWzosa2g9Vjo5M79aV4Xq6MSqkDZvOxkj58fAwHl0p5RfrHn+I/VdqyWUHGeayt5jeqysJWTk42thUl33rgTBm/SD59fdXtH5N0/Nr7A0ORmr96uvBl4+OZNwnkl9f0/r1lSVav9pYg41lcsP6ImuRZbTIEvm5QiHw0hODefHDtWRkF/Lz59M4cjqBa8m683dqRj7PvfsHhcXl9O7agtdmD+XJN1dWf//8e2vILyyt/lshCLw+JYyn528gPbeQ3954iEMRCVzVi+1TsTc4FKGNbT8P5j4+kokfLKOiSs2sb9dRWi7lcL+8Momj0VeJvJqGqBFJWHqVDm+2w7apDRfejaRpNzea+DtU2/Uf5Yf/KGkiLPtcDjd3pGLtKB1rwoprNO3sSrsX2qCp0qAp19TF9fXQIgWC83uIuY8yK6wz3219mZN7IkmK08sNB2rHqfd+TEjXAJ799AFeHPONNE4d/mV1m6w4/SHHdkYAMPdpqc9fet+Pd3sN5P7WHRi1abmUH4+Zzt6keOLyauRbacnM3LPeZC2nbP+D3HK99lIIPPPOGN56fAlZ6QV8t/ppTh64TFJCRnWZwvwSfvp0C30GtTOwpa7SsPiL7STEpGDvYMP8dc9y/ng8SQkZKBB4ptUDvBX5I1nleXzX9WVOZkeSVKLzx/rk/axPli6w3NO0PeP8QymqKgFgT/opNqcc5pU20+7k+Fr5h2pRo0FhJjvOQG7NjaIoqoFTgP7U9oPAd0AS0LuhP9jJz5uknDyS8/Kp1GjYHh3LoJAgo3LTenVhd0w8OcUlBttLKisBsFIosFIqEM1s08nOlrSCIpLz8qmqVHNo0zl6D+1oUL730I7sWyddobh87hqOzva4eTkblOnSvw2p17PIuCm590Z8OjcTpY4d7OHO9dw8bmjruy0mlkGtjes7vUcXdsUa1tfRxoaezfxYezEKgEqNhsLycqN9TdGzM7g61aloNZ38vUnKziM5N59KtYbtkbGEtTXh295d2BMdT3aRrq6ZRcVcSpWOuaSikoTMHFTOjnTy9bb48XesUe8dEabrPbWPcb1vh6Xs3hGxnp//Pf7ftaiLlzfX83O5USjF4Zb4ywwNNG7L2iip0tMihYJbOWZnb2+u5+VxI1+yuzX2MoNbmYjvrl3YGRdHdolhjFgpFNhZWdHVx4eyqipiMrMkLdpynt5DOhiU7T2kA/s2SLns5QvXJS3ylDq5UqnAxs4ahVKBrZ01ORnSChH/ll5EnpQGuTmlpVgpFAZ1HRJkXNcZXbqwKz6OLL26BjVtyoXUVMqqqlCLIieTkxnaqlWdfNcQLers7sv1wlxuFOVJ7XU9hiHNWtd5f6WgwE5phVIQsLOyJqOkSGqrXL22unyZwSaOf3rXLuy8YqKtBKmtlIKAvZU16UXFUl1V2hgo0MbWlViGtKybbwBOpdwkr6zM2Ac+hvXddrmW2OrWhV0mYusWfQOak5SXR0pBYZ3rVI2sRWbXos4qb67n68VLnHnipX1Lb25k5HEzK58qtYbdpy4zoKthvJSWV1b/397WGv2x8vkrNykoNrTbpoM/qUnZpN3MpapKzaGdkfQZaDi5lZ9TzJXom6irjAd7ZaUVAFhZKbGyUnLr5zo09yYpK4+b2VJdd56PZWCHGnWt0KurjTWiNsCa2NrQvaUfG05KeUGVWkNhmeXyorvth7c0XikI2Flbk1Es6cat3OhWLrstOpZBbYztPtyzC7suxxvZVTk5EhrcgnXno6q3dQjw5kamnl/PxRLa8Q5+1TZKEzsburfy48/jen4tlfxqidyw3tRXi/739Oj/f4xmofy8bStvktNySUnPp6pKw94jl+nf09BuVGwKhcVS+egrKXi63z4mOgR6k5yp07ddZ2IJ7XwbfbOxBj19u/WdlVI7ntR+VZhQhJ3KDnsvOxRWCjx7e5Bz1qgZqsk8loVnHw8AqkqqyL9cgCrUCwCFlQKrJnVbp1JnLbLuBOrroL4h5YabTY1TO7BvvbTq7fL567WMU1sbjFP1GRvUjiu52br8ODGGIc3rfk4yReuO/qQkZZOWnCvVe0cEvcNMnDuiblJV49yRm1VIQoy0+rS0pIIbiRm4a4+ntVMAKaWZpJVlUyWqOZR5jt7uhv7QZ4BXdw5lnKv+Oyo/gcLKuxyr/fO16G/lbia97AVBuCAIwmXgZ+CjmgUEQbAD7gF2av+2BwYBW4FVSOKqz0qtzQuCILjf7sdVTo6k6iXaaQVFqJwMhc3LqQlDQlrxx5kIo/0VgsCfs6Zy9NVZHEtMIuJmmlltJmblEJeRVf1dVloe7j4uBuXdvV3ISsnTlUnNw8PbsMyAMd04tOmsSR80dbA3rG+hcX1Vjk0Y0roVq84b1reZqws5JaV8PnIomx6dyicjBmNvbblHvHk5O5KWr6trer5p3w5u24o/Thv79ha+rs609fHkYnIa3o6OFj9+lYthvdPyi/CqkVR5OTdhcPtWrD5Ze73/v+z+S/l7taiJEynFurZMLS5C1cQ44+jm7cuOB6azdOREgt10JhWCwPYHpnP2kac5knydCxnSalCVoyOphTXi29HQrsrRkaGtgvn9omGMpBcV8fPpMxx+4nF+mTCeoooKjmhXV2Wl5eFeQ2fcVc5kpeZV/31Li7LT81m/+CDLj77L7yffp6SwjHOHrwBw7UoqvYe0B2BYq2BslEqdD4pM1LWJVNeVEYZ1vZKdTS9/f1zt7LCzsiI0sAU+jvUcPdYDb3tHUksKqv9OKynE295Ee3n4sT18Jr8OnESwi5SIppcWsTjmJEfHPcPJCc9TWFHO4bSr0rlDv62KilA5mWir4Fra6swZDj/5OMefmkVheXl1W3k3cSS1SN9uId6Oxgl8N29ftj/4ML+OmUBw09uGa3Vd6hRbwcH8fqF2/RkZ0oatMbF3/L1/EX+rFnk3qRmHhXg3qSVepjzMr6PrFi9ero6k5+jsZuQW4WViVBXatRXrPn6Eb/8zng+X7r6tTXeVM5np+dV/Z6UXVA8+6oJCIfDDmmf44+AbnDseT2xkMgAqV0fS8wxzDS8XYx+EdQxi0xsz+OGJcdW3MPq7u5BTVMpHDw5l9ctTeX/yYOxtLJcX3U0/vKXxf816nONPa3VDuxJM5exIml5ulF5LLjs4pBV/nDXu328NC+XLvYfR6A3svVwdSdPza0ZeESpTfu0UxMa3Z/DfWeN473edX3OLSvlw6lBWvzaV9x7U+dUSuaEM8HdrkYXyc8+mTmRk6exm5hTh6V57vjBqUEdOnNetHBdF+HrO/fzyxTTGDOkk2XR1JC23pr4Zx/bAzkGsf28G3z0zjg9W6G57VggCq96ayt4vZnEyJomoa1IMludUYOtuW13OpqkN5bmmJ9HV5WpyI/Lw6NUUgLKMcqydrLiyMIFzb13kyuIE1GXqWo+zQShUoNb1l6xUE7mht2uNcWp+LePUc9Skl7c/JZUVJObrVsyllhTibSo/9vJlx7hHWDb0foJd9UNL5Lfhk9g6djoPtukMgIfKhcw0vXNHWn69zh238PJ1JaitL7ERNyS7ti5klusda3ke7jYuJve1VVjTwy2EI1kX6/27Mn8fdzPpVSqKYhdRFEOA4cByQRBu3YwaJAjCBSAbSBJF8ZaijQIOiKJYAqwHxmuX195iqtZmF1EUDdc+1sTEba9ijSnPt4aF8lWNE/ctNKLI+IUrCf36Zzr5ekv3jZvRZoCbKy52djWMGe6jc5fpIlbWSu4Z2oHDWy8YVwwwsTtijd94e3AoXx4wrq9SoaC9txe/n49g7K8rKa2sYlafniZ/xxyYuku5pm/fDA9l3m7TvgVwsLFm/pRRzN1xiOLyCtPtZebjN313dY16jwxl3s7a620KS9m94++K9fv8j/C3alFdYjsqM51+KxYxYu1ylkaeY9HwcdXfaUSR8LXL6bN8IZ29vGndVJpgMdW/a8bIO6GhfHHYOEacbW0Z3CqI0J9/4Z09e7ESBMa21bsSVkctcnS2p/eQDjx638dM7f0+tg42DBwnPc/gm9dWM/rh/szf/CJ2VlZGdajZF98NDeVzE3VNyMlh4enTLJ8wkaXjJ3A5KxO1WLdl/A3B5LHW8Gt0Thr9N/5A+PYlLIs9y8L7JgLgbGPHEP9g7tv0I703fI+DlTXjAtub7s81jvOdgaF88ddt2mrxL/T9aREO1tbVbXWncwRAdEYG/ZctJnzVCpZdPM/CkWNv7wDqFrPvhIXyxaHa9cdaoWBQUBDbY6/c8fdM1kHWIgtokanYNqQ6Xv5YwbKI8ywMv3O81CU3Ajh4Pp7731nKK//dxOxxfetr0kgzbodGI/LMpB+YNuRL2nTwJ6CVV61lTdV1f2QCY+cu44Ulm3k2XKqrUqmgrb8Xa45GMHneSkorqpg56O/Ni2rrh7d0Y+CiX+i7QKsb7drWbrdmbjQ0lK/2GdsNDW5BTnEJ0WkZBtvr2l77IxIY98kyXvh5M8+M1PpVoSDE34u1RyKY/MVKSsurmDm4Z+127zY3rCf11aL/ET1qfGM0M+TndRn33KJrh2aMHNSRBSt0z3t66u3feezVFbz88QYmDO9C53b+dbZ54GICEz9Yxss/beapMTp904giD366kuFv/Uz7QG+CfG8zH2g6sSPnXC7OrZ2rb20UNSJF14rxGayi26edUdoquLHlZu12G4RJYb9jdfV9Y2Wt5J4hHTi87YJRuTEt23Imw7jONX0blZ1O39U/MWLjUpZeOsfiwROqv5uw9XdGblrGjF3rmN62K728/WsbQNULOwcb3vluKgs/20ZJ8a2JyLobvse9A5cKrlbf2mgu/qFa1GgwyyUsURSPC4LgAXhqN926X9wHOCgIwhhRFDcjXTXoJwjCNW05d2AgYPzkPBMIgvAk8CRA+Mtv8UBX3S063s6OZBQWG5Tv4Kvi6/vDAXB1sOe+4BZUaTTsi02oLlNYXs6p68nc2yqQczdS8HF2MovNCzdT6dFct2LYw9uV7LQCA1tZqXl4+Lrqyvi4kq135bPHwHYkRCaTp3dVQ5/s4lJ6BzTT1dfJkYyiGvX1UfHNWKm+bg72DAiS6nshJZW0gkIupkiz/DsvxzGrTw+Tv2MO0guK8HbR+VblYsK3firmTdLzbesWqDUa9sUkYKVQ8N2UUWyJuMyeS/GAdOXIoL0scPxp+Yb19nZxJKPA8Dfa+6mYN0X3G/e1aYFaLdW7Nixl9478wx+S+Hdo0dA5bzKlrW4JtE8TRzKKiwzKF1XqEvGDSVf5+F4Fbnb25JbpnlNQUFHOiZQbDGgWSEJyjhTfTobxnV5kaLejt4rvRmpjxN6e0JYtUIsa7a2GBeSUlnKzoICiigq6+foQg1aL0mtoUVo+Hj6u1X/f0qIu/VuTfiOH/BwpNo/tiqRdt0AObDxLcmIGb09fCECr7wdyX2CgzgeOxj7oqFIxP1yvri2kvrgnIYE10VGsiZZuZXilXz/SCovAtxbn3yWpJYX4OOiuCno7OJFeWqO9qvTaKyWBj3oOxc3Wnj6qAG4U5ZOjfb7ErhuxdPP0Z9O1WMO2cqylrUbVaCuNYVsB7IqLo5ufD5tiYkgtKjRY9ebt6ET67WLr+lU+Ugwyiq2apBUZx1ZGjfp2UKn4drRxe+2Nl/RnQMsWXMpIr/XWxzsia5HZtWjYu28xub1Oi+oULwPuHC8ZuUWomurixcvNkcy8olrLn79yE39PV1wc7cgvMr5dEqSVXZ4q3VV0D5UzOZn1v022uLCMiDNX6dEvmOvxGaTnFaFyNcw1MvOLa93/bOJNmrm74NrEjvS8QtLzC4lMkvKCPRfjmDnIcnnR3fRDa4WC5Jq64evD1nOXSSsowlsvN1I5m86Nvp6glxu1kux29vMmrHVL7msViK2VFY62Nnw5bjhr91zEW8+vXq7GOYs+5xJu0sxDz695hURe1/r1Qhwzh0h+tURuWG9kLTK7Fo14/S0mddYbo5kpP8/ILsTLQxcvnk0dycox1qKgAA/eeGoYr3y8ngI9DcrOleqQV1DCXyfjadfKm9PpaXi71dC322jGufib+GtjO0/vtu2i0nLOxiXTt10gCSnZ2Da1oTxbt7KrIqcCW1cbkzYzT2Th2Uc3WWbb1AbbprY4t5Lq5dHL3fyTXpo0UHpX/1lzDAqmxqkuBvljj4FtSYgyHqcqlAqGB7bmjcM7md6uW/V2Hwcn0ktqPycdSE7kI8UQ3GztyS0vJUNbNrushF3X4+ji4UNW2mU89VabeXi7kJ1hmNPeDqWVgne+fYgDWy9wbG+07ljL8/C01TtWW1eyK/JNWIABnt04mGG8uu2u+Ydr0d+NWZ7pJQhCCKBEumpQjSiKqcAbwJuCIDgD/YHmoigGiqIYCDyD8fLZWhFFcZEoij1EUexxzdmTAHc3/FydsVYoCG/fhv2xiQblB89fwqDvpM/uS3F8uG0/+2ITcHOwx8lWWnJqa6WkT4vmJGblEHkzzWw2W7g3xdHOFj9XZ6yslQwY240TeyINbJ3YHcmg+6U3jIR0C6S4sIxcvY4bOrYbB2u5tREgLiubQDc3/F2k+o5s24Z9cYb1DVuwhIHaz67Lcby/az974xLIKi4htbCIFk3dAOgT2Iz4Gg85NScGvlUqCO/YhgOXDes65OslDNZ+dkfH8eHW/dUTPB+PH0JiZg7LjulEJjIlzeLHH3UzjQAPN/zcpHqP6NSGAzGGvzH0qyUM+VL67IqK46PN++84MWUpu3fkH36v+N+hRfE+7gS6uuHv5IK1QsHoViHsuWbYTp72ugeXdvbyRhAEcstKaWpnj7ONVjeUVvTzDyAhT4rDiLQ0Al1d8XeW4ntUmxD2JRjGSOjPvzBA+9l5JY45e/exJz6BlIJCuvh4Y2dlRURaGv4uLmSXlEhaNLorJ/ZGGdg5sTeKQROkpDKkS4CkRZmFZKbkEtI1AFs76epjl77B3EiQHurpon1OhiAIhLUMokKtNqjr3kTDug5Y8gv3aT874uJ4b/8+9iRIfnK3twfA18mJYa2C2Rx7ua5NUW8islMIdHLDv4m2vQLasjfZ8K2oHnZNqv/f2d1Haq/yUlKKC+jq4YudUrpe1Nc7kIT8LKmt3FyrtWhUiIm2WvwLA7Sf2toKpOdkJWgf9huRbhgDo1u3Ye9Vw9jycNCLLZUutm7rg9Q0AvTqOzIkhH3xhvUduPgXQhdJn51X4nhv777qCS+AUSFt2HI3tzbKWmR+LVK5E+jiir+TNl6C7xAvXnWLl0tX02imcsXXwxkrpYKhvUL464JhvPh7uVb/v01zL6ytlLVOeAHERt/EN8AdlZ8bVlZKBgzvyImDdev3Lm4ONHGSVtLb2FrRtXcQN65Kj5OIvpFGgKcbfk2lug7v2oaD0YZ1beahGzC19ffCSqkkr7iM7MIS0vOKCPSU8oJ7gpsZPKjd3NxNP0wpLKSLr55uNG9e/ZDwyJQ0Apu64a/NZUe2b8P+K4Z2B/13CYO+lz67YuL4YIeUy369/ygDvvuZQd8v4aUN2zlx9QavbtxJdFIazfX92q0NhyJr92uIvxfWNfwa4KX1axudXy2RG9ab+mrR/5ge/R1alOjqaZH8/HJ8Gs183PDxcsHKSsHg/iEcPWOocSoPJz55dSwfzd/OjdTc6u12ttbYa3MZO1trenYOIDEpi+jraTTzcsPXXYrtYT3acCiiRmx76sV2M0nf8orLcHW0x9Fem8NZK7knpDnXtLHt1NKRsrQyyjLK0FRpyDyRRdPubkZ+qyqpIj+mAPfuTau32bjaYOtuQ0mKpM150fk4+NnXtSnqRmUkKANB6S/lhmO6cWJPjdxwTxSDJkqr7EK6BpgYp3bnoIlbG7ve25qEvBwOJCfSwtmNZo7afKtlW/YkGU5Oe9rr5Vse3ii0+Za9lTVNrKVJQnsra+7zCyQ2N4srUTfxDfCQzh3WSgaM6MSJAzF1PuwXPprAjcRM/tS+DfgWVwqT8LX3RGXXFCtByQDPbpzIjjLa30FpR0eXII5nRxp9d9f8w7Xo7+ZuVnrZa5fHgrQmcIYoimoTt2NsBN4H/gPsF0VR/4bmTcAXgiDY1tzpTqhFkY+27+eXaROkVytfiCY+M5vJ3aV7tFebeE7BLTwdmzB33DCUCgFBENgZfYWDcVcBzGpz0ZFT/DJtArZjx7J79QmSrqQRPq0fANt/O8rp/ZfoGdaeJUfmUFZWwTcv6d4uYmtnTdf7Qpj/xmqD3+k7vBNPfXQ/zp6OLHxgDGkFRSyZMgGlILAuIpr4rGwe7CrVt+Z98jX5aPcB5o0ZgbVSwY28fN7YtpuZgbfdBYCXP4BTFyAvH0Lvh2cfhftH3n4ftUbk4637+XnGBBQKgQ3noonPyGZyT61vb/Oshm7NfRnbpR2xaZlseHoqAN/uOcr+m9f4YM9+sx6/qXp/snk/ix+VYuLPs9p699LW+1TDnrdlKbt35J8pkH+7Fs05vI/loyZKr52/HElcbjZT23UGYOWli4wIasO09p1RazSUqat4bs9WALwcmjAvbAQKhQKFILAtPpb91xNRokAtinyw/wBLJ05EoRBYFxVFXHY2D3bSxndE7TFyMS2NnXFxbH54GmqNhotpaYxt25ZJe1qze+0pkuLSCX+oDwDbfz/O6QMx9BzYliUH36KstJJvXlsFQOyFJI7suMj3W19CXaUh4dJNdqySXscdOroro6ZLerY16xqv7trFsgkTUQgCa6Oluj6krevvt6krwI+jR+NqZ0+VRsN7+/dRUMeXajRIi0SR987sYXnYFKmuCRHE5WfxUHBXqa5x5wlvHsLU4K6oRam9nj+yCYAL2SnsSIpl64iZVIkaLuWmsyr+AmrRig/26bVVpLatOmvb6uId2uqKtq1EDdHpGfwREamr66H9LB8zEYVCwdpLUcTlZPNQB61foyIIb9WaqR06S3WtquL5nduqbX83bCS9/fxxs7Pn2KNP8u3JY6w/Fy3F1t4D/Hr/RJQKgbX1qC+AnZUV/QIDeGd3nRYAmEbWovexgBa999d+lo+diELQi5f22niJjiA8qEa87NKLl6F68fKIFC9rYqJQa0S+XHmA71+U4mXzkSgSU7KZOECyu/5QBIO6BxPepy1Vag3llVW8+dPWarufPBlO9zb+uDras+3LJ1i06ThHT//Fj59u5ZMFM1AoFezeeJbrCRmEPyANsLavPY2buyPz/3gKhya2iBqRcdP6MmvcfJp6OPHyxxNRKhUICoG/dkVx6i9pAlatEfl0/X4WzJqAUiGw8WQ0CWnZPNBXquvaYxEM7hTM6J7tqFKrKa+s4rXlOh98tv4Anz0s5QXJ2fm8u2o30w1fAGaShmpRQ/vhxVRJNzZNlzT+UkYGq/V048Od+/n5ISk3Wn9RymWndJPs/nGu/vmFWiPy2br9LHhayuE2ntD6tZ/Wr0cjGNxF8mvlLb8u1fl17roDfDZd59c5K3eDjWVyw3oja9H7WECLLJGfqzUiX/+8j6/flc6J2/ZHcvVGNmOHSvnWpt0XeeSBPrg42fPyE4OlfdQaHn/9N5q6OvDpa9Lt3Eqlgj2HYzh54RpqLyWf/7GfH56TYnDzsWgSU7OZeK9W3w5HENY1mFH36DTjjZ+l2PZ0acIHM4ahFAQEhcCes1c4HCWNJwWlQNAjLYj6PAZRI6Ia4EUTfwdS90or2HwGS6ussk/n4NrRFaWd/p2kEDS9BbE/xqGpErH3siV4Visg5Y6+r7sWqRELPkRw+4VFB5xuM05tx5Ij71JWWsE3L/9evbetnTVd721jNE4F6TlfmxNjpPz4+F6WD38ApSCw5kokcXnZTA3pAsDKyxcID2zNtLZdqbqVHx/YDICHvQOLBo0HpJd2bEq4xKGbV2mn1rDgk818vPhRlAqB3X+eJSk+g/DJ0iKS7atP4ebhyPw1z+DgaItGIzLu4X7MGv0tLdp4M3hsN67GpvLfDc8CsOzb3Zz+6woaNCyIX8/HHZ5CKSjYnXaCpJI0wn20/kiVtKWvRyfO5cZSrjG8lfr1kOl0cmmFs7UjK+75gBXXd9yxrYz4Z2pRo0GozzMUGhMhH3zzP1PxFouvmt1m/DMtzG4TIPbRBRax2/6Hp8xus8rhzmUagnUDXkT2d3Hp0xfrtRY26Ouv69VvEl56SV5rewcCF3xldi1SlpjrxbqGtP5vskXsxj7vb3ab8Q/+ZHabAEH7HjW7TUVqvccEdUJja/7TnLLMMl06/tX6aYWsReanxX/nWSQvcj9vftd7nLbMCqqUQXd+MH99ufC6ZfKi1itmm92mpfq3Xab5bVa43LlMQ4j5yLJ5Ech6dCeCP7PMGE11xswPcwdKvJR3LtQAuj1m/oecL/I/ZnabACN7jjC7zUvv+925UANoNy/PInb5qfZbWhvKjvu+k7WoEWG519LIyMg0Pv5npoplZGT+0chaJCMj0xiQtUhGRqYxIGuRRZEnvWRk/k3IgiojI9MYkLVIRkamMSBrkYyMTGNA1iKLIk96ycj8i5BfbysjI9MYkLVIRkamMSBrkYyMTGNA1iLLIk96ycj8m9DIt37LyMg0AmQtkpGRaQzIWiQjI9MYkLXIosiTXjIy/yLkqwgyMjKNAVmLZGRkGgOyFsnIyDQGZC2yLPKkl4zMvwlZUGVkZBoDshbJyMg0BmQtkpGRaQzIWmRR5EkvGZl/EfJVBBkZmcaArEUyMjKNAVmLZGRkGgOyFlmW/9lJL0FtfpvKMvPbBBDLzG9YWW52kwC0/+Epi9iNfmaB2W22XjHb7DYBNLbmv6e61K/K7DYbhCyo5sfe/GIklinMbhMAGxuLmNXYmD+wgvY9anabAAmDfjW7zZa7HjO7TcAiz3eosrZQbNUXWYvMzozQvyxi99CWvma3eWOEu9ltApR0Mn++Zalc48rDP5ndZu8L95vdJkA3zxtmt7nreBez22wQshaZnaBV2RaxK9qYf9ha4uVidpsAh5Namt3myPGWqeu20zvMbnPkwIlmtwlAeaVl7M5yML/NmHqWl7XIovzPTnrJyMg0AFlQZWRkGgOyFsnIyDQGZC2SkZFpDMhaZFHkSS8ZmX8R8tJZGRmZxoCsRTIyMo0BWYtkZGQaA7IWWZZGcp+DjIyMjIyMjIyMjIyMjIyMjIyM+ZBXesnI/JuQryLIyMg0BmQtkpGRaQzIWiQjI9MYkLXIojRo0ksQBG/gW6AnUA5cA14ALgKXATugEPhBFMVl2n0eAXqIovisIAgK4FdADTwHrAGCtH9vEUXxjbrUo3+rAN4KD0UhKFh3LoqfD582Wa6Dr4o/npzCS2u2s/tSHN7OjsydOBwPRwdEEdaciWTFifMA9GsdwBtjQ1EKCtafiuKXg4Y2B7ZryXPD+qIRRdQakbmbD3L+WgoA0/p1ZeI9HRAQWHcqkt+OnK/er3tYe576dDIKhYKdvx1hzfydRvV86tPJ9BzckfLSCuY9t5T4iCQAlp37lJKicjRqDWq1mucHf2rgg7eHh6JQSD5YfKR2H6x+fAovrdvOrktx2Fgp+e3RSdgolSgVCnZfiuP7g8d1fh2p9evZ2/jVT8+v0Xp+ddL69bTOr3fi7blw8Dg0dYMtS+u0CwD3BQbyziCpvdZERLLwlOm6dvRWsW7qg/xnyzZ2XomjhZsb340ZWf19cxcXvj16jKVnpfr2D6rh16O38etjWr/GxGGjrOHXGJ1fB/gH8l7vQSgFgT9iI1gQccrAVm+fZiweMp4bhfkA7Lx2hfnnj1d/rxAEto59mLSSImbu3lB3J+nxT1s621i0aIBfC+b0GoRSULA67iILIk8afN/buxmLwiaSXJQHwM7rV5h/8RgAzja2zO07gjZuHogivHZ0OxdyMwG4LyCQOaFSHK6JiuSn06bjsJNKxfopD/L89m3siIsD4JGuXZncoSOCAKsjI/n1vBTb3e9tzey3R6NQCOxce5q1iw8Z2PJv6clLn95Pq/Z+LPtmF+uXHK7+7sVP76dXaAh52UU8NfpbQx80D2RO/4EoFQKrL0Wx4FyN+Pb1Z1H4OJJvxXdCHPPPnMDH0YmvBw3H06EJGkRWRUfwa4RU1/t8WvJej8EoBAWr4y/w06UTBjbv8WrOogETSS7S2rwRy/dRRwGYGdKTyUGdEYHYvExePb6VCs2dXzrQUC0a4FsjBqJqxIDKRAxEaGPAukYMHNvOuUzpvDLArwVz7pF0Y/WVCNOxNWgCyYW37MYZxla/4bRx9UAEXjuyg3PJaZLdZoHM6Rcm2Y2JZMGFmu3VjEXD9Nrrahzzzx7HVqlk9dgp2CokjduReIVvzhyru6O0yFpkGS1KOV/EuSUZiBqRoEGutJtg+MD4imI1x79LoSSrCo1apO3YprQMcwXgxA+ppJwpws5FSfi3hg9h7tmjBc/OHoRSqWDbjousWmMYh4MHtmPKpHsAKC2r5Nvvd5GQKOnYay+NoPc9QeTllTBz1pLqffq3DuCNMdp863QUP5vKt4b2RRRFqjQin285yDm9fOv+Xh0QBCnfWqGXb5lbN9Q0PNcAeLR7NyZ16oAoQmxWFq/v2EWFum4vQGmoHvX2CObltqNQoGBT8mmWXzV+yUG3pi14KWQkVoKSvMoSZp9aTPMmHnzaeUp1GV+HpiyK28uVktVkX8wjbnkSaER8BnoSMMbXwF7SllTSj0kPMBfVIsU3S+m/sBuVBZVEf59QXa40o4wW9/uDq/T3fc0Dee/egSgE6dzxU41zxz1+2nNHgba9EuP4/rTUpp+HDSMssCXZpSUMX7Ws7g7SQ9Yiy2hR937BPPV6uDTu2XCWNUsMY9A/0IOXP5pAUFtfln2/h/XLpD7ooXLh1U8m4ubhiKgR2b7+DJtW6nLhHn1aMfuV4dL5Z+M51iw7YmC3WYAHL703llYhPiz7cT/rftOdn5ZtfoHSknI0ahG1WsNz0xcB0LddAK9Mkvr3n0ejWLrbsH8P6NSSp0frxn5frT3IhYQUbKyU/PzyJGyspPPhvvNx/LRVV9d7VUG83WkYCkHB2mvnWXzlqJGfenkE8FanYVgpFOSWl/Lw4WV42zvzRY9xeNhKedGZrCR6ewZie1hk56oTrP1xr5Gd2R9MoGdYO8pLK5n30koSopLxa+nFmz/OqC7j09yDFfO2s/GXQ7zx4wz8W3oBIHi+CppCxOyxtbZnQ7Woe//WzH5rlBQH606z9ucaOWcLbc7Zzpdl3+5m/a96OefHE6WcM6eIn7/YIdkRBHauOcnanw4Y+2DOWHqGtqW8rIJ5r64mIfomAGMf6c/wyb0RBNi5+iQbtb/Rf0Qnpv1nKM1aefHCpB9xdmtilro+Nea7ujtIj3+aFjU26j3pJQiCAPwJLBNFcYp2WxdABSSIothVu60lsEEQBIUoir/W2P8nwBp4FEl8vxJF8YAgCDbAPkEQRoiieNtXSSgEgXdHhfHYsg2kFxSyZtZDHLicQEJmjlG5l4f252j89eptao3IFzv/4lJqBg421qyfPZVjCddJSs7lnfFhPLF4A2n5hax+7iEOXEogMUNn80T8DQ5c+g2A1t4efDVtJGO+WkYrlTsT7+nAg9+volKt5qfHJvDX5askZeWhUAg88/lDvHX/N2Sl5DJ/z1uc2HmRpCup1XZ7Du6Ab0sVM3u9Q0j3Fjz75VReGPZZ9fevj5tHQU6R0bHNCQ9j5grJB2ufeIj9saZ98MqQ/hxJ0PmgokrNI8vWUVJRiZVCwcqZk/gr/ipRSem8OzqMx5Zq/Tr7Lvz6lOTXmvuaYtwIeGgCvPHpHYsa1OH9IWHMWLOetMJCNjw8lX0JCcRnG9f1tfvu5fA1XV2v5uYyZtlv1d8ffepJdsfFV/9t0q9ZJvw6uIZf1Vq/Vmr9+ugk/oq7yinhJh/1HcLUHWtIKy5k89iH2ZuUQFye4RtuTqcl1zqhNbN9d+LzsnG0sa27k2ryDxLUxqRFH94zhGm7V5NWUsjmUTPYkxRPfH6Ntk2/wWP71hvt/16vQRy6mcjTBzdirVBgb2VdbfeDsDCmb5Die+NDU9mbkEB8jon47n8vh6/r4rC1uzuTO3Rk/KrfqVSrWTphAgeuXkWhyOSZOWN569FfyErP57t1z3JyfwxJCRnV+xbmlfDTJ1voM6idUV33bDjL5t+O8crnk4x9cN8gpm1eR1pRIZsfmMqeq/HE5xrW9XRqMo9t22iwrUqj4eOjh4jOyqCJtTVbJk3j8I3rXCWdD3sO5eH9f5BWUsCm4Y+wNzmO+IIafs1M5vGDaw22qewdeaRND4ZsXUy5uor/9h/H6MB2rE+MNDqmmjRUiz7srRcDI2ew50YtMbC/lhhISeTpQ9oYUFrr2R3MtF1rJLujp9cSW8k8tteE3XsGcSj5Kk8f2GQUWx/2H8y0rWslPZowjT3XE4jPNdajx3b8abCtXK3moc1rKKmSNG7d2Ac5mHS17s66haxFZtcijVrk7OJ0Bs5phr27Nbtfv4ZfT0dcmunOGXE7c3FpZsuAt5pRll/FtucTCbjXBaW1QMtQF1qPcOPE/BQDuwqFwH+eGcKrb64mM6uQn76fwbET8VxP0sVLano+L7z6O0VF5fTq0ZKX/zOcp/+zAoCduyP5c/M53nxVd6FJIQi8PS6MJ37eQHp+IauflfKtBL1862SNfGve1JGMniflW/f36sCU/0r51sKZEzgUc5Wk7Dwpts2sG5tvxjU411A5OjK9W1eG/7qM8qoq5o8eyaiQNmyIvnS7pqymQXqEwGvtxvDs6SVklBWwrM/THM64zNVinc47WtnxWrux/OfMr6SX5eNm0wSApOIsph37b7WdbQPf4GD6JXyaiFz59Tpd3myDrbsNZ96JxqObG0387attNh/tQ/PRPgBknc3lxo40rB2tsHa0oudnHQAQNSLHnrmAZw83iNdq0YBBPLxJOndsmjSVvbWcOx7futHoWNdfjmJ55HnmDR5RdwfVRNYi8+dFCoFn3hrNW0/+SlZ6AfNXzebEwRiStBPhAIUFpSyYu40+YW0N9tWo1Syet4P4mFTsHWz4/o+nOX88nqTETMnu6+G8+cwKstIL+H75E5z4K5akqzq7BQWlLPhqB31DQ0zW7bVZyyjIL9HVVRB4fUoYT8/fQHpuIb+98RCHIhK4mqaLwVOxNzgUIWlRsJ8Hcx8fycQPllFRpWbWt+soLZfOh7+8Momj0VeJvJqGAoE5nUfw6JHfSC8tYN3Ax9mfGktCYVa1XSdrW97rEs7jR1eSWlpAU1vpDYJqUcPcyN1cykvDycqW46NeYdaxVWROP8d3W1/m5J5IkuLSq+30HNgO3xaePHbvx4R0DeDZTx/gxTHfcDMxg2eHf1ndJitOf8ixnREAzH1aN0m8/XJnRE3h7Zq0YVqkEHjm3TG89dgvZKUX8N2aZzh5oEbOmX+bnHPjWTb/fpxX5j6gs5OUzXcb/8PJvZdIitfzQWgIvoGePBY2l5AuzXn2o4m8OGE+Aa29GT65Ny+M/47KSjUfL32cUwdiSLmWxfUraXz01DKe/+R+BDPWtcH8g7SoMdKQZ3oNBCpFUax+17IoihcAg/cZi6KYCLwEPF9j/+8Ad2C6KIoaURRLRFE8oN2nAjgH+N+pEp38vUnKySM5N59KtYbtkbGEhQQZlZvWuwt7LsWTXawTuMyiYi6lSkFcUlFJQmYOKmdHOjbzJikrj+ScfKrUGnZcjCWsvaHN0grdq1LtbaxBlCK0pVdTIpJSKausQq0ROZOYzKD2rQBo060FqVczSLueRVWlmkN/nqbPiM4GdvuM6MK+NdLVgctnr+LoYk9T1e1fTdvJr4YPomIZ1MaED+7pwu5L8eTo+eDWsQNYKRVYKRWIotav2TX82rYWv0bHk110Z7/WhZ6dwdWpTkWr6ezjzfXcPG7k51Op0bDt8mUGtzKu6/RuXdgVF0d2SYkJK9A3oDlJeXmkFEiCX+3XPMnu9uhYBpmKrV5d2B1jwq+VWr8qtH4Funj6cK0glxuFks0tiZcZEtCqzsfq7eBIWLOW/BF750H7bRHr+WncNAot6uLhw/XCPG4Uadv2agxDmwfX6QAcrW3opWrG6jgpCanUaCioKAegs7c31/N08b019jJDgozjcEaXLuyKjyNLL76DmjblQmoqZVVVqEWRk8nJDG3VitadmpFyPZu05BxJi7ZdpHeNk3d+TjFXIpOpqtIY/VbUmasU5pca+8DLm+v5edwo0PogLpahLeoW35klxURnSbpRXFlJQm4O3k2c6Ozuy/XCXG4U5Uk2r8cwpFnrOtkEUAoK7JRWKAUBOytrMkqK7rwTDdOiLh4+XC+oEQPN7iIGKst1dvVjKzGGoc3r5lfJrr/J2Ori5c11fT1KuMzQQOPYqo2SKj2NUygQGyIWshbpYxYtyokvw9HbBkdvG5TWAs37O5N8ukbcCwKVpRpp9VSZBhtHJQql9JVXewdsHI3TwpA2PqSk5JGalk9VlYb9B2Po18cwvqMv3aSoSIqvS5dv4uGh60QRUckUFBrqRsdm3tzIlvKtSrWG7RdjGdjOMAZLauRbt+KspVdTLurnW1eTGdxB6heW0I27zTWsFArsrLQ2ra3JKC6uc30aokftXf1JLskmpTSXKlHN7rQI7lMZTiwM8+nMwfRo0suk1VO5FcZ16ukeRHJJDmlleRTEF2GvssVeZYfCSoGqjztZZ3NrrUP68WxUfd2NtudGFWCnssXOU5qI7awyPncMaVn33OhUyk3yysrqXN4k9dWixq1HjUKL2nTwJzUpm7SbuVRVqTm0M5I+Aw1jMD+nmCvRN1HXyDVysoqIj5EWBZSWVHDjaibuXs6S3fZ+pNzIqbZ7cHcUfQa0MbSbW8yVSykmcxhTdAj0Jjkzj5tZ0thv15lYQjvXGPuVmx776X+nP5YC6NTUj+vFuSSX5FEpatiWHM0gH8O6jm7WkT0pl0ktLZCOvVzSjsyyIi7lSauyg5w9KagoQwQpb9t8jt5DOxrY6T20A/vWS6vTLp+/jqOzPW5an92iS//WpF7PIuOmiX5rNwLKtt7WTw3RotadmpGSlE1acq5U9+0X6R1mIg6ikqmqMl79GnXmGoV5JdjaWRva2XqB3kPaG5TtPbg9+/48A8DlC0k4Otvh5ulEsyAvLl+4TnlZJRq1hsiTifQdKk3C30jI4KZ2wjSglcosdb0r/lla1OhoyKRXB+BsHcueA/Sn2h8CugNTRFGsqllYEARXYDSw706GvZwcScvXzUqnFxQZTbB4OTVhcNtW/HE6olY7vq7OtPXx5GJyGl4uNWzmF+FlYtJmUPsgNr8ygx9njuPdtXsAiE/PpnsLf1wc7LCztuLekEC8XaV93X1cyUzRXTHISsnD3cfNwKa7jyuZekKUmZKLu48rIGnrp+te4Pt9bzNi+r3VZVTOjqQW6OqbVosPhoS04o8zxj5QCAJ/zp7K0VdncSwhiYibaXg5G/tA5XR3frUUKkdHUgv1jr+wCJWjk1GZocHB/H6h9rqODGnD1phY3T5OJvxqwge39essrV8TJb96OziSWqyzmVpciLeDcWx18/Jlx/gZLBs2kWBXXcL4Xp8wPj11CM1dKpwg1u/TyGkUWqRycCKluKD679TiQlSm2tbTjx1jHmXp4AcIdvUAoLmTK9llJXzVP5xtox9hbt/h1atxvGvEd2qRifhu4sjQVsGsjDCMwyvZ2fTy98fVzg47KytCA1vg4+iEh8qZzLT86nJZ6fm4qwwTo4agcnQkpUi/roWompjwgbcvOyY/zNJREwhuajwg8ndypp2HFxfSU/G2dyS1ROfXtJJCvO2NM65uHn5sD5/JrwMnEewi+TW9tIjFMSc5Ou4ZTk54nsKKcg6nNWA1Uh0xioGSWo7f048dox9l6SC9GHB0Jbu8hK/6hbNt1CPM7aOLAZWDIyn6ulFSiKqJCR94+rJj7CMsHXJ/tW5IsVXKV/1HsG3MDOb207PbxKlGexWZtqvyZcf901kaPpFgN117KQSB7fdP5+yMpzmSfJ0LGfXXeVmLqjGbFpXkVOLgoVvA79DUitLsSoMyrUe4UpBcwcbH49nx0lW6zVQhKITb2vVwdyIjUxffmVmFeHjUfkErfHhnTp1OvK1NlYsjqXk1cg0X0/nWlpdnsOBRw3yrh36+1SYQb+2+ltCNu8k10ouK+Pn0Gf6a9TjHn55FYXk5R/RWglkCT1sX0kt1Op9Rlo+nraHON2/igZOVPQt6Pc6yPs8Q7tvVyM4Qn07sTr0IQHluJXbuuhWDtk1tKM+pMPn76nI1ORfz8ezV1Oi79OPZqProtMS7SQ3fFhXiXcu5Y/uUh/l1tOlzx91QXy1q5HrUKLTIXeVMZrp+rlFQPXFVH1S+rgSF+BAbmSzZ9XImM13Xv7MyCvCoj11R5NMfHua/K55kxPjuAHi6OpKWq4vBjNwivFyNY3Bg5yDWvzeD754Zxwcr9lRvVwgCq96ayt4vZnEyJomoa9L5UGXnRJpeP0wvLUBVQ4sCHZvibG3H8nuns37g44xt3snod9u6qLCzsuZijuSDrNQ83L0NF0W4e7uSlZJX/XdWaj4eNcoMGNONQ5vOGdnvcE8QaLJAbX5d8vCqmXMW4H6HBR2mUFopDO2k5hnZcfd2ISs1T1cmTfLB9StpdOjVEidXB2ztrOkZGoKndnytj2vTJmap693wD9OiRoel395YM5M6BwQAvYwKCoIVsAqYr70CcXvDJnI0UTRs/TdHhDJv92E0oumocLCxZv6UUczdcYji8gqjygImr2Dvi05gzFfLeH7ZZp4d1heAxIwclhw8zeInJvDTY+O5kpqFWiPeOrY71vV2ZV4a+TnPhn3MO5PnM3pmKB361L6CoKbdt4aH8tVe0z7QiCLjf1pJ6Nc/08nPm2Av9zr54M3w+vnVUtSlru+EhfLFodrraq1QMCgoiO2xV25ruKbdt4bdwa8LtX719SbY070Wm4ZEZaXT94+FjPhzGUujz7F4yHgAwppJz6uIyk43NlJfLHAFQRCE4YIgxAqCEC8IQq3PehAEoacgCGpBEO6/q2NoGJbTIhPbjNo2O51+6xYwYvOvLI05y6IwqW2VgoIO7t78dvk8I7cspbSqkqc69q71t2r273dDQ/n8sHEcJuTksPD0aZZPmMjS8RO4nJWJWtTUIpx3OsI7I5jwgpEPMjPot3wxI1avYGnkeRaNGGvwvYO1NQuGj+HDIwcoqqwwrYk1rEbnpNF/4w+Eb1/CstizLLxvIgDONnYM8Q/mvk0/0nvD9zhYWTMusL2RPXNhMgZqOCAqJ51+6xcwYsuvLL18lkUDtTGgUNChqTe/xZ5n5FZtDHSQYqAu546o7HT6rf2JEZuWsjTmHIsGTZDsCgo6uKv47fIFRm5eRmlVBU91vOc29a1hNzOdfr8tYsS65SyNOsei4eOqv9OIIuHrltNnxUI6e3nT2s3jNt6pBVmLbmE2LTLppxq/lnqhGLcWtoz7uRXDv2rB2Z/TqSy5/fOlTOdbpst26dyc8GGdWPTLwTtW19im6Xxr9LxlPLd8M88N1eVbvxw6zc+PT2DhzPHE3infukvduJtcw9nWlsGtghi46Bf6LliEg7U1Y9sZrh4wN7efwpRQCgpCXHx58ewynj/zKzODBtLcQTeZZCUouc+rLfvSoqQNdYitW2Sdy8OltRPWjoZPUNFUacg+m4dXb91kWF3OHdEZGfRftpjwP1awLOI8C8PHGu1zV9RXi+qgR/92LarLOeZO2Nnb8M7XD7Lwi+2UFJebxe6Ljy3h2WkLefv5lYx5oCcdugbUaTwJcOBiAhM/WMbLP23mqTF9q7drRJEHP13J8Ld+pn2gN0G+Uj+qS7qlFBS0d/Nh1rFVPH50JU+H3Eugo65/OCitmRnch4s5yRRXVdRq6E7HYGWt5J4hHTi87YJRudCx3RBLtxkbMAd1SY4aSh3H0TcSMli78ACfLn+Sj5Y+QeLlVNRqE6sALVnXuvLv1aL/Fxoy6RWNdCWgLnQFYvT+vgxMAlYLglBzBLIIiBNF8dvajAmC8KQgCGcEQTgTf/o43i66GXOVsyMZhYbLszv4qZj3QDh7X5zJ0HbBzBkVVn2bmpVCwXdTRrEl4jJ7YqRnOaXnFxnadHEks6D2Zehnr96kmbsLrg52AGw4Hc2k737nkZ/Wkl9SxvWsXACyUnLx9NWJmIevKzlpeQa2slJy8fTTrf7y9HUjRzvjfOvf/KxCjm2/QJtugVJ9C4rwcdbV19uUD3xVfH1/OPte0PpgZJjRrXqFZeWcupbMva0CSS8w9oFJv04KZ+9LMxnaXuvXtib8eim+Vt+Zg7SiInyc9I7fyZGMIsNbOTqoVHw7OpyDTz7G8NbBfDB4kMFtCQNatuBSRrrB7Qj18ut/9Pxa49bSwvJyTl2X/JpWXISP3koKnyZOpNe43aqosqL6tqEDyVexUihws7Wnh8qPwQGtODL5Sb4fOJq+vs35NnQkDcHcVxAEQVACPwAjgHbAg4IgGN3sri33ObCrQRU3TaPQooQjJ/BtorvS6NPEyehWOv22PXgzEWuFEjdbe9JKCkkrKeRClrSUf/u1WDo0VQHG8e3j6EhGsaHdjioV88PD+WvmY4wIDuaDsEHVt0CuiY5izO8rmbJ2DXllZVzLzSMrLR9Pvat/HioXsjMKuFvSigrxddSvq5NRXYsqK6pv/T14/SrWCgVudtLzYKwUCn4aPoaNV2LYlSjpRmpJIT4OOr96OziRXlrDZpWeX1MSJJu29vT3DuRGUT455aVUiRp23Yilm+cd78hoMGklhYYx4FCPGCiuEQPXY+ngro2B4kJ89XXjTnaTE7EWFLrYKtaPrSuGdh1rxNbt7CYZttctCirKOZFygwHNA+vhLQlZi6oxmxYlXcyiJEu3QKMkpwr7ptYG5a/uz8f/HicEQcDJx4YmXtYU3Lz9xanMrEK8PHXx7enhRHa28e3CLVt48soLw3nn/fUUFN7+lrP0/CJ8XGvkGvXMtx6Y/zszFhrmW5bQjbvJNfoFNCc5v4Cc0lKqNBp2xcXRzdfntr65WzLK81HZ63Tey86FzHJDnc8oy+dEVhxl6kryK0u4kHuNYCddvfp6tuZyQQo5FdJx2ja1piy7vPr78pwKbN1sTP/+8RxUfY1XeWVfyMexhQM2LrqYTC0uNPStoxPp9Th3mANzr66QtUg4Ex13Gk+Vfq7hTE7m7Z8ZpY/SSsG7Xz/IgW0XObpP9/y7rIwCPPVWp3t4OZNdD7s5WVLZ/Nxijh68TEh7PzJyi/B208Wgl5sjmfm1a9G5+Jv4e7jg2sTOYHtRaTln45Lp2y4QgLTSQrz1+qHK3pmMUsO6ppUWcjg9gVJ1JbkVpZzJSiLERTpPWwkK5veexMG0ONR6ky8ePq5k662iA2nlk4evq14ZF7L1VsT1GNiWhKhk8rIMf1+hVNB3eGcos8ykV1Z6QY2c07lBOae6SmNox8fVyE5Wah4eeiu4PLx1Pti95hTPjfmW16b8SGFeCTevZVGTvOxis9T1bviHaVGjoyGTXvsBW0EQnri1QRCEnkhXB9DbFgh8BXyvv10UxWPAbGCbIAjNtWU/BlyQ3i5SK6IoLhJFsYcoij2uOXoS0NQNP1dnrJUKwju24cBlw4sPQ75ZwmDtZ/elOD7cup99l6U3yHw8bgiJmTksO6Zb6hmVnEZzDzf83JyxUioY0bkNBy4Z2mzmrusQbf28sFYqySuRkrumTaSTsLerE4M6tGLHBemWudjz1/Bt6YWquTtW1koGjO/JiZ0XDeye2HmRQZP6ABDSvQXFBaXkpOdj62CDvaO0pNzWwYZuoe24FiM9ZDYyJY0Adz0fdGjD/ljD+g7+bgmDvpU+uy/F8eE2yQduDvY42WntWinp07I5iVk5RN6sYdOUX79ewmDtZ3e01q8xWr+ON/arpYhITSPAzRV/F2esFQpGhoSwL96wrgMX/0LoIumz80oc7+3dx9543VuERoW0YYverY2AoQ8UCsLbm/Dr/CUM+k76VPs1VutXWz2/tpD8ejEzlRbObjRzdMFaoWB0yxD2XDecFPS0b1L9/86e3igEgdzyUr44c5jeq36i/+pFPHdgC8dSknjhYANPUOZfXdELiBdFMVH7vIc/AFOXYZ8D1gMZJr5rKI1Ci+KbNyXQ2Q3/W23boi17btymbT18EJDaNrO0mJTiAlo6SwOEfr4BxOVLJ+OItDQC3Vzxd5bicFSbEPYmGsbhgCW/cJ/2syMujvf272NPghTf7vaSHvk6OTGsVTCbYy9zJTIZ30B3VP5ukhaN7MyJ/XV7oPLtuJiRRqCLK/5OUl1HB7dhz7UEgzKeDg46H3h5IwgCuWXSc34+HziU+NxsfrmouysjIjuFQCc3/Jto/RrQlr3JcQY2Pez0/OruI9ksLyWluICuHr7YKaWVBn29A0nIN05yzMXFrFTjGEiuEQN2tcRAWY0Y8AkgLi/LtN2Wd4ot72ofGMWWT0D1izOk9nLD30lrNyjEuL3sa7QXUns1tbPHWfsyDVulFf38A0io8dDpOiFrUTXm0qK+T7agMLWCovQK1JUiSUcK8O9heJuOg4c16ZHSgK40r4rClAocVdamTFdzOTYVPz83vFUuWFkpCAtty7EThnHo5enEh3PG89mX20g29cyYGkQlp9HcXcq3rJUKwju34UCMob4118+3fE3nWz6uTgzu0IrtF6XzuCV0425yjZTCQrr4emNnpbXZvLnRA/DNzaX8mzRz8MDX3g0rQclQ704czogxKPNXRgxd3AJRCgpsFda0d2nG1WLdw8CH+nSuvrURwCnIkdK0ckozytFUaUg/no1Hd1ej364qqSIvpgCP7m5G32UcM7y1ESAi3fjcsfeqoRZ53ObcYRbMv7riX69FeTcc8Q1wR+XnhpWVkgHDO3Li4OU6H8SLH4wn6WomG1YYvhk49lIKfs3cUfm6YmWlJHRoB078FVuLFUNs7ayxd7Cp/n/3e4K4lpBB9PU0mnm54esujf2G9WjDoYgaYz9PnRaFNPPC2kpJXnEZro72ONprz4fWSu4Jac417QPwI3NvEujYFH8HV6wFBSP927M/9YqB3X2psfRwby49709pRSc3v+oH3X/SbTSJhZnMjdxdbcfKWsmAMd04sSfKwM6JPVEMmthTql/XAIoLy8jVm7AJHdudgyZubex6b2uSE9JBY4Y7SUxwJTIZ3wAPKQ6slQwI78yJAzF33rEG5WWVhnZGdeHE3miDMif2XWLQ+B4AhHRpLvlAOyHq4i6dBz19Xek3rCOHNp83+o2k+HSz1PWu+GdpUaOj3m9vFEVRFARhPPCtdplcGbrX4QYJgnAe3etwv9d/K4ieja2CIHgCOwVBGAG8jXSF4Zx2eeJ/RVH8+Xb1UGtEPt62n5+nT0ChENhwLpr4zGwm95Duh15t4llLt+jW3JexXdoRm5bJhqemAvDt3qMcjbzGp5v2s/DxCSgVAn+ejiYhPZtJvSWba05EMKRjMGO6taNKo6assopXVuomH76ZPhpXBzuq1Bo+2bifglLpqphGreHHN1bxydoXUCgU7P79KNdjUwl/5D4Ati/9i1N7Iuk5uANLTn9CeWkFXz+/FAA3T2fmLHsKAKWVkgPrT3F2fzS0a4taI/LR9v388vAEFILA+vN194GnUxPmjhuGUiEgCAI7o69w8MpVBA18vHU/P8/Q82tGNpN7am3e5jleBn59WuvXPUf5K+5arfvc4uUP4NQFyMuH0Pvh2Ufh/jssZlKLIh/sPcCv909EqRBYGxlFXHY2D3aW6rrqYu11BbCzsqJfYADv7DZ89a9a1Pp1mtavF7R+7a71wdnb+NXRhF/jrqL2E5lzbC/LR9wvvfL8SiRxedlMDekMwMrLFwlv0ZppbbtQpdFQpq7iuf1b7uC1BlC3wWN98MPwAanJwD36BQRB8APGA2FIr9A2C41Gi0SROSf2sHzIJJSCwJr4SOLyspjapgsAK2MvMCKgDdPadEUtatv20Obq/d8/uZdv7xuFtULJjaI8Xjmyvdru+/sPsGzCRBSCwNpoKb4f6iTF4e8Rt4/vH0ePxtXOniqNhvf276OgvBwftYYFH27m459nolQq2L3+DEnxPrmvKAAA7b9JREFUGYRPkZps+x8ncfNwZP7653BwtEWjERk3oz+zwr+mpLic1+dNoVOvlji7NWHFoTdZ8f0edq87I/ng8H6Wj5koxXdMFHE52UxtL9V1ZXQEI4JaM61DZ9QaDWVVVTy3W9LOHj5+TAxpT0xWJtsnPwzAFyeOcCg/lvfO7GF52BTp+BMiiMvP4qFg6dkzv8edJ7x5CFODdX59/sgmAC5kp7AjKZatI2ZSJWq4lJvOqvgLt/XXLRqqRXNO7mH54EkoFQJr4rQx0FobA1cuMCJQGwO3+vdfNWLgXr0YOKqLgTkn9rJ86ANSbMVpdUM/tgJb62KrqmZs7ePbAaOwVii4UZhvEFtzjuxj+Uhte8VGEpebzdR2Wj26dJERLdswrX1nXX33Sg+59XJowrywESgEBQpBYFtCLPuT7nznnRGyFtW0cddapFAK9HhcxcGPbiBqoGWYCy7NbYnbJU1CBQ9zo/0D7pz8byrbX7wKokjnaZ7YOkup4NGvb5IRXUJ5oZqNT8TTcbIHQYNd0WhE5v+why8+nYRCIbBjdyTXrmcxemQXALZsu8D0qf1wdrLnhWeHAKBWa5j93HIA3nljNF06NcfFxZ41vz3N0hVHWJp+mU827WfRY1KuUZ1v3aPNt05GMKRDMGO6t6NKrc23ftflW98+rMu3PtbLt9SiaHbdUItWDc41LqamsfNKHJumT0Ot0XApI4PVEXV/IU3D9EjDl5c2M7/HoygEgS3JZ0ksymBCM+mutQ03TnGtOJPjmVdY2e95RFFkU/JpEoukga+twpp73FvxWfSf1TYVSoHWjwRwce5lRA34hHrSxN+Bm3ulMZLfYC8AMk/n0rSjC0o7pWGdytXkROXT5vHAGnUVee+v/SwfOxGFoGDtJenc8ZD23PF7dAThQa2Z2qFztcY9v0sXB98NHUlvP3/c7Ow59siTfHvScJKkTshaVNPGXWuRRq3hx0+38smCGSiUCnZvPMv1hAzCH5AOdfva07i5OzL/j6dwaGKLqBEZN60vs8bNp0VrbwaP7srVK2n8sOYZAJbO38PpI1fQqDX88OV2Pv3+YRRKgd2bz3M9MZORE6XJjm3rz+Dm7sj3y5+U7Ioi4x7szZOTfsDZ1YH3vpwMgFKp4MCuSM4cj0fd04XP/9jPD89JWrT5WDSJqdlMvFeKwfWHIwjrGsyoeyQtKq+s4o2fpRj0dGnCBzOGoRQEBIXAnrNXOBx1FZBi+8MLO/i531SUgsD66xeIL8xkSgtpId4fV8+SWJjF4fR4Ng+ajUYUWXftPHEFmXR3b8a4gM7E5qezfuATiKLI7wMeQXOggt2rT5B0JY3waf0kX/52lNP7L9EzrB1LjrxLWWkF37z8e3Vb2NpZ0/XeNsx/Y7VROw0Y042Dm87R/j+3a02JhmiRRq1hwcfanFMhsHuDNuecLGnR9tWnpJxz7bO6nHN6P2aN+kbKOb+aQqdeLXB2bUJxYRnf/PEUZcXl7F57mqS4dMIfkhaLbP/9OKcPxNAzNIQlB96grKySb17THe87P07H2bUJVVVqfnxvA0UF0qR536EdeOq9cbg0deS9H6eTlV5glrquOPAGK/67l3rzD9KixohQ33usGwtt53xj9oor7/IFMLXhv8T8M8XXnrXMMyGE2z/ao8FEP7PA7DZbr5htdpsAViV1eSJG/Sj1M3omqFm4/vir9aps+zfr128uzX1pFvCk3qZFoiguuvWHIAgPAMNEUXxc+/fDQC9RFJ/TK7MWmCeK4glBEJYCW0VRXFefejRmApd+bnYtUuTefuVFQ2nzk2Uu4sQ872l2m4KrZZ4HmDDIKMe/a1rueszsNgHQmF+LKLfMozyvzX5F1qK/mfejxlokoTv0ct87F6onGV1M3xp3t5R0Mn8ip0yxvXOhBnDl4Z/uXKie9L5gmcexdPO8cedC9WTX8S5mtwlw9dmXLapFcHs9krUIhnd6xyJaJNrUe63GHcns6XLnQg2geEjdb7usKy3/k212mwDbTu8wu82RAyea3SYAem/SNCu25s+7d8R8JmtRI8L86iEjI9N4qaecaoVz0W2KJAPN9P72B1JqlOkB/KG9QugBhAuCUCWK4sb61UZGRuYfg6xFMjIyjYEGTM/cQY9kLZKRkak/shZZFHnSS0bm34T5r72dBoIFQWgB3ASmIL32WveTotji1v/1riJsNHtNZGRk/neQtUhGRqYxIGuRjIxMY0DWIosiT3rJyPyLqMtb0OqDKIpVgiA8i/TGDyWwRBTFaEEQZmu/N//9GzIyMv/zyFokIyPTGJC1SEZGpjEga5FlkSe9ZGT+TVjgKQuiKG4HttfYZlJIRVF8xPw1kJGR+Z9D1iIZGZnGgKxFMjIyjQFZiyyKPOklI/MvwtxXEWRkZGQagqxFMjIyjQFZi2RkZBoDshZZFnnSS0bm34QsqDIyMo0BWYtkZGQaA7IWycjINAZkLbIo8qSXjMy/CVlQZWRkGgOyFsnIyDQGZC2SkZFpDMhaZFH+Zye9Sn3UZrepLFGY3SaA4OpidpuVzpbpGYpywSJ2W6+YbXabVx62zPP3Wq0yf13tUhtHV7NM6/67UdpXmd2mTaKN2W0CkJNnGbtWHmY3qUi1NbtNgJa7HjO7zcRhv5jdJkDLTU+a3aZNjtLsNhuCrEXm52ROoEXslrua//xlXWx2kwAs6rvc7Daf/c38/RCg94X7zW7zRJd1ZrcJltFNr1bZZrfZEGQtMj/FQa4WseuQbH7hcF94zOw2AUq8+5rd5qX37cxuE2DkwIlmt7ntwHqz2wTo9+Isi9hN72MRs/VC1iLL0jhG4jIyMv8/yFcRZGRkGgOyFsnIyDQGZC2SkZFpDMhaZFHkSS8ZmX8RgubvroGMjIyMrEUyMjKNA1mLZGRkGgOyFlkWedJLRubfhHwVQUZGpjEga5GMjExjQNYiGRmZxoCsRRZFnvSSkfkXIb8OV0ZGpjEga5GMjExjQNYiGRmZxoCsRZZFnvSSkfk3IQuqjIxMY0DWIhkZmcaArEUyMjKNAVmLLIpFJr0EQSgSRdHRxPbpwGtILygQgCWiKH4lCMJSYKsoiusEQWgK7APmi6L46+1+Z0CzQOb0D0MpCKyOiWTB+VMG3/f2bcai4eNILswHYGdiHPPPHseniRNfDxqBp0MTNKLIqksR/Bp5DoD7AgN5d2AoSkHB6qhIFp46bfK3O6pUrH/oQZ7fuo2dcXEAPNqtG5M6dgAgNiuLzTGXeXPAfdjdr2HnmlOsXXjAyM7sd8fSMzSE8tJK5r2+moTomwCMndGf4ZPvQRBg5+qTbFx6BICpzw9h+KR7yFCUA7ArLo6xbduiVChYHRnJwtO3qe+DD/L8thr17aCr72u7dlGFhntbBvDO4FCUCgVrLkSx6EQtNn1UrJ0+hRc2bmdnrGTTydaWT8OHEOzpDqLIG9v3cOFmarVv3xkk+XZNxG18661i3dQH+c+Wbey8EkcLNze+GzOy+vvmLi58e7Rub1t5ey4cPA5N3WDL0jrtItU1IJA5oaEoFArWREXyUy1+7aRSsX7Kgzy/fRs7tH59pGtXJnfoiCDA6shIfj1/HoB7gwJ4e1goCkHB2vNRLD5Wu19Xz5zCixu2sysmrnq7QhBY//hDpBcUMXv1profjB7/tqsI/19apM993i15t+tQSZcSL7Dw8nGjMvd4NuedrkOxUijILS/hoQO/mbTVv1UAb4VLMbPuXBQ/HzYdMx18Vfzx5BReWrOd3Zfi8HZ2ZO7E4Xg4OiCKcObaTe5p6Y/to1Xs/O0oa+fvMrIx+9NJ9BzcgfKSCuY9v4yEiBsALD37CSVFZWg0GtRVGv4z5DMApr46iuEP9yc/u5Byb1t2JF5hXOt20nFfjmTBhRp67NOMRcP09PhqHPPPHcdWqWT1mCnYKpUoBQU7rl7hmzNS/74vMJB3w7R6HHl7zajW4ytafeuup8eZWby2cxcVaumtvwN8WzCn1yDJbtxFFkSdNKyrqhmLwiaSXJQn1fX6FeZHSHVytrZlbt8RtHHzQBThtWPbTdapJg3VogHNApnTN8ysfgW4t2UAbw+RfLv2YhSLjteuR2tmSDq/67JO5z8ZOYTWnu6Iosib2/bU/YC0yFpUvd2sWtTdLYTZQRNQCAp2pp1g7Y29Bt9P9A9joFd3AJSCkmYOKqYcf5uiqhJebP0gvZq2J6+yiKfOzjXY757OgbzwyECUCoEt+6NYsckwDof2D2HamF4AlJZV8uUve4m/nklzHzc+fGFUdTk/LxcWrz3G0tMX6Ns2gNful86zfx6L4tc9hjEY2rElT4/qiyiKVGlEvlx3kAuJKdXfKwSB3197iIz8Ip7/yfQ58dIZkXULRDQa6DtcYOhkw/djlRSK/PaNSFYKWNvA1JcEfAON36FlqfN3b49gXm47CgUKNiWfZvnVv4xsdmvagpdCRmIlKMmrLGH2qcU0b+LBp52nVJfxdWjKori9wJ3f3thgLTKzbiaTbyEf1A9Zi6q3m1WLenUN5D+PhaFQCGzdG8nKDYaaMeS+tkwdL2lGSVkF8xbuJeFaJgBrFj5BSWkFGo2IWq3hiVd1OVKPPkHMfnk4SoWCHZvOsWbZUQO7zQLceWnOWFqF+LBswX7W/abLwZZt+g+lJeWS3SoNz81YXCef9RjWhae/fRSFUsGOX/ax+vONddqvf1AAbw+XNG7duSgWH609h1v92BReWifpho1SyW+PTsJGqUSpULA7Jo7vD+qOY4BfC97rPQilQuCP2AgWRNToi97NWDxkAjcK8wDYeS2O+Rekvnhk0iyKKytQixrUGpHRm6U33v4fe+cdFsXVxeH37tI70rGhothFjbFHFHuPmsRuoonpvZfP9N57YhKjSYy9xMSuqLHXKIJSRRFh6b0J7Hx/zMrusosUWYNx3ufZh2Xnzpkzd8793TN37sz0HNCOB14ai0qlYsvqo6z6cY+RzWatvHjqnSkEdvRnyWfbWPPz3splT741mVtD2pOTVcCD4z+vVd1A/bWoT7cAnpgt90cbdkXw64Yq/VH/9swy6I8++GkHcYlyf/TmY1X6o9UHWLH5hMk2bmsZwILbBqMSgpWREXx33HgbvZs2Y+HYiVzMk3Vsa3wsXx45VPudMMPNpkXXm+s200sIMQp4AhguSVKyEMIOmFWljCuwFVhYk5iqhOCNgUOZ+ecqNIX5bJg8k+3n44nLNn4F8tGUJOZtXmf0W7mk5a0Du4nMSMPR2po/p8xib9IFLhTn8FroEOasXoMmP591M2awMy6euKwsk20/f9tA9p6/UPmbj5MTc3p0Z8TiJZSWl/PF2DG8N2I4k39fhvPHsXy+9jEO74wkMS6tcp1eg9rjH+DJvND3aR/cgkden8STU76kZVsfRt7VmycmfUFZWQVvLbqXI7uiSL6QAcD6n/fyrm0MKiHYcc89zFlj4G98Nf4OHMjeC1X87d6dEUt0/o4Zw7igIP44GcVrw4dw9/K1aPLyWXP3dMJi44nLNLX5bMgA9iZcMPr9lWEh/H3uPI+u+wtrlQo7a+vK8q8NG8KclbKva2fpfDVj97kqdZuQnc34Jb9VLt//4Hy2xcbxUseqUWHKxFEwfRK88E7NZQ19eH3IEGavlX1dP30GO6qp1+cGGNdrOw8P7urchduX/U5ZRQWLJ01iV0ICKYV5LBg5hHuWriU1L5/V904nLCae+AxTm8+EDmBfvHG9Asy+tTvxGVk42djUfmeqoghqg2uRISoheK3nSObs/h1NcR7rhs1lZ3IscXkZlWWcrW15vedI7vl7OSlFeXjYOlRr639jhzBviRwzK++fzq6oeOLTTWPm6eED2B+nj5kKrcQHW/7mTEoaTrY2HHjhAR74bT1pL4bx+bYXObwlnMSYlMryvYZ2xr+1N/NuXUD7nq145IPpPDny/crlL9z+CXlZpq8KX//dTtZ8s53ot9uy6655zNyo0+NJOj3OqaLHmiTmbTHW49KKCqb/uZKi8jKsVCpWj5/G7sQEIgrSeG3oEOas0unbzOo1o1o9/lmnb+PGMK59EGsiz8h9R59hzNy2Ak1RPhvGzGH7xTjicqv4mnqReWGmr9x+9dZQ9iSf46E967FWqbBXW5uUMUd9teiN/kMbtF4jM9NQCcGrI4ZwzzKdzt8znZ2x1ejR4AHsO2eq83vjz/PYWmOdrxOKFjV8XoTg4cA7eOn0N2SU5vB596c5nHmaxKLUyjJrksJYkxQGQO8mnZjYLISC8iIAtqceYUPyXp4JmmlsVwiemRvK42+vJi0zn5/encHeY3Gcv6SPl+S0PB5+fQX5haX0CQ7g+fuGcd8rv5OYks3dz/9aaeeP7+7n7yOxqFSCF+8cwgNfrSU1J5+lz05nz+l4zmn0Ng9HX2T3abnvb+vvyQdzx3D7W0sql08f3J2E1Cwc7cz3idoKiZVfSzzyjsDNEz58TKJLH/BrqR/U2rpcollrwfwFAs1Fufxj7xkPeqmEsEj/rULwXMfxPHJ0EWkleSzp+xB706JIKNTniU5WdjzXcQKPH/uZ1JJc3G0cAUgszGDmga8q7Wwc/AK7U8/whLvZqjCi3lrUwLpp18QydfBUh7Em278qihY1vBapBE/NH8qTr60iPTOfHz6Yyf4j8ZxP0sdLSmouj7yynILCUnr3aMVzDw7n/ueXVi5//H8ryc0vNrH78HOjefGRX8lIzePLJfdx6O9oEhP0OVZeXjHffryFfoPam/XtuQeWkJdbbHaZ+X1R8ehX83h++JtkJGXx1ZF3ObjhGIlnk66+nhAsGD2Eub/KurHqvumERVejG0ONdeNyRQV3L1lNUZncfy+9507+jk3gEBdRCcGb/YYyY8tKOS8YP5sdiXHEmskL5m43bYsAUzctJ7tUXwcqleDh/43npXk/kZGax+crH+bwrrMkxuvbYX5uEd+9/Sd9Q01PvravP86G3w/yzHt3XLVOqlJfLXr6nlAef0fujxa9PYO9x437o5S0PB56Q9cfdQvghfuGce//5P5ozov6/mjDN/ez52is2W28HhLK7HWr0RTks/6uGexIiDM5DzyanMS9f66v0z5fFUWLLIrqOm7rReAZSZKSASRJKpEkyXCI3QnYDPwuSdK3NRkL9vblQm42F/NzKdNq+TMuiuEBbWrlSHpRIZEZckMuLCsjPjsLX0cnuvn6ciEnh4u5ss2/oqMYGmhqc3b3YLbExpJZVGT0u5VKhZ2VFWoh8HF0Ijkvn4u5uZSXVbBn40n6DO1kVL7P0E7sXHccgKiTiTi52OHu5UzzQB+iTl6gtKQMbYWW00fO0W94ZxM/TPyNimJoGzP+Btfsr721NamFhXT19+VCdg4Xc2SbG89GE9rOjM1bgtkaHUdWod6mk40NvZo3ZdWpCADKtFryS+UZad38dHZ1vm6MqqZuewSz1YyvV+jXsgWJOTkk5+WbXV6VXt3AzblWRSsxFwfDzNTrnOBgtsbFkmHga5smTTiZkkJJeTkVksThpCSGBwZW1mvSlXqNjCY0yNTmrF7BbI2KM9l/H2cnQtq2YvU/EXXbmSoIqW6f/ygNqkWGdGviz4X8LC4W5sixk3iGoU3bGZUZ37Iz25KiSSnKAyCz1Hysd23mS2JWDknZuZRVaNl0Opoh7U1jZmafYLafiSPToC2mFxRyJkXWuEBvD/KK5XZYXlbBnvVH6TOqq5GNPiO7snOFfIUq6ngCTq72uPu41Hq/g719uZBXPz0GKCovA2RNslKpkJDkdphdC33rHsyWGDP6Jgz0zcqa1AJ50C7Y048LeTlcLND5mnCW4c3b1spPJ2sbbvVpzorYcEDWuLyy0lqtWx8tskS9AqY6fyaaoW3N6NEtwWyLNtYjRxsbbmlhXufrgqJFQANrUTvnliQXp6MpyaRcqmBP+gn6eHSptvwg757sSdNf4Y7IjSe/zFSPOgb6kpSaQ3JaLuUVWnYciGZgr0CjMhExyeQXynEQGZuCt4fJRBJu6dKCS6k5aDLy6Rzgy8WMHC5lyja3nogmpKtxDBZfLqv8bm9rXRm/AN5uTgzs1Iq1B6rvE89Hg6cfePoJrKwFPQYJwqtMvNUkQlCw/N23uSArFfKyjQPOUv13J7dmJBVlklycTblUwTZNOLf5dDAqM8KvG7tTI0ktkWcTZF82vfjQy6MNSUVZaEpyqq0Lo/L10SIL6ea/VQeG1FWL/qN61KBa1KGtL5dSsklJzaW8XMvOfVEMuNW4zUREJ1NwRTOik/EyoxlVCerUlOSLWWgu5VBermX39kj6Vhncys0uIuZMMuXlFTXaqw1BtwaSHKdBk5BGeVk5u1fsp9+EW2pcr2tTXQ6n041NkdGEmsvhbg1m21nj8ymAojKD/lutqlS/YC8/zufl6POCc2cZ1iKQa6Fd1+YkJ2aiScqW88RNp+gzxLgd5mYVEhORZLZeI46dJz/HfC57NeqjRR0DfUnSGPRHB6O57Rbj/T8da9AfxaXg3cRMf9RZ3x9VpZuP7jwwT5d/xkYzrPW11XFtULTIslzPQa/OwPGrLP8E2CdJ0qe1Mebj6ExyoT5QUwoL8HE0bTk9fP3ZfMdsFo+ZTFt3D5PlzZxd6OjpzcnUFHycnEjJ19vU5Bfg42Rs08fJieGBbfn9VLjR76kFBfx49Bh777uXgw/cjxaJM+n6EfIMTS4ePq5G63j4uJCRkmNUxtPHlQsxGjr3ao2zmwO2dtb0CmmPl59+3XGz+rFx1iye6t/fKLnSFBTg42zG37Zt+T3cjL/HjrH33ns5eP/95JeWsu/CBXydnEjJq1IHzk5VbDoyrF0gy/4xttnczZWsomLeHzOcP+6ZwdujhmJvbVXpR63qtm1bfj9pbNeQMe2D+OtsdLXLGwLfKr6mFJjx1VGOg6VV6jUmM5NbmzXDzc4OOysrQgJa4efkjI+LExqDek3NM61Xb2dHhrYPZPlx0/1/aUQIH+7Yi1a6RoWT6vj5b9KgWmSIj70zKcUGcV6Uh4+9cey0cm6Ci40dSwfP5I9hc7k9wPxJqbezE5rcKjHjYiZmOgSy/Gj1baa9rxd21lacStIAkJGcg4ef8XQADz83MpKzK//PSM7B09cNAEmSeHvV43yx40VGzRpgtN64eSF8s/sVnuk1gIxivRZVq8c+/myeMpvFo4z1WCUEmybP5vjsh9h36QIn0zT4OFfRjKvpmzk9PnaMvfPv5eCDen0D8HFwJrkwT+9rUT4+jqYJUQ+vpmwedw+LQ++grZsnAC2c3MgsLeKj/qPZOPZu3us7EnuresxyqiU+Ds4kF9Sin6tDvYJ8Eq6pjc4HBbLshHHdtnBzJbuomPfGDmf93Bm8PVqv83VC0SJoYC3ytHUlvTSn8v+M0hw8bFzNlrVVWXOLe3v2ZZyq0a5XEydSM/Xxkp6Zj5d79SeoYwd34eDJ8ya/D+3Xnu37owDwdnVCk22gb9kFeLua2hzctQ3rXpnDlw9M5LWl+tton50cwmfr9yJdpU/MzQR3L/3/7p6Qm2lcvmlrOLlf/u18tERWKuRkGBWxWP/tZetKanFu5f9pJbl42RpfbGjh6ImzlT3f3novS/o+zGj/7ib2h/l1ZVtKzcfxWrCUbjaKOqirFv039ahBtciriTNpGYaaUYCnR/WjG2OHduHwiYTK/yUJPnl1Cj9+NJNxw/QX6Ty8nElP1cdhRmoenl51GDWRJN75ahZf/XIfo27vUatVPJs2Id1ghlpGUhaeTU3PJ6vi41zlfKoa3RjWPpDlx0x1QyUE6+6fwf5n7+fAuUTCL8n9t6+DEymG579F+fiaywu8/dk88W6WDJ9CWzdDfyV+G3knf02YzbSgbvI+eruQrtG3w4zUPJNz1saCl7sTaQb9UVoN/dG4EPP90bB+7dl+IMrsOr5OTqQY5l4F5vWuu68/G6fNYtH4SbRtUnNM1IiiRRbleg561UQYMEEI4V2bwqZPXMDoKiBARHoq/X9dyKhVv7D49AkWjpxotNzByppvR4znjf27KCi7jDBntIrNV0JC+GCvafLiYmvL0MA2hPz4E/2+X4itWk1LN7cqpozXEWY2KEkSF+PTWLVwF+8suY83F93LubPJVFRoAdi49CBzh7zH2F9/Jb+0lG6+vlfdxlX9bdOGkJ9+ot/ChThYWzOhQwezFVs1qXx5aAgf7jK1qVap6OTrze//hDPh56UUl5Vzf99e8r6amjU5Xq8MCeGDPdUP7FirVIS2acOm6Bizyy1J1Tr4X0gI75up1/isLL4/epRfJk1m8e2TiMpIp0LSmt//qvU6PISPdpraDGnbiqzCIiI1aVwzipjWhjppkSFmJaRKRaqFis5N/Lj37xXcvWcZj3QcQIBTE1NbtWiLL44K4eNt1bcZBxtr5vbvSXhSCoWllw0NVdmWOS2S/z495kMeDX2H/039irFzQ+jcV77atXHxHub2eoWHB79Nbmkpwd5+Vfa6ih5npNJ/6UJGrf6FxREnWDhiYuUyrSQxes0v9P3te7p5+dLO3dN8XVbVt8EhfPD3VfT4h5/o952BvlGNFlWpvoisVPqv+ZZRf/7M4qjjLBx8OyBrXOcmvvwW/Q9j/lpMcXkZD3buY87TBsFsDFxjvULt9PilYSF8GGZe5zv6evP7iXAmLlpKUVk583U6XycULaoNddQi8wpkjt4enTmTl1B5a+PVzZrRh2qK9ujUnHFDOvPNUuPnMlmpVQzo2YawQzHVmTSJQYBd4fHc/tYSnly4gYfG9ANgYOdWZOcXcfbi1ftEs7JYZbvD7hQUFcC7D2nZ84dEszagUl91FZ3ta++/a3O01EJFe1d/njy+hMeO/czcNoNp4aA/ubISam7z7sBOzbXNAq8JS+lmo6gD5USzNtRNi2oTMDq6d27OmKFd+PZXvWY89OLvzHvmV555cy2TRgXTrWMz2exVcpXa8OS9i3hk1kJefnwp46f0onP3FjWuU5tczPyKZtar2s+OCOGjai5oayWJ279fSsgnP9LV31d+VnI1hqv6E5GZSr8V3zFq/WIWnznBD0MnVS6b9NfvjPljCXO2rmZ2h+7c6tusTsfr38ZsDFRTtkfH5owb3Jmvl5nvj3Yeru58suZtRKanMXDxD4xZ9iu/nPqH78dOqNn5mlC0yKJcz7c3RgI9kYXTHMuBfcAmIcRgSZJM5hsKIeYD8wGGL3iRqR30MyT8HJ1IKywwKl9Qpj/J252YwFsDVbjb2ZNdUoyVSsV3I8azPuYsWxPk+3k1+QX4Gcwk8HV2IrXA2GYXXx8+HzMaAHd7e0Jat6JC0mKlUnExN4+sYvke6b/Pn2dyJ/3tjJ6+rmSm5RnZytDk4unnZrbMtlVH2bZKfuDhnKdHkqEbgc/JlP2RgPVnz/LRyJF6f53M+Ovjw+ejDfxt1YoKrc7fPL2/W2Nj6eHnxx/hUfi5GNdBWoHxVPLOfj58OkFn08GeQW1aUa7VcjI5BU1ePqeS5asRW6Jiub+vPAVYU2Bat2lVfO3s48Nn44x9Lddq2REXD8Cg1q04k5Za7a2PDUVVX/2cTGOri48PX4w29XV7fDwrIyNYGSknX8/0748mvwBNXgG+BvXq42K+Xj+ZZFCvgbLNbk19GdKuNbcFBmBrZYWTrQ0fThzJs+u31HnflKmwQANrkee9E3AZKp/0a4rz8TOY2eXr4EJqsXHsaIryyC4toriijOKKMo6kJ9LBzZvzBcbPCkjNK8DXtUrM5FeJmaY+fHyHHDNuDvbc1lZu3zuj4rFSqfh86lh2xSTQ2lM/s8vT341MTY6RnYzkbDz9q5RJlctkpcrak5uRz4FNJwnq3oqIg3HkpOurZX3sGT4ZMrry/xr1+GICb6n0enyFvMulHEq5yKDmAfxzLsVYM8zpm68Pn4+tosdaUz3eGhtLj6Z+/HH2LJqifPwd9TMJ/BycSSu6iq+XzvGWajjutvZoCvPRFOVzMkN+HtqmC9E82MVyg16awnz8DWaZNkS9no/LRpNvrEe+zmZiy8+HTyca63yFVsvJS7LOh+t0fmtULPP71nyrR1UULQIaWIumf/EII2fo49HT1o3My7lVVwFgkFcPdhvc2ng10jPz8TGYpeHl4UxGdoFJuTYtPHlx/nCeem8teQUlRsv6dm9FTEIq2bly/52aU4Cvu4G+uTuRnmt629oVTsRformnK26OdgS39mdQl9YM6BSAjbUVjnY2vD17JC//YtwnunlCdrr+/+wMcG1ifDJj7yiY9bT8myRJvDpHwsPHeNuW6r/TSnPxsdfPpvC2cyW91DhPTCvJJbesiJKKMkoqyjiZfZ62zn4kFskzT/p5tSMqL5msy6bHoyGxiG6m0CjqQNEioIG1aMrsFxk3VH+O5uXhREaWGc1o6cnzD4/g2TfXkJev14zMbLl95eQW8ffhODq09eXUmSQy0vLwMnj0gqePC5lmbk+rjqwM2Yfc7CL2746ifaemVD9PXiY9KQuvZvpBVs9mTchMzrrKGjKpeQXG51Pmcjh/Hz6ZYpzDlWu17IyOryyTX1rKkQtJDAwMIPyiBk1RPn4GM7v8HJxJvUpb3JV0jjdVw3C3tSe7tLiy3WaWFLH1QizBnn5kpEbh5atvh54+LibnrI2FtKx8vA36I+/69EfBrYg26I+qoinIx88w93JyNs29Lhvo3YUE3lCFmuRedUXRIstyPWd6vQt8IITwBRBC2AohHjMsIEnSZ8hvBVknhDB5MqkkSQslSbpFkqRb4vw8CHBzp5mzK9YqFeMC27P9fLxReS97/QOiu3n7IoSoDMb3Q0YQl5PFT+H62bzhGg0Bbm40c3HBWqVibFB7dsafM7IZ8uNPDNJ9tsTEsmDHTrbHxZOcl0+wny92VvI4YjMXF+ytrWnm4oKVtZpBY4I5tPOMka1DOyMJvV1+i1L74BYU5peQrTuRdG0iP6jTy8+N/sO7sOfPkwC4G0zjbebqWrkta5WKse3bs/NcFX9/+olBus+W2FgW7NzJ9vh4kvPzCfbV+9uvRQvis7I4nawhwN2dZq6yzTEdgtgZa2xzyLeLGKz7bI2K5bWtYeyIjSejsIiU/AJaNZFPnvsGNCdO98DG8BQNLd3d9Hbbt2dnnLHdwT/8RMhC+bMlJpZXd+ysHPACGNs+iD8tfGsj6OLA3TgOdlSp10GLfuI23WdzbCyvhsn1CuBhbw+Av7MzIwLbsiE6Sq7XJu40c9Ptf6cgwmKMbYZ+tYjQL+XP1rOxvL45jJ3R8XwStp9Bn/9I6JeLeGrtJg4lXKzXgBegXEGQaVAtujLgBRCelUyAcxOaOcq6NLZFR3ZeMr6StONSDL28mqMWAju1FcEe/sTnZ1bdBKcvaWjZxJ2mbi5Yq1WM7hLErijjmBn26SKG6j7bzsTyxl9h7IyS4/CticM4l57FB1v2VNqxslYzaGIvDm0xTvMObQ0n9C75ZLl9z1YU5pWQnZqHrYMN9o62ANg62NAjpAPno+Q3zBo+86u5sxuAsR5fuIoee/kikPW4iZ09Lja6bait6N+0JfE5Wfp26Gqgb1X1+IefGKT7XE2P+7VsQbzuAfinMlIIcHGnmZPO11Yd2J4UZ+yrnaPeV08/2dfSYtJLCkkuzKO1izwzr79fS2Kr3gvVgJxK0xDg6t6g9QqY6nxHU50P/WYRQ3SfSp2PkXVeU43O1wlFi6CBtSinmxX+9l742DXBSqgZ5NWDQ5mms18c1HZ0cW3DwczTtXLybLyGZr5u+Hm5YKVWMbRfEPuOGcehj4cz7z49nte/3szFlGwTG8P6G99KEnlBQwsvd/w9ZJsjegSxJ9w4Bpt76k/C2jfzxtpKTU5hCV9u2M+I//3I6FcX8cLPmzgac9FkwAugZRCkJ0OGRqK8TOLEHomuVcaoiwrkZQAHtkBgF3kgzBBL9d9nci/R3METf3t3rISa4b5d2Zt21sju32lnCXYPQC1U2Kqs6eTanIRC/UjecL9uFr+1ESynm42iDpTZFdDAWpRe4EEzP3f8vF2xslIROqA9+44aa4a3pzNvPT+Btz7bxEWDxyvY2Vpjb2dd+b1XcEvOJcrxEn3mEk1beODj74aVlYqQYZ049Hftzgts7ayxd7Cp/N6zTxvOx9d8B0X00TiatvXDN8AbK2srQu7qz8ENx2pc7/QlDS09dDmcSsXoTkGERRvrxtAvFhH6ufzZdiaWNzbKuuHuYI+zra7/tlLTt1ULzun62VPpKbRycaf5lbbYugPbE6u0RXvDtuiLSsht0d7KGkdruQ7sray5rWkA0dkZxJxOwr+lJz5N3eU8cXQ3Du0yboeNhbPxGpob9kd9g9h73LQ/eu/J8bzx9WYuasz0R1e5tREgPLXKeEDbIHacM96Gp4M+9+rqo6vjaxjwAhQtsjCWmunlIIQwfK3FJ5IkfSKE8AF2CHluogQsqrqiJEnPCyF+Bn4VQkyTJElrbgMVksSCvTv5Zexk1ELFyqjTxGZnMqNjNwCWnjnFqDZBzOzUjQqtlpKKch7d/hcAt/g2ZXJQJ85mprPpjtkAfHB4L3ujLvB62C4WT56MSiVYHRFBbGYm07rK95MvC6/+esApjYYtsbFsmDWTCq2WyLQ0Xti6jcWTJ2M3Qsu2VUdIjE1l9DQ549q07BBHd0fRK6QDi8JeoKT4Mp8+v7LS3itfz8bF3ZHysgq+eW0dBXlyQ5r3/Bhad/CntIkVSXl5vLJjh+yvqKe/M/X+Lj99mgpJ4vXtYSyaOgm1EKwOjyQuI5Np3XU2/7n6NZE3t+3i4/GjsFaruJiTywsbt1Uer9d37OLnKZNRqwSrTut87aaze+rqdu2srOgf0JJXttXtddRPvw5HTkJOLoRMgUfugSljrr5OhSTxWtgulkyS63VVpOzrdF29Vn0+WlW+GTcONzt7yrVaXg3bSV5pKdaS4I0tYfw4Xa7XNaciiUvPZGoP2ebyEzVda2oYRCOdrmxBLK5FhlRIEq+f2MriQdNQCRWrz50iNi+DaW3kZ0csiz9BfH4mf6ecY+OI+5CQWHHuJDG56aa2tBJvbQzjx9mTUKkEa0/IMXPXLXLMrDDzDIgr9Gjhz4TgjkRr0ll1/3QkJJbeexfa28ezbdkBEqNTGD1nIACbluzl6PYIeg3tzKIjb8pa9Jj8hjR3Lxf+t/gBANRWKnavPcrxMHnwft6CSbTu3BwkiTjHEl76ezu/jNbpcbROjzvo9PjsKUa1DmJmx25USFpKyst5dKesx94Ojnw8eBQqoUIlBBvjowlLPIdaUvH6TgM9roNmnNJo2BKj02NJS2RqGsvDT1ceowWHt/PL0DtRqwQrY08Tm5PBjHbBsq8xJxkVEMTMoO76vuPvDZW2Xzu8g88GjsVapeZiQQ7P7N/EfYOvFhUy9dWiBft2Nmi92qCmQpJ4Y1sYP02dhFolWH1K1vmpOp1fXpPOb93FRxNknU/KlnX+3j51m+2laFHDa5EWLd/GreGtzg+iFiq2aQ6RWKRhtF9/ADal7Aegn2dXTmRHU6q9bLT+8+1n09U1EBdrJ37t/Tq/XtjMNs0hKrQSnywK49OXJqNWqfhrdwQJSZlMHCrHy/od4dwzpS8uTvY8My8UgIoKLfNekt/EZmtjRa8uLXl/of6ZXBVaifdWhvHtw5PktzoeiiRek8mUAbLN1fvCCQ1uy7jeHSmvqKCkrJznFm2sU4Wr1YI7H4KvX5aQtNBnuMAvQLB3oxx7A8cINInw60cSKpWEbwuY8aTpbS0VkmSR/rtC0vLhmQ18ccs9qITgz6TjnCtIY1LzWwFYe/EI5wvTOZgew9L+jyFJEn8kHeVcgfw2TluVNb09Ank3cl2dtltvLWpg3bRz//fqwBBFiyxwjqaV+PSHnXz86mRUKhUbd57m/MVMJoyQ+64/tp7injv74upsz1P3D5XXqdBy37O/4e7mwDvPy7eKqdUqtu89y5F/zgPyG1m//mAT73wxE5VasG3DSS6cS2fMJHkCwca1x3H3cOTLJfNxcLRFkiQmTu3D/Lu+xsXNgVc/uEu2a6Vi15YIjh2Mpya0FVq+evQn3t3yMiq1iq0/7+LCmau/uRHkNvPmpjB+milr3JqTuhyupy6HM/P8vyt4OTny3sQRqFUCIQRbImPYHZsAzXRt8eAOfhl5B2ohWBlzmticTGa0DwZgadRJRge0Y2aH7pRfaYu75Lboae/AwlD5tmMrlYo/4s+w51ICHSu0fPvWBt76cS5qlWDb2mMkxqUx+i65HW5acQR3Tye+WPUIDk62aLUSE2f35/6xn1JUWMrzH02l662tcHFz5NddL/DrVzsA82+ONKReWqSV+HhxGJ+9KMfWlf7odl1/tG5HOHMn6fqjubr+SKtl7sv6/ujWLi15/8ft1W9DknhtdxhLJsjbWBUZQWxWJtM7684DI8IZFdiOGV30YwyPba5b/2SOm1CLriuiVvclN0ICvv2owR1XF1lm4lu7b1Ma3GbMQ341F6oHqtLaPxOkLkhWDR9nMbO+a3CbAIHLHmhwm9YFlqnX6P+ZydCvwi3zPqnTgTj201OWcfw/RJsVbzd4cNtEOtRcqB4EfGuZmZJn32r4t9qo8y2jxxVeZTUXqiPnRvzU4DYBWv8xv8Ft2mSqay5UD2JeUrTo32bU349bJKHL/brm597UlSIvy7TvD59e2OA2H/mt4dshgGsv04sd18qh4NUNbhOg9dZ5DW7T28f8rbfXypGR71hUi0DRo5oYeHvDn6MBOCRVfwt0fdEet8zz8C6+2q/BbRY3a/j8BaDjR6azoa6VjbtqHvSqD/2fvN8idlP7NrzNc489rWhRI+J6PtNLQUHhX0a5X1xBQaExoGiRgoJCY0DRIgUFhcaAokWWRRn0UlC4mVAEVUFBoTGgaJGCgkJjQNEiBQWFxoCiRRZFGfRSULiJUK4iKCgoNAYULVJQUGgMKFqkoKDQGFC0yLIog14KCjcTiqAqKCg0BhQtUlBQaAwoWqSgoNAYULTIoiiDXgoKNxHKVQQFBYXGgKJFCgoKjQFFixQUFBoDihZZFmXQS0HhZkIRVAUFhcaAokUKCgqNAUWLFBQUGgOKFlkUZdBLQeEmQrmKoKCg0BhQtEhBQaExoGiRgoJCY0DRIsuiDHoZIFlbJtrKz51vcJsVDj4NbhPANkNtEbtaW9HgNgOXPdDgNgHipn3X4Da7fvJgg9usF5KiqA1NxeWGbzMVdg1uEgCposIidsXlhm/fWlsLxaq24X1t/cf8BrcJcG7Cwga32W6JokX/VWI1Xhax6+KuanCbTimW0aLHFjV8W7TLbXCTAPTwutjgNltvndfgNgHOjfipwW12+8hCWjSyjuUVLWpwVOWWqVMRc8Eidi1BiX95g9vs+HFOg9sEoLSswU32f/L+BrcJsP/T7y1id3TnkIY3+lgdyytaZFGUQS8FhZsI5SqCgoJCY0DRIgUFhcaAokUKCgqNAUWLLIsy6KWgcDOhCKqCgkJjQNEiBQWFxoCiRQoKCo0BRYssijLopaBwEyG0/7YHCgoKCooWKSgoNA4ULVJQUGgMKFpkWZRBLwWFmwnlKoKCgkJjQNEiBQWFxoCiRQoKCo0BRYssSoMOegkhJOA3SZJm6f63AlKAw5IkjRVC3A18CFwyWG0OsET3vQWQq/tkSJI09GrbG9Q8gAUDhqAWghVnT/PtP0eMlvfxb87CkRNJypefQrrlXCxfHD+In6Mzn4SOwsvBEa0ksexMOD+fPmF2G7e1DGDBbYNRCcHKyAi+O268jd5Nm7Fw7EQu5snb2Bofy5dHDtVQU6bcMiKYhz67B5VaxeafdrLi/fW1Wm9Q8wAW9Deog5Nm6mCEQR0kyHVgq1azYsJUbFVq1CoVm8/F8OmxAyb2B7RtyYtjQ1CrVKw+GsGPfx8160fnpj4se3AqTy/fxLaIWLNlBrRpycsjQ1CpVKw+EcEP+6ux5e/DinlTeWr1JraejcVGrea3e+7ERi37uu1sLF/uPgjojk+IbHNlxGm+O2reZlcfH9ZMncZjmzayOVb27+7u3bmrcxeEgBWnT/PzP/+YXbcqL78Huw9CE3f4c3GtVgGgf7uWvDAhBLVQseZIBD/tNvZ1cMfWPDqiH1pJokIr8d6G3fxzPhmAmf27M7l3ZwSC1UdO89u+2vlalZvlfvHrrkX+rVhwy1DUQsWKuFN8G2msAX18WrAwZBJJBbp2mBjDF6f3AzCvQy/uCuyKBERnp/PsgY2V/d7A1i15eZgcM6tORbDwoPn47uLnw8o5U3li/Sa2RsnxHfbQXAovl6GVtNhZWyNJEnZTy9ny615Wfr7FxMaD706l17AulBZf5uOHfyYuPLFymUol+CLsFTJTcnh12pcAzHx+HCNnDSQ3s4BSX1s2x8Vye/sOqIRgxZlqtHLMRJJ0WrklPpYvj8r19H7oCIYEtCazuIiRvy+pXOe2FgG8qtPfhrIJMKhpKxb0DpV1Myacb08fNj5evs1ZGDqJpPwc2e6FWL44Jeuji40t7/UfSZCbJxLw3L7NnLikkbW4n06Lo8xosZ8ZLT6h0+LxU7FVq1ELFZsTzGtxddRXj25r1ZJXQmVtX3kqgu8PVxNbvj6snjWVxzdsYkt0LK2auPP5+NGVy1u4ufLZvoO137AORYsso0WG3ObbmleCR6AWgpUJJ/k+yjSuenu15OXgYVir1GSXFjF9969mbfXr2JJn7pTjZd3+CBZvNY6XQd1a89A4ff/10crdnIxPxsZKzY/P3ImNldx/7zwRy3d/yfHSOziAx+cOQaUS/LXzNL+tM24zwwZ2YMbttwJQXHyZjxfuIO5COgCrvr2PouLLaLUSFRVa7n3+t8r1BgS25KUxIaiEitXHI/hxb/V5y/L5U3lq5Sa2Rcbi6+LEe5NH4unsgCTByqOn+fWQ3Nf269CS5yfJuca6gxEs2mFsM6RLax4erd//D9fu5p9zcv/tbG/Lq9OGEejngSRJvPr7dsLPpwCQeSqH2F8SQSvhN9iLluP9jewm/plC6oFMAKQKicJLxQz4vgdleWVEfhlfWa44rYRWU5pB887y8fBvxYJbQ+U+KfYU30ZU0Tif5iwcMpmkghwAtlyI4YtwncZZ2/Jev1EEuXsiSfDcgU1m668q9c6Nglry/AQ5ttYejuCnXVVyo06tecQgN3r/D31uNGtgdyb17oKERGxKBv9bsa32G9ahaJFltOjWHgE8el8oKpVg4/Zwfl9t3L6HDurA9Mm9ASguucwn32wn/nw6NtZqvnhvGtbWatRqFXv2xxAZdYlH7wvF6nIZW37Zy8pPTWPywfen02t4F0qLLvPxQz8RdyoRa1srPtr8AtY21qitVOz94xi/vftH5Trj54cy7t7BVJRXcHjTCX400BFD6n2O1iyABX11uUZ0ON+eMpMXDL/dIC+I4Yt/9P2pSgj+nDgLTVEB87aurfy954C2PPDiWFRqFVtWH2XVj38b2W3Wyoun3p5MYEd/lny+jTU/7wPA09eVZ969A3dPJyRJIuLYebr1bo1KCLasPMyq73aZ7MMDCybQK6QDpSWX+fjZFcRHyuEx4e4BjLyrD0LAlhWHWf/zXgAGjOrKzMeH0zzQh3n/W4qbsz1PzB6MWiXYsCuCXzcY18Hw/u2ZNV6n8yVlfPDTDuIS02nh586bj42tLNfU25UfVtcuN6qvFvUc0okH37kLlUrFlt/2sfILM7nyO3fRa6guV350cWWuvOTEOxQVlKKt0FJRUcFjQ9+p/YZ13Cxa9G/R0DO9CoHOQgh7SZKKgWEYiyfACkmSHqnyWzCAEGIx8JckSatr2pBKCN4YOJSZf65CU5jPhskz2X4+nrjsTKNyR1OSmLd5ndFv5ZKWtw7sJjIjDUdra/6cMou9SRc4l5Zlso3XQ0KZvW41moJ81t81gx0JccRlGZc7mpzEvX+ur8nl6vdFpeLRr+bx/PA3yUjK4qsj73JwwzESzybVXAcDhjLzL10dTJrJ9gtm6kBjWgelFRVM37CSovIyrFQqVk+Yxu7EBKIT04zsvzJ+CPcuWktqXj4rHprOrqh44s3U01MjB7A/tvq3qqiEYMHoIcz9Vba16r7phEXHE59hauuZoQPYF6+3dbmigruXrKaoTPZ16T138ndsAscLNLw+ZAiz165Bk5/P+ukz2BEfb3J8VELw3ICB7L2gt9nOw4O7Onfh9mW/U1ZRweJJk9iVkMD5nJyr1jnAxFEwfRK8UAc9UwnBK7cP4b4f1qLJzWfFo9PZdSbeKOYOxV1k1xm5w23n68lHM8cw/qMlBPp4MLl3Z6Z9uYyyigq+mzeJv6MSSMyo2VcTbp43g1xfLbp1ODN3LEdTlM+GUXezPSmWuNwq7TAtiXm7jM352Dtxd/ueDN3wI6UV5Xw1cALjAjqy4UIMKiF4dcQQ7lm2Fk1ePmvumc7O2GrazOAB7Dtn2v5mL11Fbkkp2x64m3uWr8P+9SN8sfNlDm05RWJ0SmW5XkM749/Gm7m3vEz7W1rzyMczeGLYu5XLJz4wlIsxKTg42xvZX/fdDtZ8tY3YNzoQNmsus9bLWvnHXTPYcS6OuGwzWvnXehM/15yN4Jfwf/h42Cjjeg0JbVCblXb7DGXm1pXy8Ro3m+2JcabHKzWJeTvWmNh9tXcoe5ISeGjXH1irVNhbWcs2+w9l5kYDLT4fT1yOGS3eYkaL/zTQ4vGyFv+TlkJtqK8evTZsCHNWrEWTn8/aOdPZGRdPXKYZ7QwZwN4EfWwlZGUzfvHSyuX7H7qPbTFxvBIaUnsHQNEiYxpEiwxRCcFrPUYxZ89SNMV5rB06j53JMcTlZVSWcba25fUeI7ln7zJSivJoYutQra3npw3hoc/Xkpqdz28vTmdPeDwJKfp4ORJ1kT2n5P6rbVNP3rtvDJNfW8Ll8gru/3Q1xaVyfP/07J3sj0wgITOZp+4bypNvrCItM58f35/JvqPxnE/St5mUtFwe/d9y8gtL6dO9Fc89MJz5Ly6tXP7YqyvJzS828fV/44Ywb7Gca6x8QJe3pJvG9tPDB7A/Th/bFVqJD7b8zZmUNBxsrFnz4AwOxF/gUl42L90xhPu/XktqTj6/PzOd3RHxnNPobR6Ovsju07r99/fkw3vGMPFteazguUkh7D97nmcW/YWVWoW9jTUAklYi5ucLBL8YhK2HDcdeicSzhzuOzfQ622KcHy3G+QGQcTybi5s1WDtZYe1kRa93O1faOfDwSbxucYfUKxo3jJnbVsgaN2YO2y+a07iLzAszo3G3hrIn+RwP7Vkva5za2mxcVKW+WvTy7UOYv1DOjZY/rsuNUg1yo9iL7IrU5UZ+nnw0awzjP1iCt4sj0wd2Z+IHSygtr+CjWWMYFRxU+41fQdEiQxomL1IJnnhgGE//byXpmfl8/8ks9h+O58JFg/admstjLy6joLCU3j1b8cwjw3nwmaVcLqvgyZdXUFxShlqt4qv3pzFmWBcefWEZBeuP8sWuBRzadJLE6ORKW72GdcG/jQ9zu78o5zCfzOaJ0LcoKy3n+XEfUlJYitpKzcdbX+TY9tNEHTtH14Ht6TumO/d3e5qyy+W4eblUsy/XcI7WfxgzN62U84KJs+RzNHN5gcGAliH3dO5JXE4mTja2RnX78CvjeeneRWSk5vH5ioc4vCuKxHj9+Vt+bhHfvfMnfUM7GtmrKNfywwebiD+bjKOTLcv3v8KrDy4hfG80n69/nMM7zpAYl6qv15D2+Ad4MW/Ie7QPbsEjb07myUlf0LKdLyPv6sMTt39OWVkFby2+lyO7zpJ8PoMLMRrefHAJD305HSEET98TyuPvrCYtM59Fb89g7/E4zl/St++UtDweemOFrPPdAnjhvmHc+7/fSUzJZs6Lv1bW5YZv7mfP0VgeG37VagfqqUUqwcPvT+elKZ+SkZzNF9tfknPlmCq5cmsf5t76Cu17tuKRD2fwxAh9rvz8xI/Jyyqo/UarcvNo0b9Cw7+HGjYDY3TfpwHLLLANgr19uZCbzcX8XMq0Wv6Mi2J4QJtarZteVEhkhiwOhWVlxGdn4evoZFKum48vF3JyuJgnb+Ov2GiGtQ5s0P0ACLo1kOQ4DZqENMrLytm9Yj/9JtxS43rB3r5cyDOog/ja1wFAUbn8ilorlQorlQqpyrzKLs18SczMISk7l7IKLZvDoxnSwdT+jL7BbI+MI7OgqNptdW3qS2JWDkk5sq+bIqMJbW9qa+atwWw7G0dWobGtojIDX9UqJKCbr+745OqOT3QUw9qY2pwTHMzWuFgyivQ22zRpwsmUFErKy6mQJA4nJTE8sHbHtlc3cHOuVdFKujT3JTEjh6SsXMortGw+Fc2QTsa+Fl/WvzLY3sa6UvxaezchPDGFkrJyKrQSx84lEdqpfnEopLp9bnCujxZ5+HEhP5uLBbp2eOEMw5u3rfX6aqHCTm2FWgjsraxJLc4HoKu/Lxeyc7ioazMbz0QztK1pfM+6JZht0XFkFplvf4Z2yssq2LP2KH1HBRuV6Ts6mJ3L5RlSUcfO4eTiQBMfVwA8/d3pNawLW37dV+0+VNXKP2PqppVHki+RU1JicZsAwZ5+XMjP0R+vc2cZ3qJ2dp2sbbjVpxkrYsMBKNNqybtcaqrFdeiPoGYtvhr10aNufsbaufGs+dia3TOYrVeJrX4tm5OYk0tyXn7dHEDRIktvsFsTfy4UZHGxMEc+xomRDPVvZ1RmfIvObL0UTUpRHgBZpeaPc+cAX5LScriUIfdfW49GE9K1Sv9Var7/Mlxmpdb13xJ0CPQlSZNNcmou5eVaduyLYkAvY5sR0cnkF5YCEBmTjJeHaZ5Wla5V8pZNp83nLTP7mOYt6QWFnEmRc8Oiy2XEp2fh4+JE55a+XEzP4VKmvP9bTkQT0uXq/bek239HOxt6BjZl3cEIAMortOQXy/uUF1eAvY8t9j52qKxU+PT1ION4drX7lnowE59+Hia/Z0fkYedji52XfGIc7OnHhTwDjUs4W+s+Sda45sYaV1Zaq3XrlRu10B2vK7nRyWgG15AbSQaxZaVSYWtthVolsLO2Ii2v7iecddWiG1yProsWdWjrx6WUbFJ07Tvs7ygG9DbuZyOjkim40r6jkvHy1AdPcYlOM6xUODnakZaZL9sqq2DP2sP0HRNsZKvvmO7sXCbPAoo6dg4nV30OU6LbhpW1GitrdaU0jZ03mJWfbqLscjkAOel5Zvel3udoXn6m52gta5/D+Do6MaR5a5ZHnzb6vV2XZiQnZqJJypbrY3M4fYZ0MCqTm1VITMQlysuNHxKVnZFP/Fl5sLB5G28K8oqRJGQ7f52kz7BORuX7DO3EznXHAIg6mYiTix3uXs40b+NN1MkLlJaUoa3QcvrwOfoNlwfhL8ancSlBnpHbupkHSZocktPk9r3jYDS33WJcB6djDXQ+LgXvJqY6f0vnFlxKzUGTUbtcoz5aFNSjFSkJaWguZMj1se4ofUd1MyrTd1QwO1fKM/Gijifg5GpfGWcNwU2mRdcdSwx6LQemCiHsgK7A4SrL7xJCnDT42JuaqBkfR2eSC/XBn1JYgI+jaYT38PVn8x2zWTxmMm3dTZOFZs4udPT05mSq6VV1XycnUgoMtlGQj4+ZwbHuvv5snDaLReMn0baJ6TZqwrNpE9INrm5mJGXh2bRmOz6OziQb+VdNHfj4s3nKbBaPNq4DlRBsmjKb43MeYl/SBU6maYztuzqhydXb1+QW4O1ivP/eLo4M7RTIisPhV/fV2YkUgxMjTV4BPs5VbDk7Mqx9IMuPmdpSCcG6+2ew/9n7OXAukfBLGvn45FfZfyfj/fdxdGJ4YFuWhhvbjMnM5NZmzXCzs8POyoqQgFb4OdVRIeuAd5W6TDVTlwChndqw4Zk5fDN3Iv9btR2AuNRMerZqhquDHXbWVgxsH4CvW83JvzmEtm6fG5zro0UOVbUoHx97M+3Qqymbx8xl8ZA7aOvqCUBqcQE/nDnCgUkPcWTKo+SXlbI35bxs19kJjWGbyTdtMz5OjgwLCmTZCdM2IwGLpk3io/EjsbfWX6nPSM7Gw8/NqKyHnzvpBlfe0g3K3P/OXfz02mokrWlAjL93MN/ufZVn+gwgo7hQ72tBPr5OpjHaw9efTdNm8XMttNLX0Vh/G8ImgI+Dk/HxKso3r5te/myecDeLh02hrZtst4WzG5klxXw0YBQbx8/hvf4jsbeylmOgoBb90RUtHmVGiyfP5vjsh9h3yVSLGxoTPc4vwMfJNLaGtw3k95PVa/uYDkH8dTaqXj4oWmREg2iRIT72zpWDWQCaYlNdCnBugquNHUtDZrF+6Dwmtuxi1paXuxOabH28pOUU4O1u2hYHB7dhzWtz+PyRibz+y/bK31VCsOzlGez48H4On00k4rwGrybOpBmcwKRnFeDlUX0fPDa0C4f+Saj8X5LgkwVT+OmDmYwf1rXyd28X077WXK4xtEMgy49WH9v+bi508PPiVJIGbzcnNDnG++/jarr/Q7q2Yf3Lc/jq/om8+ru8/808XMkuKOaNGcNZ8dwMXp02FHsb+SaL0uwy7Dz0Mzhsm9hQmnXZrD8VpRVkncrF69YmJstSD2bi01evJ3KfpD/2ssaZ0U6vpmwedw+LQ++grZvcJ7VwciOztIiP+o9m49i7ea+vrHGWwtvVuG5Tq6vbzm3Y8Nwcvp43kQUr5bpNyytk8e7jbH/lXsIWzKegpJSDMYkm69ZEXbXoBtej66JFnh5Oxu07Mx/PqwxajxnelcPH9e1bpRL8+Pkc1v/6MBcuZpJwQT9DNeNSNh5+7kbrm+YwWXj4u1fa+nrvayyP+4wTuyKJPn4OgKZtfOjUty1fHHyHj3e9TrtbzF+oqv85mlOVvKCadujtz+ZJc1g80jgvWNBnCO8e2WM0yAvg6eNKuiZX748mFw9v87PUrkbr9n7Y2lsTHX5RtpOSg0eVARwPX1cyUnKMtuXp68qFGA2db22Ns5sDtnbW9Appj1eVvBLA3cWBtEwD7czMx8tM33GFcSFdOHjyvMnvw/q1Z/uB+uUatcXDz430ZH0MZSTnmIkzN9Iv6S9MGObKkgTvrH6CL3e+zKjZA+vlw02mRdedBn+QvSRJ4UKIAOQrCOYeBGBu6mydEea2XeXqeER6Kv1/XUhReRkhLVqxcOREBi/7qXK5g5U1344Yzxv7d1FQdhmViVXTrVQdVI1MT2Pg4h8oKisjpGUrvh87gSG/LKrbvpjZmaoiZ3Y9M79VXS8iPZX+v5mvA60kMXr1L7jY2PL9iAm0c/ckKVHfmM3Zr1oDL44J4eMte9HW5K+5faxi66URIXy0w7wtrSRx+/dLcba15au7xtHWy3yHU3X//xcSwvt7TW3GZ2Xx/dGj/DJpMkVlZURlpFMhWU49ahOvADsj49kZGU/PVk15ZEQ/7vthDefSsli0+yg/3DeJotIyYlIyqNDWc3j/Jpo6++9qkTERWRr6r/1Gbof+rVkYMonBfyzExcaWYc3bMnDdt+RdLuWbQROZ2KoTmy7G1SpmXhoWwodh5tvMtF9WkFZQyJRunXhuyEBuad6ULM7IdqoUr06Dbh3elZz0POJOJdK1v/Eskb8W7eb3D/9CkuDxw88Q7ONXZX1je5FpaQxYYqCVYyYw5NfqtVKYcepabVZvt4puZqbSf9V38vFq1pqFoZMYvOYH1EJFZw8fXju0g5MZKbzaewgPdulNVHqGqc2q/VFGKv2X6rS4eSsWjpjI4OUGWrxGp8XDZS2OyTa12VDUJrZeCQ3hgz3Va7u1SkVoYBs+2rO/fk4oWmRIg2iRIaIW+YuVUNHZ3ZdZu5dip7ZiVeg9nMy8xPkC41sBa5NrAOw6Gc+uk/H0CGzKg+P78eDn8q1zWkli2ttLcbK35eMHxtHG36NOeU/3zs0ZE9qFh17WT0p58OXfycwuxM3Fgc9encKFS1mcOpNUq9h+cXQIH2+rPrYdbKz5YupY3tu8h8LSy7Xe/7DweMLC4+nRpikPj+nH/V+vQa1S0b6ZN++t3sXpCxqemxTC3KG9+HrTQfMPLTafeJFxIgfXds5YOxmn7dpyLZnHc2gztflVTVR1NyIrlf5rvpX1qGlrFg6+ncHrfkCtUtG5iS+vHdZpXK9QHuzcB/jOvGPXSK3rNiKesIh4erbW5UYL1+Bib8vgzq0Z+c4i8otL+Xj2GMb2aF93JxQtMqRh8qLaJEY6undpzphhXXjk+d8rf9NqJe59fAlOjrZ89f40tEnGK1eNkavpiVYr8fDA13B0tWfBb4/QskNTLpy9hNpKhbObI4/1fYmgXoG8suIpZrd5uFb7Uu9ztCr/R2Sk0n/Z9/q8YNjtDF75I0NatCazpIiIjFT6+DU3XqkajagLdg42TJk7kKhTFykqNJjJaVKv5vOli/FprPp+F+/8Mp/iosuci0qhosLMOZTZcz/z9OjYnHGDO3P/a8uNfrdSqxjQsw3fLN9b025dE7XJDa9W5qkx75OlycXV05l3Vz/Bxdh6XLy8ibTo38ASM70ANgAf0cDTZoUQ84UQx4QQx+IPHMLf4Eq6n6MTaYXG05oLyi5X3jayOzEBa5UKdzv5ooWVSsV3I8azPuYsWxPMP3hdU5BvNPvHz8nZdBuXL1feerf7QgJWBtuoLelJWXg10w/ieDZrQmZy1lXW0PlXmI+/kX9OpBXVvg6ukHe5lEPJFxnUIsDYfm4Bvq56+76uTqTlFRqV6dTUh4+njmb7s3MZ0bkt/xs/hFAztxKk5hXg52Jgy8WJtHxjW539ffhkymh2Pj6X4R3bsmDMEEKDjG3ll5Zy5EISAwMD0BQU4OdcZf+rHJ8uPj58MXo0f8+dx6i2bXl9SGjlLZArIyMY//tSpq5aSU5JCeezc0z8bihSq9Slj6sT6VXq0pDjCZdo7uGKm4MdAGuPRnLn579z93eryC0q4UJG9bdAXI2bcNqs5bVo3+EqWuRMWrHxFGyjdph8DmuVGndbewb4BnCxIIes0mLKJS1bEmPo6dUUkGff+Bq2GWczbcbPh08njibsobmMaN+W10YMYWg7Ob7TCuSycRlZ5JaU0tXfF5BvV8zS5BjZyUjOxqupfgaBl787WZpcOvVuQ59RwSw5+S4v/DifbgODeO67eQDkpOej1UpIksS66LNGVzB9nZxJNafHBlppTosMSamivw1hE3S6aXi8HJyvrptJ57AWKtxt7dEU5aMpzOdkhjwzeNP5GDp7+JhqcU390cWraHHKRQY1D7jqPlwrmvwqeuzsVBkvV+js68Nn40ez+4G5jAxqy+vDhhjdAjmodQBnUtOqvfWxJhQtahgMtSjP4OHqmuI8/Bz0V/997U11SVOcz9+acxRXlJF9uZij6Yl0cPMx2UZadgG+7vp48XZzIj2n+v7rRNwlmnm54uZoZ/R7QXEpx2OS6NcpgLTMfLwNbmfyauJEhplnobRp6ckLD47gxffWk1egv105M1vefk5eEX8fjqNjoKxvqXmmfa2Jbjb14eM7R7PjqbkM79SWBWP1eYuVSsXnU8fyZ3gU28/EyTZzCvB1M97/qrmQ0f7HX6K5p7z/qTn5pObkc/qCfAK0/WQs7Zt7A2DbxJqSTP0JZ2nWZWzdbczaTDuYhU8/01lemSdzcWrlgI2rfjaWpigff0f9sa9R4y7p+yRNYT6aIgONuxBNZw/TmGgoUnON69anhro9fu4SzTzl3KhP2xZcyswju7CYcq2WHafj6BbgX+261XET3lJkcS06G3HIuH17OJtt360DvHj20ZG89NY68vJNH0dQUFhKRFQKrVp6Vv7m2bQ2OUwTslKMyxTmFhO+L5pbhnauXGf/n8cBiD4ah6TV4uppOmOq/udoBVXyAjPnkObyAlt7bvFpytAWgeybOp8vh4yjn38LPg2R70rN0OTi5aufkeXp60pmmvlbM82htlLxymfTObw7Cq3BQJWnn5uJnYyUHDwNZnB5+rqSmSqX2bbyCI+O/4znpn5Dfk4Rl86bXqjLzi3C22AGr7eHMxnZZnS+hScvzh/Ocx/9YaTzAH2DWxGdkEp2bv1yjdqSkZyNl78+hjz93aqJM/3sryu5MlD5NzcjnwObThLUI6DOPtyEWnRdsdSg1yLgDUmSTtdYsg5IkrRQkqRbJEm6Jc7PgwA3d5o5u2KtUjEusD3bz8cblfey1z+UtZu3L0IIskvkh56+HzKCuJwsfgo/Xu32wlM1BLi50czFBWuVirFtg9hxzngbng76bXT18UVlsI3aEn00jqZt/fAN8MbK2oqQu/pzcMOxGtc7laYhwNWgDtrUog6Q/WtiZ4+L7sGItmor+jdrSXyVB0RHXNLQ0tOdpu4uWKtVjOoaxK6z54zKDP9oEcM+lD9bI2J5c0MYO88a+wBw+pKGlh7uNHWT63J0pyDCoo1tDf1iEaGfy59tZ2J5Y2MYO6PjcXewx9lW56uVmr6tWnAuI4twjYYAd4PjE9SeHeeMbQ5a9BO36T6bY2N5NWwn2+Nl/zzs5RNOf2dnRgS2ZUO05abORiRpaKGrSyu1ilHdgth1xtjX5h76TqxDU2+s1WpyimTxb+Io++rr5kxo50A2n4yunyNSHT83PpbXopbuBDg3oZmTrh227Mj2i3FG5b3sHCu/d/PwQwjILi0muSiP7p7+2Knlq/f9fVtWPmz4dLKGAHd3mrnK8T2mYxA7Y41jJvSbRQzRfbZGxfLa1jB2xMRjb22Fo+5hyXHpGfg6O5FdVISVtZpBk3pxaMspIzuHNp8idGofANrf0prCvGKyUnP5+c11zOr8HHOCX+S9exdyam80Hzwgz04yfI5Bcxf5+5W2OK5dEDsSqtfKbj7GemyOqvrbEDYBTmWkEODirj9erTuYHi97g+PlqbNbWkx6cSHJhXm0dpETo/5+LYnNyTTV4sD2bL9wFS32uooWN21JfE7NCfW1EJ6ioaVhbHUIYmeccWwN/n4RId/Jny3Rsby6PYwdsfp9GtuxPX/W89ZGQNGiBsJQi1yG9qr8PTwrmZZOTWjm6CYf4xad2JkcY7TujkvR3OLZHLUQ2Kmt6Obhb/Sg+ytEXtDQ3Nsdfw+5/xrRK4g94VX6Ly+9HrRv7o21lZqcwhLcnOxxstfFt7Wa3u1bcF6TRVSchuZ+7vh5u2JlpWLogPbsP2bcZnw8nXn72Qm8+cUmLqboL/TY2Vpjb2dd+b1Xt5acS5T9Nso11CpGdwliV5Sxr8M+WcRQ3WdbZCxv/KXPW966fRjn0rNYckD/Ru/IRA0tvNxp2kTe/5E9gthzusr+exrsfzNd/11YQmZ+Eak5BbT0lk+Uegc1r3wAvnMbJ4o1pRSnlaIt15J6MBPPnm4m9V9eVE7O2Tw8e7qbLEs7YHxrI5jRuFYd2J50lT7J00/Wo9Ji0kvMaZzlZp1GXNTlmbq6HRUcxO7I2uVGKTn5dG3ph5213H/2btuChNR6aGddtejG1yOLa1FGvgfN/N3x9ZHb95Db2rP/iHEMens58+aLE3j7k40kJevbt6uLPU6OsmbY2FjRslkTHB1tZVvWagZN6s2hTSeNbB3adJLQaf2AKzlMEVmpubh6OOPoKufPNnbWdA/pyMUYeQD6wMZ/6Hab/Cyspm39sLKxIjfDdPCo3udo6bp2aHiOlniVXMNLn2t8cHQvfZd9x4DlC3k07E8OJCfy5O6NAMREXMK/pSc+Td3l+hjVlUO7ztbozxWeeHMSF8+l88MHm43tjA3m0I5Io7KHdp4h9Hb5+WXtg1tQmF9Cdrp88cRVd7uql78b/Ud0Yc+Gf0y2lXApk+a+bvh5ye17aN8g9h6vovMezrz35Hje+HozFzWmF/Svx62NANH/nMe/tTc+LTzk+rjdTK685RShd/YFoH3PVpW5sq2DDfZOun7OwYYeIR05fzbZZBs1cvNp0XWlwW9vBJAkKQn4vJrFdwkhBhj8/5AkSbV/P7uOCkliwd6d/DJ2MmqhYmXUaWKzM5nRsRsAS8+cYlSbIGZ26kaFVktJRTmPbv8LgFt8mzI5qBNnM9PZdMdsAD44vJe/48+bbOO13WEsmTAZlUrFqsgIYrMymd5Zfn7E7xHhjApsx4wu+m08tnljXXcFbYWWrx79iXe3vIxKrWLrz7u4cObqbwWprIN9O/lljK4Oos3UQesqdbBDrgNvB0c+HjIKlVChEoKN8dGEJZ7DAbXevlbi7Q1h/HDPJPmZWscjiUvL5K5b5f1fceTqz/Gq6uubm8L4aaZsa83JSOLSM7mrp87W8epteTk58t7EEahVAiEEWyJj2B2bQIWLxGthu1gyaTIqIeTjk5nJ9K664xN+df++GTcONzt7yrVaXg3bSV5p7R7W+vTrcOQk5ORCyBR45B6YMubq61RoJd75I4zv752EWiVYdzSS+NRM7uwj+7ryUDjDurRlfI+OlGsrKCkr55ml+lj6dPY43BzsKK/Q8vb6MPKKa+drVW62qwLXTYuObOOX0LtQC8HKuHBiczOY0TYYgKWxJxnVMoiZ7bpToZUoqSjj0b0bADiZkcLmC9FsHHMP5ZKWyKxUlsWeBKyokCTe2BbGT1PlmFl9KpK4jEymdpdjZvk/1ce3p6MjX08eB4BapWLTmRge6Ncb20M92LZ0Pxeikhl99yAANi3ew5Htp+k1rAuLjr9NafFlPnlkcY37Pe+1ybTu0hwkiLcv5eVdO/hlvE4rz5hq5ejAdszo3I0KSUtJeTmPbdHH9+cjxtCnaTPc7ew5cM98Pjt8gJVnInh1T1iD26yQJBYc2sEvw++Qj1fsaWJzMpkRpDte0ScZFdCOmUHdK+0+umdDpd3XDu/ks0FjsVapuJifyzP7Num1eHQVLe6g0+KzOi3uqPf10Z0GWjzYVItrS730SJJ4fXsYP985CbUQrDodSWxGJtOC5bpddpXneAHYWVnRP6AFr2zZUWs/q6JokRENokWGVEgSr5/Yws+3TUMtVKxKOElsXgbT2vQAYFn8CeLzM/lbE8/G4fPRIrHy3Eli89JNbWkl3l8RxtePTUKlEmw4EMm5lEwmD5TjZc3ecIZ0b8vYPh0pr6igtKycF36Q26KXqyOvz9H339uPx7D3dAIOWolPftzJJ/+T2/fGsNMkXMxkwnC5zfyx7RR339EXV2d7nr5vqOxHhZZ7n/+NJm4OvPPcBADUahXb957lsO45MBVaibf+CuPHObKva0/o8pZeulzjKs/x6tHCnwnBHYnWpLP2oRkAfLZ9P4eOnefd1WF8+5Bsc/2hSOI1mdzRX7a5an84Q4PbMq5XR8p0+//cYr0Wvbd6F+/OHoW1WkVSZi4Llm4DQKUWtLu7Jafei0LSgl+IF47NHLi0Q36YftOh8oyw9KPZNOniitpObeiu/JyviFyC7g0wOfYLDm/nl6F3olZd0bgMZrQLBmBpzElGBQTJGnclN/zbUON28NnAsVir1FwsyOGZ/Zu4b3C11VZJvXOjdWF8d5+sRVdyozv66ur2YDjDurZlXE99bD37q1y3pxM1bA+PZeWTMyjXaom6lM6qQ6d58fZaOGuAokVGNExepJX47LsdfPT6FFQqFZt2nOZ8YibjR8rte8OWU8yZ2g9XF3uefHCYvE6Flvuf+hWPJk689MQoVCoVQgW790Xz26pDfPT6FNQvT2Tbb/vkHGZuCACbFu3myLZweg3vyqKT71FadJlPHpYfc9DE15Wnv5uHWqVCqAR/rzvKka3yQMa2X/fy1NdzWRj+MeWXy/nw7q/N7ss1naMd2MEvo6ZUnxe0asfMjsFyOywv59Gdf9ZoV1uh5du3N/DWD/egVgm2rTtOYlwao++6Va6PFUdw93Tii5UP4+Bki1YrMXFWf+4f9xmtgnwZOqEHCdEpfLHqIUDio9/mU1ZSxrZVR0mMTWX0dHlQZ9PvBzm66yy9QtqzaNcLlJSU8elzKyr9eOWb2bi4OVJeXsE3r66lIE++4NhveGcefHUiLp5OfPjMRNIyC/jsRVnn/9odQUJSJrcPldv3uh3hzJ3UFxcne56ZG6qLHS1zX5bf0mtrY8WtXVry/o/6Z0TWhvpokbZCyzcvLOPtVU+gUqnY9vt+LkSnMPru2+T6WPy3nCsP7cyio7pc+bHFALh7ubBgyYMAqK3U7FpzhONhkdVtqlpuNi263oja3JfcGAn49qMGd1xV1gA3SpuhzROHGtxm7De9G9wmgEOiuuZC9UBrW3OZunLZxTKxGzet4Z9d0fWTBxvcJkDEB0/WKWgHjfmgTpW2Z+NzlmkU/yECfn2vwQPR5qIFGgzQ+qMzFrEb/Xo9nqPyLyE5VTS80cuWmTR9bsLCBrfZbolltCjueUWL/m0CV75lkU7RJcyx5kJ1xCHdAu0QyOzY8DmMTW7NZepD3zknai5UR7ZEdG5wmwDnRvxUc6E60u0jy2jR6Y8sq0Wg6FFNDBr3oUW0yP7v2s9oqi0V+fk1F6oHsd/f2uA2O3xqOhOqQSgx/wKNayGnt1/NherB/k+/t4jd0Z1DGtzmloyFihY1Iiwy00tBQaGRcmOOcSsoKPzXULRIQUGhMaBokYKCQmNA0SKLogx6KSjcRChTZxUUFBoDihYpKCg0BhQtUlBQaAwoWmRZLPUgewUFhcaIJNXtUwuEECOFENFCiDghxAtmls8QQoTrPgeEEN0afL8UFBRuLBQtUlBQaAzUVYtqoUeKFikoKNQZRYssijLTS0HhJqKhryIIIdTA18AwIAk4KoTYIEmS4cOjEoBBkiRlCyFGAQsByzyUTkFB4YZA0SIFBYXGgKJFCgoKjQFFiyyLMtNLQeFmouFfhXsrECdJ0jlJki4Dy4EJRpuUpAOSJF15+uYhoNk174eCgsKNjaJFCgoKjYG6alHNeqRokYKCQt1RtMiiKDO9FBRuIkTDv621KXDR4P8krn6FYB6wuaGdUFBQuLFQtEhBQaExoGiRgoJCY0DRIsuiDHopKNxMaOtWXAgxH5hv8NNCSZIWGhYxs5pZ1RZCDEYW1AF180JBQeE/h6JFCgoKjYE6ahHUqEeKFikoKNQdRYssyg076OVwSd3gNkV5g5sEwMrbq8Ft2mkafv8tSXHThq9cuxTLhG/XTx5scJvhT33b4DZlnqxT6bpeRdAJ58KrFEkCmhv83wxINtmuEF2BH4FRkiRl1smJRo71JduGt5nf4CYBEPZ2ljFsAdQl5vrqa6fcuuHv6rfJsowet1vS8FoUM0fRIv6jWtTSK8siduN62TS4TY9FlxvcJsDST68WIvVjxg91i+3asvVgcIPb9A60TEh3+6jhtejUMzemFkGNenTTa1FuS8vk5/Yt/RveaER0w9sEuGyBJwh9V9jwNgHud2hwk6l9G9wkAKM7h1jE7qaI3RaxWxcULbIsyjO9FBRuJhr+OTpHgbZCiFZCCBtgKrDBsIAQogWwFpglSVJMg+yHgoLCjY2iRQoKCo2Bhn+OjqJFCgoKdUfRIotyw870UlBQqAcNfL+4JEnlQohHgK2AGlgkSVKkEOIB3fLvgAWAB/CNEAKgXJKkWxrUEQUFhRsLRYsUFBQaA4oWKSgoNAYULbIoyqCXgsJNREO/DhdAkqRNwKYqv31n8P1e4N6G37KCgsKNiqJFCgoKjQFFixQUFBoDihZZFmXQS0HhZqLh3wyioKCgUHcULVJQUGgMKFqkoKDQGFC0yKIog14KCjcRoh5vBlFQUFBoaBQtUlBQaAwoWqSgoNAYULTIsjT4oJcQ4ifgFuTXZMYAd0uSVCCEcAV+A1rotvuRJEk/X8u2BrRtyYujQ1CrVKw+HsGPfx81W65zUx+W3T+Vp1dsYltkLABv3T6MQUGtySosYsKXv1a/jXYteWFcCGqhYs3RCH7cU802mvnw+0NTeeb3TWyLiDVa1/b+crYsPcCqr7aZrPfAW3fQK7QTpcVlfPz4L8SfvgiAo4s9T3wyg5ZB/kgSfPrkr0QdT2DegtvpPawLRS5qErNy+TP8LE+G9kelUrH6RAQ/7KvGP38fVtw7ladWb2LrmVhsrNT8ds+d2KjVqFUqtp2J5cvdB83X8VhdHR+toY4fnMrTy/X7X5VBzQJ4tU8oaiFYHh3Ot+FHjJb38WvOD8Nu52J+LgBbzsfwxT96n1RC8NeEWWiKCpi7bS0AA9u05OURIaiEilX/RPDDAfP+dfHzYcXcqTy5dhNbz8Ya2Vxz73RS8wp4YMUflb/3b9eSFybojvuRCH7abWx3cMfWPDqiH1pJokIr8d6G3fxzXn4hxsz+3ZncuzMCweojp/lt3z9mfarKy+/B7oPQxB3+XFyrVerOTXYV4Xrp0cBWLXllqNxOVp6KYOGhauLQ14dVs6fyxB+b2BItx6GzrS3vjBpGWy8PkCRe2LSdM7kpJusOaNeSF3RtsUYtenAqzyyrokVjQ7CdX8GWZQdZ9fV2k/UeeGMyvYZ0orT4Mh8/+RvxEUmATos+mqbTIolPn15K1PHzvPDtPTRr4w2AbXNnKrQSFZIWlRCsOBPBd8eN23fvps1YOGYiSXm69h0fy5dHDwHwfugIhgS0JrO4iJG/L6lc57aAAF4JldvhyvDTfH+k+npdPWMaj/+5kS0xsbRyd+fz8WMql7dwdeWz/QdYfFxui4OaB7Cg/xDUQrDi7Gm+PVlFi/ybs3DERJKuaFFCLF8cP4itWs2KCVOxVcm6uflcDJ8eOwDAwNYteXmY7OuqUxEsPFi9Fq2cM5Un1m9ia5Q+Bt4eM4x2Xh5IksSLG7dz8pIcA7e1ainXgS62vj98lTqYNZXHN8ix1aqJO5+PH62vAzdXPttnqvHmULSo4bmeudEVejVpz8NtJ6JCxaaUQyxPDDNafmfzwYT69ABALVS0cPRh8r4F5JcXmdga1LSV3H+rrvTfh42W9/Ftzg/DJnExPweALedj+eKk3Db23Xk/hWWXqZC0VGglxm34BYBberfmoSdGoFIJNv95khW/HTCy2byFB8+8PI7Adr78vHA3q5fJetGsRRNeeWNSZTlff3eW/LiHdSvldnzyqIpfvrFGq4XBoyqYMNX47dEF+fD9xzakJgtsbOD+py/TvJVEZprgmw+syckSCBWEji5n1KQKAAYEtuSlMXKusfp4BD/urT4XWj5/Kk+tlPNNXxcn3ps8Ek9nByQJVh49za+H9DnBbS0CeHXgYL1unjCjm6MNdPOcgW4OMdDNZUuM1uvj2ZanO4xFhYo/ko7yS8LfJr72aNKKp9qPwUqoySkr4oEjP9DC0ZN3uk2tLOPv0ISFsTv4mVj6B7Xk+QmyFq09HMFPu6rkRZ1a84hBXvT+H/q8aNbA7kzq3QUJidiUDP63wjQfNoeiRQ3P9dKifh1a8tyUEFQqFesORPDzduN4CenSmofG9kOSJMq1Eh+u3s3Jc3K8bHp9LoWlZWi1Wsq1EjM++L1yvZ792/Lg86NRqVRsWXuclYuMY7tZgCdPvzmJNh38WfLldtYs2Q+Ap48rz749GXdPJyStxKY1x/hjae36xFtGBPPQZ/egUqvY/NNOVry/vlbrDWoRwIIBg1Gr5Pb97YmquYaufefr86Ivjh3Cz8mZT0JH4uXgiBaJZZHh/Byu142e7u15oM0kVELFFs0hVl3cYWR3crMhDPbuCYBaqGnu4MPUgy9TUF7Ek+2mcWuTTuSUFfDg8ff0Nge044GXxsr1uvooq37cY1yvrbx46p0pBHb0Z8ln21jz897KZU++NZlbQ9qTk1XAg+M/r7Y+bmsZwILbZL1bGVlNnjh2Ihd1erc1PpYvjxwysdNzSCcefOcu2dff9rHyiy0mZR585y56De0i57SPLiYuPBGAJSfeoaigFG2FloqKCh4b+k61/hqiaNGNjyVmej0pSVIegBDiE+AR4D3gYeCMJEnjhBBeQLQQYqkkSfV6b7VKCF4ZN4R7f15Lal4+Kx6Yzq6z8cSnZ5mUe2rEAPbHXjD6fd0/Z1h66BTvTRlx1W28PGEI9/20ltTcfFY8ottGmpltjBrA/pgLZte1+fIfPt/yPIe3hZMYo6ks0yu0E/6tvZnX9zXa9wjgkfen8uToDwF5MOxY2BnevvdHrKzV2NrLrwz/Z08UP7/9B/H3teGZoQN4a/wwJi38ndS8fFbdN52waPN18MywAeyL1/t3ubyCu5espuhyGVYqFUvn3snfcQmcPqcxWu+V8UO4d5Gujh+azq6oavZ/pGkdVy3zZr9hzNi8Ek1hPhsmzGJHYjyxOcZvRj2qSaoc0KrK3E49icvJxMnGttLmgpFDuGep7N/qe6cTFhNPfIaZ/Q813v8rzL61O/EZWTjZ2BiVf+X2Idz3w1o0ufmseHQ6u87Ec85gvw/FXWTXmd8AaOfryUczxzD+oyUE+ngwuXdnpn25jLKKCr6bN4m/oxKqrRdDJo6C6ZPghdrpb/24+fTU4nqkEoLXhg/h7uVr0eTns+bu6YTFxhOXaRqHzw4ewN4E4zh8ZWgIf587z6Pr/8JapcLO2trsNl4er9OivHxWPHwVLarSFg3XtfkmnM83PcvhbadJjDXQoiEd8W/lzbwBb8ha9O5dPDnuY0AeDDu26yxvz19kpEXvPajPhaf8NYfJHToxfsVSNAX5/HHXDHaciyMu29i/o8lJ3PvXepP9W3M2gl/C/+HjYaOM63XYEOasXIMmP5+1s2awM958vT5320D2ntfvc0J2NuOX/Fa5fP+D89kWG1f5/xsDhjLzr1WyFk2ayfYL8cRlm2rRvM3rjH4rrahg+oaVFJXLurl6wjR2JyZwNjudV0cM4Z5la9Hk5bPmnunsjK1GiwYPYN+5KjEwLIS98ed5bK1xDFTWwQo5ttbOmc7OuGrqIMQ4thKyshm/eKm+Dh66j20xcbzUyaT6TVC0yCJcl9zoCioEj7WbxHMnvyO9NJdvbnmSgxmRXChKrSyz8uIuVl7cBUBfj45Mbj7I7ICX3H8PZcYWXf89fjY7EuPM99/b15j1Z+qm5WSXFuttqgSPPj2K559YSkZaHl/9OI+D+2JIPJ9RWSY/r5ivP91K/9uCjGwlJWbxwN0/VtpZtv5x9u+JBkBbAT9/ac1L71/Gw1Pi5Uds6dm3gmYt9QH3xzIrWrbR8vRr5VxKFPz8pTWvfHgZlVpi5v1ltGorUVwELz1kS5ee8kD+/8YNYd5iWX9XPqDLhczkWk8PH8D+OH07rNBKfLDlb86kpOFgY82aB2dwIP4C8elZshYNCmXWH6tl3bxzBjsSzOhmSjW6GRXBL6f/4eOho4x+VyF4ruN4Hjm6iLSSPJb0fYi9aVEkFKZVlnGysuO5jhN4/NjPpJbk4m7jCEBiYQYzD3xVaWfj4BfYnXoGlbDh5duHMH+hnBctf1yXF6Ua5EWxF9kVqcuL/Dz5aNYYxn+wBG8XR6YP7M7ED5ZQWl7BR7PGMCrY+JhWh6JFFuG65EUv3jmEB75aS2pOPkufnc6e0/Gc0+jj5XD0RXafluOlrb8nH8wdw+1v6Qdv7/t8FTmFJcZ2VYKHXxrHS/N/JiM1jy+WPcCh3WdJPJdeWSY/r5hv39tI3yEdjNbVVlTww8ebiTubgr2DDV8uf4h/DsaREBF99X1RqXj0q3k8P/xNMpKy+OrIuxzccIzEs0k11sEbt4Uyc4PcvjfcMYPt1bTveRvXG/1WrtXy1v49RGak4WhtzZ93zmTvxQtAIioEDwfewUunvyGjNIfPuz/N4czTJBpo+5qkMNYkyRc5ejfpxMRmIRTotH176hE2JO/lmaCZxvX6v/G8NO8nMlLz+HzlwxzedZbEeL1m5OcW8d3bf9I3tKPJvm5ff5wNvx/kmffuuGp9vB4Syux1cn2sv0und1lm8sQ/15s3csXX96fz0pRPyUjO5ovtL3FoyykSY/QXi3sN7Yx/ax/m3voK7Xu24pEPZ/DEiHcrlz8/8WPysgqq3YY5FC268VHVd0UhRIAQIkoIsUQIES6EWC2EcDAQUgHYoz+EEuCs+90JyALKdWXXCyGOCyEihRDza7P9Ls18SczMISk7l7IKLZtPRzOkQxuTcjP6BLM9Mo7MQuNE7vj5S+QWl5iUN9pGc18uZuaQlCVvY9OpaAZ3NLONfsFsPx1HlsE2DNctL6tgz/rj9BnRzWi9PiO6snOlfLU06sR5nFwccPd2wcHJjs59Atn6u3zVs7ysgsI8OVk8secs2gp5/mNucQkl5eWVdbApIprQIFP/ZvYOZtsZY/8Aii6XAWClVmGlVpkMMJvUcXg1ddxXV8cFpsnyFYK9/Difl83F/FzKtFr+PBfFsJaB1Zaviq+DE0Oat2Z59OnK37r6+3IhO4ekHNnmxkjz+z+rVzBbo+LILDL2z8fZiZC2rVj9T4Txfjf3JTFDd+wqtGw+Fc2QTsZ2i3V1B2BvY105Ot/auwnhiSmUlJVToZU4di6J0E61289e3cDNuVZF642QpDp9bhT+TT3q6ifH4cVcXRyeiSa0rWkczu4ZzNboOLIM4tDJxoZezZuyKlyOwTKtlvzSUpN1K/Uk20CLzLXFfsFsj4gjq8CMFmXrtOiP4/QZ0cVovT4jurBztXzFLerEeZxc7fVa1DuQrcvkq6GGWmTI+HYdiM3K5GKern3HRDOsde3b95HkS+SUGOtxt6r1GhXF0EAz9dojmK2xsSbt+wr9WrYgMSeH5Lx8AIK9fblgqEXxUQwPMLVbHUXlOt1UqbBSqZCQKrXoYo4+BoaaiYFZtwSzLdpYixxtbLilRVNWnTKNgW5+vlzIMaiDs+btXomt6uugOYk5uZV1UBOKFtWffzs3ukJ7lxZcKs4gpSSLcqmCXan/0M+zc7XlB/v0ICzV/Kxkuf/OMei/zzKsRe3btzmCOviTnJSFJjmH8nItu3dG0m9gO6MyOTlFxESlUF5e/T0f3W9pRcqlbNJS5ZkBcdEqfP0lfPwkrKyhb0gFxw6ojdZJuqCic3fZZtMWEumpgpxscPeAVm3lw2LvIC/LyhB0rZILbaom35zZxzQXSi8o5EyKfOJYdLmM+PQsfFycAOjm48uF3By9bsZeu24CdHJrRlJRJsnF2ZRLFWzThHObj/EAwAi/buxOjSS1RK637MuFJnZ6ebQhqSgLTUkOXVro6uBKXnQymsE15EWSQbu1UqmwtbZCrRLYWVuRlle7E87GqEU3ih79m1rUOcCXixk5XMqU42XriWhCul4lXmytkWpxxh/UuRkpiZloLmVTXl7Bni2n6TvYOLZzswqJibxERRXdyMooIO6sPDBSXHSZiwnpeHi71LzNWwNJjtOgSUijvKyc3Sv2029CzS+3C/Y2bd/DW9WufacXFRKZIetGYVkZ8dlZ+DrKDaGdc0uSi9PRlGRSLlWwJ/0EfTy6VGtrkHdP9qSdqPw/Ijee/DLjXKFd1+YkJ2aiScqW88RNp+gzxEy9RiRRXl5hso2IY+fJz6n+HBB0epejr4+/6qh3Vwjq0YqUhDQ0FzJkX9cdpe8o4/PrvqOC2blSzlujjifg5GpPEx/XOm/LEEWLbnzqPeilIwhYKElSVyAPeAhACPEzoAHaA1/qyn4FdACSgdPA45IkXVGkuZIk9USebvuYEMKjpg37uDihydUn8Jq8Arx1icQVvJ0dGdoxkBVHwuu1cz4uTqQYbCM1t6AyWanchosjoZ0CWXE4/KrrZqRk4+Fn3OA8/NzISM42KuPp54ZvS09yMwt46vNZfLX9RR7/eAa2DjZUZUTHdiRk6tfX5Jnxz9mRYe0DWX7MtA5UQrDugRnsf/Z+DsQnEn5JY7Tcx7VKHeeaqWMXR4aa2f+q+Do4kVKot5VSmI+vg5NJuR7e/my+fQ5LRkymrZs+DF7tO4R3juxBa9Ap+rg4oTE4iUvNK8DH2UwMtA9k+XFT/14aEcKHO/airSIa3lX2O9XMfgOEdmrDhmfm8M3cifxvlXy7WFxqJj1bNcPVwQ47aysGtg/A18103X8NSarb58biX9EjX2cnUvIN2km+aRz6ODkyrF0gy/4xjsPmbq5kFRXz/pjh/HHPDN4eNRR7a9MJuCZalFeAj6sZLepYGy3KwcPXzaiMh29VLcrB09cV35YeshZ9OpOvtj7H4x9Oq5zpdYXOvdtQVHaZc9kGWlSQj6+Tmfbt68+mabP4efwk2ja5usz7OJmpVydnkzLD27bl95PV68+Y9kH8dVZ/JdfH0ZnkAgMtKijAx9E0k+nh48/mKbNZPHoybd31vqqEYNOU2Ryf8xD7ki5wMk2Dj7OxFlUbA0GBLDth7GsLN1eyi4p5b+xw1s+dwduj9THg4+xESlW7TqZ2h7cNvHoddAjir7NR1S7/V1C0yCK50RU8bV1JL8mp/D+9NAdPW/NJv63Kml5N2rM33XwMmfTfRfmVJ2CG9PD2Z/PEu1kyfIpR/w0Sv428k78mzGZakHxy4unlTHpaXmWJjLR8PL3qfkYREtqRXTsiK//PzgAPL328eHhKZGcIo3VattZydJ88EBYXJchIFWSlG5dJ1wjOxwkC22vxdjHNCczmGh0CWX60+nbo7+ZCBz8vTiXJuZavYxWNK8jH17Ea3Zw6i5/H1aybAF62rqQW51b+n1aSi5et8cl9C0dPnK3s+fbWe1nS92FG+3c3sTPMryvbUk7J++fqhCbHoA5yTPsggCGd27DhuTl8PW8iC1bKeVFaXiGLdx9n+yv3ErZgPgUlpRyMSaxxP64bddWiG0uP/hUt8nZ1QpNtEC/ZBXibiZfBXduw7pU5fPnARF5bqn/sgiTBt49M4vfnpjO5v35Ax8PHhfRUfWxnpObVauCqKj7+brRp70f06avP1gLwbNqE9CT9rNaMpCw8m9bcDn2cnKrkGvn4VNO+N981i8VjzbfvZs4udPT05mSqPGDnaetKemmO3p/SHDxsqtf2W9zbsy/j1FV99fR2IV1TpV6vcZCoKr5OTqTUoj66+/qzcdosFlWTJ3r4uZGerJ8dlpGcg4efu2mZS/qcND05Gw8/N0COrXdWP8GXO19m1OyB17pbDct/W4v+da510OuiJEn7dd9/AwYASJJ0D+APnAXu0i0fAZzU/R4MfCWEuKJUjwkhTgGHgOZA25o2LMz9WOXgvzgmhI+3mg5q1BozG6l6JeKFsSF8stnMNsw5WLWIMC0kSRJqKxWBXZqzcfFeHhn2LiVFl7nzkeFG5e4feCsVkpbErByT9Q15aWQIH5kZ2AHQShK3f7eUkE9+pGtTX9p6G4uL2TrGTB1vqUUdm61LYyIyUum3/HtGrVvC4sgT/DDsdgCGNJefWRGRmWpU3mwVV/Hj5eEhfLTT1L+Qtq3IKiwiUpNGVcwfOtP92xkZz/iPlvDYkg08MqIfAOfSsli0+yg/3DeJ7+bdTkxKBhXaRiRK2jp+biz+NT2qStV4eXloCB/uNo1DtUpFJ19vfj8RzoSfl1JcVs79fXrVbhuSGS2qTVuUVzb617wWgVqtIrBLMzb+spdHRnyg06JhRuVCJvbkWEpyTZsgMi2NAUt+YPSyX1ly6h++HzPhqi7Wph2+MiSED/ZUv8/WKhWhbdqwKTrm6narrB+Rnkr/3xYyavUvLI44wcKREyuXaSWJ0at/oe+v39PN25d27p618vWlYSF8GGY+BjrqYmDioqUUlZUzv2+v6n2tWgehtaiDwDZsijL/rMV/DUWLLKxFZtp0NTMp+np2IjI3weytjdXaqtpmMlPpt+I7Rq1fzOIzJ/hhqP6ZW5P++p0xfyxhztbVzO7QnVt9m1WrOXXBykpF3wHt2BN29uo2qmxq/NRyCvPhhftt2breioBACbXBZLCSYvj0DRtmP1iGg2Pt2uGLo0P4eFv17dDBxpovpo7lvc17KCy9rHPL3DEyplI3l//KkvB/+H701XVTtlszaqGivas/Tx5fwmPHfmZum8G0cNDngFZCzW3eHdipiajWZtUYAAiLiGf8B0t4fLE+L3Kxt2Vw59aMfGcRoW/8gL2NNWN7tK+Fl9eJumrRjaVH/4oWmWneZvVnV3g8t7+1hCcXbuChMf0qf7/70xVMe/93Hv5mHXcO7EaPNk1lu2a2ZS4Or4advQ2vfDKN7z/YRFGh6cz6qpjdl1psszbtOyI9jf6//MCoFb+y+PQ/LBxl3L4drK35duR43ti3i4KyK3eZ1qaFy/T26MyZvITKWxuv4qwpDT6gUgu9S09j4OIfGLPsV3459Q/fjzXVu+rOnWtb5qkx7/PIkLd45a4vGDc3hM5965ziW47/thb961zrM72qxmvl/5IkVQghVgDPAj8D9wDvSXLUxQkhEoD2QggHYCjQV5KkIiHEbsDO3MZ0U2rnA4x58iUm36Kfqu/r4kRavvH07E5Nffj4LvlBvu4O9tzWrhUVWi07z8bXaudScwvwc9VfefRxdSItr8o2mvnw0XT9NgYGtaJcqzVZ19PPnUyDUXSAjORsPP3dTctI8kyL6H/OA7DvrxPc+aj+2WND7+zN4Hat+HjHPuYP0J8gm6uDzv4+fDJF9s/NwZ7b2sr+7YzS10F+SSlHzicxMDCAeIOrGZrcAnwN9sHX3P439eHjqQZ1HNSKigrTOtYUFuBncGXYz9GZ1CLj6e16QYddSQm8qVLhbmvPLT5NGdoykJDmrbFVW+FsY8NnIWNY/nc4vi4Gx8fFibSCKvvv58Mnk/T+DQqU979bU1+GtGvNbYEB2FpZ4WRrw4cTR/Ls+i2kVtlvH1cn0vNMp/5f4XjCJZp7uOLmYEdOUQlrj0ay9qh85fnxkf3lK8SNRFP/41Nhr5seGWrRqOdf4s5uBlrkbKYd+vrw6QRdHNrbM6i1HIcnk1PQ5OdzKkW+8r8lKpb7+5hOm0/Nq6JFLubb4kfTzGhRXlUtciMztYoWpVTVIl0ZSdJpkfyMmn0bTxoNeqnUKvqN6sZzh8KY1TVYXwdOzqQWVt++d19I4E1VKO529mSXmN4uCaApKMDP2UB/nJ1IKzC22dnHh8/G6es1pJW8zzviZP0Z1LoVZ9JSjW770xTm428wY8zPyYm0q2jR7sQE3hqoMvE173Iph5IvMqhFAKdiNEZaZDYG/Hz4dKKBFrWR+6OTl1LQ5OUTnizHwNaoWOb3lWNAk1+AX1W7VTXO14fPxhvUgS62dsReqYMAzqSmVXvr47+FokUNr0VBT4XSdGxXQL7672XnVlnOy9aNzNK8qqsDMNi7e7W3NgJoivKN+2+Hmvrvc7ypGoa7rT3ZpcWV7SuzpIitF2IJ9vQjNe08XgYzNDy9ncnMqN3tt1fo1SeQuBgNOdn6NtHECzINZm1lZgjcPYwPh4MjPPCsfGuVJMFjs2zx8pXLlJfDp6/b0H9IBbcOlM8oUvNMcwKT9t3Uh4/vNMi1DPJNK5WKz6eO5c/wKLafiatcJ6Uw31jjaqObg66umwBppbn42OtnaXjbuZJe5dinleSSW1ZESUUZJRVlnMw+T1tnPxKL5Bywn1c7ovKSybos+5OaW4Cvwb09Pm6mfZAhx89dopmnnBfdGticS5l5ZBfKPu84HUe3AP9q173eKFrU8Fo0/qGXuL2fPi/ycXciPbf6eDkRf4nmnq64OdqRU1hSWTa7oJhd4XF0DvDlRPwlMlLz8DKYgeTp40JWeu11Q22l4n+fTGPXxlPs33mmVuukJ2Xh1Uw/IOzZrAmZBjONqkNTUDXXcCathvb91m369m2lUvHdyPGsjznL1nN63cgozcHL1k3vj60bmZeNc7orDPLqwW6DWxurIyM1Dy9f43rNTDPfX9QXTUE+fjXVx2Xj+njDTJ6YkZyNl38Tva/+bmRpcozsZCRn49VUn9N6+buTpTsHv/I3NyOfA5tOEtQjgIiDjeOi4H9ci/51rnWmVwshRF/d92nAPiFEIFTeKz4OuHJPRSIQqlvmgzzl9hzgCmTrhLQ90Ke6jUmStFCSpFskSbrlgpMXLT3caerugrVaxaguQeyKOmdUfvjHixim+2yNjOXNP8NqPeAFEJGkoYXBNkZ3C2LXGeNtjPhgEcPflz/bImJ5a30YYWfijda1slYzaGJPDm0znvZ+aNtpQu/sDUD7HgEU5heTnZZHdnoe6Zeyaap7M1rwwPaVD+jrObgjdzwynAeXbeB44iW5Dtx0/nUOIiza2L+hny8i9DP5s+1MLG9sDGNnVDzuDvY428kPhLe1UtO3dQvOVXnocsQlDS09Deq4axC7zlap448WMexD+bM1IpY3N5iv41PpKbRycae5kyvWKhXjWrdn+4U4ozJe9o6V37t5+aISguzSYj44tpc+y75jwIqFPLrrTw4kJ/LE7o2cTtYQ0MSdZm4uWKtUjOkURFiMsX+hXy0i9Ev5s/VsLK9vDmNndDyfhO1n0Oc/EvrlIp5au4lDCRd5dv0W/XHX7beVWsUoM8e9uYe+c+jQ1BtrtZqcIvnZGk0c7QHwdXMmtHMgm09e/SGZ15X/9rTZ66ZHhlp0zt1LjkNXXRx2DGJnnHG8DPluEYO/lT9bo2N5bVsYO2LjySgsIiWvgFZN5M65b0Bzk4eUg3FMVmpRlbY44sNFDP9A/myLiOWtPwy0yNNAiyb05NC200brHtoWQeiUWwGdFuWV6LQon/TkHL0WDWhn9LDQ7gODSIpLZdeFcwS4udHMRa6Dce2C2JFgrAOeDg6V37v5+CKEuOqJW3iKhpbubvp6bd/epF4H//ATIQvlz5aYWF7dsbNywAtgbPsg/jxr3P5OpWkIcHWnmbNOi9q0Z/t5Y1+97A189fZFIPvaxM4eF92LNGzVVvRv1pL47CxZi9yrxEBsFS36ZhFDdJ+tUbG8tjWMHTFyDGjyq8SATovlOjCw28E0tgZ/v4iQ7+TPluhYXt0eVjngBTC2Y3v+bGy3NoKiRRbQoisDXgBR+Rdpau+Fr10TrISawT7dOZARYbK+o9qOrm5tzC67gmn/3YHtiVfpvz31/be9lTWO1vIt0fZW1tzWNIDo7Ayio5Jp2qwJvn5uWFmpCAntxMF9MdSFwcM6sWt7pNFvbYK0aC4J0lIE5WVwcLeann2Nn0FTWAC6R/MRtllNhy5aHBzlMFv4sTX+LSTGTNG/8fH0JY1xrmUm3xz2ySKG6j7bImN54y99LvTW7cM4l57FkgPGJ5/hqRoCXN1o5qzTzbY16KZ3zboJcCb3Es0dPPG3d8dKqBnu25W9aWeNyvyddpZg9wDUQoWtyppOrs1JKNQ/DHy4X7fKWxsBIi7q8sEmurwoOIjdkbXLi1Jy8una0g873W3bvdu2ICG15kGD68Z/+5aif0WLktRetPByx99DjpcRPYLYE14lXjz18dK+mTfWVmpyCkuws7HCwVZ+mYudjRV927ckLll+wUV05CX8W3rg09QdKys1g0Z24dDu2vdvT75+O4kJ6az99UDNhXVEH42jaVs/fAO8sbK2IuSu/hzccKzG9eRcw7h9m+QaV2nf7w8eTlx2Jj+dOm60Tkx+Iv72XvjotH2QVw8OZZrqt4Paji6ubTiYedpkWVViTifh39JTrldrNYNGd+PQrrM1rlcXwlM1Rnni2LZB7DhXvd519dH1I1X0Lvqf8/i39sanhYfs6+29OLTF+PbNQ1tOEXqnHPbte7aiMK+YrNRcbB1ssHfS5XAONvQI6cj5s6Z3Kvxr/Le16F/nWmd6nQXmCCG+B2KBb4HtuumwAjgFPKgr+yawWAhxWrfseUmSMoQQW4AHhBDhQDTy1NkaqdBKvP1XGD/MmYRKJVh3PJK4tEzu6iUnfSuu8lwFgA/vHMWtrZrj5mBH2LP38lXYQdYdNk6eKrQSb28IY+Fc3TaORRKflsmdveVtrLzKc6wM17W9azzblh0kMTqF0br7hzf9spejOyLoFdqJRYdep6T4Mp8+8Wvl+t++vJLnvrkHa2srUi5k8OkT8iu+H3rnTqxtrFk0W7514FxGFj/NmoRKCNb8E0lceiZ33aKrAzPP8bqCl7Mj700cgVolEEKwJTKG3TEJRqOgV/bhh3tk+5V1fKvOfh2elVYhSSw4sINfRk1BLVSsjDlNbE4mM9p3A2Bp1ClGt2rHzA7BlGu1lFSU82jYnzXafGNLGD9On4RaCNackvd/ag/Zv+Unau+fkV2txDt/hPH9vZNQqwTrjkYSn5rJnX10x/1QOMO6tGV8j46UaysoKSvnmaUbK9f/dPY43BzsKK/Q8vb6MPKKa54+DfD063DkJOTkQsgUeOQemDKmXrtQPf9tgfxX9KhCknh9WxiL7pLjcHV4JHEZmUwLluNl2VWetQTw5vZdfDxuFNZqFRdzcnlho+mr3I20SBhoka4trrxKWzTSojvHs23FIRJjNIye1R+ATb/u5+jOSHoN6cii/QsoKS7j06d+q1z/2/+t4rkv52BtrSYlMdNo2aAJPdn9x3Eqmkq8uieMX8ZPRqVSsepMBLFZmUzvLPv3e0Q4owPbMaNzNyokLSXl5Ty2Rd9mPh8xhj5Nm+FuZ8+Be+bz2eEDrDkRyes7dvHzlMmoVYJVpyOIzcxkWjddvZ66er3aWVnRP6Alr2wzfpV3hSSxYN9OfhkzWdai6NPEZmcyo6NOi86cYlTrIGZ26kbFFS3a8RcA3g6OfDxkFCqhQiUEG+OjCUs8h42k5o1tYfw0VdaM1afkGJjaXadF/9QQA1t38dEEOQaSsvUxUCFJvL49jJ/vlGNr1elIYusQW3IdtOCVLTuuWq4qihZdM/9abnQFraTly5i1vN9tPiqhYnPKES4UpTLWXz4R+CtZfsjvAK8uHM+KpkRb/QvaKiSJBQd38MvIO1ALYdB/BwOwNOokowPaMbNDd33/vWsDAJ72DiwMlR9VYKVS8Uf8GfZcSqBdhcRXn27h3U+moVKr2PrXSS4kZDB2Yg/Zv/UncG/iyNc/zcPB0RZJKzHpzlu5d8Z3FBVdxtbWip69WvHZB5uMfFWr4e5Hynj3RRu0WggZUUHzAIntf8r3Lw4bV8GlRBXfvm+NSi0/rH7+0/K+R0eq2LvDiuattLxwv3xidNfcMiq0Em/9FcaPunxz7Yna55s9WvgzIbgj0Zp01j40A4DPtu/n79jzVEgSr/4dxi8TJqMSBrrZSaebkeGMblNFN7ca6OZwA928W9bNXWV7qJC0fHhmA1/ccg8qIfgz6TjnCtKY1Fy+sLH24hHOF6ZzMD2Gpf0fQ5Ik/kg6yrkC+REStiprensE8m7kOn0MaCXeWRfGd/fJWnQlL7qjr+zrqoPhDOvalnE9O1JeUUFpWTnP/ir7ejpRw/bwWFY+OYNyrZaoS+msOnSa5/tSI4oWXTP/Tl6klXhvZRjfPiznLH8ciiRek8mUAXK8rN4XTmhwW8b1luOlpKyc5xbJ8eLh7Mgn940D5BdtbT4WxYGz8mxzbYWWb975i7e/nYNKrWLb+uNciE9j9B3yXS+bVh3F3cOJL5Y/WKkbE2f24/6JX9CqnS9Dx3UnIUbD1ysfBmDxF9s5VMPbG7UVWr569Cfe3fKyrFU/7+LCmZqfBVYhSSzYK+dFaqFi5Vm5fc/Qte+lkeGMatOOmZ11uUZ5OY9uk+vgFr+mTG7fibMZ6Wy6axYAHxzaRyqJaNHybdwa3ur8IGqhYpvmEIlFGkb76XK6FPlu1n6eXTmRHU1pFW1/vv1suroG4mLtxK+9X+fXC5vZVhHOt29t4K0f56JWCbatPUZiXBqj75I1Y9OKI7h7OvHFqkdwcLJFq5WYOLs/94/9lKLCUp7/aCpdb22Fi5sjv+56gV+/2kE0503q47XdYSyZoMsTI03zxFGB7ZjRRZ97PbZ5I1XRVmj55oVlvL3qCVQqFdt+38+F6BRG332b7Ovivzmy/TS9hnZm0dG3KS2+zCePLQbA3cuFBUvkcFdbqdm15gjHwyJNtmEORYtufERd74WuXFGIAOAvSZKqfx2QBen4yqcNHhmivOYy9aHF4oafNpnwgGXul1Nd00vSq6ewdcNXrl3KtY7Zmse6bndY1Irwp75teKOAyjem9jf3AyO6v1qndrP1n9frZP/f4t/Uo7bvNbwW2ZifqX7NtPjlXM2F6kHUCwENblNdYpnQK3du+Icg2GSpay5UD7QWMBszR9EiS/JvalHorqcskjHHnfNtcJvtFlkm2Xh/2cIGtznjhycb3CZAiU/Da5FXYGbNhepB8Q6vBrd56pkbU4vgxtCjf1OLgh9p+LwIwPfvho/vihoGvepL7JfV3rhUbzp0sdALIO53qLlMHYl+0LPBbQK0e8Myx2tTxO4Gt6loUePCMqMGCgoKjRKhVZ56qKCg8O+jaJGCgkJjQNEiBQWFxoCiRZal3oNekiSdB/6VWV4KCgr15D86dVbRIwWFGwxFixQUFBoDihYpKCg0Bv6jWtRYUGZ6KSjcTCiCqqCg0BhQtEhBQaExoGiRgoJCY0DRIouiDHopKNxMKDNnFRQUGgOKFikoKDQGFC1SUFBoDChaZFGUQS8FhZsIoVxFUFBQaAQoWqSgoNAYULRIQUGhMaBokWVRBr0UFG4mFEFVUFBoDChapKCg0BhQtEhBQaExoGiRRVEGvRQUbia0iqAqKCg0AhQtUlBQaAwoWqSgoNAYULTIogjpPz6qKISYL0nSwpvZruKr4usVRrV7vk4NfnPM+8ISftys3OxxqPh6Y9lVtOi/y40ULze7r5ayq/gqU1ctAkWPGpIbKV5uJLuKrzeWr6BokaVR/dsOXAfmK3YVXy1k90byVUaS6vZRaGhu9jhUfL2x7Cpa9N/lRoqXm91XS9lVfIW6a5GiRw3NjRQvN5Jdxdcby1dFiyyMcnujgsLNhCKQCgoKjQFFixQUFBoDihYpKCg0BhQtsijKoJeCws2Ecr+4goJCY0DRIgUFhcaAokUKCgqNAUWLLMrNMOhlkftubzC7iq+KrzKS1mKmFWrFzR6Hiq83ll1Fi/673EjxcrP7aim7iq+gaNG/z40ULzeSXcXXG8tXRYsszH/+QfYKCgp6RgU8WbeHR5//VHlAooKCQoOjaJGCgkJjoK5aBIoeKSgoNDyKFlmWm2Gml4KCwhWUqbMKCgqNAUWLFBQUGgOKFikoKDQGFC2yKMqgl4LCzYQys1NBQaExoGiRgoJCY0DRIgUFhcaAokUWRfVvO3C9EEK0/Ld9UFD411FehdsoUPRI4aZH0aJGgaJFCjc9ddUiRY8sgqJFCjc9ihZZlP/coJcQoq8QYooQwlv3f1chxO/Avn/ZNbMIIeyEEA8LIb4RQiy68rHAdoKEED9cw/qTDL67N4xXIIQYIYSYJ4QIqPL73GuwOaea362FEMvqaXNbff2pwzbchRC3CiFuu/Jp8I0oYnpdUfTI7DYULboGLdKtb1E9UrTov4eiRWa3oWiRokXKieZ1RtGiardTbz1StEjRIoWa+U8NegkhPgQWAZOBjUKIV4HtwGGg7TXYbS6EWC6E2CuEeEkIYW2wbP01uv0r4AuMAPYAzYD8a/C1qxBimxAiQgjxlhDCRwixBtgJnLkGP18x+L7zGuxUIoR4B3gZ6ALsFEI8arD4kWsw/bgQYn6VbTkCm4Cietr0ugZ/akQIcS/wN7AVeF3397UG35BWW7ePQr2xhB5ZWIugAfVI0SLAMloEFtQjRYv+eyhapGgRihZVT121SNGjenOza5HOJ0vokaJFihYp1MB/7ZleY4DukiSV6Ea6k4GukiTFXqPdRcAa4BAwD9gjhBgnSVImcK3TcQMlSbpDCDFBkqQluqsdW6/B3g/At8BBYCRwAvgdmCFJUsk12BXVfL8WxiEfr3IhxGvA70KI1pIkPXmN2xgKbBFC2EmS9IUQwgtZTHdKkvRCPW26Gl5JqYokSWvrafcKjwO9gEOSJA0WQrRHFtaGRbkqcD2xhB5ZUougYfVI0SLLaBFYVo8ULfrvoWiRokWKFlWHokXXk5tdi8AyeqRokaJFCjXwXxv0Kr4iGJIkZQshohtgwAvAS5Kk73TfHxVCzAT+FkKMB641Qst0f3OEEJ0BDRBwDfZsJUlarPseLYR4BnhBkqSKa7AJYC+E6I48O9BO971S9CRJOlEPm1aSJJXr1s8RQowDFgohVgE29XVUkqQsIcRQYLMQwh+YAHwrSdIX9bUJuAJjMS/0EnCtg14luiQAIYStJElRQoiga7RpiiKo1xNL6JEltQgaVo8ULbKMFoFl9UjRov8eihYpWqRoUXUoWnQ9udm1CCyjR4oWKVqkUAP/tUGvNkKIDQb/Bxj+L0nS+HratdaNSF8R6t+EEBrkkX7H+rsLyALiDvwP2AA46b7Xl6piVwB0FUIIqLfwAaQAn+i+awy+gywmQ+phM14IMUiSpD063yqAeUKIt5CnPtcLg5H+hTo/dwJJV36v52j/BUmS6n0Pey1IEkK4AeuB7UKIbOQrYA2L8jrc64kl9MiSWgQNq0eKFllGi8CyeqRo0X8PRYsULVK0qDoULbqe3OxaBJbRI0WLFC1SqAEh/YdGFYUQg662/ErDrYfdJ4ETVdfXidYHkiQNq49dSyCE2HWVxZIkSfURvpq2aS1JUlnNJU3Wc9D5VGxmWQtJkhLr6c/PV1ks1UcUhRD/SJLUvT7+1GNbg5CvWGyRJOlyQ9oe6Tm/Tg1+S8bChpomfdNhCT1StKjGbf7ntUhn97rokaJF/w0ULVK0SNGi6qmrFoGiR/XlZtciuP56pGhRw6Jo0Y3Lf22mV0J9G+HVkCTp02p+/weot5gK+Z7gCUBT5JH4ZOAPSZKi6mtTkqTB9V23LuiuSAwGpiPf9+1TDzNfSJJ0rxnbzZDv7+5cH98kSbqnPuvVQOXbRnRTW0sN/u8jSdKh+hoWQlROIRZCOAGFwOmGFlNAuYpwfWlwPbKUFkHD65GiRRbTIrCQHila9J9F0aLrgKJFihYp1MhNrUU6vyyuR4oWKVqkYMp/6u2NyNMOARDymzAaBCG/rnaOEGK8kHleCPGXEOJzIYRnPW0+DyxHnt56BDiq+75cCHEtD/JDCOEhhHhUCPG17vOIEKLJtdg0sN1bCPE5cAF5mu9eoH09zVkJIX4TQlTGoRCig87mR9fg41NCiHlmfn9UCPFEPc0uNvh+sMqyb+ppEyHE3UCqECJGCDEKCAfeB04JIabV1261KK/CvZ6sv/KlofTIElqks2sRPVK0yCJaBBbQI0WL/tOsv/JF0SJFi6r8rmhRXbVI0aNrYf2VLzerFulsW0SPFC2qRNEiBRP+a7c3Vk5tFA04zVEIsRL5QYaOgDsQAfwJDACCJUkaWw+bMUCnqlNOhRA2QKQkSfV9dW8HIAz5XvZ/kAW6O/LVjiH1vTohhHgbuBNIBJYB64BjkiS1qo89nU0BfI9cp1OB3sAK4AFJkjZeg90IoEfVUXghhC1wVJKkrvWwWW1sXUusCSFOI1+NcQZOIb8pJV4I4QNsr4+vV2Ok69y63VKUu0iZNltPLKFHltAind0G1yNFiyyjRbr1G1yPFC3676JokaJFihZVT121CBQ9qi83uxbp1m9wPVK0SNEihZr5r93eKFXz/VrpKElSZyGEFZAkSdKVe9K3CCFO1dOmFvBHHo03xE+3rL68CTwuSdJKwx+FEJOBt6n/wwfnA9HIr9n9S5LfYnFNdSzJI67zdVcldiO/WviOa7lV0MC0ybRTSZJKdSJeL5vVfDf3f12okCQpA8gQQhRIkhQPIElSav1dvQr/oUHuGwBL6JEltAgso0eKFllGi8AyeqRo0X8XRYsULVK0qDoULbqe3OxaBJbRI0WLFC1SqIH/2qBXNyFEHvKoub3uO7r/JUmSXOpp9zKygXIhRNW3NdT3FbNPADuFELHARd1vLYBA4JF62gToIknSlKo/SpK0RgjxzjXY9QWGA9OAz4T8IEZ7YXCvc10RQnyJLEQC6AicAKYLIabrfH6svs4KIXwkSUqt+lt97QHNhBBf6Hy98h3d/02vwW6iEOJd5KsIUUKI/7d352GWlPXd/98fWUVABKIgihgXBH8sGiISIS6AIEjABCSCAqPGlcdoJCb6qFGjiUFUFNyiPjNKREGCIgE3TFBcQCABJiAQQXYGZB0hoDJ8f39UtRyanp7eTp9zqt+v66rLPnVX1flWM/2xzn3uuuvDNI/V3Y3maSxzqu6fzf9Pa5r6kUf9yCLoTx6ZRfQli6A/eWQWdZdZZBaZRSthFs2rhZ5F0J88MovMIq1Cpzq9qmq1Ph16zv+QqupbSZ4KPKs9RoDraIZ2ziak755h26Tamr4JfDPJ2sCLgXWA65N8r6oOmsFhz1vJz7P1IeC0JG+lCWmAPwCOBD48w2P+dc/P42udTe0vB94I3An8LbAH8HaaIcqHzeK4E1thoM6XPuVRXzpf+5RHZlF/sgj6k0dmUUeZRWYRZtHKmUXzxiwC+pBHZhFgFmkVOjWn13hJNgPGAvaGWfR2HzpZe1V9YSbHneT91q2qu2a473XARyZqAt5cVY+fVXEPfb/1gDdV1Qfm8rizlWbCwb+lebpIARcDH6yqbw60sAHbY+2Dp/UH/+17v+S94nNkLvJovrOofc8Z5ZFZ1DCLJmYWDY5Z9EATZpFZNM0sAvNoriy0LGr3nbc8MotGi1nUX50a6ZXk7cAaVfW+dtVPaHpn1wC+APzjTI47PjCTrN+srl/NotzJXEIzhHYmPkszDHMin5vhMUmyGs0kiZsB36qq/07yYuAdwMNp7kOfyXEPBf4S2LJd9TOax+R+caa1ArTB+ZDwTPLmqjp6BnV+YxXv9yfTPWZ73HVohkkXcAxwIM39/JcC75vp/6muTPXhcbhJ9gQ+RnPh8rmq+uC49rTtewH/CxxWVf/5kAN1TD/yaABZBDPPI7OIuc+idt85zyOzqLvMIrMIzKKV1mgWzRuzCOhDHplFZtHKmEUP6FSnF3AAsEvP61ur6hltGHyfGXZ6jUmyA7CYJqyS5A7glVV1/gyO9VcrawLWnXGR8Pmqum4l77nPbI4LPJ7msb0fT3I1sBPwt1X19ZkcMMkhNPfM/xXNENcAzwQ+lITZhupK/BVw9Az224nmnv4vA+fQ1DoXlrTHfThwGs3/oRwF7EMzIeUr5uh9GjW3Q2fbv61P0Dx15jrg3CTfqKpLejZ7EfCUdtmR5rx2nNNChlPf8mgus6g9Xj/yyCya3EyzCPqTR0swi7rKLDKLJmMWzSGzaFILPYugP3lkFplFD2EWPVjXOr2oqt77oT/WrluR5OFzcPj/B7yhqs4CSLIzTcDO5JGl/0BzX/NEQ3kfNuMKm0kX96iqq3pXJlkEvJPmMb4zsQOwbVXd394vfgvw5KpaNota3wC8ZFyt/57mCSZfAfoRqDMNwU1oQuNlwEE04fflqrp4lvU8tape2va03wjsVlWV5Cyax+POqT58i/As4OdVdSVAkq8A+9J8CzZmX+CL1dxLfXaSDZJsWlVzPgnksOljHs1lFkF/8sgsmtxsLsj6kUdmUYeZRWbRJMyiuWUWTWKBZxH0J4/MIrNoImZRj651eq2bZI2q+i1AVS0BSLIWMNMnN/b61ViYtsf/YZKZDp/9T+DrE30DkeTVMy0QeAvw3SR7VdX/tMd7O00APHfSPSf3m6qmC7qaR+FePsswBVh/fOi3x7+qHZ7cDzNKlGomifwWzSOQ16IJ1TOTvK+qjpl1UU2Int6GztjruR/nOsffItAMpb625/V1PPQbgom22Yw+PPlkyPQzj+Yyi6A/eWQWTW7Gf9/9zCOzqJPMIrNoMmbR3DKLVm6hZxH0J4/MIrNoImZRj651ep0EfCbJ4VX1vwBJHgEc27bNSJJntj/+NMlnaIZOFs29vWfO8LCLgFtX0rbDDI9JVZ2e5Nc0T/DYD3g18IfAH1fV7TM9LvC0JBe1Pwd4Uvt67DHDM/km5Z4Ztk2q/T+5icIoNENUZ3rctYC9aYJ0C+DjNI+unY3z0k6IWVWv7HmvJwFzPh/Bd+//6rS+RUnyGuA1Pav+uar+uXeTCXYb/7ufyjZdNOd51Kcsgj7kkVnUvyxqjz3XeWQWdZdZZBaZRSsx3Sxqa5ksj8yilVvQWQR9yyOzCLOoZRatRNc6vd5FM1nfNWnuZ4ZmosHPt20zNf4Rqn/X8/NMRw5dNknbTTM5Zs/+30tyGE3Y/xjYtarunc0xga1muf+Ex+wJ6V4Bfn+mB62qlU0QOWNJvkDzlJFvAu+tqv+ei+NW1avb469NM5R4Z5p/Uz8EdpuL95iNNjj/eZJNrqOZR2DM44AbZrBNF/Ujj+Y8i6B/eWQWzX0WQX/yyCzqNLPILDKL5tAq8sgsWrkFn0Xt/nOdR2aRWTQRs6hH2pF6nZLmvvAnty9/XlUz7pHuOebDgP2r6sTZHmsK7/XPVfWaVW854b5jPegB1gJ+C6zggd7+ORuSmmRjmkkoZ/SPKMlTgMfw4GGVAE+geXTxz2dZ4pxJcj8wNg9B7/nOye81yYk03xr8S7vqZcAGVfXS2Ry335KsDlwO7ApcD5wLHFQ999An2Zvm6Sd70Qyr/XhVPWsA5Q7EXOfRfGZR+34zyiOzqH/6mUdmUXeZRWbRXDOLHsosWrWFmkXtvvOSR2bRA02YRWYRQFV1ZgHe1vPzAePa/mEOjv+DOax1w5UsGwHXDfp3OUG9z6b5RuJk4BnAfwPLgJuBPWd4zH+jmXhx/PodgFMHfc7z/Pu9cCrrhnGhCcrLgSuA/9uuex3wuvbn0Dw95ApgKbDDoGuep99L3/JoLrOoPd7I5JFZ1Pffr1nUscUs6tvv1Szq7+/XLOrYYhb17fdqFvX392sWdWDp1EivJP9ZVc8c//NEr2d4/HfR3Md8Ag/0JlNVt83gWCuAq3nwvbRjPf+bVdWas6l1riU5D3gH8EiaYZQvqqqzkzyN5ukYz5jBMf+7qv6/lbQtraptZlX0CEmyBPh0VZ3dvt4ROLSq3jDQwjRj/cyjucyi9ngjk0dmUX+ZRd1jFvWHWdRfZlH3mEX9YRb1l1nUDV2b0ysr+Xmi1zMxNondG3vWFTO7t/lKmnu4rxnfkGT8UNJhsHpVfQcgzZMwzgaoqkuTGf9q156kbbaPLh41OwKHJBn797A58LMkS5n5JJQarH7m0VxmEYxWHplF/WUWdY9Z1B9mUX+ZRd1jFvWHWdRfZlEHdK3Tq1by80Svp3/wqifO9hg9jgYeBTwkTIEj5/B95krvc1TH33s/09/tuUn+oqo+27syyauAhzwiuOP2HHQBmnN9y6M5ziIYrTwyi/rLLOoes6g/zKL+Mou6xyzqD7Oov8yiDuja7Y0raIa0jj329H/HmoC1q2qNGR73bVV1ZPvzAVX11Z62f6iqd8yi5omeCPGpmv1TheZUP363SR4DfA34DQ8E6A7AmsBLqmrZbOuWBqVPfzN9y6L2GEOfR2aRND1mUX+YRdL0mEX9YRZJq9apTq9+6fM96CP5RIi5lOT5NI+ZBbi4qv59kPVIw2oe5i1c0HlkFklTYxb1l1kkTY1Z1F9mkbqia7c39ks/70Hfsqq263n9H0kunOUxR0pV/QfwH4OuQxoB/Z63cEHnkVkkTZlZ1EdmkTRlZlEfmUXqiocNuoAR0c+5wv4rybPHXrRPhPjRLI8pqZv6Om8h5pGkqTGLJA0Ds0jSKnl74xT0a66w9tg/A7bkgYkSNwd+RjMpoU+EkPQ7/cyi9vjmkaRVMoskDQOzSNJU2Ok1YEmeMFl7VV09X7VIWtjMI0nDwCySNAzMIqkb7PSSJEmSJElS5zinlyRJkiRJkjrHTi9JkiRJkiR1jp1ekiRJkiRJ6hw7vSRJkiRJktQ5dnpJkiRJkiSpc+z0kiRJkiRJUufY6SVJkiRJkqTOsdNLkiRJkiRJnWOnlyRJkiRJkjrHTi9JkiRJkiR1jp1ekiRJkiRJ6hw7vSRJkiRJktQ5dnpJkiRJkiSpc+z0kiRJkiRJUufY6SVJkiRJkqTOsdNLkiRJkiRJnWOnlyRJkiRJkjrHTi9JkiRJkiR1jp1ekiRJkiRJ6hw7vSRJkiRJktQ5dnpJkjopyVVJdptg/cVJnjeL434zyaGzqU2SVmYso9JYnOT2JD8ddF2S5tfYdUySdyT53ADef4sklWT1eXq/xyT5QZJfJflw73nPdy3qFv/RSJIWlKp6+iz3f9Fc1SJJ441lVJJdgN2Bx1XV3YOtStKgVNU/DLqGefIa4BZg/aqqQRej7nCklyRJkjR8ngBcZYeXpFHXjlxdVd/DE4BL7PDSXLPTS9OS5G+SXN8OO70sya5JHpbkb5NckeTWJCcm2bBnn1ckubpt+7+9txwlWZLk/T3bPi/JdT2vH5vkX5P8Mskvkrypp+097Xt9sa3n4iQ79LQ/PsnJ7b63Jjm2p+2VSX7W3jLw7SRP6OfvTdJgJXlamyF/Pi6DnpXkvCTLk9yU5CPt+rWT/EubHXckOTfJY9q2M5O8uv35sCQ/SvLRdrsrk/xRu/7aJDd7K6Sk6Wgz6rXA54CdktyV5L1j10jtLT+3tNsdPOh6JfVX+5nnX3peH9Lz2epdE1zX/KS9JrkxybFJ1uzZt5K8Lsn/tJ+DPpEkbdtqSY5q8+VKYO9V1DV2DXRMkjuTXJpk1572M5N8IMmPgP8Ffr+9Rjq33f7cJH/UbrsEOBR4W5t5u40/73Hv/cgkn2/P8fok70+y2kx/x+o2O700ZUm2BA4H/rCq1gP2AK4C3gTsBzwXeCxwO/CJdp+tgU8Br2jbNgIeN8X3exhwKnAhsBmwK/DmJHv0bPYnwFeADYBvAMe2+64G/BtwNbBFu/9X2rb9gHcAfwr8HnAW8OWp/yYkjZIkzwS+A/yfqvrKuOaPAR+rqvWBJwEntusPBR4JPJ4mt14H3LOSt9gRuKjd7niarPlD4MnAy4Fjk6w7ZyckaSG4giZ3flJV61bV37XrNwE2prmuORT45/b6TNIC0H62+iRwMLApzbXKZj2brADeQpMTO9F8fnrDuMO8mOY6ZTvgpTSf6QD+om17BrADsP8UStoRuLJ9v78DTk7P4Aeaz4CvAdYDfgWcBnyc5prpI8BpSTaqqsOALwFHtpl3xire9wvAfTTXWs8AXgi8egr1agGy00vTsQJYC9g6yRpVdVVVXQG8Fvi/VXVdVf0aeA+wf5qJBvcH/q2qftC2vQu4f4rv94fA71XV+6rqN1V1JfBZ4M97tvlhVZ1eVSuA42jCG+BZNJ1sf11Vd1fVvVX1w7bttcA/VtXPquo+4B+A7R3tJXXSLjQd4odW1b9N0P5b4MlJNq6qu6rq7J71GwFPrqoVVXV+VS1fyXv8oqoWtzl0Ak1H2fuq6tdV9R3gNzQXZZI0F97V5sv3aT5AvnTQBUmaN/sDp1bVD6vqN8C7gd/dDther5xdVfdV1VXAZ2gGJvT6YFXdUVXXAP8BbN+ufylwdFVdW1W3Af84hXpubvf5bVWdAFzGg0eILamqi9vPXC8E/qeqjmvr+zJwKbDPdH4B7cj7FwFvbj/n3Qx8lAd/RpR+x04vTVlV/Rx4M02n1s1JvpLksTT3X3+tHUZ7B/Azmg6yx9B0PF3bc4y7gVun+JZPAB47dtz22O9ojztmWc/P/wus3Xa2PR64ug3YiY77sZ5j3gaEB39LIqkbXgf8uKr+YyXtrwKeClzaDrN/cbv+OODbwFeS3JDkyCRrrOQYN/X8fA9AVY1f50gvSXPh9nFzfF1Nc60laWEY/9nqf+n5bJXkqUn+LcmyJMtpvtzfeNwxxn9+GrtGedCxafJl7Li7tLcd3pXk4p5trh83B9f4TOo93mN7j9mz/XQ/gz0BWAO4sefz3GeAR0/zOFog7PTStFTV8VW1M03YFPBPNGH2oqraoGdZu6quB26k6YACIMk6NKMnxtwNrNPzepOen6+lGUHRe9z1qmqvKZR6LbB5Jn6s7bXAa8cd9+FV9eMpHFfSaHkdTRZ8dKLGqvqfqnoZzYXSPwEnJXlE+43le6tqa+CPaIb7HzJvVUvSxB6V5BE9rzcHbhhUMZLm3Y30TBWT5OE8+LPVp2hGTz2lnbrhHTRf7k/12I/veb352A9VdVZ72+G6456CvdnYnGA9+/RmUm+H2A00nyF7bQ5cP8X6xlwL/BrYuOez3PqzfTq3ustOL01Zki2TvCDJWsC9NKMXVgCfBj4wdntgkt9Lsm+720nAi5Ps3E6i+D4e/O/uAmCvJBsm2YRmJNmYnwLL00ye//B2csX/L8kfTqHcn9IE9weTPCLNpNTPads+Dbw9ydgjwR+Z5IBp/0IkjYJfAXsCf5zkg+Mbk7w8ye9V1f3AHe3qFUmen2Sbdn7A5TS3O66Yr6IlaRLvTbJmkl1oOuS/OuiCJM2bk4B92gnh1wTey4M7tdajuW65K8nTgNdP49gnAm9K8rgkjwL+dgr7PLrdZ43289RWwOkr2fZ04KlJDkqyepIDga1p5mGesqq6kWau1g8nWT/NQ9WelGT8bZwSYKeXpmct4IPALTTDYh9N8+3Bx2jmzPlOkl8BZ9NMakhVXQy8kWZy5xtpJrm/rueYx9FMVH8VTXidMNbQzo+zD8195r9o3/dzNBM2Tqpn3ycD17TveWDb9jWaER1faYf9/jfNfeGSOqiq7gB2B16U5O/HNe8JXJzkLpos+/Oqupdm1OlJNBeOPwO+D0z4BCFJmkfLaK6lbqCZ9Pl1VXXpYEuSNF/az1b/h+ahOTfSfLl3M83IJ4AjgIPa9Z+l57PVFHyWZmqHC4H/BE6ewj7nAE+h+Zz2AWD/qppwKpt2/YuBt9Lckvk24MVVdcs0ahxzCLAmcAlNJp5EM7G/9BB58C24Uv8luQp49RSeyiFJkiQgyfOAf6mqKT0FW1L3tU+HvoPmdsZfzPN7H0bzmW7n+Xxfaboc6SVJkiRJ0ghIsk+Sddr5/Y4CltLcNSNpAnZ6SZIkSZI0GvalucX5BppbC/+8vH1LWilvb5QkSZIkSVLnONJLkiRJkiRJnWOnlyRJkiRJkjpn9UEXMFMbb7xxbbHFFoMuQ9IsnH/++bdU1e8Nuo7ZMIuk0WcWSRoWo55HZpHUDaOeRb1GttNriy224Lzzzht0GZJmIcnVg65htswiafSZRZKGxajnkVkkdcOoZ1Evb2+UJEmSJElS59jpJUmSJEmSpM6x00uSJEmSJEmdY6eXJEmSJEmSOsdOL0mSJEmSJHWOnV6SJEmSJEnqHDu9JEmSJEmS1Dl2ekkaWkmuSvKbJBuPW39BkkqyRZIl7TZ39SwXJtml5/Xd7fa922w+qPOS1B1Jtk5yXpLb2+WMJFv3tK+V5NNJbkpyW5JTk2w2yJoljbYkB7W5c1eSG5N8M8nOSd6T5LdJftUulyc5NsmmPfs+L8l1Pa/XTHJykh8lWT/JoUnOT7I8yXVJjkyy+mDOVNKwaj+n3dPm0O1JTkvy+Lat9/PZbUm+m+RpExzjzHbftcatn+jz3YEzrdVOL0nD7hfAy8ZeJNkGePi4bY6sqnV7lu2q6qyx18DT2+026NnmmnmqX1K33QDsD2wIbAx8A/hKT/tfAjsB2wKPBe4AjpnfEiV1RZK/Ao4G/gF4DLA58Elg33aTE6pqPZpMegmwCXB+b8dXz7HWAk4GNgBeWFXLgXWAN9Pk2Y7ArsARfTshSaNsn/az1qbATTz4+ubItm0z4Hrg8707JtkC2AUo4E8mOPb4z3cnzLRIO70kDbvjgEN6Xh8KfHFAtUhaoNpvNN+e5JL2W8nFSdauqjuq6qqqKiDACuDJPbs+Efh2Vd1UVffSdIg9vee4H0tybTuq4vwku8zriUkaGUkeCbwPeGNVnVxVd1fVb6vq1Kr6695t2/UXAwcCvwTeOu5Y6wCnAmsAe1fV3e1+n2q/OPxNVV0PfAl4Tv/PTtKoaq9vTgK2nqDtHuBEYPtxTYcAZwNLaD7f9Y1DVTVazlsMS08adBWaX2cDr0iyFXA5zcXbzsD7B1qVFg5zRw84GNgDuJvmw+I724UkdwDr0nyh+O6efT4PfCzJ2Civg4Fv9rSfS/Mh9k6aUWFfTbJFewEpaYxZDM2o0bWBr011h6pakeQUmuwasxZNDt0JHFBVv57kEH8MXDyDWqWR9dXLv8rpV54+6DJGRtuJfiDN57bxbY+guWvn5+OaDgE+ApwDnJ3kMVV1Uz/qc6SXRsvSk2DZ0kFXofk3Ntprd+BSmiGyvY5IckfP8oV5r1DdZe7oAcdW1bVVdRvwAXpuva6qDYBHAocD/9Wzz+XANTS5tRzYiqaTa2y/f6mqW6vqvqr6MM2H0S37fSLSyDGLATYCbqmq+6a53w00tzuOWY+mA+0Lk3V4JVkE7AAcNd1CpVF2+pWnc9ltlw26jFHw9fZLv+U0n9M+1NN2RNv2K5oBC68Ya0iyM/AE4MSqOh+4Ajho3LF7P9/dMpsiHeml0bPJNrDotEFXobnwykx1y+OAH9DcJjTRrY1HVdU756os6SHMnW6behZd2/Pz1TRzdP1OVd2d5NPAL5NsVVU3A5+iGZmxEc0IsbfRjLDYESDJW4FXt8cqYH2auXQkjbcQsnjyPLoV2DjJ6tPs+NoMuK3n9S3Am4AvJrmrqr49fock+wEfBHarqll94JRG0ZYbbsniPRcPuoyBWcKSqWy2X1WdkWQ1mnkFv9/zMJ+jquqd7cPDvkXzhd5FbduhwHd6suX4dt1He449Z5/vHOklaehV1dU0E9rvRTPhqiQNwuN7ft6cZvTEeA+jmQh67AmN2wFLquq2dkTFMcCzkmzczt/1N8BLgUe1o8XupJkbTJLG+wlwL7DfVHdI8jBgH+Cs3vVVdTLwF8BJSZ4/bp89gc/STFK94IfXSZpcVa1oM2UFzaiu3rZraKZv+FiShyd5OM11z3OTLEuyDHgLsF2S7fpRn51ekkbFq4AXjE20KkkD8MYkj0uyIfAO4IQkuyd5RpLVkqxPMz/F7cDP2n3OBQ5J8sgkawBvAG5ov91cD7iPZpLp1ZO8m2aklyQ9RFXdSTNn4CeS7JdknSRrJHlRkiN7t23XbwV8meYJjh+Z4Hhfprkl+5Qkz2n3ewHN5PV/VlU/7fMpSeqANPYFHsUD1z+/U1Xfpfmi8DU0nfYraCa9375dtqLpmD9k/L5zwU4vSSOhqq6oqvNW0vy2JHf1LA7Dl9QPxwPfAa5sl/cDG9B8qLyTZk6KJwN79kxEfwTNyIz/oenc2gt4Sdv2bZpbHS+nuV3yXh58C6UkPUhVfQT4K5qHaPySJjMOB77ebnJgkrtoHpzxDZpbIv+gqiYamUpVfYHmyY6nJXkW8C6a+QlP77mu+uZE+0pa8E5t82Y5zVynh7ZPjZ3Ih2imeHgNsLiqrqmqZWMLcCxwcJI5n4LLOb0kDa2q2mIl6+/jgdt/DmuXyY5zFd4uJGn2zq2qfxy37qvtMqGqupXmiY0Tta2gGcX6qp7VR060rSSNqaov0YzGGu/HwHtWse+ZwOPGrfssze2MAM8fv48kjbeyz2lt22ETrDsBOGGSfU4ETmxfPmT/2XCklyRJkiRJkjrHTi9JkiRJkiR1jrc3SpIkrcJkw/glSZI0nBzpJUmSJEmSpM6x00uSJEmSJEmdY6eXJEmSJEmSOsdOL0mSJEmSJHWOE9lrNJy3GJaeBMsugk22HXQ1krpoLGfGM3ckLUQry8RBMYulzvjq5V/l9CtPH3QZK3XpbZfytA2fNugyNEcc6aXRsPQkWLZ00FVI6jJzRpIeYCZK6pPTrzydy267bNBlaIFwpJdGxybbDLoCSV23yTaw6LQHr1u892BqkaRBmygTB8Usljplyw23ZPGeiwddxoQWfWvRoEvQHHKklyRJkiRJkjrHTi9JkiRJkiR1jp1ekiRJkiRJ6hw7vSRJkiRJktQ5dnpJkiRJkiSpc+z0kiRJkiRJUufY6SVJkiRJkqTOsdNLkiRJkiRJnWOnl6ShleSqJLv1vP7zJLcneW6SSnJXu9yU5N+S7D7B/ve02yxLsiTJuvN/JpJGnXkkaRiMy5Kx5di2bdMkn01yQ7v+yjZrnta2bzEur+5KcmHbdliSFe265UkuTPLiQZ6rpOE1StdFdnpJGglJDgU+AewNXN2u3qCq1gW2A74LfC3JYeN23afdZnvgGcDb56VgSZ1lHkkasH2qat2e5fAkGwE/BtYBdgHWA54JfB/Yfdz+G/Tsu13P+p+0GbUB8EngK0k26PfJSBptw35dZKeXpKGX5DXAh4E9qurH49urallVfQx4D/BPSR6SbVW1DPg2TahK0oyYR5KG1FuA5cArquqKatxRVYur6pjpHKiq7geOAx4BPKUPtUrqiFG4Llq9HweV+mrZUli896Cr0Px5PbAzsGtVXbiKbU8GPgRsCfystyHJ44AXAf/ejyLVceaOGuaRNEhm8WR2A77WdljNSpLVgEXAb3lg1Ia0oFx222Us+taiQZcx7EbiushOL42WbfYfdAWaf7sD/wEsncK2N7T/u2HPuq8nKWBdmiD9u7ktT51n7ugB5pE0KGZxr68nua/n9V8DGwPLxlYk+RPgi8BqNLctvrBn+1uSjP38/qo6qv352UnuoBnhdR/w8qq6uT+nIA2vvX5/r0GXMCpG4rrITi+Nlh0WNYu64ZVZ9TbwOuBdwOeSvKqqapJtN2v/97aedftV1RlJngscT3NReMcMqtVCZe5039SyCMwjaXAWShZPLY/2q6ozelckeTWw6djrqvoGsEG7/uXj9t+4qu7joc6uqp3byaQ/TzM32InTKV/qggOeegAHPPWAQZcxUEtYMpXNRuK6yDm9JA27m4FdaS68PrmKbV/Sbn/Z+Iaq+j6wBDhqfJskTZF5JGlYfQ/Yb6L5cqarqu4C3gC8IskzZl2ZpK4aiesiO70kDb2qugF4AbBnko+Ob0/ymCSH0wyJffsk81kcDeyeZPt+1Sqp28wjSUPqI8CjgOOSPCmN9ZjhxNBVdSvwOeDdc1eipK4Zhesib2+UNBKq6tokLwB+AGzSrr4jzaQUdwPnAQdU1bcmOcYvk3yRZhjun/W7ZkndZB5JGrBTk6zoef3dqnpJkmcDfw/8EFgPuKn9+fUzfJ+jgSuSbFtVF82mYEndNezXRXZ6SRpaVbXFuNe/AB7fvnzZdPdv1830wk/SAmYeSRoGE2VJT9sNwKsmab8KmHDSsKpaAg+exKeqrgPWmn6VkrpulK6L7PSSJEmShsV5i2HpSYOuApZdBJtsO+gqJPXJVy//KqdfefpA3vvS2y7laRs+bSDvrYXHOb0kSZKkYbH0JFg2lae/S9LMnX7l6Vx220PmFJc6x5FekiRJ0jDZZBtYdNpga1i892DfX1Lfbbnhlizec/G8v++iby2a9/fUwuVIL0mSJEmSJHWOnV6SJEmSJEnqHDu9JEmSJEmS1Dl2ekmSJEmSJKlznMhew2Vlj+n2sdmSJEmSJGkaHOml4eJjuiVJkiRJ0hxwpJeGz0SP6fax2ZIkSZIkaRoc6SVJkiRJkqTOsdNLkiRJkiRJnWOnlyRJkiRJkjrHTi9JkiRJkiR1jp1ekiRJkiRJ6hw7vSRJkiRJktQ5dnpJ6oQkhyX54aDrkCRJkiQNBzu9JA2tJFcluSfJXT3LsTM81plJ7m2PcWeSHyTZpqf90CTnJ1me5LokRyZZfe7ORtIoa/PoN0k2Hrf+giSVZIskS9ptejPrwiS79Ly+u92+d5vNB3VekkaLWSRpmCXZOsl5SW5vlzOSbN3TvlaSTye5KcltSU5Nslk/a7LTS9Kw26eq1u1ZDh+/wTQ6pw6vqnWBjYAzgeN62tYB3gxsDOwI7AocMZvCJXXOL4CXjb1oO84fPm6bI8dl1nZVddbYa+Dp7XYb9GxzzTzVL6kbzCJJw+oGYH9gQ5rPVd8AvtLT/pfATsC2wGOBO4Bj+lmQnV6SRk57K+OPknw0yW3Aex5oyjHtSK5Lk+w60f5VdR9N+G7ds+5T7cXgb6rqeuBLwHP6fCqSRstxwCE9rw8FvjigWiQtXGaRpIFqR52+Pckl7YiuxUnWrqo7quqqqiogwArgyT27PhH4dlXdVFX30nwme3rPcT+W5Nr27pvzk+wy21q9dUfSyp23GJaeNOgqVmZHmpB8NLAGcGC77iSabxX+FDg5yROr6rbeHZOsCRwMnD3J8f8YuLgPdasrhvvvQ/1xNvCKJFsBl9Pkzs7A+wdaldQvy5bC4r0HXYUeyizSyLvststY9K1Fgy5Ds3MwsAdwN3Aq8M52IckdwLo0A63e3bPP54GPJRkb5XUw8M2e9nOB9wF30owK+2qSLdoOshlxpJeklVt6UnPBO1hfT3JHz/IX7fobquqYqrqvqu5p190MHF1Vv62qE4DLgN6r9Y+3AXwXcDjw3oneMMkiYAfgqH6ckDpiOP4+NP/GRljsDlwKXD+u/YhxmfWFea9Qmgvb7A+bbLPq7TQoZpFG1l6/vxdbbrjloMvQ7B1bVde2Aww+QM9t11W1AfBIms9c/9Wzz+XANTSZtRzYiqaTa2y/f6mqW9vPeB8G1gJm9Y/FkV6SJrfJNrDotP4c+5WZylb7VdUZvSuSHAZcO8G217dDacdcTXOv+Jg3VdXnkjyM5tbFbyR5blVd1HPs/YAPArtV1S1TOg8tXP38+9D8mVoWjTkO+AHN8PyJbic6qqreORdlSQO1w6Jm0fyaeh6ZRRpZBzz1AA546gGDLkOTWMKSqWzW+3ls/OcuquruJJ8Gfplkq6q6GfgUsDbNHMt3A2+jGem1I0CStwKvbo9VwPo0d/HMmCO9JI2qmmDdZkl6rxY3p5lM8cE7Vt1fVWcBPwdeOLY+yZ7AZ2kmz3cIj6SHqKqraSaR3gs4ecDlSFqgzCJJQ+DxPT9P+LmLps9pHWDsCY3bAUuq6raq+jXNJPbPSrJxO3/X3wAvBR7Vjha7k2ZusBlzpJekLnk08KYknwT2oxkue/pEGybZiWYi+4vb1y+gmbz+JVX103mpVtKoehXNxdjd03h6rCTNNbNoHhx/zjWccsH4u0dH32W3PZdnPOP7gy5Do+2NSf4N+F/gHcAJSXYHbgEuAh5BM9fg7cDP2n3OBQ5Jcma73xtopq25Jcl6wH3AL4HVk/wtzUivWXGkl6Rhd2qSu3qWr02y7TnAU2iC9gPA/lV1a0/7sWPHobkt4J1VNTZx4rto7js/vee9eidVlCQAquqKqjpvJc1vG5dZ3iYtqS/MovlxygXXc8mNywddhjSMjge+A1zZLu8HNgC+TDNC6wqaJzfu2TMR/RHAvcD/0HRu7QW8pG37Ns2tjpfT3C55LxNPaTMtfiMgaWhV1RaTNC8Zt+2SnnWHT3Cs563ivZ4/ndokLSwry6Oquo8Hht0f1i6THecqZjlMX9LCZRYNxtabrs8Jr91p0GXMqUXf+udBl6DRd25V/eO4dV9tlwm1AxIOXknbCpoRrK/qWX3kbIt0pJckSZIkSZI6x04vSZIkSZIkdY63N0qSJEmSJGlKVjENzVBxpJckSZIkSZI6x04vSZIkSZIkdY6dXpIkSZIkSeocO70kSZIkSZLUOU5kr9GxbCks3nvQVSwsyy6CTbYddBXScDlvMSw9yb8PSZIkacjZ6aXRsM3+g65AkhpLT2o64SVJkiQNNTu9NBp2WNQsml+OrJMmtsk2g65AkiRJ0io4p5ckSZIkSZI6x04vSZIkSZIkdY6dXpIkSZIkSeocO70kSZIkSZLUOU5kr/44b3HzhLPpWnYRbLLt3NcjDdjx51zDKRdcP+gyNJll+3LC5qcMugpJfTQSWWwWSZI0Zxzppf5YehIsWzroKqShccoF13PJjcsHXYYkLWhmsSRJC4sjvdQ/m2wDi06b3j6L9+5PLdIQ2HrT9TnhtTsNugytzOL3D7oCSfNg6LPYLJIkac440kuSJEmSJEmdY6eXpKGV5Kok9yS5q2c5tm3bNMlnk9zQrr8yyZIkT2vbt0hS4/a9sG07LMmKdt3yJBcmefEgz1XScGvzaLcJ1q+f5Ogk17SZ8vP29cYT7Zfkz5PcnuS581m/pG5LsnWS89p8uT3JGUm27mlfK8mnk9yU5LYkpybZbJA1Sxpdo3RdZKeXpGG3T1Wt27McnmQj4MfAOsAuwHrAM4HvA7uP23+Dnn2361n/k6paF9gA+CTwlSQb9PtkJHVHkjWB7wFPB/YE1gf+CLgVeNYE2x8KfALYu6q+P4+lSuq+G4D9gQ2BjYFvAF/paf9LYCdgW+CxwB3AMfNboqQuG9brIju9JI2itwDLgVdU1RXVuKOqFlfVtC7gqup+4DjgEcBT+lCrpO46BNgceElVXVJV91fVzVX191V1eu+GSV4DfBjYo6p+PIhiJY2+dpTE25Nc0o6OWJxk7fY66KqqKiDACuDJPbs+Efh2Vd1UVffSdIg9vee4H0tybTsC/vwku8zriUnqgqG8LnIie0mTW7Z0GB8wsBvwtbbDalaSrAYsAn4LXD3b42mBGc6/D82f3YBvVdVdq9ju9cDOwK5VdWH/y5LUN+ctbp5SPlgHA3sAdwOnAu9sF5LcAaxLM7jh3T37fB74WJKxUV4HA9/saT8XeB9wJ82osK8m2aLtIFNHXXbbZSz61qJBl6HuGMrrIkd6SVq5bfZvnsI5WF9PckfP8hc0w/aXjW2Q5E/atl8l+c64/W/p2feInvXPbi8M7wWOAl5eVTf3+2TUIcPx96HB2gi4cQrb7Q6cDSztbzmS+m7pSc0XHoN1bFVdW1W3AR8AXjbWUFUbAI8EDgf+q2efy4FrgOtpRstvRdPJNbbfv1TVrVV1X1V9GFgL2LLfJ6LB2ev392LLDf1PrDk1lNdFjvSStHI7LGqWfnllprLVflV1Ru+KJK8GNh17XVXfADZo17983P4bV9V9Exz37KraOcm6NN9+7gKcOJ3ytcD1++9D82dqWTSRW+nJokm8DngX8Lkkr2pvP5I0qjbZBhad1p9jTy2Pru35+WqaObp+p6ruTvJp4JdJtmq/1PsUsDbNh9K7gbfRjPTaESDJW4FXt8cqmrl4Np7VuWioHfDUAzjgqQcMugwNqSUsmcluQ3ld5EgvSaPoe8B+SWadYe3w2zcAr0jyjFlXJmkhOQPYI8kjVrHdzcCuNJ3rn+x7VZK67vE9P29OM4n9eA+jeeDP2BMatwOWVNVtVfVrmknsn5Vk43b+rr8BXgo8qh0tdifN3GCSNFVDeV1kp5ekUfQR4FHAcUmelMZ6wPYzOVhV3Qp8jgfPfSFJ462RZO2xheYhGNcC/5rkaUkelmSjJO9IslfvjlV1A/ACYM8kHx1A7ZK6441JHpdkQ+AdwAlJdk/yjCSrJVmf5lrpduBn7T7nAockeWSSNWi+8Luhqm6heQr2fcAvgdWTvJtmpJckTWYkrovs9JI07E5NclfP8rX2Au3ZNPNx/RD4FXABzUXb62f4PkcDeyXZdg5qltRNpwP39Czvopm09VLguzTz5PyU5pagc8bvXFXX0lzg7Z/kH+epZkndczzwHeDKdnk/sAHwZZoRWlfQPLlxz56J6I+guW76H5rOrb2Al7Rt36a51fFymtsl7+XBt1BK0kRG4rrIOb0kDa2q2mKSthuAV03SfhUrGZZfVUvgwTeqV9V1NJO2StJDTJZHwJvbZZX7VdUvePCtSZI0XedW1fgPiF9tlwm1o9oPXknbCpprqt7rqiNnW6Sk7hql6yJHekmSJEmSJKlzHOklSZIkSRpZx59zDadccH1fjn3JjcvZelOnOJNGlSO9JEmSJGkEVNUWVXXGoOsYNqdccD2X3Lh80GVIGkKO9JIkSZIkjbStN12fE16705wf98DP/GTOjylp/jjSS5IkSZIkSZ1jp5ckSZIkSZI6x04vSZIkSZIkdY5zekmStCrnLYalJzU/L7sINtl2sPVIUhf1Zu2w8v8DJGmkONJLkqRVWXoSLFs66CokqdvMWknSHHOklyRJU7HJNrDoNFi896ArkaTuGsvaYeX/B0jSSHGklyRJkiRJkjrHTi9JkiRJkiR1jp1ekiRJkiRJ6hw7vSRJkiRJktQ5dnpJkiRJkiSpc+z0kiRJkiRJUufY6SVJkiRJkqQ5l+SwJD8c1Pvb6aW5cd5iWLz3A8uyiwZdkTogyVVJdptg/fpJjk5yTZK7kvy8fb3xRPsl+fMktyd57nzWL6lbkhyU5Lw2d25M8s0kOyd5T5LfJvlVu1ye5Ngkm/bs+7wk1/W8XjPJyUl+1GbaoUnOT7I8yXVJjkyy+mDOVNKwmuwaJ0m1+XRXkpuS/FuS3SfY/552m2VJliRZd/7PRNIoG5clY8uxMzzWmUnubY9xZ5IfJNmmp31W10h2emluLD0Jli0ddBVaAJKsCXwPeDqwJ7A+8EfArcCzJtj+UOATwN5V9f15LFVShyT5K+Bo4B+AxwCbA58E9m03OaGq1gM2BF4CbAKc39vx1XOstYCTgQ2AF1bVcmAd4M3AxsCOwK7AEX07IUkjr/caB7i6Xb1BVa0LbAd8F/haksPG7bpPu832wDOAt89LwZK6Zp+qWrdnOXz8BtPonDq8zaWNgDOB43raZnWNZKeX5s4m28Ci05plk20HXY266xCaD5svqapLqur+qrq5qv6+qk7v3TDJa4APA3tU1Y8HUayk0ZfkkcD7gDdW1clVdXdV/baqTq2qv+7dtl1/MXAg8EvgreOOtQ5wKrAGTWf83e1+n6qqs6rqN1V1PfAl4Dn9PztJo2hV1zhVtayqPga8B/inJA/53FdVy4Bv03R+SdKstbcy/ijJR5PcRpNBbVOOaUdyXZpk14n2r6r7gK8AW/esm9U1ksPmNXyWLW1ukZQmthvwraq6axXbvR7YGdi1qi7sf1nSKpy3uBkVq1G0E7A28LWp7lBVK5KcAuzRs3ot4JvAncABVfXrSQ7xx8DFM6hVUr8N/lp1Otc4JwMfArYEftbbkORxwIuAf+9HkVpAvMbRg+1I03H1aJov+Q5s151EM1rrT4GTkzyxqm7r3bG9q+dg4OxJjj+tayRHemm4bLN/M2JMWrmNgBunsN3uNGHpfbcaDt4GPso2Am5pv32cjhtobnccsx5NB9oXJuvwSrII2AE4arqFSuqz4bhWnc41zg3t//Zm0deT/Aq4FrgZ+Lu5LU8Ljtc4C9XXk9zRs/xFu/6Gqjqmqu6rqnvadTcDR7cj4k8ALqO5NXvMx5PcAdwFHA68d6I3nMk1kiO9NFx2WNQsWhhemZnsdSvwkDlyJvA64F3A55K8qqpqJm8mzamx28A1XFadRbcCGydZfZodX5sBvd9g3gK8Cfhikruq6tvjd0iyH/BBYLequmUa7yVpPvT7WnVq10bTucbZrP3f3izar6rOaB/wczzNyIs7ZlCt9ACvcbplalm0X1Wd0buinUPw2gm2vX5cVl0NPLbn9Zuq6nPtrdjPAb6R5LlV9bsn5M30GsmRXpJGzRnAHkkesYrtbqaZ5HAXmsmmJWmmfgLcC+w31R3ai7Z9gLN611fVycBfACclef64ffYEPkszMaxfmUtamelc47yk3f6y8Q3tA36W4KhSSXNroo74zZL09qRtzgMjUR/YsZmv+Szg58ALx9bP5hrJTi9Jw26NJGuPLTRP8rgW+NckT0vysCQbJXlHkr16d6yqG4AXAHsm+egAapfUAVV1J/Bu4BNJ9kuyTpI1krwoyZG927brtwK+TPMEx49McLwv0wzdPyXJc9r9XkAzMeufVdVP+3xKkkbcqq5xkjwmyeE0ty6+varuX8mhjgZ2T7J9v2qVJJr5vd7UXicdAGwFnD7Rhkl2opnI/uL29ayukby9UdKwGx+GH6CZzP69NI/ifhRwE3AKcM74navq2jYof5Dk3qrysdySpq2qPpLkJuCdNBdevwLOp8mkFwIHtsPuQ/PN5XeBP2g/mE50vC+0k7WeluSFNLcqPRI4veeL0LOq6kX9OytJo6z3Goemkx3gjnY0xd3AeTQPzfjWJMf4ZZIv0mTQn/W7ZkmdcmqSFT2vv0vzmWwi5wBPoZnq4SZg/6q6taf92CRHtz8vA95ZVd9sX8/qGslOL0lDq6q2mKT5ze2yyv2q6hfA4+eoLEkLVFV9iabDa7wf88AjuVe275nA48at+yzNUH2A54/fR5LGW8U1zsumu3+77vVzUZukhWMVn9OWjNt2Sc+6wyc41vNW8V6zukay00uSJEkaJsuWwuK9V71d1yy7CDbZdtBVSJI6xE4vSZIkaVhss/+gK5AkqTPs9JIkSZKGxQ6LmmUhWoij2yRJfeXTGyVJkiRJktQ5jvSSJEnSUDr+nGs45YLr5+x4l9y4nK03XX/OjidJkoabI70kSZI0lE654HouuXH5oMuQJEkjypFekiRJGlpbb7o+J7x2pzk51oGf+cmcHEeSJI0GO70kSZquZUunP+Hysotgk237U48kSeqbS25cbqf5ZJbtywmbnzLoKqQJ2eklSdJ0bLP/oCuQJEnzZN/tNxt0CZJmwU4vSZKmY4dFzTJd0x0ZJkmSBu6gHTfnoB03H3QZw23x+wddgbRSTmQvSZIkSZKkznGklyRJkiRpXh1/zjWccsH1c3KsS25cztabrj8nx5LULY70kiRJkiTNq1MuuJ5Lblw+6DIkdZwjvSRJkiRJ827rTdfnhNfuNOvj+GRFSSvjSC9JkiRJkiR1jp1ekiRJkiRJ6hw7vSRJkiRJktQ5dnpJkiRJkiSpc+z0kjS0klyV5J4kdyW5PclpSR7fti1J8pu27bYk303ytAmOcWa771rj1vfuP7YcOF/nJmm0mEeShkGbRbtNsH79JEcnuabNkJ+3rzeeaL8kf97m0XPns35J3TDuumhsObZt2zTJZ5Pc0K6/sr3WeVrbvkWSGrfvhW3bYUlWtOuWJ7kwyYtnU6udXpKG3T5VtS6wKXATcExP25Ft22bA9cDne3dMsgWwC1DAn0xw7COrat2e5YR+nICkzjCPJA2dJGsC3wOeDuwJrA/8EXAr8KwJtj8U+ASwd1V9fx5LldQt+4y7djk8yUbAj4F1aK571gOeCXwf2H3c/hv07Ltdz/qftNdUGwCfBL6SZIOZFmmnl6SRUFX3AicBW0/Qdg9wIrD9uKZDgLOBJcCh/a1Q0kJhHkkaMocAmwMvqapLqur+qrq5qv6+qk7v3TDJa4APA3tU1Y8HUaykTnsLsBx4RVVdUY07qmpxVR2zqp17VdX9wHHAI4CnzLSg1We6o7RKy5bC4r0HXYU6Isk6wIE0HxrHtz0CeBnw83FNhwAfAc4Bzk7ymKq6qd+1aoStLLeWXQSbbNu/42ukmEdSH5mTM7Eb8K2qumsV270e2BnYtaou7H9ZWlD821VjN+BrbYfVrCRZDVgE/Ba4eqbHsdNL/bHN/oOuQN3x9ST3AesCNwN79LQdkeRwmmH8VwP7jjUk2Rl4AnBiVd2S5ArgIOCjE+wPcF9VbdzH89Cw63dumYtdYB5J/WROztRGwPlT2G534D+Apf0tRwuOf7sL1dh10Zi/BjYGlo2tSPInwBeB1WhuW3xhz/a3JBn7+f1VdVT787OT3EEzwus+4OVVdfNMi7TTS/2xw6JmkSbzyqx6G9ivqs5oe/r3Bb6fZOyWoqOq6p1JNge+BWwJXNS2HQp8p6puaV8f367r/ZB5VFW9c7anoY6YLLfm4ptLc3F4TS2LwDyS+sucnE4e9bqVZq7BVXkd8C7gc0leVVU1kzeTHsK/3e6Zxue03hVJXk1PHlXVN4AN2vUvH7f/xlV1Hw91dlXtnGRdmjlSd6GZOmJGnNNL0kioqhVVdTKwgmZofm/bNcBfAh9L8vAkDwdeCjw3ybIky2juL98uyXbjjy1J02EeSRoyZwB7tLdXT+ZmYFeaD5Cf7HtVkhai7wH7JZl1X1N7y/YbgFckecZMj2Onl6SRkMa+wKOAn41vr6rvAjcArwH2o/kwujXNZNLbA1sBZ9HMqyNJM2YeSRqwNZKsPbbQTPR8LfCvSZ6W5GFJNkryjiR79e5YVTcALwD2TPLRCY4tSbPxEZrro+OSPKm9ZlqPhz7gZ0qq6lbgc8C7Z1pQ529vPP6cazjlgusHXUb3LduXEzY/ZdBVqJtOTbICKJp5cg6tqot77v/u9SGaoL0cWNyOuPidJMcCH0/yN32uWVI3mUeShsHp415/gGby6PcC36X5wHkTcArNwzMepKquTfIC4AdJ7q2qt/e5XkndNHZdNOa7VfWSJM8G/h74IbAeTR79kOZhGjNxNHBFkm2r6qJVbTxe5zu9Trngei65cTlbb7r+oEuRNE1VtcUkbYdNsO4E4IRJ9jmRB+4Hf8j+krQy5pGkYTBZFgFvbpdV7ldVvwAeP0dlSVpgVnFddAPwqknarwIm/MawqpYAS8atuw5Ya/pVNjrf6QWw9abrc8Jrdxp0Gd22+P2DrkCSJEmSJOl3nNNLkiRJkiRJnWOnlyRJkiRJkjrHTi9JkiRJkiR1jp1ekiRJkiRJ6hw7vSRJkiRJktQ5dnpJkiRJkiSpc+z0kiRJkiRJUufY6SVJkiRJkqTOsdNLkiRJkiRJnWOnlyRJkiRJkjrHTi9JkiRJkiR1zuqDLkCSJEnz5/hzruGUC64fdBlTcsmNy9l60/UHXYYkSRpRjvSSJElaQE654HouuXH5oMuQJEnqO0d6SZIkLTBbb7o+J7x2p0GXsUoHfuYngy5BkiSNMEd6SZIkSZIkqXPs9JIkSZpDSQ5L8sNB1yFJkrTQ2eklaeQk2TrJeUlub5czkmzd075Wkk8nuSnJbUlOTbLZIGuWNNqSXJXkniR39SzHzvBYZya5tz3GnUl+kGSbnvZDk5yfZHmS65IcmcQpKSSNz6Lbk5yW5PFt25Ikv2nbbkvy3SRPm+AYZ7b7rjVufe/+Y8uB83VukkZHm0W/SbLxuPUXJKkkW6wkUy5MskvP67vb7Xu32Xwua7XTS9IougHYH9gQ2Bj4BvCVnva/BHYCtgUeC9wBHDO/JUrqoH2qat2e5fDxG0yjc+rwqloX2Ag4Eziup20d4M00+bYjsCtwxGwKl9Qp+7T5sSlwEw++xjmybdsMuB74fO+OSbYAdgEK+JMJjn3kuJw7oR8nIKkTfgG8bOxF+wXew8dtMz5Ttquqs8ZeA09vt9ugZ5tr5rJIO70kDa32G4S3J7mk/UZycZK1q+qOqrqqqgoIsAJ4cs+uTwS+XVU3VdW9NB1iT+857seSXNuOojg/yS7zemKSOqO9lfFHST6a5DbgPQ805Zh2JNelSXadaP+quo8mo7buWfep9oLwN1V1PfAl4Dl9PhVJI6a9xjmJnvzoabsHOBHYflzTIcDZwBLg0P5WKKnjjqPJlDGHAl8cUC0r5VB5jbbzFsPSkwZdhfrrYGAP4G7gVOCd7UKSO4B1aTrw392zz+eBjyUZG+V1MPDNnvZzgfcBd9KMCvtqki3ai0dp/phhXbEjTcfVo4E1gAPbdSfRjNb6U+DkJE+sqtt6d0yyJk1GnT3J8f8YuLgPdS9Il9y43KdCqhOSrEOTNw/JjySPoBmB8fNxTYcAHwHOAc5O8piquqnftc4H/7aleXc28IokWwGX0+TRzsD7B1rVOI700mhbehIsWzroKtRfx1bVte0HxQ/QM4S2qjYAHgkcDvxXzz6XA9fQDOtfDmxF08k1tt+/VNWtVXVfVX0YWAvYst8nIj2EGTZqvp7kjp7lL9r1N1TVMW2m3NOuuxk4uqp+294edBmwd8+xPt523N9Fk2HvnegNkywCdgCO6scJLTT7br8ZW2+6/qDLkGbr621+LAd2Bz7U03ZE2/Yrmg+frxhrSLIz8ATgxKo6H7gCOGjcsY/oybhb+ncKc8u/bWlgxkZ77Q5cSvP5q9cR466dvjDfBTrSS6Nvk21g0WmDrkIz8cpMZatre36+mmaOrt+pqruTfBr4ZZKtqupm4FPA2jRz5dwNvI1mpNeOAEneCry6PVYB69OMxpDmnxk2eFPLIoD9quqM3hVJDuPBOTXm+vYW7DHj8+tNVfW5JA+juXXxG0meW1UX9Rx7P+CDwG5VNTIfPofZQTtuzkE7zun8uNKcOvF1U9psv6o6I8lqwL7A9/PAA32Oqqp3thNBf4vmS72xXDkU+E5Pnhzfrvtoz7GPqqp3zvI05p1/29LcmmIWQdPp9QOa6WUmurVx4JniSC9Jw+7xPT9vTjOJ/XgPo5n4eewJjdsBS6rqtqr6Nc0Er89KsnE7f9ffAC8FHtWOFruTZm4wSZqJmmDdZkl6c2XC/Kqq+6vqLJpbkF44tj7JnsBnaSasdjigpIeoqhVVdTLN3KY7j2u7hmYKh48leXiSh9Nc+zw3ybIky4C3ANsl2W6+a5fUDVV1Nc2E9nsBJw+4nAnZ6SVp2L0xyeOSbAi8Azghye5JnpFktSTr08xNcTvws3afc4FDkjwyyRrAG2huP7oFWA+4D/glsHqSd9OM9JKkufRo4E1J1khyAM1t1qdPtGGSnWgmor64ff0Cmsnr/6yqfjpP9UoaMWnsCzyKB66BfqeqvkvT2f4aYD+azrGtaSa3354ml87iwRNRS9J0vQp4QVXdPehCJmKnl6RhdzzwHeDKdnk/sAHwZZoRWlfQPLlxz56J6I8A7gX+h6Zzay/gJW3bt2ludbyc5naje5n41iRJGu/UJHf1LF+bZNtzgKcAt9DMR7h/Vd3a037s2HFobg14Z1WNPXDjXTTzFZ7e8169D+OQtLCd2mbHcpp8ObSqVvawiw/RTPPwGmBxVV1TVcvGFuBY4OAkTnsjaUaq6oqqOm8lzW8bd+0079M1GG6Sht25VfWP49Z9tV0m1H6wPHglbStovo14Vc/qI2dbpKRuq6otJmleMm7bJT3rDp/gWM9bxXs9fzq1SVo4JsuiqjpsgnUnACdMss+JwInty4fsL0kTWVkWVdV9PDBtzGGsIleq6ir6PM2MI70kSZIkSZLUOXZ6SZIkSZIkqXO8vVHS0FrF7USSJEmSJK2UI70kSZIkSZLUOXZ6SZIkSZIkqXPs9JIkSZIkSVLn2OklSZIkSZKkznEie82dZUth8d7z/J4XwSbbzu97SlqY+pFxZpgkSZLUN3Z6aW5ss/+gK5Ck/jHjJEmSpJFjp5fmxg6LmmW+zffIMkkLU78yzgyTJEmS+sY5vSRJkiRJktQ5dnpJkiRJkiSpc+z0kiRJkiRJUufY6SVJkiRJkqTOsdNLkiRJkiRJnWOnlyRJkiRJkjrHTi9JkiRJkiR1jp1ekiRJktQxSQ5L8sNB1yFJg2Snl6Shl+SgJOcluSvJjUm+mWTnJO9J8tskv2qXy5Mcm2TTnn2fl+S6ntdrJjk5yY+SrJ/k0CTnJ1me5LokRyZZfTBnKmlYJbkqyT1tDo0tx7Ztmyb5bJIb2vVXJlmS5Glt+xZJaty+F7ZthyVZ0a5bnuTCJC8e5LlKGl6TZdEMjnVmknvbY9yZ5AdJtulp9xpJ0kqNymc0O70kDbUkfwUcDfwD8Bhgc+CTwL7tJidU1XrAhsBLgE2A83tDtedYawEnAxsAL6yq5cA6wJuBjYEdgV2BI/p2QpJG2T5VtW7PcniSjYAf02TJLsB6wDOB7wO7j9t/g559t+tZ/5OqWpcmmz4JfCXJBv0+GUkj6yFZNH6DaXw4PLzNn42AM4Hjetq8RpI0oVH6jGanl6ShleSRwPuAN1bVyVV1d1X9tqpOraq/7t22XX8xcCDwS+Ct4461DnAqsAawd1Xd3e73qao6q6p+U1XXA18CntP/s5PUEW8BlgOvqKorqnFHVS2uqmOmc6Cqup/mA+cjgKf0oVZJHdWOGv1Rko8muQ14zwNNOaYdyXVpkl0n2r+q7gO+Amzds85rJEkPMWqf0RyeqtG3bCks3nvQVag/dgLWBr421R2qakWSU4A9elavBXwTuBM4oKp+Pckh/hi4eAa1SjNjho263YCvtR1Ws5JkNWAR8Fvg6tkerysuuXE5B37mJ4MuQxoFO9J0XD2a5gPkge26k2hGS/wpcHKSJ1bVbb07JlkTOBg4e5Lje420Csefcw2nXHD9oMuQ+m2kPqPZ6aXRts3+g65A/bURcEv77eN03EAzlHbMejTh/LLJwjTJImAH4NXTLVSaETNs1Hw9SW8e/TXNB8llYyuS/AnwRWA1mtsWX9iz/S1Jxn5+f1Ud1f787CR30Izwug94eVXd3J9TGC37br/ZoEuQhtFEWfRb4IaeEab3tXlzM3B0VRVwQpK3AnvzwG2MH09yFM2tRPfQdIw9hNdIU3PKBddzyY3L2XrT9QdditRPI/UZzU4vjbYdFjWLRtMrs6otbgU2TrL6NEN1M6D3G8xbgDcBX0xyV1V9e/wOSfYDPgjsVlW3TOO9pJkzw4bDqrNozH5VdUbviiSvBn43P0VVfQPYoF3/8nH7b7ySLDu7qnZOsi7weZq5wU6calFddtCOm3PQjpsPugxp3pz4uiltNlEWHQZcO8G217cdXmOuBh7b8/pNVfW5JA+juXXoG0meW1UX9Rx7P7xGmrKtN12fE16706DLkGZlFVk0Up/RnNNL0jD7CXAvsN9Ud2gv2vYBzupdX1UnA38BnJTk+eP22RP4LM3EsEtnWbOkheV7wH5t9sxKVd0FvAF4RZJnzLoySQtNTbBus/QMMaWZbPqGh+xYdX9VnQX8HPjdCFWvkSRNYKQ+o9npJWloVdWdwLuBTyTZL8k6SdZI8qIkR/Zu267fCvgyzdNBPjLB8b4MHA6ckuQ57X4voJkY8c+q6qd9PiVJ3fMR4FHAcUmelMZ6wPYzOVhV3Qp8jib7JGm2Hg28qb1OOgDYCjh9og2T7EQzkf3F7WuvkSQ9xKh9RrPTS9JQq6qPAH8FvJPmiR/X0oTi19tNDkxyF3AH8A2a4bZ/UFUP+RazPd4XaJ4aclqSZwHvAh4JnJ7krnb5Zv/OSNIIO7UnJ+5K8rV2qP2zab7x/CHwK+ACmnkqXj/D9zka2CvJtnNQs6TueUgWTbLtOTRPg70F+ACwf9u5PubYsePQzPP1zqoauw7yGknShEbpM5pzekkaelX1JZqe/vF+zAOP5F7ZvmcCjxu37rM0Q2UBnj9+H0kar6q2mKTtBuBVk7RfBUw4cVhVLQGWjFt3Hc0TjSTpQSbLIh6aJUt61h0+wbGet4r38hpJ0kqNymc0R3pJkiRJkiSpc+z0kiRJkiRJUufY6SVJkiRJkqTOsdNLkiRJkiRJnWOnlyRJkiRJkjrHTi9JkiRJkiR1zuqDLkCSJEmStPBccuNyDvzMTwZdxpy55MblbL3p+oMuQ1IPO70kSZIkSfNq3+03G3QJkhYAO70kSZIkSfPqoB0356AdNx90GXOqS6PWpK5wTi9JkiRJkiR1jp1ekiRJkiRJ6hw7vSRJkiRJktQ5dnpJkiRJkiSpc+z0kiRJkiRJUufY6SVJkiRJkqTOsdNLkiRJkiRJnWOnlyRJkiRJkjrHTi9JIyfJmklOSnJVkkryvHHtz0/yH0nuTHLVBPtv0bb/b5JLk+w2T6VL6hjzSNIwMIskDYNhzCI7vSSNqh8CLweWTdB2N/D/gL9eyb5fBv4L2Aj4v8BJSX6vH0VKWhDMI0nDwCySNAyGKovs9JI0tNpvCN6e5JIktydZnGTtqvpNVR1dVT8EVozfr6p+WlXHAVdOcMynAs8E/q6q7qmqfwWWAn/Wtj8pyb8nuTXJLUm+lGSDvp6opKFnHkkaBmaRpGEwSlm0+izPdSRccuNyDvzMTwZdhqSZORjYg+ZbgVOBd7bLTD0duLKqftWz7sJ2PUCAfwR+AKwP/CvwHuDNs3hPwCySOsA8kjQMOpNFXWS+agEZiSzq/EivfbffjK03XX/QZUiauWOr6tqqug34APCyWR5vXeDOcevuBNYDqKqfV9V3q+rXVfVL4CPAc2f5nmaR1A3mkaRh0Iks6iLzVQvMSGRR50d6HbTj5hy04+aDLkPSBE583ZQ2u7bn56uBx87ybe+i+Wag1/rArwCSPBr4OLALTcA+DLh9lu9pFklDbIpZBOaRpD5bSNdGXWS+qiu6lEWdH+klaeQ9vufnzYEbZnm8i4HfT7Jez7rt2vXQDJktYNuqWp9mEsbM8j0ldYN5JGkYmEWShsFIZJGdXpKG3RuTPC7JhsA7gBMAkqyVZO12mzWTrJ0kbdvD2rY1mpdZO8maAFV1OXAB8Hft+pcA29LcEw7NtwZ3AXck2YyVP1lE0sJjHkkaBmaRpGEwEllkp5ekYXc88B2aJ3xcCby/XX8ZcA+wGfDt9ucntG1/3L4+neZbh3vaY4z5c2AHmuGwHwT2b+8LB3gvzVND7gROA07ux0lJGknmkaRhYBZJGgYjkUWdn9NL0sg7t6r+cfzKqtpiZTtU1ZlMMtS1qq4CnreStouBPxi3+sOrLlPSAmAeSRoGZpGkYTASWeRIL0mSJEmSJHWOnV6SJEmSJEnqHG9vlDS0JhsaK0nzyTySNAzMIknDYJSyyJFekiRJkiRJ6hw7vSRJkiRJktQ5dnpJkiRJkiSpc+z0kiRJkiRJUufY6SVJkiRJkqTOSVUNuoYZSfJL4OpB1zFDGwO3DLqIWfIchsOon8OWVbXeoIuYjRHNolH/dzOmC+fhOQyHhZJFXfhvNRUL5Txh4ZzrQjlPGPE8GtB1UVf/fXTxvDyn0THSWdRr9UEXMFNV9XuDrmGmkpxXVTsMuo7Z8ByGw6ifQ5LzBl3DbI1iFo36v5sxXTgPz2E4LJQs6sJ/q6lYKOcJC+dcF8p5wujn0SCui7r676OL5+U5jY5Rz6Je3t4oSZIkSZKkzrHTS5IkSZIkSZ1jp9dg/POgC5gDnsNwGPVzGPX6R1VXfu9dOA/PYTh04RymwvPsnoVyrgvlPGFhnetc6ervrIvn5TmNjs6c18hOZC9JkiRJkiStjCO9JEmSJEmS1Dl2evVRkj2TXJbk50n+doL2RyY5NcmFSS5OsmgQdU5mVefQbvO8JBe05/D9+a5xMlOpv93uD5OsSLL/fNY3FVP4d3Rwkova5cdJthtEnZOZwjkkycfb9ouSPHMQdXaNGTQ8zKLhsBCyqAt/91PVlXxYlS7kx1R1IWemYiFkUT90Md+6mmNdzK0u5tOCyaKqcunDAqwGXAH8PrAmcCGw9bht3gH8U/vz7wG3AWsOuvZpnsMGwCXA5u3rRw+67unU37PdvwOnA/sPuu4Z/Df4I+BR7c8vAs4ZdN0zOIe9gG8CAZ49bOcwiosZNDyLWTQcy0LIoi783c/xuQ59PszFefZsN5T5Mcf/TYc6Z+bwPEc6iwb4exupfOtqjnUxt7qYTwspixzp1T/PAn5eVVdW1W+ArwD7jtumgPWSBFiXJpjvm98yJzWVczgIOLmqrgGoqpvnucbJTKV+gP8D/CswTLWPWeU5VNWPq+r29uXZwOPmucZVmcp/h32BL1bjbGCDJJvOd6EdYwYND7NoOCyELOrC3/1UdSUfVqUL+TFVXciZqVgIWdQPXcy3ruZYF3Ori/m0YLLITq/+2Qy4tuf1de26XscCWwE3AEuBv6yq++envCmZyjk8FXhUkjOTnJ/kkHmrbtVWWX+SzYCXAJ+ex7qmYyr/DXq9iqY3fphM5Ryme55aNTNoeJhFw2EhZFEX/u6nqiv5sCpdyI+p6kLOTMVCyKJ+6GK+dTXHuphbXcynBZNFqw+6gA7LBOvGPypzD+AC4AXAk4DvJjmrqpb3ubapmso5rA78AbAr8HDgJ0nOrqrL+13cFEyl/qOBv6mqFc2XQkNnKufQbJg8nyZgd+5rRdM3lXOY8nlqysyg4WEWDYeFkEVd+Lufqq7kw6p0IT+mqgs5MxULIYv6oYv51tUc62JudTGfFkwW2enVP9cBj+95/Tiabx16LQI+WFUF/DzJL4CnAT+dnxJXaSrncB1wS1XdDdyd5AfAdsAwBPFU6t8B+EobthsDeyW5r6q+Pi8VrtpUzoEk2wKfA15UVbfOU21TNdV/R6s8T02LGTQ8zKLhsBCyqAt/91PVlXxYlS7kx1R1IWemYiFkUT90Md+6mmNdzK0u5tPCyaLpTgLmMrWFpkPxSuCJPDAx3NPHbfMp4D3tz48Brgc2HnTt0zyHrYDvtduuA/w38P8Nuvap1j9u+yUM2SSKU/xvsDnwc+CPBl3vLM5hbx48SeJPB133qC9m0ODrn855jNveLBrcOYx0FnXh736Oz3Xo82EuznPc9kOXH3P833Soc2YOz3Oks2iAv7eRyreu5lgXc6uL+bSQssiRXn1SVfclORz4Ns2TEf5fVV2c5HVt+6eBvweWJFlK8w/pb6rqloEVPc5UzqGqfpbkW8BFwP3A56rqvwdX9QOm+N9gqE3xHN4NbAR8sv225L6q2mFQNY83xXM4nebpID8H/pfmmzrNghk0PMyi4bAQsqgLf/dT1ZV8WJUu5MdUdSFnpmIhZFE/dDHfuppjXcytLubTQsqitD14kiRJkiRJUmf49EZJkiRJkiR1jp1ekiRJkiRJ6hw7vSRJkiRJktQ5dnpJkiRJkiSpc+z0kiRJkiRJUufY6aU5kWRFkguSXJzkwiR/leRhbdsOST4+yb5bJDlo/qqV1FVmkaRhYBZJGgZmkQSpqkHXoA5IcldVrdv+/GjgeOBHVfV3U9j3ecARVfXivhYpqfPMIknDwCySNAzMIsmRXuqDqroZeA1weBrPS/JvAEme237bcEGS/0qyHvBBYJd23VvabxXOSvKf7fJH7b7PS3JmkpOSXJrkS0nStv1hkh+332D8NMl6SVZL8qEk5ya5KMlrB/U7kTT/zCJJw8AskjQMzCItVKsPugB1U1VdmWbo7KPHNR0BvLGqfpRkXeBe4G/p+RYhyTrA7lV1b5KnAF8Gdmj3fwbwdOAG4EfAc5L8FDgBOLCqzk2yPnAP8Crgzqr6wyRrAT9K8p2q+kU/z13S8DCLJA0Ds0jSMDCLtBDZ6aV+ygTrfgR8JMmXgJOr6rr2i4BeawDHJtkeWAE8taftp1V1HUCSC4AtgDuBG6vqXICqWt62vxDYNsn+7b6PBJ4CGKjSwmIWSRoGZpGkYWAWaUGx00t9keT3acLwZmCrsfVV9cEkpwF7AWcn2W2C3d8C3ARsR3ML7r09bb/u+XkFzb/hABNNThfg/1TVt2dxKpJGmFkkaRiYRZKGgVmkhcg5vTTnkvwe8Gng2Br3pIQkT6qqpVX1T8B5wNOAXwHr9Wz2SJpvBe4HXgGstoq3vBR4bJI/bN9jvSSrA98GXp9kjXb9U5M8YvZnKGkUmEWShoFZJGkYmEVaqBzppbny8HYo6xrAfcBxwEcm2O7NSZ5P8w3AJcA3gfuB+5JcCCwBPgn8a5IDgP8A7p7sjavqN0kOBI5J8nCae8V3Az5HM7T2P9vJFH8J7Ders5Q07MwiScPALJI0DMwiLXgZ18krSZIkSZIkjTxvb5QkSZIkSVLn2OklSZIkSZKkzrHTS5IkSZIkSZ1jp5ckSZIkSZI6x04vSZIkSZIkdY6dXpIkSZIkSeocO70kSZIkSZLUOXZ6SZIkSZIkqXP+fyPWnqky7+hkAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABL0AAAJRCAYAAACgF8ViAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydZ3QUVQOGn9lNJ5X0hBJ6r9JFCb0LAlJVBGyo2AuKigUVUUSxoCgoKNLBQu+994QSkhDSe+9ld74fs2R3kw0kuPu5wn3O2QPZvfPOre8tc2dGkmUZgUAgEAgEAoFAIBAIBAKB4E5C9W9HQCAQCAQCgUAgEAgEAoFAIDA3YtFLIBAIBAKBQCAQCAQCgUBwxyEWvQQCgUAgEAgEAoFAIBAIBHccYtFLIBAIBAKBQCAQCAQCgUBwxyEWvQQCgUAgEAgEAoFAIBAIBHccYtFLIBAIBAKBQCAQCAQCgUBwxyEWvQQCwW0jSdJSSZJSJEkKreJ3SZKkhZIkRUiSdEGSpI7/7zgKBIK7A+FHAoHAGhBeJBAIrAHhRXrEopdAIPgn/AIMusnvg4Emus+TwKL/Q5wEAsHdyS8IPxIIBP8+vyC8SCAQ/Pv8gvAiQCx6CQSCf4AsyweAjJsEGQEslxWOAe6SJPn/f2InEAjuJoQfCQQCa0B4kUAgsAaEF+kRi14CgcCSBAKxBn/H6b4TCASC/zfCjwQCgTUgvEggEFgDd40X2fzbERAIBP8/tElN5ZqEV/uHP4Wy3fUGi2VZXlwDCcnEdzWKg0AguPP4F7wIhB8JBIIK1NSLQIyNBAKB+RFeZFnEopdAcBehRVuj8DrjrOnE0pA4oK7B33WAhH+gJxAI7gD+BS8C4UcCgaACNfUiEGMjgUBgfoQXWRZxe6NAcBehkbU1+piBv4BHdW8H6QZky7KcaA5hgUDw3+Vf8CIQfiQQCCpQUy8SYyOBQGAJhBdZFrHTSyC4i9CaeceqJEkrgWDAS5KkOGA2YAsgy/L3wBZgCBABFABTzBoBgUDwn8TcXgTCjwQCQc0RXiQQCKwB4UWWRZLlO/K2TYFAYIL8xPo1avC1/KNN3estEAgE/wjhRQKBwBqoqReB8COBQGB+hBdZFrHTSyC4i9CIRW6BQGAFCC8SCATWgPAigUBgDQgvsixi0UsguIuwxNZZgUAgqCnCiwQCgTUgvEggEFgDwossi1j0EgjuIjTCUAUCgRUgvEggEFgDwosEAoE1ILzIsohFL4HgLkJcRRAIBNaA8CKBQGANCC8SCATWgPAiyyIWvQSCuwhxv7hAILAGhBcJBAJrQHiRQCCwBoQXWRax6CUQ3EVo/+0ICAQCAcKLBAKBdSC8SCAQWAPCiyyLWPQSCO4ixP3iAoHAGhBeJBAIrAHhRQKBwBoQXmRZxKKXQHAXoRF+KhAIrADhRQKBwBoQXiQQCKwB4UWWRSx6CQR3EWLrrEAgsAaEFwkEAmtAeJFAILAGhBdZFrHoJRDcRWiQ/u0oCAQCgfAigUBgFQgvEggE1oDwIssiFr0EgrsIrdg6KxAIrADhRQKBwBoQXiQQCKwB4UWWRSx6CQR3EeIqgkAgsAaEFwkEAmtAeJFAILAGhBdZFrHoJRDcRQhDFQgE1oDwIoFAYA0ILxIIBNaA8CLLIha9BIK7CK0sDFUgEPz7CC8SCATWgPAigUBgDQgvsixi0UsguIsQVxEEAoE1ILxIIBBYA8KLBAKBNSC8yLKIRS+B4C6iVFb/21EQCAQC4UUCgcAqEF4kEAisAeFFlkUsegkEdxHiKoJAILAGhBcJBAJrQHiRQCCwBoQXWRax6CUQ3EVoZNW/HQWBQCAQXiQQCKwC4UUCgcAaEF5kWcSil0BwF6FFGKpAIPj3EV4kEAisAeFFAoHAGhBeZFnEopdAcBchts4KBAJrQHiRQCCwBoQXCQQCa0B4kWURi14CwV2E2DorEAisAeFFAoHAGhBeJBAIrAHhRZZFLHoJBHcRWnEVQSAQWAHCiwQCgTUgvEggEFgDwossy3920Uub1FQ2t+bBInMrKszt2tfsmpc/aGR2TQCHJMu8LlXSmF+z0N8CohbCKd4y+Xppzks1ckiNuF/c7FjCi5oeeNTckgA0nmMZkwt7vZbZNeVcW7NrAuBoft9QO5aZXRNAU2J+37CNtze7JkD4TOFF/zaW8CKABpsfN7um5ynLtO/MnhbwuEw782sCk4MPmF3zeEaQ2TUBwpO8za5Z3zvD7JoAu3t/IbzoX8ZSXtRw+zSza7aYFW92TYDEBxuYXTM/wOySADRamW52zfxG7mbXBFCVWaRqkV3f/Esi574R4yJr4j+76CUQCGqO2DorEAisAeFFAoHAGhBeJBAIrAHhRZZFLHoJBHcR4s0gAoHAGhBeJBAIrAHhRQKBwBoQXmRZxKKXQHAXoZHF/eICgeDfR3iRQCCwBoQXCQQCa0B4kWURi14CwV2EuF9cIBBYA8KLBAKBNSC8SCAQWAPCiyzLbS16SZKkAUIMvloly/JcSZJsgA+Ah4B83W9rZVn+qIrjRgJBwJ/ANcAR2CTL8qu3Ey9DZs2FfUehtgf8/cvt64SehNXfg1YDPQfD4HHGv+fnwrIvIDURbG1h8isQGKT85uF4H41rz2LJMWe2rTjM2q93VNJ/+qOxdO7biuLCEuY/v5zIkFgAfjk5h4L8IrQaLZoyLS8MnAvApFeHMujhnqTYlgCw9dpVRjZtiVqSWH0lhEXnThjpd/Ovy+KBI4nLzQZgW1Q4C88cxV6tZvUD47FXq1FLKrZGXWXBqSMA9GxUn1mDglGpVKw7E8qPh0+azJvWAb6snjael9dtYfvlcOzUan6bMhY7tRq1SsWOy+F8ve9oefiejevz1pBgVJKi+9PBqnVXPTmel9dsYcelcPxcnZk7ehBezk7IMqw5FcKvx84C0KtuEO/27KOk/3IIi85WSH9AXRYPMkj/tXAWnj6Kfy0Xvug7GG+nWmhlmZWXLvBzyJny4yyh27NJfd4cEoxapWLd6VB+OlBF+gN9WfnUeF5ZvYUdF8MBmPNgf3o1a0hGfgEjvv7V5HHVQXuH3S/+X/AiMI8f3e/XkLfbD0QtSayJOscPV45UCtPVuz6z2vfHVqUms7iAifsq15V77m3C9DeGoFKp2LbhNGuWGj9MuU6QF698OIpGLQJY9vVO1i87DICtnQ2f//w4tnZq1GoVB3dd5Lfv9ujj59+Q2Z37oZJUrI44x/cXjxnHzbcei3uNJi5P12Ziw/g6RNGe2rwz4xq3QwbCslJ57cgmirn9dmivVrN6hM7fVCq2XrvKgpP6/OoV2IB3u/RFLalYHX6eRSHHjXX96rK4z2ji8rIU3eirLDyvHO9qZ8/cHoNp5uGFLMPrh7dwPi/GZHm902GAEvdr5/jhytFKYbp61+PtDgOwUamU8tr7W6UwvQIa8G6nfkpcI86zqEK+dvOtx+LgUfp8jbnKQl2+TmvRmXGN2yr5mpnKa0c2o9Udd1+D+rzdT/GjNedDWXzMtB+18fNl7aPjefHPLWwLU/zIxd6ejwf3p4m3J8gyM7fsNHnszRBe9N/yol6BDZjdrS9qlcSqsAssulC5zfzYfxSxuVkAbLsezsJzSps5NPYp8ktL0MhaNFqZ4X8tB6BHy/q8OjYYtaRi4+FQftlhXAd7tW3IM8N7oJVlNFqZz9fu41xkAnY2an56ZSx2Nkr73n02nO836dvX/f4Nmd3JwIsuVfAiHxNeFGrgRY0MvOjoJkqA++sFMfu+3qgkidWXQvn+jLEXdQ2sw+IhI4nL0XvR1yeV837aZyB9ghqSXljAoJXLjI5LOJvHmaUpyFqZRn3daTnK0+j3knwNR79KoCCtDK1GpsWI2jTs4w7AsW8TSTiVh4ObmiFfNjQ67h6P5jzdaBQqScW2pGOsjd1l9PvoOn3o7XMPAGpJTV0nX8YfnUVeWQEvNZ1Al9qtyCrNY/rpuZjCXP1RRTrXbs6zTUaiQsWWxGOsitlj9PvYur3p69tRF28V9Wr5MvrQu+SWFdxSuyqEF/3HvCigQv8dWsGLfE303xeO0NC1Nt/0eqA8XJCLBwVlpZT0KmDbyqOs/da4jQA8/cFoOvdpqczRXlpBZGgcgQ19eHPRY+Vh/Ot58evnW/hjyT4eeXUI3Qe2QauVSVFp+Ov4RZ4a3A2VSsXGo6H8vNPY44LbNOSZoT2QZZkyrcxn6/dx7loCAFvem0p+cSlarZYyrcykz34vP+6+hgb997mb9N/+uv77jwr99xDj/juX9NseG3r5uvHaR6Px8HJG1spsWX+KP1fo/bhLhyBemNYHlUpi064QVmww9s7+97dg0oNdACgoKmH+D7uIvJ4KwJofnqCgsAStVkaj0fLEa8oYqUvHIGY80ReVSmLzzgv8vs5Ys1+vFkwc3RWAwqISvvhuJ5HXU7GzVbNw7gRsbZVx7P7DV/n598Plx/VoUZ/Xxyjz341HqiivYQbltc6gvN6vUF7zfqem3GleZG3c7k6vQlmW25v4fg7gB7SRZblIkiQX4JWbHSdJUhBwUJblYZIkOQJnJUnaKMvyYf4BIwfDxFEw8+Pb19Bq4Pdv4aVPwMMLPp4B7bpBQH19mK2roG4jeGY2JMbAym/h5U8BVDSpPZsLyVOYc18Lvto+k+PbLxBzNan82M59WxHQwIdp3WbT/J4GPDdvAi8Nnlf++8xRC8jJyKcif/ywmzn+Uagkib3jpvHw5rUk5efy16iH2Xk9kogs47dwnEyKY9q2jUbfFWs0TPx7DQVlpdioVKx7YAL7YqIIS07l3SF9mPrrBpJzcln7xET2hEUSmWb8lh2VJPFqv54ciowu/65Eo+GxZesoKFU0V0wZy4HwKM7HJ6GSJN4Z1odpyxTdNU9NZO+VSCJTK+u+MqAnhyP0uhqtzLxtB7iUmIKTnS3rn57EkchoLklpfHBfPx7+W5f+0br0Z1ZIf2Ic07Yap79M1jLnyD4upqVQy9aWv8c8wsG4aCIy01FJktl1kxKyeXt4Hx7/WUn/6qcnsvey6fS/PLAnh8Ojjb7fePYSK46dZ+6YgfwT7sCrCFbvRfDP/UglSbzXcTCT968gqTCHDf2msTvhKhE5aeVhXGzteb/jIKYcXEliQQ617Z0q66gknn1rOG89+TNpyTksXPk0x/ZdJuZaanmY3JxCFs3dTPc+LYyOLS0p443Hl1JUWILaRsX8ZU9w6tBVrlyIU9pMlwE8snsVSQU5/Dn4MXbFhRORXaHNpMTx+L61Rt/5OjrzWPNO9P/7R4o1ZXxz30iGB7Vkw4Ww226HxRoNE/8y8LeRir+dTU5U4tq1Pw/vWE1SQS5/DZvMzpiIynFNjmXa7vWV8nB2l77sj7/GM/v+wFalwtHGFiq8ZFElSbx3zyAm7/udpMIcNvafyu6E8Mrldc8gphxYRWJBDp6mykuXrw/vWqXEdfBj7KwiX6ftXWciX++h318/6fJ1BMODWvJn7FUlfgP68NiqDSTl5rL+sYnsCY8kIr2yH73WuycHo4z96O1+wRy4dp0Zf2zCVqXCwbbmb+ITXlT1cdbmRSpJ4sMe/Zi0bY3SFh94lF0xEYSbGGtM3Vm5zQCM37KKzOJCI803xvfhmYUbSM7M5beZE9l/IZKoJH0dPBEWy/4LyiSnSaAXcx8fyuj3l1FSpuGpL9dRWKy07yWvjuXwxShCopSxxgedB/DIHp0XDdJ5UU6FuKZW4UXNOtF/k86LeipetDHjKh/06ssjf64jKS+XP8dOYldUBBGZxu3lZGIcj2/6o1La118JZXnIWeb3G2z0vVYjc/rHZHq/WxdHT1t2vHGdwM7OuNXVv2E1fFsmbnXt6fVWXYqyy9j8/DXq3+eG2laiYbAbTQd7cGxhgnF5IfFs44d4K+Q70oqz+KrDKxxPDyGmIFkfp7g9rI9TFpS61m7FyDrB5OkWjnYmn+CvhIO82uxhk2Vprv6oki4Szzcdxevnvie1OJvvOr3E0bSLRBvEe03sXtbE7gWgu2dLRtft9Y8WvEB40c2Os0Yv+qCbQf89dDI7Y6vov/cYe9G1nAyG6FbXbFQqwia9wuRdayh65jRfbX6V4ztCiQk3mKP1aUlAA2+m9fyQ5h2DeO6Tsbw0/Avir6Xw3EBlrqZSSfx66kOObDsPwPrv9/Dr51sA6P3lg8wa15dxn64gOSuXFa9NZH9IJNcMPO54WCz7QnQeF+DFvKlDeXCOfmH8iYVryco3fiOtUf+dc4v+O9hE/91f139v1Pfffv9gbKjVaPhx/lYiLifi6GTH16ue4ezRCC5Tikol8fKT/XjpvbWkpufy47yHOXwikutx+vJKTM7mubdXkZdfTNeODXh9+gCeemNF+e8vvLOG7FyDvkMl8eLT/XnlnTWkpufywxePcPh4JNGxxprPv7lS0bynAa8+N4Dpr66gpFTDS7NWU1hUilqt4ptPJ3D89DUuhSljwzfH9uHpbzbcfnl9Vbm8asId6EVWhdlyV5IkJ+AJYIYsy0UAsiznyrL8XnU1ZFkuBM4Bgf80Pp3bgbvLP9OICgOfAPD2Bxtb6BwM5ytcrE+Igebtlf/714O0ZMjJBFf7thSWRVNUFktZqYb9f5yi26B2Rsd2G9SO3WuVK4FXTkfh7OqEh49rtePX3seP6JxMYnOzKdVq+TviCgOCGlX7+IKyUkAxfxuVChmZtoF+xGRkEZelaG65GEbf5pU1H+7Snh2XI8jINx5sFJQaaKpV3HixbNs6Ot3MbEo1WraEhNHHlG639uy8FEG6gW5qXj6XElMU/ZJSIlMz8HV1VtKffXvpTy3I52KaoplfWkpkZgZ+tZwBLKLbpo4fMen69G8NCaNPi8qak7q1Z+dF4/QDnL4eT3bhP38Vu0aWavT5L2JtXgT/3I/a1Q4gOi+D2PwsSrVaNsdcpF9AU6MwD9Rrzfb4MBILcgDIKK48EWjWug6JMekkxWdSVqZh/7YQuvc2HsBkZ+Rz9WI8mjJtpeOLCpUdpjY2amxs1Mi6Bt7OM4Do3Exi85T4/X39Mv3rNK10fFWoJRUOahvUkoSD2paUwrx/1A7BhL/pItvey5/o3Cxi83S6UZcZUK9JtTSdbe3o4luX1eEXACjVaskpKa4Url3tAKJz9eW1KeYS/QIrlFf91uyI05dXuonyau/pr8tXXVyjLzGgbvXiCsb56mhjS3JhLgBt/f2IzswiNlvR3XwpjL5NKufto/e0Z3tYBBkF+rg529nRuW4gay+EludBbnHlPLgVwouqhzV4UXtvf67nZOnb4rXL9K/X+B/Fo3WQH3GpWcSnZVOm0bL9VBjB7YzrYGFxafn/He1sKTccg99s1LqxRlVeFH2Z/nVv04tsbEkpyKOdrx/R2VnE5ujSHx5G/4bVT/+JhHiyiir33xkRRTj72eHsZ4faVqJeT1fiTuYZB5IkSgu1ys6CIi12zmpUukV2n1ZO2DlXHsY3dalPQmEqSUXplMka9qeeoZtnmyrj18vnHvan6He6h2ZHklta9UKSufqjijR3rUd8YRqJRRmUyRr2Jp+lh1frKsP39u3InuSzt9S9FTX1ov+iH90xXuTlT3ROhf67Bn3iDR5p1oG80hJOpsQrc7Q/z9BtgHEb6TagDbt1O4iunLmOs6tjpTla+57NSIxOIyU+E4CCPH07D/KtTV5RCfHpOo87HUZwmwoeV2LscbKBx1VF2wBd/62bp22+HEbfpib67066/jvfRP993rj//idjw4y0PCIuJyrpKSghNioVT10+tWjiR3xiJonJ2ZSVadl96Ao9uxjHNTQsgbx8ZQxxMSwBb0/nm6a/RRN/I809B67Qs6uxH1+8YqB5JQFvL31FKyzS9R02KqNxbOsgP2LTsvTldSaM4LY3KS97W2RuXV414W7won+T2130cpQk6ZzBZxzQGIiRZTm3msdtrPijJEkeQBPgQOVD//9kpUNtb/3f7l6QmWYcpm4DOKu73hF1BTKSlTB2al+Ky/RXDNISMvH0czc61tPfnTSdUQKkJWbi5a+EkZH5aPXzLNzxJoMf6Wl03PCpwWwdM5lXO/ckrVBvZon5efjWqtyDdPQNYOuYR/ll8GiaeOi3zqskiS2jH+X0o89wKD6acylJ+Lo4k5ijL8KknDx8XYwNyMelFv2bN2bVqQuVzqWSJDY+NYnDrz3FkWsxXIhP0h3jTFK2Xjc5Jw9f18q6/Vo0ZtXJyro3CHB3pYW/N+fjkvCt5UJCvl6zyvT7BbD1oUf5Zahx+m9Qx8WVll4+nEtWTNsSur6uxulPysnDx1T6WzZm9Ymq0/9P0aKq0ec/wF3hRb6OLuWTB4Ckwlx8HY3rZJBLbdzsHFgR/Ah/9JvGyPqVJzmevq6kJmeX/52WnFM+OKkOKpXEt2ueZdW+mZw5GkFYSBwAfk7OxvEryMXPyUSb8Q5ky9Cp/Nx7LE3cvABILszjx0vHOfzgsxwf/Ty5pcUcTIz6x+1QJUlseehRTj/2DIfiFH8D8HVyISE/x0A3F1+nyoOsjt6BbH1gCr/0e4gm7kpc67m4k15UwOc9h7B5+GPM7TFI2elVAV9HFxILDdp7QU6l8mrgUhtXOwdW9H6YP/tP5cGgyuWlxNUwDyqXe3lch07llz4PVcjXExwZ9QwnxszQ5et1APxcnEnMNYhfbmWf93WuRf+mjVl51tiP6rq7kVFQyKdDB/DnlEl8NLgfjrY13zQuvMjkcVbpRX5OziQa1sOCXPxMtUWfALaOfIxlA8bQxN2wT5T5bdBYNo14lAnNlIt/3u7OJGXqNVMy8/Bxr9wOe7drxPrZk/nq2ZG8/6v+NlqVJLHyrUnsmvcUxy/HEHpdad9+jia8yFSb8QpkyxATXnT5OIdHPsvxUc+TW1LMwaQo/GpVaC95ueUXyYw0/QLYMv4Rfh4+iia1K48JKlKQUYqTl77tONW2oTC91ChM08Hu5MSV8MfjEWx9OYqOU32RVDef6HjZu5FanFX+d1pxFp52bibD2qts6eTRnENp528Z3xuYqz8yGe8ifbxTi7Pwsq863p1rN+dg6j8fL9XUi/4DfnTHelGl/rsgF19TbdE7kK3Dp/BLX33/bUj/uk2MdoelJWXh6W9c1zz93EhLyNKHSczCy884TK8HOrL/z9NG301+fSjLT7zPfa0acDoirvz75KwqPK5tIza+PZmvnx7Jeyv0HicDi54dxe+vTWR0D3378XOuME8zQ//9T8eG5ecNcKdRc//ysaF3bRdS0vRxTU3Pw8uz6pXOYf3acPxMVPnfsgxfzB7DT58/zPD+bQHw8nSuoJmL100WyoYOaMvx03pNlUrip68m88evz3Lq7HUuX1Xmfj5uxn1ScmYePm41KC8ZFj03it9fn8joe2/td6a4A73IqjDb7Y2SJLWt8PcU4AXAE+ghy3KsqeN03CdJ0gWgGTBXluUkE2H+75hacJcqjDUGjYPVi+CD6RDYAOo2BpUKwNSgxFjQZAhdkFeGfU5GcjZuXi58vOZ5YsOTCD0WweZlB1j5xRYuvdeQ7/o/QHsf/wpnMD5HaFoy965YTEFZKcF1G7B44Eh6r1oCgFaWGbJ+Oa529vwwYARNPbxMRqqi5lsDg/l810G0JjJIK8s8+MMKXOzt+WbccJp4exKeml4p35S0Gh//5uBg5u8wrQvgZGfLwvHDmLt1P/nFJVXkcIX0pyZz76+69NdrwOJBI+m9cole08aWRQMf4IPDe8krVXaxWELX5BC1YvqHBjN/e9XpNweaO+9+8bvCiyQTNahiLbGRVLT28OORfStwUNuwtu8UzqXHcz1PvzXbtOdUv75ptTLPjv2WWi4OvLtgIvUb+xAdkWI6fhV0L2Yk0XPjt0qbCWjED71G0+evH3C1c6B/3Sbc/8d35JQU8+39DzKyQSuK8ypJ1qgdamWZIWt1/jZoBE1re3E1I60azgyh6cncu26RohvYkMV9HqT3hh9RSypae/rx3vFdnEtLZHaXvkxv042vruw1Ot70lNT4LGpJReva/jyyVymvdf0e42xaNcqrYlwzkrh3w3e6fG3I4uBR9P5zMa529vSv24T7Ni4ip6SY73qNZGSDVmyOj6gidsbKs/oF89m+yn6kVqlo5efDhzv3cj4xibf7BfNUt84mNW+G8KL/khfdun2HpifTY/X3FJSV0rtOQ37sN4rgdT8CMGrT76QU5OHp4MRvg8YSmZ2OlFBJ0qQX7T0fyd7zkXRsHMj0B3ow/SvlliWtLDPh4xU4O9oz/6nhNArwJDIhHcnEYKNi3b6YkUTPPwy86P7R9Plb50V1mnD/nzovuu9BRga1oiTn1v57MSWFnst+pKC0lOD6DfhhyAj6/La0ciJvJgKVsjrxXD4eDezp835d8pJK2ftBLD4tHLF1Ups4uAqRm9DVszWXcqLKb22sDubqj0wpV9Y13T9192rFxeyof3xrIwgv4j/kRTebN90gNCOZe9cb9N+9H6T3xh/Lf7dVqWjj6cfuuIibCpn0EoMgNrZqug5ozc9z/zYKs2zeZpbN28yMjdNp6OdZ4XgTHnchkr0XIunYKJBnhvXg6W8Uj3vsi9Wk5uTj4ezI98+NJio5g4OF8abnabKJ/nvvLfrvBF3/3b0zWRuiqEhNxoYADo52vP3FBH6Yt4WC/GLAsXoFpqND67oM7deGZ99aWf7dM2/+TnpmPu5uTiyYPYaY+AyT88mqNlx1aFOXof3b8Nwb+udrabUyj7+wDOda9sx5ayQN6nkRFZNmep5qQtiovIYalNeC1aRmG5RX0s28zjR3oBdZFebM3Qignu4ecWRZ/llnntlUeuJJJQ7KstwWaANMlySpvalAkiQ9KUnSKUmSTi3+NdtUELPi4QUZ+tuZyUoD9woX7xxrwWOvwruLYOprkJcNXn5QoknC3savPJxXgAfpScZxTkvMwivQQx/G34P0pCwAMnQr7tlpuRzZco5mHYKUOKTmotUqzfCP8EtGVzj8azmTkm88U8wrLSm/zWdfbBS2KhUeDo5GYXJKijmWGEuvukEk5+Th76pfhfdzdSYl1/i5Yq0DfPlizBB2vzCVAS2b8O7QPvRtZrwFNLe4mBPRcdzXWIl3ck4efm56XV9TuoG+zH9oCLte0ukO61N+a6WNSsVX44fx94Ur7LysdFRJ+bkEGFxtvmX6Y4zTb6NS8f3AB/jj6mW2R4WXH2MJ3aQK6TeVr60CfZk/bgg7X5nKwFZNeGd4H/qauAXyn6BFqtHnP8od50VJhTn4O+mvuvk5upBSmFshTC4Hkq5RqCkls6SQk6kxtHD3NQqTlpyDt6/+SqWXrysZqTe78Gua/NwiLpyKotO9ym0FiQW5xvFzciG58CZtJiFSaTP2jvT0CyI2L5uM4kLKZC3bY8Lo6FXnH7fDG+SUFHMsQfE3UHZ+BNTSx9W/lgspBTfRjb+GrUqNh70jSQW5JBXkci5NuTK45XoYrWsb5zEoZeFvsPPBz8m1Un4kFeRwIDGyvLxOpMbQwt2nQpiKeVC53I3zVR9XJV+zyvN1W8xV7vFW7kpJys3D38Ugfi4m/NjPlwUjhrB3+lQGNmvCewP60K9JI5Jyc0nKzeV8ojLv2XYlnFa+xvGuDsKL/jtelFSQi79hPXRyIfkmbWZv3DVsdO0bKG9f6UUFbI8Op72XPymZefh56DV9PJxJza78DNMbnImIp46XG+61HIzPW1jM6fA4erQMAqrpRWXV9KLYMDp61yExP9e4vTi7kGzKi3SPd9gXbdqLKuLkaUtBWln53wUZZTjWNt45GrUnmzpdXZAkCRd/O2r52JITX3JT3bTiLLzt3cv/9rJ3J73EdN3o5d2RfQa3NlYHc/VHJuPtoI+3t7076cU5JsP29ulgllsboeZe9B/1ozvGi4z6b6fq9983CA5sSER2utFz5rz83ElPMq5raYlZeAW468P4u5NusBuqU++WRIbEkZVmegy181w49b31x/u638LjIuOpa+BxqTlK2My8Qvaej6B1fWVOmZRbYZ7m4kxKXoX+29+g/27ehPcGGvTfObmcTzDuv//p2FBto+KdLyawd/N5Du++VP59anouPga3Fnp7OpOWUfmKZqP6Xrzx7EDe+uQPcnL1t4imZyrpysou4MDxCFo08SM1La+CpotJzYZB3rw2YxBvzdlopHmDvPxizobE0uWeBoCyE8+wT/K9VZ9UsbyyDcrrQgStg/yqPLYq7hIv+tcw26KXLMsFwBLgG0mSHAAkSVIDdjXQuAp8ArxRxe+LZVnuJMtypycfMb3l2ZwENYOUeEhLgrJSOLlPeZC9IQV5ym8Ah7ZCk9bKQlhOcQiONkE42NTBxlZNr5GdOLbdeJvpse0X6PuQItj8ngbk5xaSmZKDvZMdjrWUB5naO9nRMbgF168ol0UN7yev6+IOQB0XN2xVKoY3bs7O6Eijc3g76k29nbcfEhKZRYXUdnDE1U53DrUN9wbWJzIrg5D4JOp7ehDo7oqtSsWQVs3YE3bNSLPfwqX0/Ur57LgUzgeb97A7LBIPJ0dc7HWaNmq6N6jHNd0D8EPik6hfW6erVjGkTTP2XjHW7b9gKf10nx2Xwvlg0x52X1HSM2dkf66lZrDsiH5wdj4liSB3D+P0X79J+n38kCQl/QCfBg8kIiuDJReMtyZbQjf0Rr56KOkfbCL9A+Yvpb/us/1iOB/+vYfdl43P+0/RyKoaff6L3IledCEjgfrOtalTyx1blYqh9VqxO+GqUZhd8WF08qqrey6WDe08A4weLAwQdjGegPqe+AZ6YGOjptegNhzbd6VacXDzcKKWi9K529nb0KFbI2KjFP0L6QkEuXhQp5auzQS1YFdcuNHxXg61yv/fztNfaTPFhSTk59DBKwAHtbLxuIdfEJE5af+oHVbytzqKvwGcT0skyNWDOs463QYt2BkbUUHXIK5e/opvFheSWphPQn4ODV1rA3BvQH3Csyvc845SXkEutcvzY1i9luyOr1heV+nsrS+v9p4BROYaP4z3fHqionMjrvVbVo5rpXxFydcC43y9169++e0cIYlJBNX2oI6b4vNDWzZjd4SxH/X5fim9Fymf7WHhvLdjD7vCI0nLLyAxJ48GtZULNt2D6lZ6gG51EF5UbY1/3YvOpybSwNWDujfqYcMW7Iy5WZvxQ6Vr3442ttSyVZLraGPL/YFBhGWmcTE6ibo+HgR4umKjVjGwUzP2XzCug3W99elpXtcHWxs1WflFuDs74uyoa9+2aro2r8d13VX1Sl5U/x96UXYaF5KTCHJzp46L0l6GN2nGrihjL/JyqnpMUBW1GzuQm1hCXnIJmlKZmEM51OlkfDuNk5ctySHKZKowq4zchBKcfW/+4oiruTEEOHrj61AbG0lNL++OHEsPrRTOSe1AG7dGHE0PMaFSNebqjypyJTeWQEdv/HTx7u3bgSNpleNdS+1AW/dGJn+7HWrqRf9FP7pjvMhU/x13kz7RoP++wQMNWrLq6vlyHRtbNb1GdOTYTuN2cGxHCH3HKG8VbN4xiPzcIjJT9AtjwSM6sq/CrY0BDfTPxPHzcAVJ0nvcPc3YH1LB47wMPK6OD7ZqxeMc7GxwslfauYOdDd2b1yciUWk/IQlJBHkY9N8tmrE7vEL/vcig/74SznvbDfrv3Ar9d1rGPxobArz0/oPERKWy4Vfjt7heCU+ijr8H/j5u2Nio6NuzOYdOGnunj5cLc94YwZwvtxCboH/kj4O9LY4OtuX/79y+Ptdi0rgSnkidAA/8fBXNPvc35/AJ4zrg4+3Ch2+O4KMvNhNnoOnm6oizbn5tZ2dDp/b1idE9VP9idBL1vA36pI4m+qSK5WVzk/JKuLnfmeJu8KJ/k9u9vdFRkqRzBn9vk2V5JjAL+BAIlSQpFygElgEmNrJXyffAq5IkNZBlufJ+y2ryyvtw4hxkZUPwGHhuCowZWjMNtRomPAtfvgVaLdw7AAKCYP8m5fdew5Q3Nv78GUgq5a2Oj75042gNERkf0MZ3CYsPObNj5RFiwhIZ8uh9AGxZfpCTu0Lp3Lc1S49/QFFhCQteUF7j7eHtyjs/P6WLg4p9G09yeq+ycj7t3VE0bF2HIh874nKzeevATpYPGY1aUrEmLITwzHQmtVCembHi8nkGN2zGwy3boZG1FJWVMWO3Enkfp1rM7z0YlaRCJUlsjgxjT8w1HGQ1H27Zw5KHR6GSJNafu0hEajrj7lF2Rq8+XfXzE7ydazF35EDUKglJkth28Sr7wpUi1Ghl5mzew0+PjkKlkthwRqfbSadr4vlgN+hYL4AR7VsSlpTKhumTAPhy12G250Xy7sHdLB+mS/8VXfpb6tJ/6TyDGzXj4Vbt0Gi1FGnKmLFTSX8nv0BGN2vF5fRUtjz0KADzjh9kX0wUGlk2u+6J+Bg+2rSHHycr6d94+iIRKemM66xL/02eYwbw2djBdGlQF3cnB/a89jjf7DnKhtMXb3qMKe7AN4NYvRfBP/cjjSzz/plt/Hz/BNSSirVR5wjPSWNCI+XV7SsjzxCZm86BpEg2D3gSLTJrrp0jPCfVSEer0fLdx5v4aNFkVGoVO/44TXRkCkMeUm5P27L2JB6ezixcNR2nWvbIWpmRD/fgqZELqe3lwitzRqNWq5BUEge2h3LiQFh5/Gaf3MnyvuNRSRJrIy8Qnp3GxCYdAPg9/CxD6jVnUtMO5V70/ME/ATiXnsDWmDA2DZlKmazlUkYyK8PPoZFVt90OfZxqMb/PYFQqnb9FhLEn+lp5XN89tpPl/ceiliTWRIQQnpXGpGbtFd2wcwyu34yHm+niqiljxv6/yvPwveO7+PL+Ydiq1MTmZfHqoS2VrpMr5bWdX3pNQCWpWHftvOnySrzG5oFPICOz+to5rmanVtJ598QOlvcdp4urkq+TmujiGq6La9MOaLQyRZpSZhxU4nouLZGt0WFsHjqFMlnLRV2+go0Svx17WDpuFGpJYt2Fi0SkpTOhveJHK8/d3I8+3LmX+cMHY6tWEZuVzczNO3i8a6ebHlMR4UX/HS/SyDLvHt3F8kEPKfXwagjhWelM0r3FZ8WVcwwJasrDLTpQdqMt7lXqoZejE4v7Pggou6D/jLzE/vgoPLW2fLpqD9/OUPrEv45c5FpiOqPvU+rg+oMX6NOhCcO6tqRMo6G4tIyZP20GwNutFu9PHohakpBUEjtPX+VgaFR5XGef2snyPrfwoib69v38oQpeNFjnRZnJrIw4h0ZWM/vAHpaPGI1KUrH2UijhGelMbKXE9feLFxjSqCmTWuvHWs9v31yef18NGEq3wDp4ODhy5LEn+fL4EdZcDkWlluj0uC/7PoxF1kLDPm641bMnfLsySWsy0INWD3ly/JtEtrwUBbJMu4e9sXdVhu6Hv4gn5WIBxbka/ngigjbjvKAjaNGyKGI9c1pPRy2p2JF0jJiCJIb43wvAlkTlQbQ9vNpyJjOMYq3xzrE3mj9KW7fGuNo682vX9/k1eivhSfqJqrn6o4poZS1fX93Ap+2eRCWp2Jp4guiCZIYFdAdgU4LyJqme3m04nRFGkfbmO96qi/Ci/5gXHd/J8n5jUask1oTr+u+m7QFYcfUcg4N0/fcNLzqg778d1Db09A/iraPbSC7MY3m/sTju1bJj9TFiriYx5GFdG/ntMCf3XKJzn1YsPfQuRUUlLHhZ/0ZBewdbOtzfnIUzVxvFb8qbw6nT0AdZlokpK+aj1btY9Iwyn/rz2EUik9IZc6/iG+sOX6Bv+yYM76J4XFFpGa//rPiGp0stvnhiOKD45tZTVzhyORoCdO1v5x6Wjq/Qf3fQ9d9nb9F/79jL/AeM+2/vfzA2bNDUj37DOxB1NYlv1zwLwC8Ld7IvMQWNVmbBj7uZP3s0KpWKzbtDuB6bzoiByjjuz+3nmTK2O24ujrz8VD+ljDVannjtNzzcnfj4jRGAMhfeefAyJ85eR6WV+fL7XXz+/hhUKhVbdoVwPSadB3Qvi/tr23kmj++Bm6sjL03vX6751Mu/4lnbmbdeVMaGkgr2HQrj6End2FArM3fNHhY9W6G8eurK65CuvLoalNdSE+WlNiivGnIHepFVIdX0nl1rQZvU1OwRP/jPX45nkrld+5pd8/IH5r3t7QYOSbfa5Xx7SBrzaxb6W0DUQjjFWyZfL815qUZ7W7+50qdG7ea55nvE3tlbYAkvanrgUXNLAtB4jmVMLuz1WrcOVEPk3JvvZrhtHM3vG2rHslsHug00Jeb3Ddt4e7NrAoTPFF70b2MJLwJosPlxs2t6nrJM+87saQGPy6z2ZpgaMTnY/M8DP54RZHZNgPAk71sHqiH1vWu+Q7Q67O79hUW9CIQf3QpLeVHD7dPMrtliVrzZNQESH2xgds38ALNLAtBoZfqtA9WQ/EbuZtcEUJVZZt0iu/7t7gOqmnPfWHZcBMKLaoL5S1ggEFgt4iqCQCCwBoQXCQQCa0B4kUAgsAaEF1kWseglENxFaMX93wKBwAoQXiQQCKwB4UUCgcAaEF5kWcSil0BwF6ERb/oQCARWgPAigUBgDQgvEggE1oDwIssiFr0EgrsIcRVBIBBYA8KLBAKBNSC8SCAQWAPCiyyLWPQSCO4ixFUEgUBgDQgvEggE1oDwIoFAYA0IL7IsYklRILiL0MqqGn2qgyRJgyRJCpMkKUKSpJkmfneTJOlvSZLOS5J0UZKkKWZPmEAg+E8hvEggEFgDNfWi6viR8CKBQFBThBdZFrHTSyC4iyiV1WbVkyRJDXwL9AfigJOSJP0ly/Ilg2DPApdkWR4uSZI3ECZJ0gpZlkvMGhmBQPCfQXiRQCCwBoQXCQQCa0B4kWX5zy56HSwyv+Z9DubXBPik0PyRlUr+W1sg1RYoL3WBZTYqyray2TWlMrNL3hYa898v3gWIkGX5GoAkSauAEYChocqAiyRJEuAMZABWkiP/nKYHHjW75tX7l5tdE2BgaDuL6NqH9zC7Zqmr+dshgFxkft+wu2Zndk0AjQX6JNtc82veDsKLzE+DzY9bRDdq6E9m1xz4hGW8yDa/u9k1NbZmlwRg/9/m981id8sM6109zO+bEZ0t45v0rllw4UXmp+H2aRbRvTZwidk1B06xjBeVOjcwu6bvKY3ZNQFkO/P7hlNcvtk1AaSr0RbRdawfYBHdmiC8yLL8Zxe9BAJBzdHKZl8sDQRiDf6OA7pWCPMN8BeQALgA42RZ1po7IgKB4L+D8CKBQGANCC8SCATWgPAiyyKe6SUQ3EVoUNXoI0nSk5IknTL4PFlB0pRDV9yiMxA4BwQA7YFvJElyNXviBALBfwbhRQKBwBqoqRdVw4+EFwkEghojvMiyiJ1eAsFdRE2vIsiyvBhYfJMgcUBdg7/roFwtMGQKMFeWZRmIkCQpCmgOnKhRZAQCwR2D8CKBQGAN3M7uilv4kfAigUBQY4QXWRax00sguIvQoqrRpxqcBJpIktRAkiQ7YDzKNllDYoC+AJIk+QLNgGtmTJZAIPiPIbxIIBBYAzX1omr4kfAigUBQY4QXWRax00sguIvQmPl+cVmWyyRJeg7YDqiBpbIsX5Qk6Wnd798DHwK/SJIUgrLV9g1ZltPMGhGBQPCfQniRQCCwBoQXCQQCa0B4kWWp9qKXJEkaIMTgq1WyLM81EW4f8Kosy6cqfP8Y8BkQD9gCl4FHZVkukCTpZeBxlLcFpAJTZVmu0esZQk/C6u9Bq4Geg2HwOOPf83Nh2ReQmgi2tjD5FQgMqskZFGbNhX1HobYH/P3LLQLb3YfkOoul52qxbdkB1izYUinI9HkT6TygLcUFJcyfvoSI89HY2tvw+bY3sbWzQW2j5uCfp/jt4z8AePTtB+k+pAOFvvakFxaw7vJFXujSHZUksfpSKN+fNt6N2DWwDouHjiQuJxuAbZHhfH3yGACf9h1In6CGpBcWMOj3ZeXH9GxUn1mDglGpVKw7E8qPh0+aTF7rAF9WTxvPy+u2sP1yOHZqNb9NGYudWo1apWLH5XC+3ne0PPy9Teszc0QwaknF+hOhLNlnrNu7ZUNmDOyBVpbRaGXm/rWPs9eVXZgP39uB0V1bIyGx7kQIvx06C8D9QUG801vRXB0awg8nTMe1ja8v6ydO4PlNm9kWHg7AlI4dGdumNQBhaWm8vm07JZrKb0a5v34Q797fG5UkseZiFXk8bCSxujzeHhnO1yeOmYyHIT2b1mfmcF1+nAzlp/1V5HMdX35/Zjyv/r6FHaHht9S9GRZ4SCKyLG8BtlT47nuD/ycAA8x1Pmv3ovv9GvJ2+4GoJYk1Uef44cqRSmG6etdnVvv+2KrUZBYXMHHfrzU5BVBDL6oBnQa255kvp6BSq9i6ZDerP/2jWsf1bFyfWYODUUk63zh0E994Yjwvr93C9kvh+Lk68+moQXg5O6GVYc3pEH49Ztn2fX/9IN4NVjxuTWgI3580rdvW15f14yfw/JbNbNXpPtahA+Nat0GSYHVICD+fPVue/reG6NP/08Gq07/qyfG8vGYLO3TpnztaSb8sw5pT+vQD3NewPrP6K3mw9nwoi49WkQf+vqyZPJ4X/9jC9itKXPc8M5X8klK0spYyrczon383eWzPpvWZOSwYtaoaXjR9PK+uFF4E1ulFvQIbMLtbX9QqiVVhF1h04bjR79386vJj/1HE5mYBsO16OAvPKR51aOxT5JeWoJG1aLQyw/+q3ltkrc2LurUJ4uWHlfb91/4Qlm8yrs8DuzfnkaGdASgsLmXeL7sIj1XG+OMGdGBEcBsk4M/9IazarrTF7q2DeHWC0r7/OBjCsq3Gmr3aN+LpkTfGL1rmr9zH+Qhl/PLulAH0bNuQzNwCxr1rnKedOzXguaf7olar2Lz1PCvXGJdXv94tGT9Wee5wYVEpX369nchrqQC8/vJgunVtRFZWAVOfWmp0XNd2Qbz4WG/UKom/94Ty65/G45YBPZvz8ANdynU/W7KLiOhU6vl78MGLw8rDBfq48ePaIyw/eo4eLevz6ljFJzYeDuWX7RXyoF1DnhmuH8N9vmYf5yITsLNR89OrY7GzUcaGu8+E8/0m/djw36izhggvspAXBTTg3S59lf47/DyLQiuUq29dFvcZTVxeFgDboq+y8MIRGrrW5pteD5SHq+vszoJzh1h62SjKJrE2LzLEnP1s1/ZBvDC1DyqVxKbdIfy20bh997+vBZMe1LXvwhLmL1baN8DaRU9QUFiCViuj0Wh5/I3flDR2b8zTrw5CrVKx9Y8zrFl2yEizbn0vXp49gsbN/Vn23R7W/aYf2y7760UKC4rRahTNGY/q77br1L0RT7+i0/3zDGuWHa6g68nL7+p0F+1h3W96b1j25wuKrlbG3t4WGRm1RsO25QdNz6k/nUjnAW2UOfUzS4g4H6PMqbfOxNbOFrWNSplTf/Jn+TEPPNmXB57si0aSiL6WSsOmvqhUKrZtOM2apQeM9OsEefHKh6No1CKAZV/vZL0uLV6+brz20Wg8vJyRtTJb1p/izxVHqSl3ghdZMzXZ6VUoy3L7mwWQJEl9C43Vsiw/pwv7OzAO+Bk4C3TSmet0YJ7ut2qh1cDv38JLn4CHF3w8A9p1g4D6+jBbV0HdRvDMbEiMgZXfwsufVvcMekYOhomjYObHtwqpQnKdjZw5hSc7N2Dhvnc5tuUcMWH6W2k7D2hLQCNfprafSfPODXluwSO82GcOpcVlvDFsHkX5xaht1Mzf8Sandl7gyslrrPtqK8vnbCTso9ZMaduBOcH9GLrqV5Lycvlz3CR2XYsgIjPDKCYnE+J4fNMflWK4/nIoyy+cZX7/wfpYSxLvDunD1F83kJyTy9onJrInLJLINGNNlSTxar+eHIrU93slGg2PLVtHQWkpNioVK6aM5UB4FOfjk1BJEm8/2IcnftxAUnYuq2dMZO+lSK6l6HWPRcSy95Jivk39vPj84aE88PkyGvt6MrprayZ8vZJSjYbvp43iwJUowqUs3uvbh8nr1pOUm8vGSZPYHRFJREbluL5x/30cvK6Pq6+zM5M7dmDgL8soLitj4bChDG/ejPUXL1U69v3gvjy6cR1Jebn8MW4Su6IiKp3jZEIcj/9dOY+rQiVJzBrRhyeWbCA5O5fVz01k7+VIIlMqx/3lwT05bKZX9GrN/zrcfwOr9SKVJPFex8FM3r+CpMIcNvSbxu6Eq0Tk6C+auNja837HQUw5uJLEghxq2ztVV96I6ntR9VGpVMz4ZhpvDPiQtLgMvjnxCUf/OkXM5bibHydJvDu0D1OX63zjSZ1vpJrwjf49ORShr88arcyn2w9wKTGFWna2rH9qEkcio7lakmGR9q2SJN7v04dHNyi6f0ycxK5I07qv97yPg9F63aaenoxr3YYHV/5OqUbDL6NGsTcqiuSsHN4Z1odpy5T0r3lqInuvmE7/KwN6crhC+udtU9LvZGfL+qeV9EemZqCSJGYP7MOUlRtIysll/ZSJ7A6vwo979+TQtco+8eiKtWQWFt207GY9oPOinFxWP3sTLxrUk8PhwosMsCovUkkSH/box6Rta0jKz+WvBx5lV0wE4VnpRuFOJsUxded6kxrjt6wis7jwFlE2xtq86LVH+zBj3npSMnL55f1JHDwTSVSCvj4npGYz/eM15BYU071tEDOn9mfa+ytpGOjJiOA2THnvd8rKNHz52igOn4siJjObNyb14dn560nOzGX5O5M4cC6SqES95onLMew/FwlA4zpezH16GGPe/gWAvw9fZPXuc3zw+KAKaZR44dn+vPbmalLTcvn+68kcORZBdIy+vBKTs3nxtd/JyyumS6eGvPLCIJ55QblIsm1HCBv/OsObrw2tlAevTu3LCx+tIyU9lyWfTOLgqQiuxxvkQUoOz76/mtz8Yrq1D+KNJ/rzxNu/E5OYyWNv/Fqu8+f3T3HgRLjisxP68MxXG0jOzOW3Nyey/0KFPLgSy/7zyhiuSaAXc58Yyuj3llFSpuGpBesoLFbGhkteG8vhi1HsI/Zfq7OGCC8qx6xe9EG3/jy8YzVJBbn8NXQyO2MjiMiuUK7JsUzbY1yu13IyGKJbsVJJEscfeobtMVdvEXUFa/IiIw0z9rMqlcTLT/TjpQ/WkpKey0+fPsyhk5FcjzPwjZRsZryzSmnfHRrw+tMDePLNFeW/Pz97Ddm5hUaaz74xhDef/ZW05By+Xv4Exw6EEROVWh4mJ6eQRZ9vpUdwc5Pxev2pZeRkF1SK67OvD+HN53S6y27o6sfEOTmFLJq/jR69qtB9ehl5uUUsWf8cbz73G+mHQlm418Scun8bZU7d4U2ad2rIc188yot9dXPq4Z/p59Tb3+TUzhCunLpG2/ua031oB6b3eBdNoC9LN7/MzMeXkpacw8KVT3Ns32VirunzIDenkEVzN9O9TwujOGo1Gn6cv5WIy4k4Otnx9apnOHs0wmR6bsYd4kVWyz/OXUmSrkuS9K4kSYeAh3RfPyxJ0hFJkkIlSepi4hgboBaQCSDL8l5Zlm+0lGMoD1qrNlFh4BMA3v5gYwudg+F8hQXWhBho3l75v389SEuGnMyanEWhcztwd6lGQNu2oIkGTSxlpRr2rz9B96EdjIJ0H9KB3SuVlfIrJ6/h7OZEbV83AIryiwGwsVVjY2ODrHvXQkGufvLS0KM2uSXFxOZkU6rV8vfVMPo3bFzttJxIiCeryHgy1DbQj5iMLOKyFM0tF8Po27xRpWMf7tKeHZcjyMg3NriC0lIl3ioVNmpV+Ssi2tT1IyYti7iMbMo0WraeD6NPK2PdwpLS8v872tlyI9ENfWpzISaRotIyNFqZU9fi6NuqMe38/IjOyiI2W4nrprAr9GtcOa6PdmjPtvBw0guM42qjUuFgY4NaknC0sSU5L7/Sse18defQ5fGm8JrlcVW0qetHbLqSH6UaLVvOh9G7ZeW4T+rRnp0hlfP5dtEg1ejzX8IavKhd7QCi8zKIzc+iVKtlc8xF+gU0NQrzQL3WbI8PI7EgB4CM4tsr22p7UQ1o1qUxCRFJJEWlUFZaxr7Vh+kxotMtjyv3jUxdfQ6twje6VvaN1Lx8LiWmAJBfUkpkWga+Ls4Wa9+mdPs3qqw7uX17tkeEk2ag26h2bc4lJlJUVoZGljkeF8eAxo1pW6dC+kPC6GMq/d3as/NSBOlVpL+gpJTI1Ax8XZ2VfA3wIzozi1idH2++FEa/JpV1H+nUnh1hEZXyoDqUe1GmgRe1qMKLQiPIyBNedCv+LS9q7+3P9ZwsYnN1Y4Jrl+lf75/3V7fCmryoZSM/4lKySEhVxho7j13h/o7G9TkkIpHcAmWMFRqRiI+HEvmggNqERiRSXKKMNc5eiaPXPY1p1dCP2JQs4tMUzR0nrtCrQ4XxS7HB+MXeFvnGoA04ezWenPzKC8/Nm/mTkJBFYlI2ZWVa9uy7zL3dmxiFuXgpnrw8Ja6XrsTj5aXP6AuhceTkVl7sadnYj7jkLBJSlPjuOhLGfZ2N60Ho1QRydePMi+GJ+Hg6V9Lp1KYe8clZJKXl0jpIydcbebD9ZBjBbW+SBwZjOMPfbNS6saHup3+rzhpSUy/6L/nRv+ZFXv5E52QRm6cr16jLDKjb5FaHVeJe//pE52YRn59TrfDW5EWGmLOfbdHYj7ikTBKSFd/YdegKPTsba4WGGbTvqwl4m2jfRmlsFUhCbAZJ8ZmUlWnYtyOU7r2aGYXJzszn6qUEysq01U22gW4WZWVa9u28SPcKi1vZmQU63cp32pjUKdWwf8Nxug9tbxSm+1CDOfWpm8ypbdXl/jNsWm/WLNhCaUkZzVrXIf56Wnke7N8WQvfexotb2Rn5XL0Yj6ZCHmSk5RFxORGAwoISYqNS8fSp+QsQ72QvsgZqsujlKEnSOYOP4Sp/kSzLPWVZXqX7u5Ysyz2AZwDDPdfjJEk6h7J9tjbwt4nzTAO21iBeZKVDbW/93+5ekFnhbtS6DeCsbkdl1BXISK4cxqyofEGTVP5nWkIGngEeRkE8A9xJjdOv8qfGZ5aHUakkvj30Pqsiv+LM3ouEndI/U27yO6M4/NiT9G7QkBPx+isNSXm5+DlXNraOfgFsmfAIPz8wiia1PW8abV8XZxJzcvWaOXn4uhhr+rjUon/zxqw6daFysiWJjU9N4vBrT3HkWgwX4pU88HFzJilbr5ucnYePa+W49m3ViL9encx3U0fyztqdAEQkp3NPgzq4OTngYGvDfc2D8HN3xtfZmcRcg7jm5uHrbNzb+To7M6BxE34/bxzX5Lw8fjp5ioNPPM7Rp58it6SYQ9GVr6z4OTuTmKc/R2JeLr61Kse7g18Amyc8wtJq5DGAr6sziRXyw7dCfvi41qJvq8asPl45n28XrSzV6GOlWK0X+Tq6lC9mASQV5uLraFwng1xq42bnwIrgR/ij3zRG1m9Tk1NYFK/A2qQaXC1Mi8vAK7Dm9TkpuwrfaNGYVSerrs+B7q608PPmfHySxdq3XwXdxDwTurUU3RUXjHWvpqfTpU4d3B0ccLCxITioAf7OLvi4VPC3HBPt2aUW/W6R/gB3V1r4e3M+TvFNXxdnknIq5EGFfPV1rkX/Zo1ZeaayrgwsnTCKDVMmMq696XpWyYty8vB1M+FFLYUXmcCqvMjPyZnEfIO6XZCLX63KM8COPgFsHfkYywaMoYm7YfuW+W3QWDaNeJQJzdrd6nQW5Xa9yMfDmeR0fR6kZOTh7VH1LPiBXq05eiEKgGvx6XRoXgdXZwfs7Wzo0a4Bvp4u+Lg7k5xhoJmZh4+JmXVwh8asm/MYX77wIB/8suPWafR0ISVV31+kpuXi5VX15HTIoHacOHnr5wt71zbOg9T0XLw9qtYd1rsNR89dr/R9vx7N2Xn4iqLp4UxSpkEeZOXhY0Kzd/tGrH9vMl89N5L3l+8s/14lSaycNYldnz3F8csxhF5XPM4a6mxNvchK/ciqvMjXyYUEg4WqxALTY+eO3oFsHT6FX/o+RBN3r0q/Dw9qwV9Rl291Ootyu15kiDn7We/aLqSkGbTvjDy8Pav2uGF923DsbFT537IMX7w7hiXzHuaB/m0B8PRxJTVZX15pKTl41WTRRpb5+NtH+ObXJxn84D3lX3t6uxjrJufg5V2DVUlZ5uNvHuGNDx7EwdFWrxOfiad/hTm1vwepBrtZUw3m3SqVxLcH32NVxJfKnPq04qOBjXxp1b0JX+5+mxffH0lJcZlRXG9n4co3wJ1Gzf0JC6n+TsAb3CFeZLWY6/bG1RX+Xgkgy/IBSZJcJUlyvxFOluXnJEmSgG+B14Dye84lSXoY6AT0qkG8DC8mlSNVqAeDxsHqRfDBdAhsAHUbg8qiuwgrV0S5QkSlipE0CKPVyjzbcza13Bx5d8UM6rcIJPpyPADLPtzAWw5X+XLAEBpXWGCpmBcXU1LouexHCkpLCa7fgB+GjqDPr8bPfrhFtJExFn1rYDCf7zqI1kTGa2WZB39YgYu9Pd+MG04Tb0/CU9NNrkVX1AXYfTGS3RcjuadBIM8N7METP67nWkoGS/ed5McnRlFQXMrVxDQ0WrlSGd9QNeTt4GDmHawcV1d7e/o1bkTwT0vIKS7mm+HDGNGiBX9erti5miijCn9fTE3hvl8M8njYCPosv0kem5atlB8zhwXzxVbT+Xy73CFbZ63Wi6Rq1BcbSUVrDz8e2bcCB7UNa/tO4Vx6PNfzMiod+//GVJuq6FvVpZJvDA7m851V12cnO1sWjhvGJ9v2k19c8n9q3zrVCse/ExzMpyZ0IzMy+OHkSZaPGk1BaSlX0lLRyNpq5dubg4OZv+MW6R8/jLlblfSDSZuonK/9g/lsj2ndCctXk5KXT20nR36ZMJrI9AzOX4o3ef6bxX3msGC+2Ca8yARW5kW3HneEpifTY/X3FJSV0rtOQ37sN4rgdT8CMGrT76QU5OHp4MRvg8YSmZ3OiaSaD9zNgSW96Ab3tKjL8F6teXKOUlTXEzJYvukkX78+msKiUsJjUtFotNXqrwH2nY1g39kIOjQN5OmRPXh2vunb8W5gOo2mw7ZvV48hA9vy/Mu/3VSzKuGqcq5jq7oM79Oap99dZfS9jVpFz3sasWjlQUXSxLGmymPvuUj2noukY+NApj/Qg+lfKXmglWUmfLQCZ0d75j89nEYBnqSTZFL5n9bZmiK8yPxeZLq+GP8dmpHMvesXUVBWSnBgQxb3fpDeG38s/91WpaJf3cbMO7P/VqezKOb0optpVLefrUl8OrSuy9C+bXhm1sry76bP+p30zHzcXZ34cvYYouMzkEqqr2mKl6YtJSMtFzePWsz99hFir6cRei6minlutWV56fGlZKTlMfCB9jz+fH9ad6jHRd3jXirPqatOg1Yr8+x97ylz6t+eK59Tq21UuLjX4sW+cxj7wTjGPx5s8vjq4uBox9tfTOCHeVso0O0uqwl3iBdZLeZ6e2PF+8Iq1hKjv2VZliVJ+huYgc5QJUnqB8wCesmybLKmSJL0JPAkwCsf+TB8orJt0cMLMvS33JKVBu4VFuEda8Fjr944P7w1Gbz8qpu820CbBGr9CbwCapORmGUUJC0+E+86tcv/9g70qBQmP7uQC4fC6NSvTfmi1w22RITxRf8h5X/7ObuQnJ9nFCavVO9k+6Kj+FDVFw8HRzKLTD//IDknD39X/Sq8n6szKbnGxds6wJcvxijndXdy5P4mDSjTatkdFlkeJre4mBPRcdzXOIjw1HSSs/Pwc9Pr+ro5k5pT+XbCG5yOiqeupxvuTg5kFRSx4eRFNpy8CMALg+4lKTuXpMI8/F0M4uriTHKecfrb+Pny1VAlrh6OjgQ3bIBG1mKjUhGbnUNGoZIP28PD6RjgX2lSnJSXi7/BLhB/ZxdSKuZxiXEef3CLPAZlZ5d/hfxIqZAfrer48vlEXdydHLmvmZLPey5Fcrto7/ytsP93L/J+4gFc+ykPRU4qzMHfSX9lyM/RhZTCXKNjkwpzyUwqpFBTSqGmlJOpMbRw97WKRa/UuAy86+jN06tObdITbh2v5Bzj+uznVgPfuBKJjUrFwnHD+PvCFXZeVp6DkJRrmfadlGes6+/sXKlNt/H1ZeEQA90GSlx3Rkay5mIoay6GAvDqvfeSlJtHck4FfzPlm4G+zH/IOP0ag/R/Nd44/TfywM/VOA8q6fr7smCk3id6NVJ0d12NJEV3S2dGQSE7r0bQNsCv0qJXxbLzdTXhRYG+fD5BeFEN+b970YD3ZzJ+atvy3/ydXEguqHpMsDfuGh+q+uNh70hmcSEpurDpRQVsjw6nvZf/v7bodbtelJKZh6/Brgef2s6kZeZVCte4rhdvTe3Pi/M3kJOnv/Xw7wOh/H1Aad/Tx9xLSmaeolnbQNPDmdSsypo3OHs1njre7rg5O5CdV/m2xvI0puXi463vL7y9XEhPr6zbsIE3r744iJlvryUnt2q9ct30XKM88PZ0MZkHjep58eaTA3h5rnEeAHTv0ICrUclk6p7Rk5KZh5/Bjjkfd2dSs6oew52JiKeOtxvutRzIMri1M6+wmNNX4+jRKogTWUkkFeTib7Czyxx1tqYIL7KAF334BuOn6Hfe+Tu5lJfVDYzmJ/HXmKMaUF6uAMGBDQnNSCatyDy31N8ut+tFhpizn01Jz8XH4DZn79rOpGWYaN/1vZg5fSCvzllv1L7TM5XzZuUUcOB4BC0b+xG+LwJvX70Xefm4kp6aW0mzKjJ0O8+yM/M5vO8KzVsFEnouhrSUHGNdX1fS02qiq6QrJiqNvJwimrcK5CLgFehBRlKWUdi0hEy8Aw3m1Cbm3fo5dWuiL8eTlpDJ4b9PAxBy8joTn1Th5uFEdmYBXr6uZNQgD9Q2Kt75YgJ7N5/n8O5Ltz7ABHeBF/2rWGpJcRyAJEk9gWxZlrNNhOkJROrCdQB+AB6QZTmlKlFZlhfLstxJluVONxa8AIKaQUo8pCVBWSmc3Kc8yN6QgjzlN4BDW6FJa2UhzGKUhoA6CNR1sLFV02t0F45tOWsU5NjWs/Sd0AOA5p0bkp9TSEZyNm6eLtRycwTAzsGWDsEtiQ1X7hUOaORbfnygsxuSBHVcXbFVqRjetBm7oozN0ctJ/5Dsdr5+SJJ008WYkPgk6nt6EOiuaA5p1Yw9Ycbb6fstXErfr5TPjkvhfLB5D7vDIvFwcsTF3h4Aexs13RvU45rugcuhcUnU8/Ig0MMVG7WKwe2asfeSsW5dT32Ztgj0wVatJqtAMeratZT88HN3oW/rxmw9F8aFpCSC3N3L0z+sWXN2RxprBv+0hF66z7ar4by7azc7IyJJyMmlvb8fDjbKum+PevWIzKjciV1IrnCOJs3Yda3qPG7r64fqFnlcnh+eSn7YqlUMMZEfA+ctZcCnymdHaDhz/tjzjyaZoLwOtyafOwCLe9GNBS+ACxkJ1HeuTZ1a7tiqVAyt14rdCcYPYN0VH0Ynr7qoJQkHtQ3tPAOMHnT/bxJ2MoLAJv74BflgY2tD8Lh7OfrXrd+YFJKQRP3aOt9QqxjSuhl7rlTwjS+X0lf3KfeNK0p9njOiP5GpGfxy9Ex5eEu17wtJSQR5GOvuumas22vpEu7XfbaGhzN7z252Ripx9XRUvCjAxYWBjZvwV9gVxTcN09+mGXsrpL//gqX00312XArng00G6R/Zn2upGSw7csbomJCEJII8PKjjpsR1aMtm7A431u373VL66D7br4Tz3vY97LoaiaOtDbXslNsBHG1tuLdBfcJTK9czQ28u96LLFbzos6UMmKd8doSGM+dP4UW3gcW9KLxObRq4elDX2U0ZEzRswc4Y44fpehsMfNp56fqr4kIcbWypZWsHgKONLfcHBhFm0WdA3Jzb9aLL15Ko6+uOv5cy1ujfrTkHzhrXZ19PF+Y+/wDv/bCV2AoTJw8Xx/IwwZ2asOPoFS5FKZoBOs0BXZpz4JyxZh0f9/L/N6vng62N+qYLXgBXwhIJDPTAz9cNGxsVfYJbcOSYcXn5eLvwwbsP8slnm4mLr96DaC9HJlHHzx1/byW+/Xo049Ap4/bq6+nCJ688wPvfbiU2sbJu/3ubs/PIlfK/L0YnUdfHgwBPRXNg52bsv1BhDOetH8M1r6vkQVZ+Ee7Ojjg76saGtmq6Nq/H9STFj8+nJv7rdbamXnQH+JHFvSiiXm2CXD2oc6NcG7RgZ1yFcnUwLFd/JCSjFxI80KAlf//LtzbC7XuRIebsZ69EJFHX3wN/H8U3+vVszuGK7dvLhY9eG8GHC7cYtW8He1scHWzL/9+5XX2uxaQRdimBwLqe+Aa4Y2OjJnhAa44dCKtW2uwdbHF0siv//z1dG3E9UqkmYZfiCax3Q1dFcP9Wt6V7/VoKXj6uZGfmK3PqUV05tuWcUfhjW87p59SdGpKfU1D1nPqqcnv1kc1naXe/8tyuvNxCbG3VODjZY2OjptegNhzbd4Xq8tL7DxITlcqGXyu/sb263IVe9H+lJju9HHX3et9gmyzLM6sImylJ0hHAFZhq8P04ncmqgDjgMd33nwHOwFrdVsgYWZYfoJqo1TDhWfjyLdBq4d4BEBAE+zcpv/capryx8efPQFIpb3V89KXqqhvzyvtw4hxkZUPwGHhuCowZaiqkBjnnAySPJSw+VYsdvx4k+koCQ6YGA7Bl6T5ObL9A5wFtWXr+U4oLSvjimSUA1PZz45XvH0etViGpJA5sPMmJbecBmPreGOo08aPIx5743Bxm7d3F8gdGo1KpWHsplPCMdCa2Vq70/h56gSGNmzKpdTs0spaisjKe37a5PIZfDRxKt8A6eDg4cmTKk3x5/Ah/HrrEh1v2sOThUagkifXnLhKRms64exTN1aervtfc27kWc0cORK2SkCSJbRevsi9cuY9co5X5+M89/PD4KNQqiY0nLxKZnM7YborummMX6N+mCQ90bEmZVkNRaRmvrtDHdcGjw3F3cqBMo+WjP/aQU1iMxlXm/T17+WX0aFQqiXWhoYSnpzOhraK58kLVcT2flMS28HD+euRhNFotF1NSWHUhpFI4jSzz3r49LBuhy+OLlfN4cOOmTGrTDo1WS5GmjOe3bq6kU0lXK/PRX3tYPHUUKpXExlMXiUxJZ2xXXX6Y8dk5htwhW2et1os0ssz7Z7bx8/0TUEsq1kadIzwnjQmNOgKwMvIMkbnpHEiKZPOAJ9Eis+baOcJzUm+hXJnqe1H10Wq0fDNjCZ9sm4VKrWL7z3uJvnTrnR4araz4xiNKfV5/VucbnXS+YeL5fzfoWC+Ake1bEpaUysanJwGwYPdhdidHWaR9a2SZ9/bsZdmo0agkSWnT6elM1On+fhNdgO+GD8fdwZEyrZbZe3aTU1yMvVZizuY9/PSokv4NZ2qW/hG69G+YrqT/y12HORB+HY0s88GOPSwZr/jmuvMXiUhLZ3wHRXfV2ap1vWrV4tvRwwFQq1T8ffEKB69FY1shnJEXSQZe1EXnRSeEF90Eq/IijSzz7tFdLB/0EGpJYs3VEMKz0pmke4vPiivnGBLUlIdbdKBM11/N2PsXAF6OTizu+yCgvATiz8hL7I+PqupURlibF32+fC8LX1fa998HQomKT+fB3kp93rj3AtNGdMPN2YHXJ/fVHaPlsdm/AzD3+eG4OTtSptHy2fLd5BYUo7GFz1bs5euXRqNWSfx1KJRrCemM7qVort9/gb73NGFI9xaUabQUl5bx5vebyuP00ZNDuKdZHdydHdn82RMs/vMofx4KRauVWfjtTuZ9PBaVSmLrjhCuR6cxXPeA5r83n+PRSffi6uLIi8/1V+Kq0fL0jOUAvD1zOO3b1sPNzZE1vz3DL78eYuPxS2i0Ml8s3cOCt0ajVqnYtC+UqLh0RvZT4vvHrgtMGdMdV2dHXp3Wt1x32lvK293s7Wzo3KY+ny7WP5NLo5X5dPUevn1e8bi/jlzkWmI6o+/T5cHBC/Tp0IRh3VpSptFQXFrGzB+VsZC3Wy3en6wfG+48fZWDIVHQ+d+rs4YILyrHvF50fCfL+41FrZJYEx5CeFYak5q2B2DF1XMMDmrGw806lI+dZxz4q/x4B7UNPf2DeOvotuqlXoc1eZEh5uxnNVqZL37azRfvKPOSzXtCiIpNZ8QAZWfdnzvO89hD3XFzceSVJ/opx2i0PP7Gb9R2d+Lj10cAoFar2HnwMsfPXaeWRsu3n23h468fQaWW2PHXWaKvpTJ0tPLA/s3rT+Hh6czXy5/EqZY9siwzckI3nhz7La7uTsz+bFy55t7tIZw6GgGShFYj8+28LXy88GGd7jlFd5Ty3K/NG07j4VmLr5cZ6I7vxpPjdLrzdLo2KvbvvMj4KfczcfK97PjtUOU59Q7dnPrcXGVO/azymBllTj0NtcpgTr1dmVPv+PUgL387le+PfkCZpGLZt7v4aNFkVGoVO/44TXRkCkMeUi5sb1l7Eg9PZxaumq7EVSsz8uEePDVyIQ2a+tFveAeiribx7ZpnAfhlod4/q8sd4kVWi2SO+5L/DfZfb2r2iN/nYG5FhSFN7zW7ZthHrc2uCWCfYZkGZ1P1LvjbptDXMnVXtjW/rmOCZfL14tyXarTM/8jxx2uUuF+7/iQuI9yCxmvmmL3CXL1/ubklARgYYJmHU8e+08PsmqWuFmrfFmiK9pmWaSYaC/RJttXfrV8jLn4ivOjfpv6SeRZpNFFDfzK7pqW8KOfh7mbX1FRcKTYTLnGltw5UQ4rdzfXUEmOKPMxvnOmdzZ9+gOhpr1vUi0D40a0IWvapRbzo2sAlZte0lBclvGH+cZHH1arfcPhPqBVd9e3at43pB7P+c9mrlV86ZhbqB5hdctuFOcKLrAjL9I4CgcAqEfeLCwQCa0B4kUAgsAaEFwkEAmtAeJFlEYteAsFdhHi9rUAgsAaEFwkEAmtAeJFAILAGhBdZFrHoJRDcRYj7xQUCgTUgvEggEFgDwosEAoE1ILzIsohFL4HgLkJcRRAIBNaA8CKBQGANCC8SCATWgPAiyyIWvQSCuwhxv7hAILAGhBcJBAJrQHiRQCCwBoQXWRax6CUQ3EWIqwgCgcAaEF4kEAisAeFFAoHAGhBeZFnEopdAcBchDFUgEFgDwosEAoE1ILxIIBBYA8KLLMt/dtFrbte+Ztf8pLDI7JoAW64eNrvmkNa2ZtcEkBwcLKIrF5k/byV3N7NrApRdu252TRsfb7NrAjC3ZsGFoZqfxnPMX7cHhrYzuybA9oTzFtEdGGj+h2/a1As0uyYAdnbm18zIMr8mIGs0ZteUHC3j8XxSs+DCi8yP5ynLjAsGPmF+P7KUFw29x8/smrKnZcYasYM9za5pm292SQCcE83vRZ5LS8yuCcC0mgUXXmR+WsyKt4juwCn/HS/qP76D2TUzWziaXROgwMf8Huf5wxGza1qU0LB/OwbCiyzMf3bRSyAQ1BxhqAKBwBoQXiQQCKwB4UUCgcAaEF5kWcSil0BwFyEekigQCKwB4UUCgcAaEF4kEAisAeFFlkUsegkEdxHiKoJAILAGhBcJBAJrQHiRQCCwBoQXWRax6CUQ3EUIQxUIBNaA8CKBQGANCC8SCATWgPAiyyIWvQSCu4gyrfkfOC4QCAQ1RXiRQCCwBoQXCQQCa0B4kWW57UUvSZKeA14EGgHesiyn6b5vDvwMdARmybL8ucExg4CvADXwkyzLNXz3HACDgK+WHHufbSsOs/brHZUCPP3RWDr3bUVxYQnzn19OZEgsAL+cnENBfhFajRZNmZYXBiqnf/Wbx+j1YCdkjZacjHy+nPEzJ3dcMNKcPm8inQe0pbighPnTlxBxPhpbexs+3/YmtnY2qG3UHPzzFL99/AcAj779IN2HdECrlZE8YpCzZ4I2pcpEzZoL+45CbQ/4+5ebpN7uPiTXWSw94cy23w6xZuG2SkGmfzyOzv3aKOmf8QsRF2LKf1OpJBbumkV6UhazJ34DQMPWdZi5+An86nsBsH3lUb57e13lfP1gNJ37tFR0X1pBZGgcgQ19eHPRY+Vh/Ot58evnW/hjyT56Dm3Pwy8Ppm4TX14Y8AmutZ2Z/vE4VCpVjeO+7MzHFOQVo9VosXeyA1lGZWvDtjUnWPvD3spxfWcEnYObU1xYyvw3VhN5UXmTzIjJPRk0riuSBNtWH+ePXw4BMOn5/gwa25XsjHwoKWHprN85sfVslcXQaWB7nvlyCiq1iq1LdrP60z9uGk5tZ8O2FUdY+42J+jrnIV19LWX+C/r6WsvVkRe/mET9ZgHIMix46VeunI5i2rsP0rV/G8pKNQAbgSlAVpWRNUC+A68i/IteVM499zZh+htDlLq94TRrlh4w+r1OkBevfDiKRi0CWPb1TtYvU97oamtnw+c/P46tnRq1WsXBXRf57bs91T5vdethTbipF+n8B9TIhWshf3Gl45/58jG6DO5AcUExn01dRMTZKF1c2/HMgsd0cd3D6nl/Gh035uVhPPXZI3w4bgGPfTAOJ/dayLJMblYhZaVlLPnkb84fjQDg6dkP0jm4BcVFJcx/dWV5+x459X4GjeuGLMtcD0vki9dWUVpSRoMWAcyYMwYHJ3tSErLYseEUU14ZhEolsW3tSdb+uN8oLnUaevPyx2No3CqQZQu2s37pwfLfXvp4DF2Cm5OVnsdP87bw9KzhqJDZ9tth1i7cXik/nv54LJ37tVb6jueXEXlB1x+d/oiCvCK0Wl1/1F95/eGk14Yx/PFgHGvZIwF7153gixkVCwKmfzKezv11Xvnsz5V9fs/bpCdmMXvC1wC89v1Ueo3qgqyRycnK56tXf+fknkvGcf1gNJ376PrOl34jMjQO0HnR5xN0XiSz4JUVXDl9nZmLplCnkc+Nw6+j+FD7SpE1gfCi8mPM6kU9Wtbn1bHBqCUVGw+H8suOk0a/92rbkGeG90Ary2i0Mp+v3ce5yATsbNT89MpY7GzUqFUqdp8N5/tNR6t93v+7F1VE501LDrmwbeVR1n67s1KQ267fajW1vZyp5eJIWnK2WT2+Z9P6zHxAKa/1J0P5aZ9xefVu2ZAZA3ogyzJlWplP/97HmesJADx8bwfGdGmNJEmsOxHCr4f0Y5YeLerz+phgVCoVG4+E8vNOY93gNg15Zphe97N1+zh3LaH8d5Uk8fvrE0nJzuP57xWv7to+iBem9kGlkti0O4TfNp4w0ux/XwsmPdgFgMLCEuYv3kVEdCoAaxc9QUFhCVqtjEaj5fE3fis/rlPXhjzz4kBUKomtf59j9W/Gb32rW8+TV2cNp3FTP35evI91K48peV6vNm9/MKo8nF+AB8t+Mvby6iC8qPwY883RDr2ja4e7KgWo6VzikVeH0H1gG7Ramaz4dD6b8i3piZlVRuBf9yIDOndpyLPP9Uelltiy+Tyrfjf21Lr1PHn9jaE0buLH0iX7Wbv6ePlvo8d0ZsjQ9shA1LUU5n26qfw3S/j8ndR3WELTkro3uBO9yJr4Jzu9DgObgH0Vvs8AngdGGn4pSZIa+BboD8QBJyVJ+kuW5UtUn3KNp+77IPKr7TM5vv0CMVeTygN07tuKgAY+TOs2m+b3NOC5eRN4afC88t9njlpATob+nc4qlUSX/q1Z/+1Ofv1gHQv3vUtydJrRSTsPaEtAI1+mtp9J884NeW7BI7zYZw6lxWW8MWweRfnFqG3UzN/xJqd2XuDKyWus+2ory+dsBGBLXEMk52eRc2ZXmbCRg2HiKJj58c2Sr0JynY2cOYUn723Kwp1vcWzbeWKuJurj2q81AQ19mdrlbSX9n03ixYH6d8mPfKovseGJOLnoX3s7bfYYnF2deLLHbBq0DeL1byazadkhYsIN8rVPSwIaeDOt54c07xjEc5+M5aXhXxB/LYXnBs4rz8tfT33IkW3K63+jwxL58IklPP/pOCSVxLOfTuStMQtIS8i8rbi/MXI+eVn5/HR8Dm+NWUB6gZavNjzP8d0XiYnQLyh27tWcgCAvpvX9lObt6/Hc+6N4aczX1G/iy6BxXXlx1EJKSzXMWfo4J/ZeIUFX3n/8fJD1S/ZTdu36zQoBlUrFjG+m8caAD0mLy+CbE59w9K9TxFyOqzJcVomKr7a9wfEdJuprQx+mdX9PyddPx/PSkM8AZTHs1J5LfPT4T9jYqrF3tAPg7P4r/PzRn2g1WrYmfXcVeBN446aR1nGHPiTx3/CiclQqiWffGs5bT/5MWnIOC1c+zbF9l4m5lloeJjenkEVzN9O9TwujY0tLynjj8aUUFZagtlExf9kTnDp0lYvVeHVydethTanai/T+gyYJyXM9ctFu0ESWh+gyuD2BTfx4rNkLtOjahOe/ncbzPd5GpZKY8fVU3hj4EWlx6Xxz/BOO/n2KmMvKYpV3HU/u6d+W5OhUnvh0Eq/1+5DarRry8ucTmDtjOZJKYs6yp3ik+/t0Dm6htO/eH9O8fX2emzOGlx78Ck9fN0Y8dh9P9Z9HSXEpb37zKL2Gd2DX+pO8+MlYfvrkb0KORzJwYg9e/Gg0z4/6hrTkbL5a9xzH91wmJlLvIblZBXz/0d9079uyUv7s3HCav347wqufjuXZd0fw1pQlpF2O5qsdb3J82wUTnubDtC7v6vqjibw06NPy32c++IVRfwQgSSABT937PqmxaSzcPYt6zfyJCaug28iHqZ1m0bxTQ56bP4kX+xv4/NP9iL2q93mln2vLuq+3s+KrHXy15TWSYzOMzqt4vA/Ten6g8/hxvDR8PqBMUk7tvcxHTy418qK5038uP35r/NfrgexKGVYFwoss4EWSxBvj+/DMwg0kZ+by28yJ7L8QSVSSvqxPhMWy/4Ky4NAk0Iu5jw9l9PvLKCnT8NSX6ygsLsVGpWLJq2M5fDGKkKikqk6nP+//3YsqxaDcm57q3YavtrzG8R0hJsYwt1e/JW931hx8i01rjrN0wQ6zePyVC3GoJIlZI/vwxE8bSM7OZfVzE9l7KZLIFH15HY+IZe8lpbya+nkxf9JQhs9fRmNfT8Z0ac34b1ZSqtHww9RR7L8cRWJ+FipJ4s2xfXj6mw0kZ+Wy4rWJ7A+J5JpBPTgeFsu+EF09CPBi3tShPDhnWfnvE3t3ICo5g1oOSl6oVBIvP9GPlz5YS0p6Lj99+jCHTkZyPS69/JjElGxmvLOK3PxiunVowOtPD+DJN1eU//787DVk5xYal5xKYsYrg3njxRWkpeTwzU/TOHroKjHX9ePw3JxCvl2wnXvvb2Z0bFxMBk8/9lO5zso/XuDw/jCeeWGAqUpSJcKLLDBH6/1x5FebX+X4jtB/PJdY//0efv18CwDDRrfn4XfH8NX0H01G4N/3IsO4SDz/wkBef3Ulqak5fPf9FI4eDic62rhuf7NwJ/f2bGp0rJeXMw+O7szUyYspKSnjndkP0qdPS1ZFR1jE5y9eTza7ZgK3xhLlZak6YCldQ+5QL7IabrmPTpKkIEmSrkiStEySpAuSJK2TJMlJluWzsixfrxheluUUWZZPAqUVfuoCRMiyfE2W5RJgFTBCd44nJEk6KUnSeUmS1kuS5FRFdLoAEcC1slIN+/84RbdB7YwCdBvUjt1rlatAV05H4ezqhIePa5Xpa9oxiNzMfHIz8ykr1bB//Qm6D+1gFKb7kA7sXqlcebpy8hrObk7U9nUDoCi/GAAbWzU2NjbIsnJMQW6RQSY6AXKVcQDo3A7cXW4aBGzbgiYaNLFKXDeepPtg4/R3H9ye3WuO6tPv5lgeVy9/dzr3b8O23w4ZHVPLxYGstBySotOwd7Ij4Xoq3Qa0MQrTbUAbdq9TrupdOXMdZ1fHSvnavmczEqPTSIlXrsDERiQTf02ZSNZvFkBiVApJ0Wm3FfcbNOvYwFhn8zm69WtlHNd+rdi98bSicy4GZ1cHPLxdqNvYlyvnoikuKkWr0RJy4ho9BrS+RaZXplmXxiREJJEUlUJZaRn7Vh+mx4hOtwinYf8fp+k2sEJ9HdiW3WuUKztKvir11cnZgdbdGrP9d6XelZVqyM9RBotn9l9Gq9HekDgG1Klu3LWyVKOPNWFlXlROs9Z1SIxJJyk+k7IyDfu3hdC9t/HEJzsjn6sX49GUaSsdX1RYAoCNjRobG3W5h9zyvNWshzWlSi8y8B8oRS7aDA79jIJ0f6Azu35VdkBcPh6Os3stavu5K3GNTC5vC/tWH6HHA53Lj3v6i0f58Y0V2NipSYpKISkqhasXYtmz8TTd+rcm+moSdvY22Nqp6da/Nbs3nALgyrloxYu8lQir1SrsHGxRqVXYO9iSkaKswdRp6EPIcWVxLjuzABtbNUlxGToPOU+3Cotb2Rn5XA2Jo8xEeYWeiiI3uxB7B1sSotP1On+cpNvgtkZhuw1qy+7VBv2RmyMevlX3RwCe/u7kZOTrPW7DSboPbm+cz0Pas3uVTvfUNZxd9X2SV4CH4vO/6n2+2T0NyM0y6Of+PE23gRU8fmAFj3dz1HtR18ZsX6l4s6EXVWAssPKmiTNAeBFgZi9qHeRHXGoW8WnZlGm0bD8VRnC7RkZhCov1UXC0s8XQcG78ZqNWYaNWWa8XVaTi2MjM9btZ6zrY2dmwafUJs3p8m7p+xKZnEZeRTalGy5bzYfRuaVxeBSXG5SXrxpINfWpzPiaRotIyNFqZU1Fx9GvdGFDqQWxaFvHpunpwJozgthXqgaGuvV4XwMfdmftaNWDDkdDy71o09iMuKZOE5GzKyrTsOnSFnp2NNUPDEsjVjYkvXk3A29O5Ul5UpFmLABLiMkhKyKKsTMu+3RfpcZ/xAkBWVgFXrySa9OMbdOjUgMT4TFKSq73uXk5Nvcia/MjKvMh4jvbnGbPMJQry9PMph1r2N/Wlf92LDGjePID4+EwSE5W6vXfPJXrc28QoTFZWAWFhiZRpKtdttVqFvb0NKrWEg4MNaWl5gGV8/k7qOyxVByyla8h/2Yv+C1T35tFmwGJZltsCOcAzt3GuQCDW4O843XcAG2RZ7izLcjvgMjCtOhppCZl4+rkbBfD0dyctXr/tNS0xEy9/JYyMzEern2fhjjcZ/EhPALz83CnILWL41GAWHfmAe/q1wS/I21gzwJ3UOP1qd2p8Jp4BHoCykv/tofdZFfkVZ/ZeJOzUtfJwk98Zxa+X5iM5DEfO/ermuVMdVL6g0V8xSUvIwtPfo1L6Uw3Sn5qQiacu/U99NI4l769H1hq70d4NJ/Bv4M2v5+fy+Dsj2bX2OJ7+xotNnn5upCVk6c+dmIWXn3GYXg90ZP+fp01G3d3LhdQEfR7WNO6yDB+ve5HXv5+m3N54QycpG88KC2Oevq6kJWYZhfHydSP6ahKtOzfExd0JewdbOgc3x9sgncMf6cF3m17mlSXTcXavZTIdAF6BtUk1uLqZFpeBV6DnrcMlZlbOV3930hIq11e/+l5kp+fx8leP8M3ON3lh/iSjdBswFdhaZWQrIMtSjT5WiLV4UTmevq6kGgy005Jz8LzJQntFVCqJb9c8y6p9MzlzNIKwkOpdNapuPTQbFfwHTRKSyrdCnDxIiTWMUzpegbWVuBp+H5+OV6DS/rsPv4f0+AyuXYhGpVYb+3dSFp5+bvQc3JbIi/GUlmgqt2+dF6UnZ7P+x30sP/wOvx9/j4LcIs4cvArA9auJdOuvLI736NcKW1v9Jue05Gw8b7EQZQq1jYrUJINyr8LTjNp3QhZeuj5LlmU+WvsCC3fp+yMAJ2dHPP3c+G7f27z09WRys/LLfVCv60FqvEGfZOjzH49jyXvrkLVag/DuFOQU8sDjvflu50w69W6Bfz3juuLpV9GLlHz1q++peNGCh/lm++u88NmE8p0wN2jdtRFAMhB+q3y7gfAiwMxe5O3uTFJmbvnfKZl5+LhXXnjo3a4R62dP5qtnR/L+r/rbAFWSxMq3JrFr3lMcvxxD6PVb7/KCf8GLKlJxbJSYVXls+A/qd4fujSgsKCEhRkmjuTze182ZxCx9eSVn5+HrVrm8+rZqxN+vTGbRlJG8s1Ypr4jkdDo1qIObkwMOtjbc1ywIP92xPm7G9SA5Mw8fE7q92zZi49uT+frpkby3Ql8PXhsdzJd/HEQ2mLl613YhJU2vmZqRh7dn1asAw/q24Zju1nZQxnBfvDuGJfMe5oH++osDXt4upKbklP+dlpKLl3cNVxeA4L4t2bvrYo2PU+JWMy+yQj+yFi8ynqMlZZltLjH59aEsP/E+fSbex7J3V1eZiH/diwzj4u1Caqq+bqemVr9up6XlsXb1cVaueY61618gL6+Y06eU9mQJn7+T+g5L1YH/R926A7zIqqnuolesLMuHdf//Deh5s8BVYKpkbvSorSVJOihJUggwCWhlImwVGvKtApSvOL8y7HNm9P+EdyZ+w7ApvWjdrTFIEjHhSUzt+g7P3Dub/OwCWnYzXomXpMqqNwYDWq3Msz1n83CLl2l2TwPqtwgsD7Psww080vIV5KK/kWo9UkWSakLV8bhVXLsMaENWWi4R52Mq/d6pdyuunIrikXYzWfzeRgZO6GG0gl+1rv7/NrZqug5ozcFN56ob9WrHHeDloZ/yXJ85rFqwhXpN/WndvYlhoGrpxEamsHbxXj5e9gQfLn2ca5cT0OiurmxecZSpfeby7PAFZCRm8dT8R02nA+X2o1ulpapwFTf8VRVXtY2Kxm3qsvmXgzzX/xOKCkoY+5zxlv3xLwwCKANWVBKpgjvgCoK1eNHNxap7mQudh4z9lof7f0az1nWo39jn1gdR/XpoPm5doauqz1X5h72jHRPefJBfZq+p8qwuro5MfWMYX89ae5NzgLOrI936t2bK/XOY1O097J3s6D3yHgAWvL6a4Y/0ZOFfL2HnYINWW+GqqrmyrQa++crQz5jR92PeGf8Nw6YG07q7skvjzP5LHPjzNM/2/oiMpGyCx3SpdNW0qrLvMqAtWak5lXxekiRiriYypeNbPDvgU/JzCmnZuWG14qpWq2jcpg6blx/kuYHzdF7U3yhcsJLP1d7lBcKLdJjXi6rpCXvPRzL6/WW88v1fTH+gR/n3WllmwscrGPTWT7QK8qNRQPUG9P9/L6oUA1MRMA7xD+p3qw71SaxwO7ClPN6U7u6LkQyfv4wZy/9ixgClvK6lZLBk/0l+enwUP0x9kLDENDS6C5omy8OEye29EMmDc5bx0uK/eGaoontf6wZk5hZwOdb4GbQ1KeMOresytG8bFv2qf+7Z9Fm/M+21X3llzgZGDWpPu5Z1dLo3H1tWBxsbFd17NmX/nss1O1DHHbC7wlq86JaFebtziWXzNvNol9ns+f0gI54bVFUarMCLbk51o+Ls7ECPe5swafx3jB29EEdHW/rpLtxZwufvpL7DUnXg/1G37gAvsmqqu+hVsVRvp5TjgLoGf9eB8lt+fwGek2W5DfA+4GBK4Nlnn73n0KFDD0mSdCq28BJeAR6kG1xpB91Vg0D91XYvfw/Sk7IAyNDtxshOy+XIlnM06xBEWmImbrWd0WplZFkmLjwRVw/jXT5p8Zl416ld/rd3oAcZBjsNAPKzC7lwKIxO/Yy38gJQ+DfY1+wZAybRJoHaT5+2AHcykozjkZaQibdB+r0DPMhIyqZVl8Z0G9SOZWc+ZubiJ2jXszmvL5oKQOseTctvlzu46SwBQV6kJ+UY6yZm4RXgrj+3vzvpBrtbOvVuSWRIHFkGVwINyUrNxTtAn4c1iTtQ/m9MWCJ52QU06xik6Pi5kZ5SIa5J2eW7+yqG2bH2JDNGfMXrExeRm11AvO65EVnpeeV1YMuPu2jWubHJdACkxmXgXUdv6F51apOekHHrcP4m6mtCJl4BFetrNmkJWaQlZhF29joAhzadoXHbeuXh+o3tSpf+rUEZgFS7Pd4BVxCswoskSXpSkqRTkiSduhh+Em+D3YZevq5kpJpuBzcjP7eIC6ei6FRh+3tVVLcemo0K/oPaD7nCyzlS4zLwqWsYJ0/SEzJJjUvH2/D7QOV7/0a++DXw4Yez8/g18mtcaztz3+iueOjys34TPzre34zPX/mdxBu7LCq2b50Xte/ZlOTYDLIz8tGUaTmyPYSWOp+Iu5bCrEd/4PkHFnB4RyilJWX6430re0h10JRp8Ta4Qu0V4F7e19ygUvsOcCc9WQlTuT9qAED0lQS8AtyRZZltyw9St7FfFV5p0Cfd8Pmujeg2uD3Lzn3CzJ+epN19zXj9+2mkJWTi5ulS7nGxESm4VNjNmpZY0YuUfE1LvOFF0QAc2nyOxm30zUelVtFDuVW96svvJhBeBJjZi66ePYqfh34ngY+HM6nZ+aYOA+BMRDx1vNxwr2UsnVdYzOnwOHq0DKpWIv7vXlSRimOjCuMT+Gf1u0mrQEqMPMM8Hp+cnYe/wT1Tvm7OpORUXV6no+Kp6+mGu5NSXhtOXuShhb8z+Ye1ZBcUEZ2m7GRLzsozqge+t6oHkfHU1dWD9g0D6NWmIVven8rcKUPo3LQuHz06iJT0XHy89JretZ1Jy8irpNWovhczpw/kzbl/kGNwW1p6pnL+rJwCDhyPoGVjpbxSU3LwNtg15+XjQnoV48iq6NytMRFXk8jKrDqNN+MO2F1hFV5kNEfLD8XLz93sc4k9vx+i56iuVSbiX/ciA9JSc/H21tdtb+/q1+2O9wSRlJhFdnYBGo2WgwfCaNlKWShOycwzu89bQrM6WKK8LFUH/h916w7wIqumuote9SRJ6q77/wTg0M0CV8FJoIkkSQ0kSbIDxgN/6X5zARIlSbJFmcSb5Ntvv327Z8+e6bIsP9TAtQ29Rnbi2Hbjtywe236Bvg91A6D5PQ3Izy0kMyUHeyc7HGvZA2DvZEfH4BZcv5LA1bPR1G3ii289T2xs1fQZ153w89HGmlvP0neCsqLdvHND8nMKyUjOxs3ThVpuyoOC7Rxs6RDckthw5WHDAY0Mbvtx6Auaa/xjSkNAHQTqOtjYqun1YGeO6R70WB7XbefpO7a7Pv26uP48ZyOPtH2DyR3fYu6TP3L+0BXmTV8KQGp8BkEtA/Gt58k99zdH1soc2xlirLsjhL5jlLfyNO8YRH5uEZkGE8XgER3ZV8WtjQAxYQkENPQpz+eaxN3eyQ5HZ6Xsrocl4OXvQXZanqIztD3Hdhs/Z/PY7ov0fVDZ4dG8fT0lrroBqlttZaLn7e/OvQPasP/vcwDlzwQCuPfBLlwPjaUqwk5GENjEH78gH2xsbQgedy9H/zp1i3Bqeo28h2MV3gp6bEcIfccqHbiSr0p9zUzNITU+k0Ddm9Ha39e8/AHZ9/RuyUPPDeD9yd8DFFQZURPcAVcQrMKLZFleLMtyJ1mWO2XFOhNQ3xPfQA9sbNT0GtSGY/uuVCsibh5O1HJRBg129jZ06NaI2Ki0WxylUN16aDYM/AdskRyGQvFuoyBH/z5Fv0fuB6BF1ybkZxeQkZRF2MlIAhv74RfkjY2tmuBxPTj69ymuh8Yy1v9JHmk0g0cazSA1Lp2slGzsHe1w86jFiCn3s/KbXVw6fb38HMd2hdJ3lPIchebt65e379SETJp3qI+9gy0A7Xs0ITYyGQA33bNlJEmia+8WlJVq8K3jofOQdhyr8BbD6lBcVEpAkKdeZ2Rnjm0z0R+NM+iPcorITK6qP1Ie6p+akElAA8Ure464B1s728peufU8fcfrdDvp+6SfP9zII61fZ3L7N5n7+GLOHwxj3tNLCDtznbpN/PCt56X0c6M6EVHB447tCDX2+JwinRflkpqQpfeink2NHtbf4b5mxEUkgzJpqjbCiwAze1G85E1dHw8CPF2xUasY2KkZ+y8Yjz3qeusXapvX9cHWRk1WfhHuzo44O+rqpK2ars3rcT2pegP6/7sXVaTi2GjEPRzbUXEMc/v1+3p4Mt5+bmb3+NC4JOp5ehDo4YqtWsWQds3Ye9m4vOp56surRYAPtmo1WQXKYlLtWsr409/dhX6tG7PlvPIClIvRSdTzNqgHHU3UAy+DelBHXw++/uswA9/5iSGzlzLz5y2cvBrLrOXbuBKRRF1/D/x93LCxUdGvZ3MOn4o00vT1cuGj10bw4cItxBq8Xc/B3hZHnS872NvSuV19rsUoeRB2JYHAOrXx83fHxkZFcN9WHD10tVp5e4Pe/Vuxd+ft3doId8TuCqvwIqM5mns7eo3oaJa5READ/SNnuj/QidgrVT8i/V/3IgOuhCUQWMcDPz+lzfTu05IjR6r3BICUlBxatAzE3l55FEPHjkHERCsX/i5GJ5nd5y2hWR0sUV6WqgP/j7p1B3iRVVPdtzdeBiZLkvQDyjM7FkmS9DzwOuAHXJAkaYssy49LkuQHnAJcAa0kSS8CLWVZztG9Qnc7yhs+lsqyfKOXegc4DkQDISgGa4oy4Dlg++JDs9mx8ggxYYkMefQ+ALYsP8jJXaF07tuapcc/oKiwhAUvLAfAw9uVd35+ClC2s+/beJLTe5WJTkJUKj8eeg8kSIxK4ctnlzJkarCiuXQfJ7ZfoPOAtiw9/ynFBSV88cwSAGr7ufHK94+jVquQVBIHNp7khG5yMvW9MdRp4oeslZHswm/65kaAV96HE+cgKxuCx8BzU2DM0IqhNMg5HyB5LGHxEWd2/H6Y6LBEhjymTDK3/HKAEztD6NyvNUtPfkRxYQlfPP/LTc8L8NVLv/Ly15P58egHAGxfdYyYq0kMefheRfe3w5zcc4nOfVqx9NC7FBWVsOBl/R119g62dLi/OQtnGl/o7zGoLdM/HINbbWfe++050hIz+Wjti6hUqhrF3cPblXeXTVfKzkbN/j9OMf7lIUx64wF2rD1BTHgyQyYoE8AtK49xct8VOge3YOmemUodeEN/69Tb3z6Kq0ctyko1fPfeRvJ0D6yd9sZQGrYIABmSrsbz5dM/VJlfWo2Wb2Ys4ZNts1CpVWz/eS/RlyrP9wzDqe1s2bHyaBX1tRVLj72vxPXFX8uPXzRrDa9/NwVbWxsSo9NY8KJSl5/5eCy2drZ8tHoGwDmUh9k/fZMiLseKdnnfLtbiReVoNVq++3gTHy2ajEqtYscfp4mOTGHIQ8qD2resPYmHpzMLV03HqZY9slZm5MM9eGrkQmp7ufDKnNF6D9keyokDt35z443zVqce1pSqvUjvP6BGLlwHZRHgOJ5hT9Vl0w+7OLHlLF0Hd2DZ1a8oLijh82mL9HF9fimfbH1LF9d9Vcb1p5m/88nWt3DzcUOlkug/pjOjn+gFwIzhCzi59zKde7dg6b63KCosZcHryl11YediOLT1PF9vehlNmZbIS/Fs1T2cOnh4B4Y9qvjZkZ2XmP/GWub8NBW1WsWO9aeIiUhhyHhl8XnLquN4eDmzcP0MnJzt0WplRk7uyVNDvqAgv5g35o+nbZeGuHrUIj+3iAWrn6Eot0jfH03Wte9lBzm5M1TxtBMfKu37eeXtaB7errzzi9Jk1TYq9m04yWndwtuUWSORVBI/HnkPjUbLn4v3EH0lgSGPKXmw5Zf9ilf2b8PS0zqvfO6Xm5apVqMlISqFn45/AJKk+MkrvzPkEZ3H/3qYk7sv0rlPS5YeflfJ15d/Kz9+0Ttref3rydjaqkmMSTf6rdeIe9j352nadK/eDsUbCC8yvxdptDKfrtrDtzNGoVJJ/HXkItcS0xl9n/IMpfUHL9CnQxOGdW1JmUZDcWkZM3/aDIC3Wy3enzwQtSQhqSR2nr7KwdCom52unP+/F1VKuX5stM+ZHat1Yxhz1e+tF0hNzDa7x2u0Mh/9uYfF05Ty2njyIpHJ6YztqpTXmuMX6N+6CQ/co5RXUWkZr/6+uTxuXz4yHHcnB8o0Wub8sYecwmJsdbpz1+xh0bOjUEkSfx67SGRSOmN6KrrrDl2gb/smDO+q1319qV7XZA5rZb74aTdfvDMalUrF5j0hRMWmM2KA8nKeP3ec57GHuuPm4sgrTygvONFotDz+xm/Udnfi49dHAMr4e+fByxw/dx1HQKuR+WbBNj75YoJSdzadIzoqjWEjOwKw6Y8zeNSuxbdLppXn7aixXXh80vcUFJRgb2/DPZ0b8OW8LbeuUFUgvMgCc7S9s/Tt8B/OJaa8OZw6DX2QZZmkiMQq39wI1uBFhnGR+fqrHXz62XhUKhVbt54n+noawx5QXpa26a+zeNSuxaIfpuDkZI8sy4weo7yx8crlBA7sv8L3P05Do9ESEZ7E5k1nobGdxXze3JrVucHREuVlqTpgKV1D7gAvsmqkW92PKklSELBJluWav+bOggz2nW72qiEXFt060G2w5erhWweqIUNaB5tdE0ByMLlr+R8jF5k/byV3t1sHug3Krl03u6aNj/etA90GW5O+q9Ey/z1bZ9Wo3Zwe/JHVXEawVi8a1PZts3uRJrR6C181ZXvC+VsHug0GBna4daAaYlMv8NaBbgc7ky+E+GdkZJlfE5A1GrNrSo6W8fit8V8LL/qX6Th9gUWGzJ4/HDG7pqW8aOg9A82uKXtaZqwRO9j8D9i2vb07/G6Jc6L5vcgxyTJj7p2H37aoF4H1+JG1etHgOs9bxIvKEhJvHaiGWMqL+o9/zOyamS0cza5pKSzRb/zX2Klde9d40X+B6u70EggEdwDi/m+BQGANCC8SCATWgPAigUBgDQgvsiy3XPSSZfk6YFVXEAQCwe3xX77/W3iRQHDnILxIIBBYA8KLBAKBNfBf9qL/AmKnl0BwFyHuFxcIBNaA8CKBQGANCC8SCATWgPAiyyIWvQSCuwixdVYgEFgDwosEAoE1ILxIIBBYA8KLLItY9BII7iKEoQoEAmtAeJFAILAGhBcJBAJrQHiRZRGLXgLBXYS4X1wgEFgDwosEAoE1ILxIIBBYA8KLLMt/dtHr8geNzK4plVimsg1pbWt2zS2h+8yuCdDs5+kW0VUXm1+z1NUyNz9rnHzNrumQpDa75u0g7hc3P2Gv1zK7pn14D7NrAgwMVFlEd3v8WbNrNl7Z1eyaAFo7CzQCGy/za2K5PskaEF5kfjJ7FllE1za/u9k1h97jZ3ZNgM2nt5tds/2nlhkXFbQ1f3kt7rHc7JoAzy990uyaKxYsNrumwts1Ci28yPwkPtjAIrqlzubX7T++g9k1AXau+sXsmk/GWWZseDCmodk1C/wsE9eigDKL6FJimfFxTRBeZFn+s4teAoGg5oitswKBwBoQXiQQCKwB4UUCgcAaEF5kWcSil0BwFyEMVSAQWAPCiwQCgTUgvEggEFgDwossi1j0EgjuIsTOWYFAYA0ILxIIBNaA8CKBQGANCC+yLP/+DawCgeD/hixLNfpUB0mSBkmSFCZJUoQkSTOrCBMsSdI5SZIuSpK036yJEggE/zmEFwkEAmugpl5UHT8SXiQQCGqK8CLLInZ6CQR3E2a+jCBJkhr4FugPxAEnJUn6S5blSwZh3IHvgEGyLMdIkuRj3lgIBIL/HMKLBAKBNSC8SCAQWAPCiyyKWRe9JEnKk2XZWff/IcBXQF9gKvAEkArUAkKAt29kuiRJ+wB/oAgoAZ6QZfncrc7Xq24Q7/bog1qSWH0lhEXnThj93s2/LosHjiQuNxuAbVHhLDxzFHu1mtUPjMderUYtqdgadZUFp44AcH+9IGbf3xuVJLH6UijfnzbW7BpYh8VDRxKXo9OMDOfrk8cA+LTvQPoENSS9sIBBvy8r13IYWsa23w6xZuG2SmmY/vE4OvdrQ3FhCfNn/ELEhZjy31QqiYW7ZpGelMXsid8A0LB1HWZ8/jCS50tAGXLO+1B6wWT+zJoL+45CbQ/4+5db5aae+xrW5+1+wahVKtacC2XxsZMmw7Xx92Xto+N58Y8tbAsLB8DF3p6Ph/SnibcnyDIzt+zkXHwiAD0b12fWoGBUKhXrzoTy4yHTuq0DfFn9+HheXreF7ZfCsbNR89uUsdip1ahVKnZcCufrfUcBuD8oiHeClbiuDgnhh5NVxNXXl/UTJvD85s1sC1fiOqVjR8a2bg1AWFoar2/fTolGA+jq1r26unXZRN0KMFG3Tuvq1ojx2KuUuG69pq9blkh/TbHA/eJdgAhZlq8BSJK0ChgBXDIIMxHYIMtyjBIHOcXckajI/9uL7vdvyOzO/VBJKlZHnOP7i8eMfu/qW4/FvUYTl6erL7FhfB1yGICpzTszrnE7ZCAsK5XXjmwqP65n4/rMGhyMSqpGnXliPC+vVeqMn6sz308aSUOv2gAciozmmd//rHTcM18+RpfBHSguKOazqYuIOBsFQKeB7XhmwWOo1Cq2LtnD6nnGx455eRhPffYIo30eJyc9F+x6ILm8CtgCpci586BEnwe360X31w/i3WClzawJDeH7Ktp3W19f1o+fwPNbNrNV174f69CBca3bIEmwOiSEn8/q3zDZq14Q7/bsjVql+PyiMxXbdx0WDzFo35HhLDx1DH9nF77oOwhvp1pokVl58QI/X1B0LdEfgXn7JKO8tZBudRFeZEEv6mTgRZcqeJGPCS8KNfCiRgZedHQTJVqlT+zWJoiXH1ba4l/7Q1i+ybgtDuzenEeGdgagsLiUeb/s4n/snXd4FFXbh+/ZTSeVlE2DBEIg9I40JYQeOiigICgWsL72LnbFggVfRUCRIiJVeq/SO6QQQgoQQnrvbXe+P2bJ7mY3kITdz7w693XtBZk98+yZ5zznN885c2Ym7kYWAJOHdmVsaEcE4MKVm3Rv2wzrMjU7Vx1n7Q97jI5h9ocT6RnWXsqLXvyNhKhkAJo42/PCVw8S0MYXURT55uWVXD57jTcWPIp/kJSnC56vg6YQMXusSf80VIv6hQTw+nhJizecjGLJPsPjD+3QkmdH9EUjiqg1Il/8eZDzV1MAcLKz5f0pQ2jl7Y6IyJxVe4i4LuVF5m4vU1w6I7JugYhGA32HCwydbNj3SgpFfvtGJCsFrG1g6ksCvoHG/bN/qwDeGqk9H52N4ufDtZyP/FT88eQUXlqznd3R0vlo7sTheDg5IIqw5nQkK07o9PjCaQXLf7RGo4GBI9SMnWL4draiQlg4z4b0FAEbG5j1cgXNWohkZwj8+IU1eTkCggIGhVcxYoLaZJ1uh6xFltGivm0DeG2ipBl/Ho/i1z01+kzHljw9si+iKFKlEfly/UEuJEp9Zvv7Mykur0Sj0VClEZn65e8mf6N/6wDeGCWNAdafjuLnQ7XEpL+K35+awiurtrM7Ks7o+569WvLMs0NQKAW2b7vIH78b5tjNmrvz2usjaRXszZJfDrF29cnq7ybe35PwkV0QgauJGXzx+VYqK+oWhw3Vo5yLuSSuuIaoEfEOVdFsjJ/B98lbb5JxVNJfUSNScrOU3j/1wNrRmqriKq4sTqAkuQQEgdZPBoEt3KsK4u1Ow1AICtZeO8/iK0eNfreXRwBvdRqGlUJBbnkpDx9ehre9M1/0GIeHrZQXrbl6juUJunyif1CNsc/R2+Sxj2nHPjFx2ChrjH1idGOfAf6BzOkzSMq3YiNYcNFEvjV0vF6+dYX553VtqhAEtox7mLSSIh7btaF6uyVyw/rwb9GivwuLrPQSBGEQ8D0wVDtrCPCNKIpfab+fDOwXBKGjKIqZ2t2miqJ4RhCER4EvkWYla0UhCHzYbzDTtq0lrbiQzROmsedaAvF52QblTqcl89jOPw22lavVPLRlDSVVlVgpFKwb8yAHk64ScTOdD0MH8fDGdaQVFbJp8lT2JsYTn5tjaDMlmce3bjSq0/qYKJZHnGfekBFS/bS2nN84y/w9b3Fi50WSrqRWl+85uAO+LVXM7PUOId1b8OyXU3lh2GfV34+bNYgbcak4ONlXb3vsvftZ+eVWPvzuv2AzAMHpVcSch036aNwIeGgCvPHp7TxpiEIQeH9oGI/8sYG0gkLWP/IQ++MSiM/OMSr3amh/Dl+9brD9nSGh/JV4jef+3Iq1QoGdtXV1+TnhYcxcsYH0gkLWPvEQ+2MTSMg0tvvKkP4cSdDZrahS88iydZRUSO21cuYk/oq/yrnCNN4PC2PG+vWkFRby59Sp7EtIID7H2Obr997L4es6mypHR2Z07cqwZcsor6pi/siRjG7ThvWXLklt138w07bqxdb1BOJzTcTWDhOxtVkvtsZKsRWbnmn247+YnHbbtjSFBV6H6wfc0Ps7GbinRpnWgLU2cXICvhNF0TLvVa/B/5sW9RrKw/v+IK2kgE0jHmFvchzx+TXiJSOZxw+uNdimsnfkkZAeDNmymHJ1Ff+9dxyjA9uxNTZO6jMjw5i5XBszT94hZuJ1MSOK4GpvR/h/l1FYWsbhV58ktHULEtANqHqN6IJfsDePtPkPbe8J5vkfHuP5vu+gUAg89/1MXh/2CVnJ2fz35Gcc33KGpJibAHj6u9N9SCfSr2fqKqHJRcydDZoMsApGcFuCmHlv9dcN1aIPwsKYvkHq3xsfmsreWvr3a/0N+3drd3cmd+jI+FW/U6lWs3TCBA5cvcq1vDypve4bxLTNks5vfmAqe66a0PnUZB7bttFgW5VGw8dHDxGdlUETa2u2TJrG4RvXSSzKMfv56HxGqsF55G7PSTV9Zgm79UHWIgtpUc+hPLxfq0XDtVpUUCMOM2vRojY9GLJVq0X9JS1anxgpne+nh/HcF+vJyClk6QdTOXwugaspunhJycznqU/XUFhSTp9OgbwxcwiPfbCKln7ujA3tyKPv/45GrWHvwmd4ad5Gbiw8ynfbX+Xk7kiS4nTnsp5h7fBt4cVj/T8kpFsgz342mRdHzwOkybAzB2L45MklWFkrsbW3AWDuU79W77/9SldETWGtPmqoFr01MYwnf9pAel4hq158iINRCSSm647/5JUbHIz6DYBgHw++mjGSsXOlCeHXJ4RyNOYaLy/dipVSgb1eXmTu9qqJRi2y5geRZz8VcPWAL58X6dgbfAJ0g6tdf4j4txR4co5A2g2p/PNzDQdfCkHg3dFhPLZUOh+tmf0QBy6bPh+9PLQ/R/XOR2qNyBc7/+JSagYONtasf2oqx7Q5jkYNv35vzVufV+DuIfL2s7Z076PGP0AnEJtWWREQpOHl96u4mSTw6/fWvPNlBQqlyLRZlbQIFiktgbeetqVjdw3dmt+hQWsga5FltOjNB8KY/YPUZ1a++hCHIhNITNPrM7E3OBip7TO+HnwxcyTjP9ZdRHli/lryistu+xtvjwnjiV+kmFz9zEMciEkgIcM4Jl8a3p+jcddN21EIPP+fYbz2yioyMwv48adHOX40juvXs6rLFBaU8t/5e+jXv7XBvh4ejoyf2JOZMxZRUVHFu++NJyysHbt2Rt7OPdU0RI9EjUjC0qt0eLMdtk1tuPBuJE27udHE36G6jP8oP/xHSRNh2edyuLkjFWtHSXcSVlyjaWdX2r3QBk2VBk25BkW2wJzOI3j0yG+klxawbuDj7E+NJaFQ5wMna1ve6xLO40dXklpaQFNb6ffUooa5kbu5lJdGEysb1g98gqMZiSRSXvvYL8tEHju4xthHrR37VGrHPo9O4q+4q5zmJh/2G8K07WukfGvcw9IYzVS+pTehpc+jHboTn5eNo42tQR3MnRvWl3+bFv1/Y/ZnegmCcC+wGBgpimKCqTKiKK4GdiPNLtbkOFIj3ZYuXt5cL8jlRmE+lRoNW+IvMzQwqM71LKmqBMBKocBKoUBEpLPKm+t5edwo0Nq8EsuQlq3qbPNUyk3yyiSB1rdVVanm0J+n6TOis0H5PiO6sG+NNPN8+exVHF3saapyAcDDx5WeQzqy87cjhj8iijg42Un/VziCuvYJ2Z6dwdWpztUHoJOvN9dz87iRJ/lgW0wsg1ob+3V6jy7sio0np7ikepujjQ09m/mx9mIUAJUaDYXl5ZJdP2+ScvJIzs2nUq1he1Qsg9oY2512Txd2XzK0C1BSoW0vpQIrpQJRhM7eWh/nS3Xdevkyg4NM1LVLF3bGxZFdYmjTSqHAzsoKpSBgb21NenExYCK2Eu4+tixx/A2hvveKC4LwpCAIZ/Q+T9YwaeqyRM3aWQHdgZHAMOBdQRBaG+1lZv6/tKizuy/XC3O5UZQnxcu1GIb41/3wlIICO6UUh3ZKazJKi4Ba+kxILTETYxgzPi5OxGdmk5ybT35ZOUk5+QwOMdSyPmN6snfFXwDEnIzD0bUJTb1dadOrFSkJ6aRdzaCqUs3B1cfoO6Zn9X6zv57O4tdXIuoHYVWMNOEFUBUHgg3Sqi+JhmiRUf+OvcwQE/17Rpcu7IqPI0uvfwc1bcqF1FTKqqpQiyInk5MZ2ko6/i5e3lzP19P5uFiGtqibzmeWFBOdJR1ncWUlCbk5eDdxssj5CDDrOUkfS9mtD7IWGWIRLboew5BmDdQiK2sySiQtahfkTXJGHimZ+VSpNew5cZn7uhnGd2R8KoUl0vk+Kj4VLzepwwf6NiUqPpXyiiratFCRmVtE2xYqKS/adJbewzoa2Ok9rCP71klX1y+fu4ajiz1uXs44ONrR4Z5W7Fol5UxVlWqKC0qND8JuBJSZXvEEDdOiDs29ScrK42a2dPw7z8cysIPh8Zdqz9EA9jbW1X24ia0N3Vv6seGklBdVqTUUlkl+slR76XMtFjx8wMNHwMpaoNsAgYgaC8XTkqBNF+n/3s0EctKhINew63Ty9yYpW+98FBlLWFsT56PeXdgTHU92kU6PM4uKuZQq6WZJRSUJmTmonB0BiI9V4O0rovIRsbKGPqFqzhxTGthMvq6gQ1cNAH7NRTLTBfJywc0dWgRL9bR3kL7Lyar/SomGPEfnDnr0r9eiDgHe3NDrM7vOxhLa8Q59pp6Jbcdm3tzQj8mLsQw0EZNT+3ZhT1Q8OUUlJqxASIgvN2/mkpqaR1WVhgP7L9G3X7BBmby8EmJjU6lSa4z2VyoV2NpaoVAK2NlZkZVl3A9royF6VJhQhJ3KDnsvOxRWCjx7e5BzNrfW8pnHsvDs4wFAVUkV+ZcLUIVKK2MVVgqsmljRqakf14tzSS7Jo1LUsC05mkE+bQzsjG7WkT0pl0ktLQAgp1zyZ2ZZEZfypAsXxVUVJBZmobJ3BvTyWO2Ycnt0LXlsL+M8FqCkUi83UioQgS6ePsZjtIC65y/eTRwJa9aSP2INJyYtkRvWl3+TFv0dmHvSyxbYBIwTRfHyHcqeA0JMbB8ObLzTD6kcnEgp0l3NSy0uQmUiwLqpfNlx/3SWjphIsJt79XaFILB94nTOTn+aIzevcyEjDe8mjqTq2UwrKsTb0dHYprcv2x98mF/HTCC4qbvR94CRrayUPNx93AzKuPu4knlTJ1SZKbm4+7gCMOuTyfzywXpEjWFs/vT2ah5//34Ez0MITm8gFs4z+fsNxdvRkdQCPR8UFqFyMvSByrEJQ1q3YtV5w9sqm7m6kFNSyucjh7Lp0al8MmIw9tbSYkKVcw27BUXVSc8tvJyaMCSkFX+cMb5dUyEI/Dl7KkdfncWxhCQibqahcnQktVC/vYpQORnGgMrRkaHBwfweYWgzvaiIn8+c4fDjj3N81iwKy8s5ol0pompSI7aK7hBb4SZi6/7pnJ3xNEeSpdiyxPE3CFGo10cUxUWiKPbQ+yyqYTEZaKb3tz+QYqLMTlEUi0VRzAL+AjpjWf7ftMjbwZHUkoLqv9NKCvF2MBEvnn5sHzmTXwdOIthFSkDSS4tYfOkkR8c/w8mJz1NYWc7hVOkWQ5WzI6n5ejGTb9wXvZyaMKRtK/44bRgz+vv6uTrj3sQBtWiYrHn4uZFxQ3dlLCs5Gw+/pnj4NSVTf/vNbDz8JO3qM7o72TdzSIy4zRUs22FQGQNU1l6mDnjX6N+pRUWoHGv07yaODG0VzMoa/ftKdja9/P1xtbPDzsqK0MAW+Gj3VTk61ujfhaiamNb5HZMfZuko0zrv7+RMOw8vLqSnWuR8BMbnkbs5J+ljKbv1QtYiU9ydFtmb0CJ7E3Ho4cf2cBNaFHOSo+Oe4eSE5ymsKOdwmqRFXm6OpGfr4iUjpwhPt9oT+jEDOnA8Qto38WY2XUP8cXa0w9fThSZ2NqjcpX2zUvNw93Y12Nfd25WsFF1elJWah4e3C94B7uRnF/HSN9P4767X+M+XD1av9LpFh3uCQJMF6vpfYb8dKldH0vN0x5+eX4SXi3F/CesYxKY3ZvDDE+OYs0q6bdPf3YWcolI+enAoq1+eyvuTB2NvI+VFlmovffKzwc1T97ebB+RnG+aVfi3hwlFp27VYkZx0yMsyKIKXsyNp+YY+MHU+GmzifKSPr6szbX08q1eq52aBu6euPu4eIrk1Jq4CWmo4fUSaCIu/LJCVLpCTaVgmM03gWrxAqxDjSYk7Uk8tqoMe/eu1yMvVkbRcvXjJK8LL1bjPDOwUxJ/vzOD72eN4f6XuVmcRWPDMBH5/9SEm9u1otB8Y50jpBUWoavRLL+cmDGrXitUna49JD08nMjN1/TAzsxAPz7pNWGRlFbF29UlWrXmWtev/Q1FROWfPGPdDc1KeU4Gtu26Fkk1TG8pzy02WVZeryY3Iw6OX9KiLsoxyrJ2suLIwgXNvXeTK4gTUZWpUdk6kleZX75deWoCqhhYFOjbF2dqO5fdOZ/3AxxnbvJPR7/k5uNDW1ZuLOdIt6SonE2MfU3ns7cY+s7Rjn0Tt2K9JjRyuuJYczsuXHRNmsHS4Yb41p3cYn506ZDTJaoncsN78e7Tob8Hck16VwDHgsTqUrTn7uFIQhGTgdaRlt7ff2cTcpVhj8jIqK51+KxcxYt1ylkadY9GwcdXfaUSR8PXL6fPbQjp7etPazQPBhNGaFx6iMzLov2wx4atWsOzieRaONP3cCNO2xDqV6TW0I3lZhcRfTDL6ftSjA1j4zhrEzAGIhZ8iuNRjTWxdMOXXGvV+e3AoXx44jKbGdqVCQXtvL34/H8HYX1dSWlnFrD49qY2adt8aHspXe43tgtRe439aSejXP9PJz5tgL3eT09c1G+yd0FC+OGxs09nWlsFBQYT+8gt9Fy3CwdqasW3bArVMi9fYPyoznX6/6cXW8HEGdQ1ft5w+KxbS2UuKLUscf0MQxfp96sBpIFgQhBaCINgAU4DNNcpsAu4VBMFKEAQHpKW1MQ06gLrz/6dFJiKmZttG56TR/88fCN+2hGWxZ1k4YCIAzjZ2DGkWzH0bf6T3+u9xsLJmXIv2tf5WTY17a0QoX+0xHTMADjbWzJ88ii2Rl6lUGz5jojb9qU0Hbe1tePDN8Sx9b02t9cOqlXTLdcG7tZe5C2r69d3QUD430b8TcnJYePo0yydMZOn4CVzOyqye9DPZXjX+jsrMoN/yxYxYvYKlkedZNMJQ5x2srVkwfAwfHjlAUWWFRc5HUFsbGf5d13OSPpayWx9kLTLJXeZFpmLbhBZt/IHw7Votuk9Pi/yDuW/Tj/TeoNWiwLpr0S26t23G6AEd+O+awwBcS8lh+dbTfP/aRGaOuYeC4jLU+qsl6pQXSaspWnX0Z9vywzw77AvKSiqY9KzhHVah47ojlm6rtc7mxNTx749MYOzcZbywZDPPhvcFpHq39fdizdEIJs9bSWlFFTMHSXnR/0d7mew7NX52yCSBkiL47GkNhzaJ+AeBQnnbXUzW9c3wUObtvsP5aMoo5u44RHF5RZ3rN2ZKFcWF8MYsW3ZttCKwlYhSr35lpfDNhzZMf6oShyYmf/q21FeL6qBHshaZ2GZqJdeBiATGf7yMFxdv5ulRfau3P/L1ah784neeWfAnk+7rTLegOy4uM/kbb4wK5eudtcdk7XbqVs7R0Y6+/YKZOuVHJk2cj729NYOH1K6bFsNUEgLknMvFubVz9a2Nokak6FoxPoNVdPu0M0pbBTe23KwlhzFEKSho7+bDrGOrePzoSp4OuZdAx6bV3zsorZl/zwN8GrGL4qoKbb1M2a2Rxw67w9hnoXbs4+tNsKfpsZ9RDpeVTr9VCxmxYRlLo8+xaMh4AMKatyS7rISorHQjG5bIDevLv0iL/hbMPemlASYBPQVBeOsOZbti6NSpQAvgd6Q3DRihv4Qv4egJfPWu+vs0cSSj2HBJaVFlRfVtIwdvXMVaocDNzt6gTEFFOSdSbzCgWSCpRYXVqwEAvB2dSDdlU7vc8uB10zYBI1sevq7kpOUZlMlKycXTT7f6y9PXjZy0fNr3akXv4Z1Zdu5T3lj0BJ37h/DagpkADJ7Sl6Nbz0k7lO0Aa+OZ9rshrbAIH2c9Hzg5klFUbFCmg4+Kb8aGc+CpmQwLCeb9YWEMDg4irbCQtIJCLqZIV/B2Xo6jvUpaQpteUMOusyMZhTXs+qr4+v5w9r0wk6HtgpkzMsxoGWxhWTmnriVzb6tA0oqK8HHSby9H0osM26ujSsV34eEceuwxhgcH8+GgQQwJCqJf8+bcKCggp7SUKo2GXXFxdPPxkXxQXGgYW46ORrcNGMRW0m1iK+UGA5oHWuT4G4RYz8+dzIliFfAssAupP68RRTFaEITZgiDM1paJAXYCEcAp4GdRFKMadgB15v9Piw6fxMfBufo7bwcn0ktvEy8pCVK82NrT3zuQG0X55JSXUiVq2JUUSzcPf0DbZ1z0Ysal7jGTXlCEr4uzNOEVcZmsomKjfTOTc/Bqpps89fB3Jzsll8zkbDz1t/tJ232CVHi38GLh+S9YkfA9nv7uLDgzFzftLdkoVAiuPyDmvwbqG9wtNfu3j6OxxndUqZgfHs5fMx9jRHAwH4QNqr4Fck10FGN+X8mUtWvIKyvjWm6e1m7N/u1k+txRi85bKRT8NHwMG6/EsCsxXrJZUzPMcD4C4/PI3ZyT9LGU3Xoha5EpLK9FVXXUohuxdPOUtCgjt6h6dRaAV1NHsnKNb+Fp1cyDt2YO4dVvN1FQpLv9dctfUcyYs5KPf9mNtZWSG+l5gPQYh+z0fAMbWam5ePjq8qJbZbJS88hKzSP2vLSK68i2C7TqqLuArVAq6DuiM5SZf9IrPa8Ild49SCoXRzLzi2stfzbxJs3cXXBtYkd6XiHp+YVEJkl50Z6LcbT1l/Ki1JJCi7SXPq4ekKv3+MXcLHBpaji4s28i8PDLCt78UcH0VwWK8sFdVcMHBUV4uxj6wOh85Kdi3qRw9r40k6Htg5kzKoxB2tvNrBQKvpsinY/2XIqv3qepJ2TrrdrKzhJwczfs8A5NYParlcxdWM7Tr1dSkA+e3lKZqir45gMb+oWp6XVvA1Z5Qf216A56JGuRcObKueN4660GVbnevs+cS7hJMw+pzwBkFkhlc4tKOXAxng4B3kb71MyRVM6OZBQY/kZ7PxVfPRjO7tdmMrRDMO+MDSOsnWFenZVZiKenrh96ejqRnVX7cwH16dY9kLTUPPLzS1CrNRz+K5Z27Y37oTmxbWpDebZuZVdFTgW2rjYmy2aeyMKzjy6fs21qg21TW5xbSX7z6OVO0bVi0koL8bZ3qS6nsncmo9TQB2mlhRxOT6BUXUluRSlnspIIcZGEwkpQML/3JLbciGJPim4RYb3GPv/Ry2NrPP6lsLycU9e1Y7/iohr5Vi05XM18y9aeHio/BjdvxZEpT/J92Gj6+jbnm9CR0vFZIDesN/8eLfpbMPszvURRLAFGAVMFQTB5NUEQhInAUGBVjX0rgXeA3oIgtDVhu3oJX7yvO4Eubvg7uWCtUDC6VQh7rhvenu5pr3uoX2dPbwQEcstKaWpnj7P24XW2Siv6+QWQkJdDRHoaga6u+Ds7SzZbt2HvVUObHg56NlXeCIJksyb6tqyslQwY35MTOy8alDmx8yKDJvUBIKR7C4oLSslJz+fXj//k4U6vM6PbW8x9cjEXj1zmi6eWAJCdlkenftpbbW36gPqaKRc3mMiUNALd3PB3kXwwsm0b9sUlGpQJW7CEgdrPrstxvL9rP3vjEsgqLiG1sIgWTbW3QgU2I177sMLIlDQC3N3wc3XGWqkgvEMb9sca2h383RIGfSt9dl+K48Nt+9l3OQE3B3uc7LTtZaWkT8vmJGblEJFm2F6jQkLYl2hoM/SXXxig/eyMi2POvn3sSUggpbCQLt7e2FlJtxn0bd6cBO0Dsi9mpBnGVlAIe67dJra8bhNb/gEk5OZY5PgbgqgR6vWpk01R3C6KYmtRFINEUfxEu+0nURR/0ivzpSiK7URR7CCK4rcNqnw9+X/TokBXAp3c8G+ijZfAtuxNNnw7kIed7vJzZ3cfSTfKS0kpLqCrhy92Sm0cegeSUCDdVxKZkkZA0xoxc7lGzHxrOmYiU9Lo0syH9IIiVp66YHLf41vOMPjh+wBoe08wxfkl5KTlEXs6Ab9W3ngHemJlrSR0cl+ObznDtagbTPJ5koeDnuPhoOfITM7mqR5vkJueD4ITgtti6XbrynN3bJu6EJGWRqCbXv9uE8LeGv17wJJfuE/72REXx3v7pf4N4G4vJSK+Tk4MaxXM5lgpEZP6tyv+TlqdD25j3L8davRvPZ3/fOBQ4nOz+eXi2eoyRpphhvMRYNZzkoFvLWS3PshaZIhFtCjgLrUoX9KimMQ0mqlc8fFwxkqpYEjvEP46b9gXVe5OzH1+DO8v3MGNGhf43LQv48nOL8arqRMRV25KedHY7pzYbfhclRO7oxh0fy8AQroFUlxQRm5GAbmZhWSm5OGnfUtjl/6tDV4M1PXeNiTHp4PG+Ar+3RJ9I40ATzf8mkrHP7xrGw5GGx5/Mw/dgLGtvxdWSiV5xWVkF5aQnldEoKeUF90T3Kz6Yd4R2SkWaS99AtpAZgpkpYlUVYqcOyTSqbdhmZIi6TuAYzuhVUdpIkyfyJs1cpiObThQ45wy5OslDNZ+dkfH8eHW/eyLkXTl4/FDSMzMYdkxw/NDUBsNaTcFMlIFqirh+EEl3fsYrkouLgLt+JX9O5S07ajBoYm0ymHRPGt8m4uMvN/wjY/1ob5aVBc9+rdrUbKVJ8093fB1l/rMsO5tOBRZe58J8ffCWttn7GyscLCVVibZ2VjRJySA+FTj2I5KTqO5hxt+btqY7NyGAzGGvzHsyyUM/UL67I6K4+NN+9l/yfBcdzk2BT9/N7y9XbCyUjAwrB3Hjhm/4dEUGRkFtG3nh62t1A+7dQsk6Xr2Hfa6O5xaOlKWVkZZRhmaKg2ZJ7Jo2t3NqFxVSRX5MQW4d9etxrJxtcHW3YaSFOlcnhedj4OfPZG5Nwl0bIq/gyvWgoKR/u3Zn3rFwN6+1Fh6uDfXPn/Wik5uftUPuv+k22gSCzNZGm/49lkD3VAoCG9vYuwzfwmDvpM+1XlsrHbsY6s39mkhjX0uZqYS6FxjjJZkOMnkaa+nm57e1br5xenD9Fn1E/3/WMRz+7dwLCWJFw9KF0oskRvWl3+TFv0dWOTtjaIo5giCMBz4SxCEW0r1oiAI05BehxsFhIm6t4Lo71sqCMI84BVuswRXLYrMObKP5eETUQoK1sRGEpebzdS2nQFYGXORES3bMK1dZ9SihrKqKp7bJz3c1MuhCfMGjkAhKFAIAtsSYtmflIggCrx3aD/Lx0xEoVCw9lIUcTnZPNRBWk31e1QE4a1aM7WDzubzO3VXFb8bNpLefv642dlz+JEn2BF/heVjJmJ73zh2/36U67GphD8iDTK3L/2LU3si6Tm4A0tOf0J5aQVfP7/0jr797sUVzP50MoL7KBDLEfNrv43o5Q/g1AXIy4fQ++HZR+H+kbe3rxZFPtiznyVTJqAUBNZFRBOflc2DXSUf1HyOV00+2n2AeWNGYK1UcCMvnze27ZbsakQ+2r6fXx6egEIQWH8+mvjMbCb3kOyuNnEv9y08nZowd9wwlAoBQRDYGX2Fg1euonYW+eDAAZZOnIhCEFgXFUVcdjYPdtLWNaJ2mxfT0tgZF8fmadNQazREZ2TwR2RktQ/mHNnH8pE1YqudNrYuaWOrfWfUGg1l6iqe26sXW2HGsWWnUZr9+BuCBV6H26j5/9Ki907vYfmgKSgEgbUJEcTlZ/FQcFcAfo87T3jzEKa27qrTjcObALiQncKOpFi2hs+kStRwKSedVXEXELA27DOK+sVMZ38fmtjaMLpTCKM7tSWvtBRfVyfazxoMwNaFezm1/Tz3jOjKsivfUV5SwVePLQBAo9bw3+eX8NmOt1AoFez69SDXLyXf3tEO00DZHMHxGXB8RvJf7qOgkQZ3DdWi9/cfYNkEqX+vjZb690Pa/l3zOX01+XH0aFzt7KnSaHhv/z4KtC/VUIsicw5LOq8UFKyJkXR+anvJ7sroCEYEtWZaB23/rqriud2Szvfw8WNiSHtisjLZPll6a+4XJ45w8Gai2c9Ht+pqrnPSsUef5NuTx1hzKcoiduuLrEWAJbTozB6Wh91Bi4K1WqSu4vkjNbRohFaLctNZFX9BsqsR+Wr5Aea/JvXFLX9FcfVmNuMHSvHy54EIHhvbGxdHO16bMUi7j4ZH3vsdgLnPj8bF0Z4qtYbFG47x6XOjsX5iBLtXnyDpShrhD/cDYPuKo5zeF03PsHYsOTqHstJKvnnpt+rjW/DuWl77fgbW1kpSk7INvhswtjsHN52l/Qu3b4cGaZFG5NP1+1kwawJKhcDGk9EkpGXzQF/p+Ncei2Bwp2BG92xHlVpNeWUVry3X9ZfP1h/gs4elvCg5O593V+22WHv1q/E0BaVSYNLT8MPbIqIGeg8V8AkUOLxNmuS6d6RAWhKs+EpEoRDxbg5TXzTum2qNyMdb9/PzDOl8tOFcNPEZ2UzuqT0f3eY5Xt2a+zK2Szti0zLZ8PRUAL7dc1RbP3jk2Uo+e9MGjQZCh6lpFiiyZ4t0/+KQ0WpuJilY8Lk1CqX0sPonX5ZuG4qNVnB4rxXNWmh4Y5Y0OJ48s7IBb2+UtQhza5FGZO7a/Sx4Wsp5N52Q+sz9/aR4WXc0gkFdghndS+ozZZVVvPar1GfcnZrw9ROjAWn1zI4zlzkWY/ycPrVG5JPN+1k0U/qNP89Ek5CRzaRe0m+sOXX7HOEWGrXI99/t5vMvp6BQKNix4yLXr2UxaozUD7duPo9b0yYsWPgoDg62iKLIxPulNzZejknhr0OX+WnxY6jVGuLj0ti29XydfhcapkeCUiDokRZEfR6DqBFRDfCiib8DqXul1aQ+g6VVcdmnc3Dt6IrSzvBe5aDpLYj9MQ5NlYi9ly3Bs1pxM1vkwws7+LnfVJSCwPrrF4gvzGRKi+4A/HH1LImFWRxOj2fzoNloRJF1184TV5BJd/dmjAvoTGx+OhvDpGeofx29n8OR6ahFbR47TTv2uaDNY7trdePsbcY+jibGPnFXUfuKzDm2l+Uj7q8932rRmmntuuhyuH1b7tgWlsgN68u/TYv+vxFM3WP9v0Dgwq/MXnGhwjLB1uaDWLPb3B510Ow2Adr8+pRF7CpNP2Pxrqh0tkzsqh0auET+NtilKe9cqAFcft9EdnobApfPrZfTrk1/Q1bgO9Dit8/MHoi2cXbmNglAs49P3LlQA9h1s+5JXl1ptWq22W0CaGwsoBtWltEiS52TLMHV516WtehvpsVK82sRgNcu2zsXqidN9zXsws2d2HZ2l9ltdvncMnlRYY+7ewOqKRb1tcyb5p9fUvNlqXfPyie+MbtNgG7NkyyqRSDr0Z3o8tw3FtGiSuPnit813sfNt4JZnz1/LDW7zSeT+965UAM4nNTS7DaFyPq/vbAulPk2fFXnbakw+81vXHvGsnkRyFpUHyyy0ktGRqaxImujjIxMY0DWIhkZmcaArEUyMjKNAVmLLIk86SUj82/if3Nhp4yMzD8NWYtkZGQaA7IWycjINAZkLbIo8qSXjMy/CVlQZWRkGgOyFsnIyDQGZC2SkZFpDMhaZFHkSS8ZmX8T8kMSZWRkGgOyFsnIyDQGZC2SkZFpDMhaZFHkSS8ZmX8R/6PvrZCRkfmHIWuRjIxMY0DWIhkZmcaArEWWRZ70kpH5NyELqoyMTGNA1iIZGZnGgKxFMjIyjQFZiyyKPOklI/NvQl46KyMj0xiQtUhGRqYxIGuRjIxMY0DWIovyPzvpZZem/LurUGcEOzuz22zz61NmtwkQ++gCi9ht/4P566sot4w42Gb978RWfRHkqwhmRyy0NrvNSmfLNJRVcz+L2G216h6z24x/8Cez2wQI2veo2W0qUm3NbhNAY2v+OFCWNY6kStYiC5BrYxGzavNLHKK7i/mNAl0+N3+uceF1y+RFrVfMNrvNZ3970uw2AezyzW9z6uIXzW8UiPmofuVlLTI/xb6Wsas6oza7zdy29ma3CfBkcl+z21zkf8zsNgFGjje/Hl963/xjX4B28/IsYpefii1jtx7IWmRZ/mcnvWRkZBqALKgyMjKNAVmLZGRkGgOyFsnIyDQGZC2yKPKkl4zMvwl56ayMjExjQNYiGRmZxoCsRTIyMo0BWYssijzpJSPzb0K+iiAjI9MYkLVIRkamMSBrkYyMTGNA1iKLIk96ycj8m5AFVUZGpjEga5GMjExjQNYiGRmZxoCsRRZFnvSSkfk3IQuqjIxMY0DWIhkZmcaArEUyMjKNAVmLLEqDJ70EQVADkYAAqIFnRVE8JghCIBADxAI2wBngMVEUK7X7WQFpwGJRFN/Us3cQ8AFKtZs+FkVx3e3q0D8ogLeHh6JQKFh3LorFR0+bLNfBV8Xqx6bw0rrt7IqJw0ap5LdHJ2GjVKJUKNgdE8f3B4+b3eb5Gym8PTwU2xlqdq46ztof9hrZmf3hRHqGtaO8tIJ5L64kISoZv5ZevLngkeoyPs09WPHVdjb+cpD+I7sw7aURNGvtzcSlq3BzsOOdwaEoFQrWXIhi0QnT9e3oo2Lt9Cm8sHE7O2PjAHCyteXT8CEEe7qDKPLG9j23c3c1b8+Fg8ehqRtsWVqnXQDo3yqAt0aGohAUrDsbxc+Ha/Gtn4o/npzCS2u2szs6Dm9nR+ZOHI6HkwOiCGtOR7LixHkA7m0ZYNbjv3Az1bjewQG8OUr6jXWno/j5r9rrveqpKbz8x3Z2R8Xd2R8Wsntb/oH3izcGLRrQLJA5/cNQCgKrYyJZcP6Uwfe9fZuxaPg4kgulV2DtTIxj/tnj2CqVrB47BVutbuxIvMI3p3Vv57kvMJB3B4aiFBSsjopk4ala4lulYv1DD/L81m3sjJNi5NFu3ZjUsQMAOaWlqJo4YjtRzc7VJ1j7034jG7PfG0/P0LaUl1Uw75VVJETfBGDczPsYPrk3oihyLTaVr1/9g8qKKlq09eW5j+/HzsGWRJsS1kVH82q//igUCtZERfLTadN17aRSsX7Kgzy/fRs7tHV9pGtXJnfoiCDA6shIfj1//nburqahWnSfT0ve6zEYhaBgdfwFfrp0wuD7e7yas2jARJKLtO11I5bvo44CMDOkJ5ODOiMCsXmZvHp8K1Vo2ypM21aRt2krb722uqJtq+66torNzOK1nbuoUEtvqbqveSDv3TcQhSCw+lIUP501jK17/PxZNHIcyQXauibE8f1p6Xg+HzSMsMCWZJeWMPz3ZYY+CAzknUFSfddE3L6+66Y+yH+2SPVt4ebGd2NGVn/f3MWFb4824I1SshZZRIvuax7Ie/fqxcs5E/ESrhcviXrxEqYXL6sM46VPh0BeeVA6f288HMmyHYbxMqBLELPH9UUjiqg1GuatOsjF+BQA5jw6lP6dWpJbWMLkOcur9+neL5inXg9HoVCwc8NZ1iz5y8Cmf6AHL380gaC2viz7fg/rl0l90NrGiq9+fRxrGyVKpYLDe6P57UedpvULCeD18VJdN5yMYsk+w7qGdmjJsyNu1VXkiz8Pcv6qVFcnO1venzKEVt7uiIjMWWXZvKih/RC0utGpA6IIsVlZvL5jF2o0ANwbFMDbwyQfrD0fxeJjtedGq2dO4cUNUi57C4UgsP7xh0gvKGL26k0A9G0bwOsTpPz4z+NRLNlbw68dW/JMuM6vX244yPlErV/tbXnvwSG08nFHFEXe+30PZ3KlfMsSuWG9kLXIIlpkqfz8ni6B/GdmGAqFwNZ9kfz2p6HGDbm3LVPH9wKgtLSCeYv2En89E4C1C56gpLQCjUZErdbw+Ou/AdC3XQCvTJL64Z9Ho1i6u4a+dWrJ06N1sf3V2oNcSEjBxkrJzy9PwsZKyuH2nY/jp63Hq/fLuZhL4opriBoR71AVzcYYvkE7eetNMo5mASBqREpultL7px5YO1pTVVzFlcUJlCSXgCDQ+skg8L+dxyXqpUU29yI4v80vh53YueoEa380MU79YIJ2nFrJvJf0xqk/zqgu49PcgxXztrPxl0O88eMM/Ft6UeZtjbONHRpRQ5VGRKkQ+CM2ggURJw3s9/ZuxuIhE7hRmAfAzmtxzL8g5RRHJs2iuLICtahBrREZvVk6f3TvH8zsN0ehUCrYue40a3+uce5o4clLn0ykVTtfln23m/W/HgHAw9uFVz57ADcPR0RRZMea02z6TZe/dHcLYXbQBBSCgp1pJ1h7w9AfE/3DGOjVHQCloKSZg4opx9+mqKqEF1s/SK+m7cmrLOKps3Pv4Pha+AdqUWPiblZ6lYqi2AVAEIRhwGfAAO13CaIodhEEQQnsASYBK7XfDUUS20mCILwliqL+vOZUURTP1OXHFYLAnPAwZq7YQHpBIWufeIj9sQkkZOUYlXtlcH+OJFyv3lahVvPIsnWUVFZipVCw8tFJ/BV3lciUdLPanNi1PdN+XYv9t5F8t+0VTu6OIikurXqfnmHt8G3hyWP9PyKkWyDPfjaJF0d/zc3EDJ4d9oX0WwqBFWc+4tjOiwBcj03loyd+4YkVM1AIAu8PDeORPzaQVlDI+kceYn9cAvHZxvV9NbQ/h69eN9j+zpBQ/kq8xnN/bsVaocDOum7vJR83Ah6aAG98Wqfi1XV4d3QYjy2VfLtm9kMcuJxAQqZxXV8e2p+j8bq6qjUiX+z8i0upGTjYWLP+qakcS7hOXEmuxY9fIQi8MyaMx5dI9V79tLbeGca/8dLw/hyNu25kozZ/WMLunfiHvg73b9eiD+8dzLQta0krLmTzxGnsuZZAfG62QbnTqck8tuNPg23lajUPbV5DSZWkG+vGPcjBpKtEXE2X+vegMGasW09aYSF/Tp3KvvgE4nOMY+T1++7l8DVdjKgcHZnRrSvDli6jUq3mwrPP8P3x4xx9YivfbXqRk3ujSYpPry7fM7QtvoEePDbwU0K6BPDsx/fz4vjvcFe5MPaRe5k15Asqyit587/TGTC6K3vXn+aFzybx82dbiDyZQOeFw5g7ZChjfl9JWmEhGx+ayt4E03V9rf+9HL6uq2trd3cmd+jI+FW/U6lWs3TCBA5cvVoX1zdYiz7sOZSH9/9BWkkBm4Y/wt7kOOILarRXZjKPH1xrsE1l78gjbXowZOtiytVV/Lf/OEYHtmNTShzvDw5jxlptW02byr4E01pUa1v9uozyqirmjx7J6JA2rI++JNU1dBAPb1xHWlEhmyZPZW9iPPG5hnZPpyTz+NaNRse6PiaK5RHnmTdkhFE93h8Sxow1Un03PFx7fV+rUd+rubmMWfZb9fdHn3qS3XHxvBM28A6eN0TWIgtp0YBBPLxJGy+TprL3qol4Sa0lXi5HsTzyPPMGG8fL61PDeGbeetJzC1n+7lT+upDA1VSd3VMxSRy6kABAK38P5s4exf3vLAVgy9FoVu+7wIePD9fZVAg889Zo3nryV7LSC5i/ajYnDsaQlJhZXaawoJQFc7fRJ6ytQX0qK6p4/fEllJVWoLRSMG/ZE5w5coXLEckoBIG3Jobx5E8bSM8rZNWLD3EwKoHEdF1dT165wcEoKYaDfTz4asZIxs6VJvlenxDK0ZhrvLx0K1ZKBfYWzosa2g9Vjo5M79aV4Xq6MSqkDZvOxkj58fAwHl0p5RfrHn+I/VdqyWUHGeayt5jeqysJWTk42thUl33rgTBm/SD59fdXtH5N0/Nr7A0ORmr96uvBl4+OZNwnkl9f0/r1lSVav9pYg41lcsP6ImuRZbTIEvm5QiHw0hODefHDtWRkF/Lz59M4cjqBa8m683dqRj7PvfsHhcXl9O7agtdmD+XJN1dWf//8e2vILyyt/lshCLw+JYyn528gPbeQ3954iEMRCVzVi+1TsTc4FKGNbT8P5j4+kokfLKOiSs2sb9dRWi7lcL+8Momj0VeJvJqGqBFJWHqVDm+2w7apDRfejaRpNzea+DtU2/Uf5Yf/KGkiLPtcDjd3pGLtKB1rwoprNO3sSrsX2qCp0qAp19TF9fXQIgWC83uIuY8yK6wz3219mZN7IkmK08sNB2rHqfd+TEjXAJ799AFeHPONNE4d/mV1m6w4/SHHdkYAMPdpqc9fet+Pd3sN5P7WHRi1abmUH4+Zzt6keOLyauRbacnM3LPeZC2nbP+D3HK99lIIPPPOGN56fAlZ6QV8t/ppTh64TFJCRnWZwvwSfvp0C30GtTOwpa7SsPiL7STEpGDvYMP8dc9y/ng8SQkZKBB4ptUDvBX5I1nleXzX9WVOZkeSVKLzx/rk/axPli6w3NO0PeP8QymqKgFgT/opNqcc5pU20+7k+Fr5h2pRo0FhJjvOQG7NjaIoqoFTgP7U9oPAd0AS0LuhP9jJz5uknDyS8/Kp1GjYHh3LoJAgo3LTenVhd0w8OcUlBttLKisBsFIosFIqEM1s08nOlrSCIpLz8qmqVHNo0zl6D+1oUL730I7sWyddobh87hqOzva4eTkblOnSvw2p17PIuCm590Z8OjcTpY4d7OHO9dw8bmjruy0mlkGtjes7vUcXdsUa1tfRxoaezfxYezEKgEqNhsLycqN9TdGzM7g61aloNZ38vUnKziM5N59KtYbtkbGEtTXh295d2BMdT3aRrq6ZRcVcSpWOuaSikoTMHFTOjnTy9bb48XesUe8dEabrPbWPcb1vh6Xs3hGxnp//Pf7ftaiLlzfX83O5USjF4Zb4ywwNNG7L2iip0tMihYJbOWZnb2+u5+VxI1+yuzX2MoNbmYjvrl3YGRdHdolhjFgpFNhZWdHVx4eyqipiMrMkLdpynt5DOhiU7T2kA/s2SLns5QvXJS3ylDq5UqnAxs4ahVKBrZ01ORnSChH/ll5EnpQGuTmlpVgpFAZ1HRJkXNcZXbqwKz6OLL26BjVtyoXUVMqqqlCLIieTkxnaqlWdfNcQLers7sv1wlxuFOVJ7XU9hiHNWtd5f6WgwE5phVIQsLOyJqOkSGqrXL22unyZwSaOf3rXLuy8YqKtBKmtlIKAvZU16UXFUl1V2hgo0MbWlViGtKybbwBOpdwkr6zM2Ac+hvXddrmW2OrWhV0mYusWfQOak5SXR0pBYZ3rVI2sRWbXos4qb67n68VLnHnipX1Lb25k5HEzK58qtYbdpy4zoKthvJSWV1b/397WGv2x8vkrNykoNrTbpoM/qUnZpN3MpapKzaGdkfQZaDi5lZ9TzJXom6irjAd7ZaUVAFhZKbGyUnLr5zo09yYpK4+b2VJdd56PZWCHGnWt0KurjTWiNsCa2NrQvaUfG05KeUGVWkNhmeXyorvth7c0XikI2Flbk1Es6cat3OhWLrstOpZBbYztPtyzC7suxxvZVTk5EhrcgnXno6q3dQjw5kamnl/PxRLa8Q5+1TZKEzsburfy48/jen4tlfxqidyw3tRXi/739Oj/f4xmofy8bStvktNySUnPp6pKw94jl+nf09BuVGwKhcVS+egrKXi63z4mOgR6k5yp07ddZ2IJ7XwbfbOxBj19u/WdlVI7ntR+VZhQhJ3KDnsvOxRWCjx7e5Bz1qgZqsk8loVnHw8AqkqqyL9cgCrUCwCFlQKrJnVbp1JnLbLuBOrroL4h5YabTY1TO7BvvbTq7fL567WMU1sbjFP1GRvUjiu52br8ODGGIc3rfk4yReuO/qQkZZOWnCvVe0cEvcNMnDuiblJV49yRm1VIQoy0+rS0pIIbiRm4a4+ntVMAKaWZpJVlUyWqOZR5jt7uhv7QZ4BXdw5lnKv+Oyo/gcLKuxyr/fO16G/lbia97AVBuCAIwmXgZ+CjmgUEQbAD7gF2av+2BwYBW4FVSOKqz0qtzQuCILjf7sdVTo6k6iXaaQVFqJwMhc3LqQlDQlrxx5kIo/0VgsCfs6Zy9NVZHEtMIuJmmlltJmblEJeRVf1dVloe7j4uBuXdvV3ISsnTlUnNw8PbsMyAMd04tOmsSR80dbA3rG+hcX1Vjk0Y0roVq84b1reZqws5JaV8PnIomx6dyicjBmNvbblHvHk5O5KWr6trer5p3w5u24o/Thv79ha+rs609fHkYnIa3o6OFj9+lYthvdPyi/CqkVR5OTdhcPtWrD5Ze73/v+z+S/l7taiJEynFurZMLS5C1cQ44+jm7cuOB6azdOREgt10JhWCwPYHpnP2kac5knydCxnSalCVoyOphTXi29HQrsrRkaGtgvn9omGMpBcV8fPpMxx+4nF+mTCeoooKjmhXV2Wl5eFeQ2fcVc5kpeZV/31Li7LT81m/+CDLj77L7yffp6SwjHOHrwBw7UoqvYe0B2BYq2BslEqdD4pM1LWJVNeVEYZ1vZKdTS9/f1zt7LCzsiI0sAU+jvUcPdYDb3tHUksKqv9OKynE295Ee3n4sT18Jr8OnESwi5SIppcWsTjmJEfHPcPJCc9TWFHO4bSr0rlDv62KilA5mWir4Fra6swZDj/5OMefmkVheXl1W3k3cSS1SN9uId6Oxgl8N29ftj/4ML+OmUBw09uGa3Vd6hRbwcH8fqF2/RkZ0oatMbF3/L1/EX+rFnk3qRmHhXg3qSVepjzMr6PrFi9ero6k5+jsZuQW4WViVBXatRXrPn6Eb/8zng+X7r6tTXeVM5np+dV/Z6UXVA8+6oJCIfDDmmf44+AbnDseT2xkMgAqV0fS8wxzDS8XYx+EdQxi0xsz+OGJcdW3MPq7u5BTVMpHDw5l9ctTeX/yYOxtLJcX3U0/vKXxf816nONPa3VDuxJM5exIml5ulF5LLjs4pBV/nDXu328NC+XLvYfR6A3svVwdSdPza0ZeESpTfu0UxMa3Z/DfWeN473edX3OLSvlw6lBWvzaV9x7U+dUSuaEM8HdrkYXyc8+mTmRk6exm5hTh6V57vjBqUEdOnNetHBdF+HrO/fzyxTTGDOkk2XR1JC23pr4Zx/bAzkGsf28G3z0zjg9W6G57VggCq96ayt4vZnEyJomoa1IMludUYOtuW13OpqkN5bmmJ9HV5WpyI/Lw6NUUgLKMcqydrLiyMIFzb13kyuIE1GXqWo+zQShUoNb1l6xUE7mht2uNcWp+LePUc9Skl7c/JZUVJObrVsyllhTibSo/9vJlx7hHWDb0foJd9UNL5Lfhk9g6djoPtukMgIfKhcw0vXNHWn69zh238PJ1JaitL7ERNyS7ti5klusda3ke7jYuJve1VVjTwy2EI1kX6/27Mn8fdzPpVSqKYhdRFEOA4cByQRBu3YwaJAjCBSAbSBJF8ZaijQIOiKJYAqwHxmuX195iqtZmF1EUDdc+1sTEba9ijSnPt4aF8lWNE/ctNKLI+IUrCf36Zzr5ekv3jZvRZoCbKy52djWMGe6jc5fpIlbWSu4Z2oHDWy8YVwwwsTtijd94e3AoXx4wrq9SoaC9txe/n49g7K8rKa2sYlafniZ/xxyYuku5pm/fDA9l3m7TvgVwsLFm/pRRzN1xiOLyCtPtZebjN313dY16jwxl3s7a620KS9m94++K9fv8j/C3alFdYjsqM51+KxYxYu1ylkaeY9HwcdXfaUSR8LXL6bN8IZ29vGndVJpgMdW/a8bIO6GhfHHYOEacbW0Z3CqI0J9/4Z09e7ESBMa21bsSVkctcnS2p/eQDjx638dM7f0+tg42DBwnPc/gm9dWM/rh/szf/CJ2VlZGdajZF98NDeVzE3VNyMlh4enTLJ8wkaXjJ3A5KxO1WLdl/A3B5LHW8Gt0Thr9N/5A+PYlLIs9y8L7JgLgbGPHEP9g7tv0I703fI+DlTXjAtub7s81jvOdgaF88ddt2mrxL/T9aREO1tbVbXWncwRAdEYG/ZctJnzVCpZdPM/CkWNv7wDqFrPvhIXyxaHa9cdaoWBQUBDbY6/c8fdM1kHWIgtokanYNqQ6Xv5YwbKI8ywMv3O81CU3Ajh4Pp7731nKK//dxOxxfetr0kgzbodGI/LMpB+YNuRL2nTwJ6CVV61lTdV1f2QCY+cu44Ulm3k2XKqrUqmgrb8Xa45GMHneSkorqpg56O/Ni2rrh7d0Y+CiX+i7QKsb7drWbrdmbjQ0lK/2GdsNDW5BTnEJ0WkZBtvr2l77IxIY98kyXvh5M8+M1PpVoSDE34u1RyKY/MVKSsurmDm4Z+127zY3rCf11aL/ET1qfGM0M+TndRn33KJrh2aMHNSRBSt0z3t66u3feezVFbz88QYmDO9C53b+dbZ54GICEz9Yxss/beapMTp904giD366kuFv/Uz7QG+CfG8zH2g6sSPnXC7OrZ2rb20UNSJF14rxGayi26edUdoquLHlZu12G4RJYb9jdfV9Y2Wt5J4hHTi87YJRuTEt23Imw7jONX0blZ1O39U/MWLjUpZeOsfiwROqv5uw9XdGblrGjF3rmN62K728/WsbQNULOwcb3vluKgs/20ZJ8a2JyLobvse9A5cKrlbf2mgu/qFa1GgwyyUsURSPC4LgAXhqN926X9wHOCgIwhhRFDcjXTXoJwjCNW05d2AgYPzkPBMIgvAk8CRA+Mtv8UBX3S063s6OZBQWG5Tv4Kvi6/vDAXB1sOe+4BZUaTTsi02oLlNYXs6p68nc2yqQczdS8HF2MovNCzdT6dFct2LYw9uV7LQCA1tZqXl4+Lrqyvi4kq135bPHwHYkRCaTp3dVQ5/s4lJ6BzTT1dfJkYyiGvX1UfHNWKm+bg72DAiS6nshJZW0gkIupkiz/DsvxzGrTw+Tv2MO0guK8HbR+VblYsK3firmTdLzbesWqDUa9sUkYKVQ8N2UUWyJuMyeS/GAdOXIoL0scPxp+Yb19nZxJKPA8Dfa+6mYN0X3G/e1aYFaLdW7Nixl9478wx+S+Hdo0dA5bzKlrW4JtE8TRzKKiwzKF1XqEvGDSVf5+F4Fbnb25JbpnlNQUFHOiZQbDGgWSEJyjhTfTobxnV5kaLejt4rvRmpjxN6e0JYtUIsa7a2GBeSUlnKzoICiigq6+foQg1aL0mtoUVo+Hj6u1X/f0qIu/VuTfiOH/BwpNo/tiqRdt0AObDxLcmIGb09fCECr7wdyX2CgzgeOxj7oqFIxP1yvri2kvrgnIYE10VGsiZZuZXilXz/SCovAtxbn3yWpJYX4OOiuCno7OJFeWqO9qvTaKyWBj3oOxc3Wnj6qAG4U5ZOjfb7ErhuxdPP0Z9O1WMO2cqylrUbVaCuNYVsB7IqLo5ufD5tiYkgtKjRY9ebt6ET67WLr+lU+Ugwyiq2apBUZx1ZGjfp2UKn4drRxe+2Nl/RnQMsWXMpIr/XWxzsia5HZtWjYu28xub1Oi+oULwPuHC8ZuUWomurixcvNkcy8olrLn79yE39PV1wc7cgvMr5dEqSVXZ4q3VV0D5UzOZn1v022uLCMiDNX6dEvmOvxGaTnFaFyNcw1MvOLa93/bOJNmrm74NrEjvS8QtLzC4lMkvKCPRfjmDnIcnnR3fRDa4WC5Jq64evD1nOXSSsowlsvN1I5m86Nvp6glxu1kux29vMmrHVL7msViK2VFY62Nnw5bjhr91zEW8+vXq7GOYs+5xJu0sxDz695hURe1/r1Qhwzh0h+tURuWG9kLTK7Fo14/S0mddYbo5kpP8/ILsTLQxcvnk0dycox1qKgAA/eeGoYr3y8ngI9DcrOleqQV1DCXyfjadfKm9PpaXi71dC322jGufib+GtjO0/vtu2i0nLOxiXTt10gCSnZ2Da1oTxbt7KrIqcCW1cbkzYzT2Th2Uc3WWbb1AbbprY4t5Lq5dHL3fyTXpo0UHpX/1lzDAqmxqkuBvljj4FtSYgyHqcqlAqGB7bmjcM7md6uW/V2Hwcn0ktqPycdSE7kI8UQ3GztyS0vJUNbNrushF3X4+ji4UNW2mU89VabeXi7kJ1hmNPeDqWVgne+fYgDWy9wbG+07ljL8/C01TtWW1eyK/JNWIABnt04mGG8uu2u+Ydr0d+NWZ7pJQhCCKBEumpQjSiKqcAbwJuCIDgD/YHmoigGiqIYCDyD8fLZWhFFcZEoij1EUexxzdmTAHc3/FydsVYoCG/fhv2xiQblB89fwqDvpM/uS3F8uG0/+2ITcHOwx8lWWnJqa6WkT4vmJGblEHkzzWw2W7g3xdHOFj9XZ6yslQwY240TeyINbJ3YHcmg+6U3jIR0C6S4sIxcvY4bOrYbB2u5tREgLiubQDc3/F2k+o5s24Z9cYb1DVuwhIHaz67Lcby/az974xLIKi4htbCIFk3dAOgT2Iz4Gg85NScGvlUqCO/YhgOXDes65OslDNZ+dkfH8eHW/dUTPB+PH0JiZg7LjulEJjIlzeLHH3UzjQAPN/zcpHqP6NSGAzGGvzH0qyUM+VL67IqK46PN++84MWUpu3fkH36v+N+hRfE+7gS6uuHv5IK1QsHoViHsuWbYTp72ugeXdvbyRhAEcstKaWpnj7ONVjeUVvTzDyAhT4rDiLQ0Al1d8XeW4ntUmxD2JRjGSOjPvzBA+9l5JY45e/exJz6BlIJCuvh4Y2dlRURaGv4uLmSXlEhaNLorJ/ZGGdg5sTeKQROkpDKkS4CkRZmFZKbkEtI1AFs76epjl77B3EiQHurpon1OhiAIhLUMokKtNqjr3kTDug5Y8gv3aT874uJ4b/8+9iRIfnK3twfA18mJYa2C2Rx7ua5NUW8islMIdHLDv4m2vQLasjfZ8K2oHnZNqv/f2d1Haq/yUlKKC+jq4YudUrpe1Nc7kIT8LKmt3FyrtWhUiIm2WvwLA7Sf2toKpOdkJWgf9huRbhgDo1u3Ye9Vw9jycNCLLZUutm7rg9Q0AvTqOzIkhH3xhvUduPgXQhdJn51X4nhv777qCS+AUSFt2HI3tzbKWmR+LVK5E+jiir+TNl6C7xAvXnWLl0tX02imcsXXwxkrpYKhvUL464JhvPh7uVb/v01zL6ytlLVOeAHERt/EN8AdlZ8bVlZKBgzvyImDdev3Lm4ONHGSVtLb2FrRtXcQN65Kj5OIvpFGgKcbfk2lug7v2oaD0YZ1beahGzC19ffCSqkkr7iM7MIS0vOKCPSU8oJ7gpsZPKjd3NxNP0wpLKSLr55uNG9e/ZDwyJQ0Apu64a/NZUe2b8P+K4Z2B/13CYO+lz67YuL4YIeUy369/ygDvvuZQd8v4aUN2zlx9QavbtxJdFIazfX92q0NhyJr92uIvxfWNfwa4KX1axudXy2RG9ab+mrR/5ge/R1alOjqaZH8/HJ8Gs183PDxcsHKSsHg/iEcPWOocSoPJz55dSwfzd/OjdTc6u12ttbYa3MZO1trenYOIDEpi+jraTTzcsPXXYrtYT3acCiiRmx76sV2M0nf8orLcHW0x9Fem8NZK7knpDnXtLHt1NKRsrQyyjLK0FRpyDyRRdPubkZ+qyqpIj+mAPfuTau32bjaYOtuQ0mKpM150fk4+NnXtSnqRmUkKANB6S/lhmO6cWJPjdxwTxSDJkqr7EK6BpgYp3bnoIlbG7ve25qEvBwOJCfSwtmNZo7afKtlW/YkGU5Oe9rr5Vse3ii0+Za9lTVNrKVJQnsra+7zCyQ2N4srUTfxDfCQzh3WSgaM6MSJAzF1PuwXPprAjcRM/tS+DfgWVwqT8LX3RGXXFCtByQDPbpzIjjLa30FpR0eXII5nRxp9d9f8w7Xo7+ZuVnrZa5fHgrQmcIYoimoTt2NsBN4H/gPsF0VR/4bmTcAXgiDY1tzpTqhFkY+27+eXaROkVytfiCY+M5vJ3aV7tFebeE7BLTwdmzB33DCUCgFBENgZfYWDcVcBzGpz0ZFT/DJtArZjx7J79QmSrqQRPq0fANt/O8rp/ZfoGdaeJUfmUFZWwTcv6d4uYmtnTdf7Qpj/xmqD3+k7vBNPfXQ/zp6OLHxgDGkFRSyZMgGlILAuIpr4rGwe7CrVt+Z98jX5aPcB5o0ZgbVSwY28fN7YtpuZgbfdBYCXP4BTFyAvH0Lvh2cfhftH3n4ftUbk4637+XnGBBQKgQ3noonPyGZyT61vb/Oshm7NfRnbpR2xaZlseHoqAN/uOcr+m9f4YM9+sx6/qXp/snk/ix+VYuLPs9p699LW+1TDnrdlKbt35J8pkH+7Fs05vI/loyZKr52/HElcbjZT23UGYOWli4wIasO09p1RazSUqat4bs9WALwcmjAvbAQKhQKFILAtPpb91xNRokAtinyw/wBLJ05EoRBYFxVFXHY2D3bSxndE7TFyMS2NnXFxbH54GmqNhotpaYxt25ZJe1qze+0pkuLSCX+oDwDbfz/O6QMx9BzYliUH36KstJJvXlsFQOyFJI7suMj3W19CXaUh4dJNdqySXscdOroro6ZLerY16xqv7trFsgkTUQgCa6Oluj6krevvt6krwI+jR+NqZ0+VRsN7+/dRUMeXajRIi0SR987sYXnYFKmuCRHE5WfxUHBXqa5x5wlvHsLU4K6oRam9nj+yCYAL2SnsSIpl64iZVIkaLuWmsyr+AmrRig/26bVVpLatOmvb6uId2uqKtq1EDdHpGfwREamr66H9LB8zEYVCwdpLUcTlZPNQB61foyIIb9WaqR06S3WtquL5nduqbX83bCS9/fxxs7Pn2KNP8u3JY6w/Fy3F1t4D/Hr/RJQKgbX1qC+AnZUV/QIDeGd3nRYAmEbWovexgBa999d+lo+diELQi5f22niJjiA8qEa87NKLl6F68fKIFC9rYqJQa0S+XHmA71+U4mXzkSgSU7KZOECyu/5QBIO6BxPepy1Vag3llVW8+dPWarufPBlO9zb+uDras+3LJ1i06ThHT//Fj59u5ZMFM1AoFezeeJbrCRmEPyANsLavPY2buyPz/3gKhya2iBqRcdP6MmvcfJp6OPHyxxNRKhUICoG/dkVx6i9pAlatEfl0/X4WzJqAUiGw8WQ0CWnZPNBXquvaYxEM7hTM6J7tqFKrKa+s4rXlOh98tv4Anz0s5QXJ2fm8u2o30w1fAGaShmpRQ/vhxVRJNzZNlzT+UkYGq/V048Od+/n5ISk3Wn9RymWndJPs/nGu/vmFWiPy2br9LHhayuE2ntD6tZ/Wr0cjGNxF8mvlLb8u1fl17roDfDZd59c5K3eDjWVyw3oja9H7WECLLJGfqzUiX/+8j6/flc6J2/ZHcvVGNmOHSvnWpt0XeeSBPrg42fPyE4OlfdQaHn/9N5q6OvDpa9Lt3Eqlgj2HYzh54RpqLyWf/7GfH56TYnDzsWgSU7OZeK9W3w5HENY1mFH36DTjjZ+l2PZ0acIHM4ahFAQEhcCes1c4HCWNJwWlQNAjLYj6PAZRI6Ia4EUTfwdS90or2HwGS6ussk/n4NrRFaWd/p2kEDS9BbE/xqGpErH3siV4Visg5Y6+r7sWqRELPkRw+4VFB5xuM05tx5Ij71JWWsE3L/9evbetnTVd721jNE4F6TlfmxNjpPz4+F6WD38ApSCw5kokcXnZTA3pAsDKyxcID2zNtLZdqbqVHx/YDICHvQOLBo0HpJd2bEq4xKGbV2mn1rDgk818vPhRlAqB3X+eJSk+g/DJ0iKS7atP4ebhyPw1z+DgaItGIzLu4X7MGv0tLdp4M3hsN67GpvLfDc8CsOzb3Zz+6woaNCyIX8/HHZ5CKSjYnXaCpJI0wn20/kiVtKWvRyfO5cZSrjG8lfr1kOl0cmmFs7UjK+75gBXXd9yxrYz4Z2pRo0GozzMUGhMhH3zzP1PxFouvmt1m/DMtzG4TIPbRBRax2/6Hp8xus8rhzmUagnUDXkT2d3Hp0xfrtRY26Ouv69VvEl56SV5rewcCF3xldi1SlpjrxbqGtP5vskXsxj7vb3ab8Q/+ZHabAEH7HjW7TUVqvccEdUJja/7TnLLMMl06/tX6aYWsReanxX/nWSQvcj9vftd7nLbMCqqUQXd+MH99ufC6ZfKi1itmm92mpfq3Xab5bVa43LlMQ4j5yLJ5Ech6dCeCP7PMGE11xswPcwdKvJR3LtQAuj1m/oecL/I/ZnabACN7jjC7zUvv+925UANoNy/PInb5qfZbWhvKjvu+k7WoEWG519LIyMg0Pv5npoplZGT+0chaJCMj0xiQtUhGRqYxIGuRRZEnvWRk/k3IgiojI9MYkLVIRkamMSBrkYyMTGNA1iKLIk96ycj8i5BfbysjI9MYkLVIRkamMSBrkYyMTGNA1iLLIk96ycj8m9DIt37LyMg0AmQtkpGRaQzIWiQjI9MYkLXIosiTXjIy/yLkqwgyMjKNAVmLZGRkGgOyFsnIyDQGZC2yLPKkl4zMvwlZUGVkZBoDshbJyMg0BmQtkpGRaQzIWmRR5EkvGZl/EfJVBBkZmcaArEUyMjKNAVmLZGRkGgOyFlmW/9lJL0FtfpvKMvPbBBDLzG9YWW52kwC0/+Epi9iNfmaB2W22XjHb7DYBNLbmv6e61K/K7DYbhCyo5sfe/GIklinMbhMAGxuLmNXYmD+wgvY9anabAAmDfjW7zZa7HjO7TcAiz3eosrZQbNUXWYvMzozQvyxi99CWvma3eWOEu9ltApR0Mn++Zalc48rDP5ndZu8L95vdJkA3zxtmt7nreBez22wQshaZnaBV2RaxK9qYf9ha4uVidpsAh5Namt3myPGWqeu20zvMbnPkwIlmtwlAeaVl7M5yML/NmHqWl7XIovzPTnrJyMg0AFlQZWRkGgOyFsnIyDQGZC2SkZFpDMhaZFHkSS8ZmX8R8tJZGRmZxoCsRTIyMo0BWYtkZGQaA7IWWZZGcp+DjIyMjIyMjIyMjIyMjIyMjIyM+ZBXesnI/JuQryLIyMg0BmQtkpGRaQzIWiQjI9MYkLXIojRo0ksQBG/gW6AnUA5cA14ALgKXATugEPhBFMVl2n0eAXqIovisIAgK4FdADTwHrAGCtH9vEUXxjbrUo3+rAN4KD0UhKFh3LoqfD582Wa6Dr4o/npzCS2u2s/tSHN7OjsydOBwPRwdEEdaciWTFifMA9GsdwBtjQ1EKCtafiuKXg4Y2B7ZryXPD+qIRRdQakbmbD3L+WgoA0/p1ZeI9HRAQWHcqkt+OnK/er3tYe576dDIKhYKdvx1hzfydRvV86tPJ9BzckfLSCuY9t5T4iCQAlp37lJKicjRqDWq1mucHf2rgg7eHh6JQSD5YfKR2H6x+fAovrdvOrktx2Fgp+e3RSdgolSgVCnZfiuP7g8d1fh2p9evZ2/jVT8+v0Xp+ddL69bTOr3fi7blw8Dg0dYMtS+u0CwD3BQbyziCpvdZERLLwlOm6dvRWsW7qg/xnyzZ2XomjhZsb340ZWf19cxcXvj16jKVnpfr2D6rh16O38etjWr/GxGGjrOHXGJ1fB/gH8l7vQSgFgT9iI1gQccrAVm+fZiweMp4bhfkA7Lx2hfnnj1d/rxAEto59mLSSImbu3lB3J+nxT1s621i0aIBfC+b0GoRSULA67iILIk8afN/buxmLwiaSXJQHwM7rV5h/8RgAzja2zO07gjZuHogivHZ0OxdyMwG4LyCQOaFSHK6JiuSn06bjsJNKxfopD/L89m3siIsD4JGuXZncoSOCAKsjI/n1vBTb3e9tzey3R6NQCOxce5q1iw8Z2PJv6clLn95Pq/Z+LPtmF+uXHK7+7sVP76dXaAh52UU8NfpbQx80D2RO/4EoFQKrL0Wx4FyN+Pb1Z1H4OJJvxXdCHPPPnMDH0YmvBw3H06EJGkRWRUfwa4RU1/t8WvJej8EoBAWr4y/w06UTBjbv8WrOogETSS7S2rwRy/dRRwGYGdKTyUGdEYHYvExePb6VCs2dXzrQUC0a4FsjBqJqxIDKRAxEaGPAukYMHNvOuUzpvDLArwVz7pF0Y/WVCNOxNWgCyYW37MYZxla/4bRx9UAEXjuyg3PJaZLdZoHM6Rcm2Y2JZMGFmu3VjEXD9Nrrahzzzx7HVqlk9dgp2CokjduReIVvzhyru6O0yFpkGS1KOV/EuSUZiBqRoEGutJtg+MD4imI1x79LoSSrCo1apO3YprQMcwXgxA+ppJwpws5FSfi3hg9h7tmjBc/OHoRSqWDbjousWmMYh4MHtmPKpHsAKC2r5Nvvd5GQKOnYay+NoPc9QeTllTBz1pLqffq3DuCNMdp863QUP5vKt4b2RRRFqjQin285yDm9fOv+Xh0QBCnfWqGXb5lbN9Q0PNcAeLR7NyZ16oAoQmxWFq/v2EWFum4vQGmoHvX2CObltqNQoGBT8mmWXzV+yUG3pi14KWQkVoKSvMoSZp9aTPMmHnzaeUp1GV+HpiyK28uVktVkX8wjbnkSaER8BnoSMMbXwF7SllTSj0kPMBfVIsU3S+m/sBuVBZVEf59QXa40o4wW9/uDq/T3fc0Dee/egSgE6dzxU41zxz1+2nNHgba9EuP4/rTUpp+HDSMssCXZpSUMX7Ws7g7SQ9Yiy2hR937BPPV6uDTu2XCWNUsMY9A/0IOXP5pAUFtfln2/h/XLpD7ooXLh1U8m4ubhiKgR2b7+DJtW6nLhHn1aMfuV4dL5Z+M51iw7YmC3WYAHL703llYhPiz7cT/rftOdn5ZtfoHSknI0ahG1WsNz0xcB0LddAK9Mkvr3n0ejWLrbsH8P6NSSp0frxn5frT3IhYQUbKyU/PzyJGyspPPhvvNx/LRVV9d7VUG83WkYCkHB2mvnWXzlqJGfenkE8FanYVgpFOSWl/Lw4WV42zvzRY9xeNhKedGZrCR6ewZie1hk56oTrP1xr5Gd2R9MoGdYO8pLK5n30koSopLxa+nFmz/OqC7j09yDFfO2s/GXQ7zx4wz8W3oBIHi+CppCxOyxtbZnQ7Woe//WzH5rlBQH606z9ucaOWcLbc7Zzpdl3+5m/a96OefHE6WcM6eIn7/YIdkRBHauOcnanw4Y+2DOWHqGtqW8rIJ5r64mIfomAGMf6c/wyb0RBNi5+iQbtb/Rf0Qnpv1nKM1aefHCpB9xdmtilro+Nea7ujtIj3+aFjU26j3pJQiCAPwJLBNFcYp2WxdABSSIothVu60lsEEQBIUoir/W2P8nwBp4FEl8vxJF8YAgCDbAPkEQRoiieNtXSSgEgXdHhfHYsg2kFxSyZtZDHLicQEJmjlG5l4f252j89eptao3IFzv/4lJqBg421qyfPZVjCddJSs7lnfFhPLF4A2n5hax+7iEOXEogMUNn80T8DQ5c+g2A1t4efDVtJGO+WkYrlTsT7+nAg9+volKt5qfHJvDX5askZeWhUAg88/lDvHX/N2Sl5DJ/z1uc2HmRpCup1XZ7Du6Ab0sVM3u9Q0j3Fjz75VReGPZZ9fevj5tHQU6R0bHNCQ9j5grJB2ufeIj9saZ98MqQ/hxJ0PmgokrNI8vWUVJRiZVCwcqZk/gr/ipRSem8OzqMx5Zq/Tr7Lvz6lOTXmvuaYtwIeGgCvPHpHYsa1OH9IWHMWLOetMJCNjw8lX0JCcRnG9f1tfvu5fA1XV2v5uYyZtlv1d8ffepJdsfFV/9t0q9ZJvw6uIZf1Vq/Vmr9+ugk/oq7yinhJh/1HcLUHWtIKy5k89iH2ZuUQFye4RtuTqcl1zqhNbN9d+LzsnG0sa27k2ryDxLUxqRFH94zhGm7V5NWUsjmUTPYkxRPfH6Ntk2/wWP71hvt/16vQRy6mcjTBzdirVBgb2VdbfeDsDCmb5Die+NDU9mbkEB8jon47n8vh6/r4rC1uzuTO3Rk/KrfqVSrWTphAgeuXkWhyOSZOWN569FfyErP57t1z3JyfwxJCRnV+xbmlfDTJ1voM6idUV33bDjL5t+O8crnk4x9cN8gpm1eR1pRIZsfmMqeq/HE5xrW9XRqMo9t22iwrUqj4eOjh4jOyqCJtTVbJk3j8I3rXCWdD3sO5eH9f5BWUsCm4Y+wNzmO+IIafs1M5vGDaw22qewdeaRND4ZsXUy5uor/9h/H6MB2rE+MNDqmmjRUiz7srRcDI2ew50YtMbC/lhhISeTpQ9oYUFrr2R3MtF1rJLujp9cSW8k8tteE3XsGcSj5Kk8f2GQUWx/2H8y0rWslPZowjT3XE4jPNdajx3b8abCtXK3moc1rKKmSNG7d2Ac5mHS17s66haxFZtcijVrk7OJ0Bs5phr27Nbtfv4ZfT0dcmunOGXE7c3FpZsuAt5pRll/FtucTCbjXBaW1QMtQF1qPcOPE/BQDuwqFwH+eGcKrb64mM6uQn76fwbET8VxP0sVLano+L7z6O0VF5fTq0ZKX/zOcp/+zAoCduyP5c/M53nxVd6FJIQi8PS6MJ37eQHp+IauflfKtBL1862SNfGve1JGMniflW/f36sCU/0r51sKZEzgUc5Wk7Dwpts2sG5tvxjU411A5OjK9W1eG/7qM8qoq5o8eyaiQNmyIvnS7pqymQXqEwGvtxvDs6SVklBWwrM/THM64zNVinc47WtnxWrux/OfMr6SX5eNm0wSApOIsph37b7WdbQPf4GD6JXyaiFz59Tpd3myDrbsNZ96JxqObG0387attNh/tQ/PRPgBknc3lxo40rB2tsHa0oudnHQAQNSLHnrmAZw83iNdq0YBBPLxJOndsmjSVvbWcOx7futHoWNdfjmJ55HnmDR5RdwfVRNYi8+dFCoFn3hrNW0/+SlZ6AfNXzebEwRiStBPhAIUFpSyYu40+YW0N9tWo1Syet4P4mFTsHWz4/o+nOX88nqTETMnu6+G8+cwKstIL+H75E5z4K5akqzq7BQWlLPhqB31DQ0zW7bVZyyjIL9HVVRB4fUoYT8/fQHpuIb+98RCHIhK4mqaLwVOxNzgUIWlRsJ8Hcx8fycQPllFRpWbWt+soLZfOh7+8Momj0VeJvJqGAoE5nUfw6JHfSC8tYN3Ax9mfGktCYVa1XSdrW97rEs7jR1eSWlpAU1vpDYJqUcPcyN1cykvDycqW46NeYdaxVWROP8d3W1/m5J5IkuLSq+30HNgO3xaePHbvx4R0DeDZTx/gxTHfcDMxg2eHf1ndJitOf8ixnREAzH1aN0m8/XJnRE3h7Zq0YVqkEHjm3TG89dgvZKUX8N2aZzh5oEbOmX+bnHPjWTb/fpxX5j6gs5OUzXcb/8PJvZdIitfzQWgIvoGePBY2l5AuzXn2o4m8OGE+Aa29GT65Ny+M/47KSjUfL32cUwdiSLmWxfUraXz01DKe/+R+BDPWtcH8g7SoMdKQZ3oNBCpFUax+17IoihcAg/cZi6KYCLwEPF9j/+8Ad2C6KIoaURRLRFE8oN2nAjgH+N+pEp38vUnKySM5N59KtYbtkbGEhQQZlZvWuwt7LsWTXawTuMyiYi6lSkFcUlFJQmYOKmdHOjbzJikrj+ScfKrUGnZcjCWsvaHN0grdq1LtbaxBlCK0pVdTIpJSKausQq0ROZOYzKD2rQBo060FqVczSLueRVWlmkN/nqbPiM4GdvuM6MK+NdLVgctnr+LoYk9T1e1fTdvJr4YPomIZ1MaED+7pwu5L8eTo+eDWsQNYKRVYKRWIotav2TX82rYWv0bHk110Z7/WhZ6dwdWpTkWr6ezjzfXcPG7k51Op0bDt8mUGtzKu6/RuXdgVF0d2SYkJK9A3oDlJeXmkFEiCX+3XPMnu9uhYBpmKrV5d2B1jwq+VWr8qtH4Funj6cK0glxuFks0tiZcZEtCqzsfq7eBIWLOW/BF750H7bRHr+WncNAot6uLhw/XCPG4Uadv2agxDmwfX6QAcrW3opWrG6jgpCanUaCioKAegs7c31/N08b019jJDgozjcEaXLuyKjyNLL76DmjblQmoqZVVVqEWRk8nJDG3VitadmpFyPZu05BxJi7ZdpHeNk3d+TjFXIpOpqtIY/VbUmasU5pca+8DLm+v5edwo0PogLpahLeoW35klxURnSbpRXFlJQm4O3k2c6Ozuy/XCXG4U5Uk2r8cwpFnrOtkEUAoK7JRWKAUBOytrMkqK7rwTDdOiLh4+XC+oEQPN7iIGKst1dvVjKzGGoc3r5lfJrr/J2Ori5c11fT1KuMzQQOPYqo2SKj2NUygQGyIWshbpYxYtyokvw9HbBkdvG5TWAs37O5N8ukbcCwKVpRpp9VSZBhtHJQql9JVXewdsHI3TwpA2PqSk5JGalk9VlYb9B2Po18cwvqMv3aSoSIqvS5dv4uGh60QRUckUFBrqRsdm3tzIlvKtSrWG7RdjGdjOMAZLauRbt+KspVdTLurnW1eTGdxB6heW0I27zTWsFArsrLQ2ra3JKC6uc30aokftXf1JLskmpTSXKlHN7rQI7lMZTiwM8+nMwfRo0suk1VO5FcZ16ukeRHJJDmlleRTEF2GvssVeZYfCSoGqjztZZ3NrrUP68WxUfd2NtudGFWCnssXOU5qI7awyPncMaVn33OhUyk3yysrqXN4k9dWixq1HjUKL2nTwJzUpm7SbuVRVqTm0M5I+Aw1jMD+nmCvRN1HXyDVysoqIj5EWBZSWVHDjaibuXs6S3fZ+pNzIqbZ7cHcUfQa0MbSbW8yVSykmcxhTdAj0Jjkzj5tZ0thv15lYQjvXGPuVmx776X+nP5YC6NTUj+vFuSSX5FEpatiWHM0gH8O6jm7WkT0pl0ktLZCOvVzSjsyyIi7lSauyg5w9KagoQwQpb9t8jt5DOxrY6T20A/vWS6vTLp+/jqOzPW5an92iS//WpF7PIuOmiX5rNwLKtt7WTw3RotadmpGSlE1acq5U9+0X6R1mIg6ikqmqMl79GnXmGoV5JdjaWRva2XqB3kPaG5TtPbg9+/48A8DlC0k4Otvh5ulEsyAvLl+4TnlZJRq1hsiTifQdKk3C30jI4KZ2wjSglcosdb0r/lla1OhoyKRXB+BsHcueA/Sn2h8CugNTRFGsqllYEARXYDSw706GvZwcScvXzUqnFxQZTbB4OTVhcNtW/HE6olY7vq7OtPXx5GJyGl4uNWzmF+FlYtJmUPsgNr8ygx9njuPdtXsAiE/PpnsLf1wc7LCztuLekEC8XaV93X1cyUzRXTHISsnD3cfNwKa7jyuZekKUmZKLu48rIGnrp+te4Pt9bzNi+r3VZVTOjqQW6OqbVosPhoS04o8zxj5QCAJ/zp7K0VdncSwhiYibaXg5G/tA5XR3frUUKkdHUgv1jr+wCJWjk1GZocHB/H6h9rqODGnD1phY3T5OJvxqwge39essrV8TJb96OziSWqyzmVpciLeDcWx18/Jlx/gZLBs2kWBXXcL4Xp8wPj11CM1dKpwg1u/TyGkUWqRycCKluKD679TiQlSm2tbTjx1jHmXp4AcIdvUAoLmTK9llJXzVP5xtox9hbt/h1atxvGvEd2qRifhu4sjQVsGsjDCMwyvZ2fTy98fVzg47KytCA1vg4+iEh8qZzLT86nJZ6fm4qwwTo4agcnQkpUi/roWompjwgbcvOyY/zNJREwhuajwg8ndypp2HFxfSU/G2dyS1ROfXtJJCvO2NM65uHn5sD5/JrwMnEewi+TW9tIjFMSc5Ou4ZTk54nsKKcg6nNWA1Uh0xioGSWo7f048dox9l6SC9GHB0Jbu8hK/6hbNt1CPM7aOLAZWDIyn6ulFSiKqJCR94+rJj7CMsHXJ/tW5IsVXKV/1HsG3MDOb207PbxKlGexWZtqvyZcf901kaPpFgN117KQSB7fdP5+yMpzmSfJ0LGfXXeVmLqjGbFpXkVOLgoVvA79DUitLsSoMyrUe4UpBcwcbH49nx0lW6zVQhKITb2vVwdyIjUxffmVmFeHjUfkErfHhnTp1OvK1NlYsjqXk1cg0X0/nWlpdnsOBRw3yrh36+1SYQb+2+ltCNu8k10ouK+Pn0Gf6a9TjHn55FYXk5R/RWglkCT1sX0kt1Op9Rlo+nraHON2/igZOVPQt6Pc6yPs8Q7tvVyM4Qn07sTr0IQHluJXbuuhWDtk1tKM+pMPn76nI1ORfz8ezV1Oi79OPZqProtMS7SQ3fFhXiXcu5Y/uUh/l1tOlzx91QXy1q5HrUKLTIXeVMZrp+rlFQPXFVH1S+rgSF+BAbmSzZ9XImM13Xv7MyCvCoj11R5NMfHua/K55kxPjuAHi6OpKWq4vBjNwivFyNY3Bg5yDWvzeD754Zxwcr9lRvVwgCq96ayt4vZnEyJomoa9L5UGXnRJpeP0wvLUBVQ4sCHZvibG3H8nuns37g44xt3snod9u6qLCzsuZijuSDrNQ83L0NF0W4e7uSlZJX/XdWaj4eNcoMGNONQ5vOGdnvcE8QaLJAbX5d8vCqmXMW4H6HBR2mUFopDO2k5hnZcfd2ISs1T1cmTfLB9StpdOjVEidXB2ztrOkZGoKndnytj2vTJmap693wD9OiRoel395YM5M6BwQAvYwKCoIVsAqYr70CcXvDJnI0UTRs/TdHhDJv92E0oumocLCxZv6UUczdcYji8gqjygImr2Dvi05gzFfLeH7ZZp4d1heAxIwclhw8zeInJvDTY+O5kpqFWiPeOrY71vV2ZV4a+TnPhn3MO5PnM3pmKB361L6CoKbdt4aH8tVe0z7QiCLjf1pJ6Nc/08nPm2Av9zr54M3w+vnVUtSlru+EhfLFodrraq1QMCgoiO2xV25ruKbdt4bdwa8LtX719SbY070Wm4ZEZaXT94+FjPhzGUujz7F4yHgAwppJz6uIyk43NlJfLHAFQRCE4YIgxAqCEC8IQq3PehAEoacgCGpBEO6/q2NoGJbTIhPbjNo2O51+6xYwYvOvLI05y6IwqW2VgoIO7t78dvk8I7cspbSqkqc69q71t2r273dDQ/n8sHEcJuTksPD0aZZPmMjS8RO4nJWJWtTUIpx3OsI7I5jwgpEPMjPot3wxI1avYGnkeRaNGGvwvYO1NQuGj+HDIwcoqqwwrYk1rEbnpNF/4w+Eb1/CstizLLxvIgDONnYM8Q/mvk0/0nvD9zhYWTMusL2RPXNhMgZqOCAqJ51+6xcwYsuvLL18lkUDtTGgUNChqTe/xZ5n5FZtDHSQYqAu546o7HT6rf2JEZuWsjTmHIsGTZDsCgo6uKv47fIFRm5eRmlVBU91vOc29a1hNzOdfr8tYsS65SyNOsei4eOqv9OIIuHrltNnxUI6e3nT2s3jNt6pBVmLbmE2LTLppxq/lnqhGLcWtoz7uRXDv2rB2Z/TqSy5/fOlTOdbpst26dyc8GGdWPTLwTtW19im6Xxr9LxlPLd8M88N1eVbvxw6zc+PT2DhzPHE3infukvduJtcw9nWlsGtghi46Bf6LliEg7U1Y9sZrh4wN7efwpRQCgpCXHx58ewynj/zKzODBtLcQTeZZCUouc+rLfvSoqQNdYitW2Sdy8OltRPWjoZPUNFUacg+m4dXb91kWF3OHdEZGfRftpjwP1awLOI8C8PHGu1zV9RXi+qgR/92LarLOeZO2Nnb8M7XD7Lwi+2UFJebxe6Ljy3h2WkLefv5lYx5oCcdugbUaTwJcOBiAhM/WMbLP23mqTF9q7drRJEHP13J8Ld+pn2gN0G+Uj+qS7qlFBS0d/Nh1rFVPH50JU+H3Eugo65/OCitmRnch4s5yRRXVdRq6E7HYGWt5J4hHTi87YJRudCx3RBLtxkbMAd1SY4aSh3H0TcSMli78ACfLn+Sj5Y+QeLlVNRqE6sALVnXuvLv1aL/Fxoy6RWNdCWgLnQFYvT+vgxMAlYLglBzBLIIiBNF8dvajAmC8KQgCGcEQTgTf/o43i66GXOVsyMZhYbLszv4qZj3QDh7X5zJ0HbBzBkVVn2bmpVCwXdTRrEl4jJ7YqRnOaXnFxnadHEks6D2Zehnr96kmbsLrg52AGw4Hc2k737nkZ/Wkl9SxvWsXACyUnLx9NWJmIevKzlpeQa2slJy8fTTrf7y9HUjRzvjfOvf/KxCjm2/QJtugVJ9C4rwcdbV19uUD3xVfH1/OPte0PpgZJjRrXqFZeWcupbMva0CSS8w9oFJv04KZ+9LMxnaXuvXtib8eim+Vt+Zg7SiInyc9I7fyZGMIsNbOTqoVHw7OpyDTz7G8NbBfDB4kMFtCQNatuBSRrrB7Qj18ut/9Pxa49bSwvJyTl2X/JpWXISP3koKnyZOpNe43aqosqL6tqEDyVexUihws7Wnh8qPwQGtODL5Sb4fOJq+vs35NnQkDcHcVxAEQVACPwAjgHbAg4IgGN3sri33ObCrQRU3TaPQooQjJ/BtorvS6NPEyehWOv22PXgzEWuFEjdbe9JKCkkrKeRClrSUf/u1WDo0VQHG8e3j6EhGsaHdjioV88PD+WvmY4wIDuaDsEHVt0CuiY5izO8rmbJ2DXllZVzLzSMrLR9Pvat/HioXsjMKuFvSigrxddSvq5NRXYsqK6pv/T14/SrWCgVudtLzYKwUCn4aPoaNV2LYlSjpRmpJIT4OOr96OziRXlrDZpWeX1MSJJu29vT3DuRGUT455aVUiRp23Yilm+cd78hoMGklhYYx4FCPGCiuEQPXY+ngro2B4kJ89XXjTnaTE7EWFLrYKtaPrSuGdh1rxNbt7CYZttctCirKOZFygwHNA+vhLQlZi6oxmxYlXcyiJEu3QKMkpwr7ptYG5a/uz8f/HicEQcDJx4YmXtYU3Lz9xanMrEK8PHXx7enhRHa28e3CLVt48soLw3nn/fUUFN7+lrP0/CJ8XGvkGvXMtx6Y/zszFhrmW5bQjbvJNfoFNCc5v4Cc0lKqNBp2xcXRzdfntr65WzLK81HZ63Tey86FzHJDnc8oy+dEVhxl6kryK0u4kHuNYCddvfp6tuZyQQo5FdJx2ja1piy7vPr78pwKbN1sTP/+8RxUfY1XeWVfyMexhQM2LrqYTC0uNPStoxPp9Th3mANzr66QtUg4Ex13Gk+Vfq7hTE7m7Z8ZpY/SSsG7Xz/IgW0XObpP9/y7rIwCPPVWp3t4OZNdD7s5WVLZ/Nxijh68TEh7PzJyi/B208Wgl5sjmfm1a9G5+Jv4e7jg2sTOYHtRaTln45Lp2y4QgLTSQrz1+qHK3pmMUsO6ppUWcjg9gVJ1JbkVpZzJSiLERTpPWwkK5veexMG0ONR6ky8ePq5k662iA2nlk4evq14ZF7L1VsT1GNiWhKhk8rIMf1+hVNB3eGcos8ykV1Z6QY2c07lBOae6SmNox8fVyE5Wah4eeiu4PLx1Pti95hTPjfmW16b8SGFeCTevZVGTvOxis9T1bviHaVGjoyGTXvsBW0EQnri1QRCEnkhXB9DbFgh8BXyvv10UxWPAbGCbIAjNtWU/BlyQ3i5SK6IoLhJFsYcoij2uOXoS0NQNP1dnrJUKwju24cBlw4sPQ75ZwmDtZ/elOD7cup99l6U3yHw8bgiJmTksO6Zb6hmVnEZzDzf83JyxUioY0bkNBy4Z2mzmrusQbf28sFYqySuRkrumTaSTsLerE4M6tGLHBemWudjz1/Bt6YWquTtW1koGjO/JiZ0XDeye2HmRQZP6ABDSvQXFBaXkpOdj62CDvaO0pNzWwYZuoe24FiM9ZDYyJY0Adz0fdGjD/ljD+g7+bgmDvpU+uy/F8eE2yQduDvY42WntWinp07I5iVk5RN6sYdOUX79ewmDtZ3e01q8xWr+ON/arpYhITSPAzRV/F2esFQpGhoSwL96wrgMX/0LoIumz80oc7+3dx9543VuERoW0YYverY2AoQ8UCsLbm/Dr/CUM+k76VPs1VutXWz2/tpD8ejEzlRbObjRzdMFaoWB0yxD2XDecFPS0b1L9/86e3igEgdzyUr44c5jeq36i/+pFPHdgC8dSknjhYANPUOZfXdELiBdFMVH7vIc/AFOXYZ8D1gMZJr5rKI1Ci+KbNyXQ2Q3/W23boi17btymbT18EJDaNrO0mJTiAlo6SwOEfr4BxOVLJ+OItDQC3Vzxd5bicFSbEPYmGsbhgCW/cJ/2syMujvf272NPghTf7vaSHvk6OTGsVTCbYy9zJTIZ30B3VP5ukhaN7MyJ/XV7oPLtuJiRRqCLK/5OUl1HB7dhz7UEgzKeDg46H3h5IwgCuWXSc34+HziU+NxsfrmouysjIjuFQCc3/Jto/RrQlr3JcQY2Pez0/OruI9ksLyWluICuHr7YKaWVBn29A0nIN05yzMXFrFTjGEiuEQN2tcRAWY0Y8AkgLi/LtN2Wd4ot72ofGMWWT0D1izOk9nLD30lrNyjEuL3sa7QXUns1tbPHWfsyDVulFf38A0io8dDpOiFrUTXm0qK+T7agMLWCovQK1JUiSUcK8O9heJuOg4c16ZHSgK40r4rClAocVdamTFdzOTYVPz83vFUuWFkpCAtty7EThnHo5enEh3PG89mX20g29cyYGkQlp9HcXcq3rJUKwju34UCMob4118+3fE3nWz6uTgzu0IrtF6XzuCV0425yjZTCQrr4emNnpbXZvLnRA/DNzaX8mzRz8MDX3g0rQclQ704czogxKPNXRgxd3AJRCgpsFda0d2nG1WLdw8CH+nSuvrURwCnIkdK0ckozytFUaUg/no1Hd1ej364qqSIvpgCP7m5G32UcM7y1ESAi3fjcsfeqoRZ53ObcYRbMv7riX69FeTcc8Q1wR+XnhpWVkgHDO3Li4OU6H8SLH4wn6WomG1YYvhk49lIKfs3cUfm6YmWlJHRoB078FVuLFUNs7ayxd7Cp/n/3e4K4lpBB9PU0mnm54esujf2G9WjDoYgaYz9PnRaFNPPC2kpJXnEZro72ONprz4fWSu4Jac417QPwI3NvEujYFH8HV6wFBSP927M/9YqB3X2psfRwby49709pRSc3v+oH3X/SbTSJhZnMjdxdbcfKWsmAMd04sSfKwM6JPVEMmthTql/XAIoLy8jVm7AJHdudgyZubex6b2uSE9JBY4Y7SUxwJTIZ3wAPKQ6slQwI78yJAzF33rEG5WWVhnZGdeHE3miDMif2XWLQ+B4AhHRpLvlAOyHq4i6dBz19Xek3rCOHNp83+o2k+HSz1PWu+GdpUaOj3m9vFEVRFARhPPCtdplcGbrX4QYJgnAe3etwv9d/K4ieja2CIHgCOwVBGAG8jXSF4Zx2eeJ/RVH8+Xb1UGtEPt62n5+nT0ChENhwLpr4zGwm95Duh15t4llLt+jW3JexXdoRm5bJhqemAvDt3qMcjbzGp5v2s/DxCSgVAn+ejiYhPZtJvSWba05EMKRjMGO6taNKo6assopXVuomH76ZPhpXBzuq1Bo+2bifglLpqphGreHHN1bxydoXUCgU7P79KNdjUwl/5D4Ati/9i1N7Iuk5uANLTn9CeWkFXz+/FAA3T2fmLHsKAKWVkgPrT3F2fzS0a4taI/LR9v388vAEFILA+vN194GnUxPmjhuGUiEgCAI7o69w8MpVBA18vHU/P8/Q82tGNpN7am3e5jleBn59WuvXPUf5K+5arfvc4uUP4NQFyMuH0Pvh2Ufh/jssZlKLIh/sPcCv909EqRBYGxlFXHY2D3aW6rrqYu11BbCzsqJfYADv7DZ89a9a1Pp1mtavF7R+7a71wdnb+NXRhF/jrqL2E5lzbC/LR9wvvfL8SiRxedlMDekMwMrLFwlv0ZppbbtQpdFQpq7iuf1b7uC1BlC3wWN98MPwAanJwD36BQRB8APGA2FIr9A2C41Gi0SROSf2sHzIJJSCwJr4SOLyspjapgsAK2MvMCKgDdPadEUtatv20Obq/d8/uZdv7xuFtULJjaI8Xjmyvdru+/sPsGzCRBSCwNpoKb4f6iTF4e8Rt4/vH0ePxtXOniqNhvf276OgvBwftYYFH27m459nolQq2L3+DEnxPrmvKAAA7b9JREFUGYRPkZps+x8ncfNwZP7653BwtEWjERk3oz+zwr+mpLic1+dNoVOvlji7NWHFoTdZ8f0edq87I/ng8H6Wj5koxXdMFHE52UxtL9V1ZXQEI4JaM61DZ9QaDWVVVTy3W9LOHj5+TAxpT0xWJtsnPwzAFyeOcCg/lvfO7GF52BTp+BMiiMvP4qFg6dkzv8edJ7x5CFODdX59/sgmAC5kp7AjKZatI2ZSJWq4lJvOqvgLt/XXLRqqRXNO7mH54EkoFQJr4rQx0FobA1cuMCJQGwO3+vdfNWLgXr0YOKqLgTkn9rJ86ANSbMVpdUM/tgJb62KrqmZs7ePbAaOwVii4UZhvEFtzjuxj+Uhte8VGEpebzdR2Wj26dJERLdswrX1nXX33Sg+59XJowrywESgEBQpBYFtCLPuT7nznnRGyFtW0cddapFAK9HhcxcGPbiBqoGWYCy7NbYnbJU1CBQ9zo/0D7pz8byrbX7wKokjnaZ7YOkup4NGvb5IRXUJ5oZqNT8TTcbIHQYNd0WhE5v+why8+nYRCIbBjdyTXrmcxemQXALZsu8D0qf1wdrLnhWeHAKBWa5j93HIA3nljNF06NcfFxZ41vz3N0hVHWJp+mU827WfRY1KuUZ1v3aPNt05GMKRDMGO6t6NKrc23ftflW98+rMu3PtbLt9SiaHbdUItWDc41LqamsfNKHJumT0Ot0XApI4PVEXV/IU3D9EjDl5c2M7/HoygEgS3JZ0ksymBCM+mutQ03TnGtOJPjmVdY2e95RFFkU/JpEoukga+twpp73FvxWfSf1TYVSoHWjwRwce5lRA34hHrSxN+Bm3ulMZLfYC8AMk/n0rSjC0o7pWGdytXkROXT5vHAGnUVee+v/SwfOxGFoGDtJenc8ZD23PF7dAThQa2Z2qFztcY9v0sXB98NHUlvP3/c7Ow59siTfHvScJKkTshaVNPGXWuRRq3hx0+38smCGSiUCnZvPMv1hAzCH5AOdfva07i5OzL/j6dwaGKLqBEZN60vs8bNp0VrbwaP7srVK2n8sOYZAJbO38PpI1fQqDX88OV2Pv3+YRRKgd2bz3M9MZORE6XJjm3rz+Dm7sj3y5+U7Ioi4x7szZOTfsDZ1YH3vpwMgFKp4MCuSM4cj0fd04XP/9jPD89JWrT5WDSJqdlMvFeKwfWHIwjrGsyoeyQtKq+s4o2fpRj0dGnCBzOGoRQEBIXAnrNXOBx1FZBi+8MLO/i531SUgsD66xeIL8xkSgtpId4fV8+SWJjF4fR4Ng+ajUYUWXftPHEFmXR3b8a4gM7E5qezfuATiKLI7wMeQXOggt2rT5B0JY3waf0kX/52lNP7L9EzrB1LjrxLWWkF37z8e3Vb2NpZ0/XeNsx/Y7VROw0Y042Dm87R/j+3a02JhmiRRq1hwcfanFMhsHuDNuecLGnR9tWnpJxz7bO6nHN6P2aN+kbKOb+aQqdeLXB2bUJxYRnf/PEUZcXl7F57mqS4dMIfkhaLbP/9OKcPxNAzNIQlB96grKySb17THe87P07H2bUJVVVqfnxvA0UF0qR536EdeOq9cbg0deS9H6eTlV5glrquOPAGK/67l3rzD9KixohQ33usGwtt53xj9oor7/IFMLXhv8T8M8XXnrXMMyGE2z/ao8FEP7PA7DZbr5htdpsAViV1eSJG/Sj1M3omqFm4/vir9aps+zfr128uzX1pFvCk3qZFoiguuvWHIAgPAMNEUXxc+/fDQC9RFJ/TK7MWmCeK4glBEJYCW0VRXFefejRmApd+bnYtUuTefuVFQ2nzk2Uu4sQ872l2m4KrZZ4HmDDIKMe/a1rueszsNgHQmF+LKLfMozyvzX5F1qK/mfejxlokoTv0ct87F6onGV1M3xp3t5R0Mn8ip0yxvXOhBnDl4Z/uXKie9L5gmcexdPO8cedC9WTX8S5mtwlw9dmXLapFcHs9krUIhnd6xyJaJNrUe63GHcns6XLnQg2geEjdb7usKy3/k212mwDbTu8wu82RAyea3SYAem/SNCu25s+7d8R8JmtRI8L86iEjI9N4qaecaoVz0W2KJAPN9P72B1JqlOkB/KG9QugBhAuCUCWK4sb61UZGRuYfg6xFMjIyjYEGTM/cQY9kLZKRkak/shZZFHnSS0bm34T5r72dBoIFQWgB3ASmIL32WveTotji1v/1riJsNHtNZGRk/neQtUhGRqYxIGuRjIxMY0DWIosiT3rJyPyLqMtb0OqDKIpVgiA8i/TGDyWwRBTFaEEQZmu/N//9GzIyMv/zyFokIyPTGJC1SEZGpjEga5FlkSe9ZGT+TVjgKQuiKG4HttfYZlJIRVF8xPw1kJGR+Z9D1iIZGZnGgKxFMjIyjQFZiyyKPOklI/MvwtxXEWRkZGQagqxFMjIyjQFZi2RkZBoDshZZFnnSS0bm34QsqDIyMo0BWYtkZGQaA7IWycjINAZkLbIo8qSXjMy/CVlQZWRkGgOyFsnIyDQGZC2SkZFpDMhaZFH+Zye9Sn3UZrepLFGY3SaA4OpidpuVzpbpGYpywSJ2W6+YbXabVx62zPP3Wq0yf13tUhtHV7NM6/67UdpXmd2mTaKN2W0CkJNnGbtWHmY3qUi1NbtNgJa7HjO7zcRhv5jdJkDLTU+a3aZNjtLsNhuCrEXm52ROoEXslrua//xlXWx2kwAs6rvc7Daf/c38/RCg94X7zW7zRJd1ZrcJltFNr1bZZrfZEGQtMj/FQa4WseuQbH7hcF94zOw2AUq8+5rd5qX37cxuE2DkwIlmt7ntwHqz2wTo9+Isi9hN72MRs/VC1iLL0jhG4jIyMv8/yFcRZGRkGgOyFsnIyDQGZC2SkZFpDMhaZFHkSS8ZmX8RgubvroGMjIyMrEUyMjKNA1mLZGRkGgOyFlkWedJLRubfhHwVQUZGpjEga5GMjExjQNYiGRmZxoCsRRZFnvSSkfkXIb8OV0ZGpjEga5GMjExjQNYiGRmZxoCsRZZFnvSSkfk3IQuqjIxMY0DWIhkZmcaArEUyMjKNAVmLLIpFJr0EQSgSRdHRxPbpwGtILygQgCWiKH4lCMJSYKsoiusEQWgK7APmi6L46+1+Z0CzQOb0D0MpCKyOiWTB+VMG3/f2bcai4eNILswHYGdiHPPPHseniRNfDxqBp0MTNKLIqksR/Bp5DoD7AgN5d2AoSkHB6qhIFp46bfK3O6pUrH/oQZ7fuo2dcXEAPNqtG5M6dgAgNiuLzTGXeXPAfdjdr2HnmlOsXXjAyM7sd8fSMzSE8tJK5r2+moTomwCMndGf4ZPvQRBg5+qTbFx6BICpzw9h+KR7yFCUA7ArLo6xbduiVChYHRnJwtO3qe+DD/L8thr17aCr72u7dlGFhntbBvDO4FCUCgVrLkSx6EQtNn1UrJ0+hRc2bmdnrGTTydaWT8OHEOzpDqLIG9v3cOFmarVv3xkk+XZNxG18661i3dQH+c+Wbey8EkcLNze+GzOy+vvmLi58e7Rub1t5ey4cPA5N3WDL0jrtItU1IJA5oaEoFArWREXyUy1+7aRSsX7Kgzy/fRs7tH59pGtXJnfoiCDA6shIfj1/HoB7gwJ4e1goCkHB2vNRLD5Wu19Xz5zCixu2sysmrnq7QhBY//hDpBcUMXv1profjB7/tqsI/19apM993i15t+tQSZcSL7Dw8nGjMvd4NuedrkOxUijILS/hoQO/mbTVv1UAb4VLMbPuXBQ/HzYdMx18Vfzx5BReWrOd3Zfi8HZ2ZO7E4Xg4OiCKcObaTe5p6Y/to1Xs/O0oa+fvMrIx+9NJ9BzcgfKSCuY9v4yEiBsALD37CSVFZWg0GtRVGv4z5DMApr46iuEP9yc/u5Byb1t2JF5hXOt20nFfjmTBhRp67NOMRcP09PhqHPPPHcdWqWT1mCnYKpUoBQU7rl7hmzNS/74vMJB3w7R6HHl7zajW4ytafeuup8eZWby2cxcVaumtvwN8WzCn1yDJbtxFFkSdNKyrqhmLwiaSXJQn1fX6FeZHSHVytrZlbt8RtHHzQBThtWPbTdapJg3VogHNApnTN8ysfgW4t2UAbw+RfLv2YhSLjteuR2tmSDq/67JO5z8ZOYTWnu6Iosib2/bU/YC0yFpUvd2sWtTdLYTZQRNQCAp2pp1g7Y29Bt9P9A9joFd3AJSCkmYOKqYcf5uiqhJebP0gvZq2J6+yiKfOzjXY757OgbzwyECUCoEt+6NYsckwDof2D2HamF4AlJZV8uUve4m/nklzHzc+fGFUdTk/LxcWrz3G0tMX6Ns2gNful86zfx6L4tc9hjEY2rElT4/qiyiKVGlEvlx3kAuJKdXfKwSB3197iIz8Ip7/yfQ58dIZkXULRDQa6DtcYOhkw/djlRSK/PaNSFYKWNvA1JcEfAON36FlqfN3b49gXm47CgUKNiWfZvnVv4xsdmvagpdCRmIlKMmrLGH2qcU0b+LBp52nVJfxdWjKori9wJ3f3thgLTKzbiaTbyEf1A9Zi6q3m1WLenUN5D+PhaFQCGzdG8nKDYaaMeS+tkwdL2lGSVkF8xbuJeFaJgBrFj5BSWkFGo2IWq3hiVd1OVKPPkHMfnk4SoWCHZvOsWbZUQO7zQLceWnOWFqF+LBswX7W/abLwZZt+g+lJeWS3SoNz81YXCef9RjWhae/fRSFUsGOX/ax+vONddqvf1AAbw+XNG7duSgWH609h1v92BReWifpho1SyW+PTsJGqUSpULA7Jo7vD+qOY4BfC97rPQilQuCP2AgWRNToi97NWDxkAjcK8wDYeS2O+Rekvnhk0iyKKytQixrUGpHRm6U33v4fe+cdFsXVxeH37tI70rGhothFjbFHFHuPmsRuoonpvZfP9N57YhKjSYy9xMSuqLHXKIJSRRFh6b0J7Hx/zMrusosUWYNx3ufZh2Xnzpkzd8793TN37sz0HNCOB14ai0qlYsvqo6z6cY+RzWatvHjqnSkEdvRnyWfbWPPz3splT741mVtD2pOTVcCD4z+vVd1A/bWoT7cAnpgt90cbdkXw64Yq/VH/9swy6I8++GkHcYlyf/TmY1X6o9UHWLH5hMk2bmsZwILbBqMSgpWREXx33HgbvZs2Y+HYiVzMk3Vsa3wsXx45VPudMMPNpkXXm+s200sIMQp4AhguSVKyEMIOmFWljCuwFVhYk5iqhOCNgUOZ+ecqNIX5bJg8k+3n44nLNn4F8tGUJOZtXmf0W7mk5a0Du4nMSMPR2po/p8xib9IFLhTn8FroEOasXoMmP591M2awMy6euKwsk20/f9tA9p6/UPmbj5MTc3p0Z8TiJZSWl/PF2DG8N2I4k39fhvPHsXy+9jEO74wkMS6tcp1eg9rjH+DJvND3aR/cgkden8STU76kZVsfRt7VmycmfUFZWQVvLbqXI7uiSL6QAcD6n/fyrm0MKiHYcc89zFlj4G98Nf4OHMjeC1X87d6dEUt0/o4Zw7igIP44GcVrw4dw9/K1aPLyWXP3dMJi44nLNLX5bMgA9iZcMPr9lWEh/H3uPI+u+wtrlQo7a+vK8q8NG8KclbKva2fpfDVj97kqdZuQnc34Jb9VLt//4Hy2xcbxUseqUWHKxFEwfRK88E7NZQ19eH3IEGavlX1dP30GO6qp1+cGGNdrOw8P7urchduX/U5ZRQWLJ01iV0ICKYV5LBg5hHuWriU1L5/V904nLCae+AxTm8+EDmBfvHG9Asy+tTvxGVk42djUfmeqoghqg2uRISoheK3nSObs/h1NcR7rhs1lZ3IscXkZlWWcrW15vedI7vl7OSlFeXjYOlRr639jhzBviRwzK++fzq6oeOLTTWPm6eED2B+nj5kKrcQHW/7mTEoaTrY2HHjhAR74bT1pL4bx+bYXObwlnMSYlMryvYZ2xr+1N/NuXUD7nq145IPpPDny/crlL9z+CXlZpq8KX//dTtZ8s53ot9uy6655zNyo0+NJOj3OqaLHmiTmbTHW49KKCqb/uZKi8jKsVCpWj5/G7sQEIgrSeG3oEOas0unbzOo1o1o9/lmnb+PGMK59EGsiz8h9R59hzNy2Ak1RPhvGzGH7xTjicqv4mnqReWGmr9x+9dZQ9iSf46E967FWqbBXW5uUMUd9teiN/kMbtF4jM9NQCcGrI4ZwzzKdzt8znZ2x1ejR4AHsO2eq83vjz/PYWmOdrxOKFjV8XoTg4cA7eOn0N2SU5vB596c5nHmaxKLUyjJrksJYkxQGQO8mnZjYLISC8iIAtqceYUPyXp4JmmlsVwiemRvK42+vJi0zn5/encHeY3Gcv6SPl+S0PB5+fQX5haX0CQ7g+fuGcd8rv5OYks3dz/9aaeeP7+7n7yOxqFSCF+8cwgNfrSU1J5+lz05nz+l4zmn0Ng9HX2T3abnvb+vvyQdzx3D7W0sql08f3J2E1Cwc7cz3idoKiZVfSzzyjsDNEz58TKJLH/BrqR/U2rpcollrwfwFAs1Fufxj7xkPeqmEsEj/rULwXMfxPHJ0EWkleSzp+xB706JIKNTniU5WdjzXcQKPH/uZ1JJc3G0cAUgszGDmga8q7Wwc/AK7U8/whLvZqjCi3lrUwLpp18QydfBUh7Em278qihY1vBapBE/NH8qTr60iPTOfHz6Yyf4j8ZxP0sdLSmouj7yynILCUnr3aMVzDw7n/ueXVi5//H8ryc0vNrH78HOjefGRX8lIzePLJfdx6O9oEhP0OVZeXjHffryFfoPam/XtuQeWkJdbbHaZ+X1R8ehX83h++JtkJGXx1ZF3ObjhGIlnk66+nhAsGD2Eub/KurHqvumERVejG0ONdeNyRQV3L1lNUZncfy+9507+jk3gEBdRCcGb/YYyY8tKOS8YP5sdiXHEmskL5m43bYsAUzctJ7tUXwcqleDh/43npXk/kZGax+crH+bwrrMkxuvbYX5uEd+9/Sd9Q01PvravP86G3w/yzHt3XLVOqlJfLXr6nlAef0fujxa9PYO9x437o5S0PB56Q9cfdQvghfuGce//5P5ozov6/mjDN/ez52is2W28HhLK7HWr0RTks/6uGexIiDM5DzyanMS9f66v0z5fFUWLLIrqOm7rReAZSZKSASRJKpEkyXCI3QnYDPwuSdK3NRkL9vblQm42F/NzKdNq+TMuiuEBbWrlSHpRIZEZckMuLCsjPjsLX0cnuvn6ciEnh4u5ss2/oqMYGmhqc3b3YLbExpJZVGT0u5VKhZ2VFWoh8HF0Ijkvn4u5uZSXVbBn40n6DO1kVL7P0E7sXHccgKiTiTi52OHu5UzzQB+iTl6gtKQMbYWW00fO0W94ZxM/TPyNimJoGzP+Btfsr721NamFhXT19+VCdg4Xc2SbG89GE9rOjM1bgtkaHUdWod6mk40NvZo3ZdWpCADKtFryS+UZad38dHZ1vm6MqqZuewSz1YyvV+jXsgWJOTkk5+WbXV6VXt3AzblWRSsxFwfDzNTrnOBgtsbFkmHga5smTTiZkkJJeTkVksThpCSGBwZW1mvSlXqNjCY0yNTmrF7BbI2KM9l/H2cnQtq2YvU/EXXbmSoIqW6f/ygNqkWGdGviz4X8LC4W5sixk3iGoU3bGZUZ37Iz25KiSSnKAyCz1Hysd23mS2JWDknZuZRVaNl0Opoh7U1jZmafYLafiSPToC2mFxRyJkXWuEBvD/KK5XZYXlbBnvVH6TOqq5GNPiO7snOFfIUq6ngCTq72uPu41Hq/g719uZBXPz0GKCovA2RNslKpkJDkdphdC33rHsyWGDP6Jgz0zcqa1AJ50C7Y048LeTlcLND5mnCW4c3b1spPJ2sbbvVpzorYcEDWuLyy0lqtWx8tskS9AqY6fyaaoW3N6NEtwWyLNtYjRxsbbmlhXufrgqJFQANrUTvnliQXp6MpyaRcqmBP+gn6eHSptvwg757sSdNf4Y7IjSe/zFSPOgb6kpSaQ3JaLuUVWnYciGZgr0CjMhExyeQXynEQGZuCt4fJRBJu6dKCS6k5aDLy6Rzgy8WMHC5lyja3nogmpKtxDBZfLqv8bm9rXRm/AN5uTgzs1Iq1B6rvE89Hg6cfePoJrKwFPQYJwqtMvNUkQlCw/N23uSArFfKyjQPOUv13J7dmJBVlklycTblUwTZNOLf5dDAqM8KvG7tTI0ktkWcTZF82vfjQy6MNSUVZaEpyqq0Lo/L10SIL6ea/VQeG1FWL/qN61KBa1KGtL5dSsklJzaW8XMvOfVEMuNW4zUREJ1NwRTOik/EyoxlVCerUlOSLWWgu5VBermX39kj6Vhncys0uIuZMMuXlFTXaqw1BtwaSHKdBk5BGeVk5u1fsp9+EW2pcr2tTXQ6n041NkdGEmsvhbg1m21nj8ymAojKD/lutqlS/YC8/zufl6POCc2cZ1iKQa6Fd1+YkJ2aiScqW88RNp+gzxLgd5mYVEhORZLZeI46dJz/HfC57NeqjRR0DfUnSGPRHB6O57Rbj/T8da9AfxaXg3cRMf9RZ3x9VpZuP7jwwT5d/xkYzrPW11XFtULTIslzPQa/OwPGrLP8E2CdJ0qe1Mebj6ExyoT5QUwoL8HE0bTk9fP3ZfMdsFo+ZTFt3D5PlzZxd6OjpzcnUFHycnEjJ19vU5Bfg42Rs08fJieGBbfn9VLjR76kFBfx49Bh777uXgw/cjxaJM+n6EfIMTS4ePq5G63j4uJCRkmNUxtPHlQsxGjr3ao2zmwO2dtb0CmmPl59+3XGz+rFx1iye6t/fKLnSFBTg42zG37Zt+T3cjL/HjrH33ns5eP/95JeWsu/CBXydnEjJq1IHzk5VbDoyrF0gy/4xttnczZWsomLeHzOcP+6ZwdujhmJvbVXpR63qtm1bfj9pbNeQMe2D+OtsdLXLGwLfKr6mFJjx1VGOg6VV6jUmM5NbmzXDzc4OOysrQgJa4efkjI+LExqDek3NM61Xb2dHhrYPZPlx0/1/aUQIH+7Yi1a6RoWT6vj5b9KgWmSIj70zKcUGcV6Uh4+9cey0cm6Ci40dSwfP5I9hc7k9wPxJqbezE5rcKjHjYiZmOgSy/Gj1baa9rxd21lacStIAkJGcg4ef8XQADz83MpKzK//PSM7B09cNAEmSeHvV43yx40VGzRpgtN64eSF8s/sVnuk1gIxivRZVq8c+/myeMpvFo4z1WCUEmybP5vjsh9h36QIn0zT4OFfRjKvpmzk9PnaMvfPv5eCDen0D8HFwJrkwT+9rUT4+jqYJUQ+vpmwedw+LQ++grZsnAC2c3MgsLeKj/qPZOPZu3us7EnuresxyqiU+Ds4kF9Sin6tDvYJ8Eq6pjc4HBbLshHHdtnBzJbuomPfGDmf93Bm8PVqv83VC0SJoYC3ytHUlvTSn8v+M0hw8bFzNlrVVWXOLe3v2ZZyq0a5XEydSM/Xxkp6Zj5d79SeoYwd34eDJ8ya/D+3Xnu37owDwdnVCk22gb9kFeLua2hzctQ3rXpnDlw9M5LWl+tton50cwmfr9yJdpU/MzQR3L/3/7p6Qm2lcvmlrOLlf/u18tERWKuRkGBWxWP/tZetKanFu5f9pJbl42RpfbGjh6ImzlT3f3novS/o+zGj/7ib2h/l1ZVtKzcfxWrCUbjaKOqirFv039ahBtciriTNpGYaaUYCnR/WjG2OHduHwiYTK/yUJPnl1Cj9+NJNxw/QX6Ty8nElP1cdhRmoenl51GDWRJN75ahZf/XIfo27vUatVPJs2Id1ghlpGUhaeTU3PJ6vi41zlfKoa3RjWPpDlx0x1QyUE6+6fwf5n7+fAuUTCL8n9t6+DEymG579F+fiaywu8/dk88W6WDJ9CWzdDfyV+G3knf02YzbSgbvI+eruQrtG3w4zUPJNz1saCl7sTaQb9UVoN/dG4EPP90bB+7dl+IMrsOr5OTqQY5l4F5vWuu68/G6fNYtH4SbRtUnNM1IiiRRbleg561UQYMEEI4V2bwqZPXMDoKiBARHoq/X9dyKhVv7D49AkWjpxotNzByppvR4znjf27KCi7jDBntIrNV0JC+GCvafLiYmvL0MA2hPz4E/2+X4itWk1LN7cqpozXEWY2KEkSF+PTWLVwF+8suY83F93LubPJVFRoAdi49CBzh7zH2F9/Jb+0lG6+vlfdxlX9bdOGkJ9+ot/ChThYWzOhQwezFVs1qXx5aAgf7jK1qVap6OTrze//hDPh56UUl5Vzf99e8r6amjU5Xq8MCeGDPdUP7FirVIS2acOm6Bizyy1J1Tr4X0gI75up1/isLL4/epRfJk1m8e2TiMpIp0LSmt//qvU6PISPdpraDGnbiqzCIiI1aVwzipjWhjppkSFmJaRKRaqFis5N/Lj37xXcvWcZj3QcQIBTE1NbtWiLL44K4eNt1bcZBxtr5vbvSXhSCoWllw0NVdmWOS2S/z495kMeDX2H/039irFzQ+jcV77atXHxHub2eoWHB79Nbmkpwd5+Vfa6ih5npNJ/6UJGrf6FxREnWDhiYuUyrSQxes0v9P3te7p5+dLO3dN8XVbVt8EhfPD3VfT4h5/o952BvlGNFlWpvoisVPqv+ZZRf/7M4qjjLBx8OyBrXOcmvvwW/Q9j/lpMcXkZD3buY87TBsFsDFxjvULt9PilYSF8GGZe5zv6evP7iXAmLlpKUVk583U6XycULaoNddQi8wpkjt4enTmTl1B5a+PVzZrRh2qK9ujUnHFDOvPNUuPnMlmpVQzo2YawQzHVmTSJQYBd4fHc/tYSnly4gYfG9ANgYOdWZOcXcfbi1ftEs7JYZbvD7hQUFcC7D2nZ84dEszagUl91FZ3ta++/a3O01EJFe1d/njy+hMeO/czcNoNp4aA/ubISam7z7sBOzbXNAq8JS+lmo6gD5USzNtRNi2oTMDq6d27OmKFd+PZXvWY89OLvzHvmV555cy2TRgXTrWMz2exVcpXa8OS9i3hk1kJefnwp46f0onP3FjWuU5tczPyKZtar2s+OCOGjai5oayWJ279fSsgnP9LV31d+VnI1hqv6E5GZSr8V3zFq/WIWnznBD0MnVS6b9NfvjPljCXO2rmZ2h+7c6tusTsfr38ZsDFRTtkfH5owb3Jmvl5nvj3Yeru58suZtRKanMXDxD4xZ9iu/nPqH78dOqNn5mlC0yKJcz7c3RgI9kYXTHMuBfcAmIcRgSZJM5hsKIeYD8wGGL3iRqR30MyT8HJ1IKywwKl9Qpj/J252YwFsDVbjb2ZNdUoyVSsV3I8azPuYsWxPk+3k1+QX4Gcwk8HV2IrXA2GYXXx8+HzMaAHd7e0Jat6JC0mKlUnExN4+sYvke6b/Pn2dyJ/3tjJ6+rmSm5RnZytDk4unnZrbMtlVH2bZKfuDhnKdHkqEbgc/JlP2RgPVnz/LRyJF6f53M+Ovjw+ejDfxt1YoKrc7fPL2/W2Nj6eHnxx/hUfi5GNdBWoHxVPLOfj58OkFn08GeQW1aUa7VcjI5BU1ePqeS5asRW6Jiub+vPAVYU2Bat2lVfO3s48Nn44x9Lddq2REXD8Cg1q04k5Za7a2PDUVVX/2cTGOri48PX4w29XV7fDwrIyNYGSknX8/0748mvwBNXgG+BvXq42K+Xj+ZZFCvgbLNbk19GdKuNbcFBmBrZYWTrQ0fThzJs+u31HnflKmwQANrkee9E3AZKp/0a4rz8TOY2eXr4EJqsXHsaIryyC4toriijOKKMo6kJ9LBzZvzBcbPCkjNK8DXtUrM5FeJmaY+fHyHHDNuDvbc1lZu3zuj4rFSqfh86lh2xSTQ2lM/s8vT341MTY6RnYzkbDz9q5RJlctkpcrak5uRz4FNJwnq3oqIg3HkpOurZX3sGT4ZMrry/xr1+GICb6n0enyFvMulHEq5yKDmAfxzLsVYM8zpm68Pn4+tosdaUz3eGhtLj6Z+/HH2LJqifPwd9TMJ/BycSSu6iq+XzvGWajjutvZoCvPRFOVzMkN+HtqmC9E82MVyg16awnz8DWaZNkS9no/LRpNvrEe+zmZiy8+HTyca63yFVsvJS7LOh+t0fmtULPP71nyrR1UULQIaWIumf/EII2fo49HT1o3My7lVVwFgkFcPdhvc2ng10jPz8TGYpeHl4UxGdoFJuTYtPHlx/nCeem8teQUlRsv6dm9FTEIq2bly/52aU4Cvu4G+uTuRnmt629oVTsRformnK26OdgS39mdQl9YM6BSAjbUVjnY2vD17JC//YtwnunlCdrr+/+wMcG1ifDJj7yiY9bT8myRJvDpHwsPHeNuW6r/TSnPxsdfPpvC2cyW91DhPTCvJJbesiJKKMkoqyjiZfZ62zn4kFskzT/p5tSMqL5msy6bHoyGxiG6m0CjqQNEioIG1aMrsFxk3VH+O5uXhREaWGc1o6cnzD4/g2TfXkJev14zMbLl95eQW8ffhODq09eXUmSQy0vLwMnj0gqePC5lmbk+rjqwM2Yfc7CL2746ifaemVD9PXiY9KQuvZvpBVs9mTchMzrrKGjKpeQXG51Pmcjh/Hz6ZYpzDlWu17IyOryyTX1rKkQtJDAwMIPyiBk1RPn4GM7v8HJxJvUpb3JV0jjdVw3C3tSe7tLiy3WaWFLH1QizBnn5kpEbh5atvh54+LibnrI2FtKx8vA36I+/69EfBrYg26I+qoinIx88w93JyNs29Lhvo3YUE3lCFmuRedUXRIstyPWd6vQt8IITwBRBC2AohHjMsIEnSZ8hvBVknhDB5MqkkSQslSbpFkqRb4vw8CHBzp5mzK9YqFeMC27P9fLxReS97/QOiu3n7IoSoDMb3Q0YQl5PFT+H62bzhGg0Bbm40c3HBWqVibFB7dsafM7IZ8uNPDNJ9tsTEsmDHTrbHxZOcl0+wny92VvI4YjMXF+ytrWnm4oKVtZpBY4I5tPOMka1DOyMJvV1+i1L74BYU5peQrTuRdG0iP6jTy8+N/sO7sOfPkwC4G0zjbebqWrkta5WKse3bs/NcFX9/+olBus+W2FgW7NzJ9vh4kvPzCfbV+9uvRQvis7I4nawhwN2dZq6yzTEdgtgZa2xzyLeLGKz7bI2K5bWtYeyIjSejsIiU/AJaNZFPnvsGNCdO98DG8BQNLd3d9Hbbt2dnnLHdwT/8RMhC+bMlJpZXd+ysHPACGNs+iD8tfGsj6OLA3TgOdlSp10GLfuI23WdzbCyvhsn1CuBhbw+Av7MzIwLbsiE6Sq7XJu40c9Ptf6cgwmKMbYZ+tYjQL+XP1rOxvL45jJ3R8XwStp9Bn/9I6JeLeGrtJg4lXKzXgBegXEGQaVAtujLgBRCelUyAcxOaOcq6NLZFR3ZeMr6StONSDL28mqMWAju1FcEe/sTnZ1bdBKcvaWjZxJ2mbi5Yq1WM7hLErijjmBn26SKG6j7bzsTyxl9h7IyS4/CticM4l57FB1v2VNqxslYzaGIvDm0xTvMObQ0n9C75ZLl9z1YU5pWQnZqHrYMN9o62ANg62NAjpAPno+Q3zBo+86u5sxuAsR5fuIoee/kikPW4iZ09Lja6bait6N+0JfE5Wfp26Gqgb1X1+IefGKT7XE2P+7VsQbzuAfinMlIIcHGnmZPO11Yd2J4UZ+yrnaPeV08/2dfSYtJLCkkuzKO1izwzr79fS2Kr3gvVgJxK0xDg6t6g9QqY6nxHU50P/WYRQ3SfSp2PkXVeU43O1wlFi6CBtSinmxX+9l742DXBSqgZ5NWDQ5mms18c1HZ0cW3DwczTtXLybLyGZr5u+Hm5YKVWMbRfEPuOGcehj4cz7z49nte/3szFlGwTG8P6G99KEnlBQwsvd/w9ZJsjegSxJ9w4Bpt76k/C2jfzxtpKTU5hCV9u2M+I//3I6FcX8cLPmzgac9FkwAugZRCkJ0OGRqK8TOLEHomuVcaoiwrkZQAHtkBgF3kgzBBL9d9nci/R3METf3t3rISa4b5d2Zt21sju32lnCXYPQC1U2Kqs6eTanIRC/UjecL9uFr+1ESynm42iDpTZFdDAWpRe4EEzP3f8vF2xslIROqA9+44aa4a3pzNvPT+Btz7bxEWDxyvY2Vpjb2dd+b1XcEvOJcrxEn3mEk1beODj74aVlYqQYZ049Hftzgts7ayxd7Cp/N6zTxvOx9d8B0X00TiatvXDN8AbK2srQu7qz8ENx2pc7/QlDS09dDmcSsXoTkGERRvrxtAvFhH6ufzZdiaWNzbKuuHuYI+zra7/tlLTt1ULzun62VPpKbRycaf5lbbYugPbE6u0RXvDtuiLSsht0d7KGkdruQ7sray5rWkA0dkZxJxOwr+lJz5N3eU8cXQ3Du0yboeNhbPxGpob9kd9g9h73LQ/eu/J8bzx9WYuasz0R1e5tREgPLXKeEDbIHacM96Gp4M+9+rqo6vjaxjwAhQtsjCWmunlIIQwfK3FJ5IkfSKE8AF2CHluogQsqrqiJEnPCyF+Bn4VQkyTJElrbgMVksSCvTv5Zexk1ELFyqjTxGZnMqNjNwCWnjnFqDZBzOzUjQqtlpKKch7d/hcAt/g2ZXJQJ85mprPpjtkAfHB4L3ujLvB62C4WT56MSiVYHRFBbGYm07rK95MvC6/+esApjYYtsbFsmDWTCq2WyLQ0Xti6jcWTJ2M3Qsu2VUdIjE1l9DQ549q07BBHd0fRK6QDi8JeoKT4Mp8+v7LS3itfz8bF3ZHysgq+eW0dBXlyQ5r3/Bhad/CntIkVSXl5vLJjh+yvqKe/M/X+Lj99mgpJ4vXtYSyaOgm1EKwOjyQuI5Np3XU2/7n6NZE3t+3i4/GjsFaruJiTywsbt1Uer9d37OLnKZNRqwSrTut87aaze+rqdu2srOgf0JJXttXtddRPvw5HTkJOLoRMgUfugSljrr5OhSTxWtgulkyS63VVpOzrdF29Vn0+WlW+GTcONzt7yrVaXg3bSV5pKdaS4I0tYfw4Xa7XNaciiUvPZGoP2ebyEzVda2oYRCOdrmxBLK5FhlRIEq+f2MriQdNQCRWrz50iNi+DaW3kZ0csiz9BfH4mf6ecY+OI+5CQWHHuJDG56aa2tBJvbQzjx9mTUKkEa0/IMXPXLXLMrDDzDIgr9Gjhz4TgjkRr0ll1/3QkJJbeexfa28ezbdkBEqNTGD1nIACbluzl6PYIeg3tzKIjb8pa9Jj8hjR3Lxf+t/gBANRWKnavPcrxMHnwft6CSbTu3BwkiTjHEl76ezu/jNbpcbROjzvo9PjsKUa1DmJmx25USFpKyst5dKesx94Ojnw8eBQqoUIlBBvjowlLPIdaUvH6TgM9roNmnNJo2BKj02NJS2RqGsvDT1ceowWHt/PL0DtRqwQrY08Tm5PBjHbBsq8xJxkVEMTMoO76vuPvDZW2Xzu8g88GjsVapeZiQQ7P7N/EfYOvFhUy9dWiBft2Nmi92qCmQpJ4Y1sYP02dhFolWH1K1vmpOp1fXpPOb93FRxNknU/KlnX+3j51m+2laFHDa5EWLd/GreGtzg+iFiq2aQ6RWKRhtF9/ADal7Aegn2dXTmRHU6q9bLT+8+1n09U1EBdrJ37t/Tq/XtjMNs0hKrQSnywK49OXJqNWqfhrdwQJSZlMHCrHy/od4dwzpS8uTvY8My8UgIoKLfNekt/EZmtjRa8uLXl/of6ZXBVaifdWhvHtw5PktzoeiiRek8mUAbLN1fvCCQ1uy7jeHSmvqKCkrJznFm2sU4Wr1YI7H4KvX5aQtNBnuMAvQLB3oxx7A8cINInw60cSKpWEbwuY8aTpbS0VkmSR/rtC0vLhmQ18ccs9qITgz6TjnCtIY1LzWwFYe/EI5wvTOZgew9L+jyFJEn8kHeVcgfw2TluVNb09Ank3cl2dtltvLWpg3bRz//fqwBBFiyxwjqaV+PSHnXz86mRUKhUbd57m/MVMJoyQ+64/tp7injv74upsz1P3D5XXqdBy37O/4e7mwDvPy7eKqdUqtu89y5F/zgPyG1m//mAT73wxE5VasG3DSS6cS2fMJHkCwca1x3H3cOTLJfNxcLRFkiQmTu3D/Lu+xsXNgVc/uEu2a6Vi15YIjh2Mpya0FVq+evQn3t3yMiq1iq0/7+LCmau/uRHkNvPmpjB+milr3JqTuhyupy6HM/P8vyt4OTny3sQRqFUCIQRbImPYHZsAzXRt8eAOfhl5B2ohWBlzmticTGa0DwZgadRJRge0Y2aH7pRfaYu75Lboae/AwlD5tmMrlYo/4s+w51ICHSu0fPvWBt76cS5qlWDb2mMkxqUx+i65HW5acQR3Tye+WPUIDk62aLUSE2f35/6xn1JUWMrzH02l662tcHFz5NddL/DrVzsA82+ONKReWqSV+HhxGJ+9KMfWlf7odl1/tG5HOHMn6fqjubr+SKtl7sv6/ujWLi15/8ft1W9DknhtdxhLJsjbWBUZQWxWJtM7684DI8IZFdiOGV30YwyPba5b/2SOm1CLriuiVvclN0ICvv2owR1XF1lm4lu7b1Ma3GbMQ341F6oHqtLaPxOkLkhWDR9nMbO+a3CbAIHLHmhwm9YFlqnX6P+ZydCvwi3zPqnTgTj201OWcfw/RJsVbzd4cNtEOtRcqB4EfGuZmZJn32r4t9qo8y2jxxVeZTUXqiPnRvzU4DYBWv8xv8Ft2mSqay5UD2JeUrTo32bU349bJKHL/brm597UlSIvy7TvD59e2OA2H/mt4dshgGsv04sd18qh4NUNbhOg9dZ5DW7T28f8rbfXypGR71hUi0DRo5oYeHvDn6MBOCRVfwt0fdEet8zz8C6+2q/BbRY3a/j8BaDjR6azoa6VjbtqHvSqD/2fvN8idlP7NrzNc489rWhRI+J6PtNLQUHhX0a5X1xBQaExoGiRgoJCY0DRIgUFhcaAokWWRRn0UlC4mVAEVUFBoTGgaJGCgkJjQNEiBQWFxoCiRRZFGfRSULiJUK4iKCgoNAYULVJQUGgMKFqkoKDQGFC0yLIog14KCjcTiqAqKCg0BhQtUlBQaAwoWqSgoNAYULTIoiiDXgoKNxHKVQQFBYXGgKJFCgoKjQFFixQUFBoDihZZFmXQS0HhZkIRVAUFhcaAokUKCgqNAUWLFBQUGgOKFlkUZdBLQeEmQrmKoKCg0BhQtEhBQaExoGiRgoJCY0DRIsuiDHoZIFlbJtrKz51vcJsVDj4NbhPANkNtEbtaW9HgNgOXPdDgNgHipn3X4Da7fvJgg9usF5KiqA1NxeWGbzMVdg1uEgCposIidsXlhm/fWlsLxaq24X1t/cf8BrcJcG7Cwga32W6JokX/VWI1Xhax6+KuanCbTimW0aLHFjV8W7TLbXCTAPTwutjgNltvndfgNgHOjfipwW12+8hCWjSyjuUVLWpwVOWWqVMRc8Eidi1BiX95g9vs+HFOg9sEoLSswU32f/L+BrcJsP/T7y1id3TnkIY3+lgdyytaZFGUQS8FhZsI5SqCgoJCY0DRIgUFhcaAokUKCgqNAUWLLIsy6KWgcDOhCKqCgkJjQNEiBQWFxoCiRQoKCo0BRYssijLopaBwEyG0/7YHCgoKCooWKSgoNA4ULVJQUGgMKFpkWZRBLwWFmwnlKoKCgkJjQNEiBQWFxoCiRQoKCo0BRYssSoMOegkhJOA3SZJm6f63AlKAw5IkjRVC3A18CFwyWG0OsET3vQWQq/tkSJI09GrbG9Q8gAUDhqAWghVnT/PtP0eMlvfxb87CkRNJypefQrrlXCxfHD+In6Mzn4SOwsvBEa0ksexMOD+fPmF2G7e1DGDBbYNRCcHKyAi+O268jd5Nm7Fw7EQu5snb2Bofy5dHDtVQU6bcMiKYhz67B5VaxeafdrLi/fW1Wm9Q8wAW9Deog5Nm6mCEQR0kyHVgq1azYsJUbFVq1CoVm8/F8OmxAyb2B7RtyYtjQ1CrVKw+GsGPfx8160fnpj4se3AqTy/fxLaIWLNlBrRpycsjQ1CpVKw+EcEP+6ux5e/DinlTeWr1JraejcVGrea3e+7ERi37uu1sLF/uPgjojk+IbHNlxGm+O2reZlcfH9ZMncZjmzayOVb27+7u3bmrcxeEgBWnT/PzP/+YXbcqL78Huw9CE3f4c3GtVgGgf7uWvDAhBLVQseZIBD/tNvZ1cMfWPDqiH1pJokIr8d6G3fxzPhmAmf27M7l3ZwSC1UdO89u+2vlalZvlfvHrrkX+rVhwy1DUQsWKuFN8G2msAX18WrAwZBJJBbp2mBjDF6f3AzCvQy/uCuyKBERnp/PsgY2V/d7A1i15eZgcM6tORbDwoPn47uLnw8o5U3li/Sa2RsnxHfbQXAovl6GVtNhZWyNJEnZTy9ny615Wfr7FxMaD706l17AulBZf5uOHfyYuPLFymUol+CLsFTJTcnh12pcAzHx+HCNnDSQ3s4BSX1s2x8Vye/sOqIRgxZlqtHLMRJJ0WrklPpYvj8r19H7oCIYEtCazuIiRvy+pXOe2FgG8qtPfhrIJMKhpKxb0DpV1Myacb08fNj5evs1ZGDqJpPwc2e6FWL44Jeuji40t7/UfSZCbJxLw3L7NnLikkbW4n06Lo8xosZ8ZLT6h0+LxU7FVq1ELFZsTzGtxddRXj25r1ZJXQmVtX3kqgu8PVxNbvj6snjWVxzdsYkt0LK2auPP5+NGVy1u4ufLZvoO137AORYsso0WG3ObbmleCR6AWgpUJJ/k+yjSuenu15OXgYVir1GSXFjF9969mbfXr2JJn7pTjZd3+CBZvNY6XQd1a89A4ff/10crdnIxPxsZKzY/P3ImNldx/7zwRy3d/yfHSOziAx+cOQaUS/LXzNL+tM24zwwZ2YMbttwJQXHyZjxfuIO5COgCrvr2PouLLaLUSFRVa7n3+t8r1BgS25KUxIaiEitXHI/hxb/V5y/L5U3lq5Sa2Rcbi6+LEe5NH4unsgCTByqOn+fWQ3Nf269CS5yfJuca6gxEs2mFsM6RLax4erd//D9fu5p9zcv/tbG/Lq9OGEejngSRJvPr7dsLPpwCQeSqH2F8SQSvhN9iLluP9jewm/plC6oFMAKQKicJLxQz4vgdleWVEfhlfWa44rYRWU5pB887y8fBvxYJbQ+U+KfYU30ZU0Tif5iwcMpmkghwAtlyI4YtwncZZ2/Jev1EEuXsiSfDcgU1m668q9c6Nglry/AQ5ttYejuCnXVVyo06tecQgN3r/D31uNGtgdyb17oKERGxKBv9bsa32G9ahaJFltOjWHgE8el8oKpVg4/Zwfl9t3L6HDurA9Mm9ASguucwn32wn/nw6NtZqvnhvGtbWatRqFXv2xxAZdYlH7wvF6nIZW37Zy8pPTWPywfen02t4F0qLLvPxQz8RdyoRa1srPtr8AtY21qitVOz94xi/vftH5Trj54cy7t7BVJRXcHjTCX400BFD6n2O1iyABX11uUZ0ON+eMpMXDL/dIC+I4Yt/9P2pSgj+nDgLTVEB87aurfy954C2PPDiWFRqFVtWH2XVj38b2W3Wyoun3p5MYEd/lny+jTU/7wPA09eVZ969A3dPJyRJIuLYebr1bo1KCLasPMyq73aZ7MMDCybQK6QDpSWX+fjZFcRHyuEx4e4BjLyrD0LAlhWHWf/zXgAGjOrKzMeH0zzQh3n/W4qbsz1PzB6MWiXYsCuCXzcY18Hw/u2ZNV6n8yVlfPDTDuIS02nh586bj42tLNfU25UfVtcuN6qvFvUc0okH37kLlUrFlt/2sfILM7nyO3fRa6guV350cWWuvOTEOxQVlKKt0FJRUcFjQ9+p/YZ13Cxa9G/R0DO9CoHOQgh7SZKKgWEYiyfACkmSHqnyWzCAEGIx8JckSatr2pBKCN4YOJSZf65CU5jPhskz2X4+nrjsTKNyR1OSmLd5ndFv5ZKWtw7sJjIjDUdra/6cMou9SRc4l5Zlso3XQ0KZvW41moJ81t81gx0JccRlGZc7mpzEvX+ur8nl6vdFpeLRr+bx/PA3yUjK4qsj73JwwzESzybVXAcDhjLzL10dTJrJ9gtm6kBjWgelFRVM37CSovIyrFQqVk+Yxu7EBKIT04zsvzJ+CPcuWktqXj4rHprOrqh44s3U01MjB7A/tvq3qqiEYMHoIcz9Vba16r7phEXHE59hauuZoQPYF6+3dbmigruXrKaoTPZ16T138ndsAscLNLw+ZAiz165Bk5/P+ukz2BEfb3J8VELw3ICB7L2gt9nOw4O7Onfh9mW/U1ZRweJJk9iVkMD5nJyr1jnAxFEwfRK8UAc9UwnBK7cP4b4f1qLJzWfFo9PZdSbeKOYOxV1k1xm5w23n68lHM8cw/qMlBPp4MLl3Z6Z9uYyyigq+mzeJv6MSSMyo2VcTbp43g1xfLbp1ODN3LEdTlM+GUXezPSmWuNwq7TAtiXm7jM352Dtxd/ueDN3wI6UV5Xw1cALjAjqy4UIMKiF4dcQQ7lm2Fk1ePmvumc7O2GrazOAB7Dtn2v5mL11Fbkkp2x64m3uWr8P+9SN8sfNlDm05RWJ0SmW5XkM749/Gm7m3vEz7W1rzyMczeGLYu5XLJz4wlIsxKTg42xvZX/fdDtZ8tY3YNzoQNmsus9bLWvnHXTPYcS6OuGwzWvnXehM/15yN4Jfwf/h42Cjjeg0JbVCblXb7DGXm1pXy8Ro3m+2JcabHKzWJeTvWmNh9tXcoe5ISeGjXH1irVNhbWcs2+w9l5kYDLT4fT1yOGS3eYkaL/zTQ4vGyFv+TlkJtqK8evTZsCHNWrEWTn8/aOdPZGRdPXKYZ7QwZwN4EfWwlZGUzfvHSyuX7H7qPbTFxvBIaUnsHQNEiYxpEiwxRCcFrPUYxZ89SNMV5rB06j53JMcTlZVSWcba25fUeI7ln7zJSivJoYutQra3npw3hoc/Xkpqdz28vTmdPeDwJKfp4ORJ1kT2n5P6rbVNP3rtvDJNfW8Ll8gru/3Q1xaVyfP/07J3sj0wgITOZp+4bypNvrCItM58f35/JvqPxnE/St5mUtFwe/d9y8gtL6dO9Fc89MJz5Ly6tXP7YqyvJzS828fV/44Ywb7Gca6x8QJe3pJvG9tPDB7A/Th/bFVqJD7b8zZmUNBxsrFnz4AwOxF/gUl42L90xhPu/XktqTj6/PzOd3RHxnNPobR6Ovsju07r99/fkw3vGMPFteazguUkh7D97nmcW/YWVWoW9jTUAklYi5ucLBL8YhK2HDcdeicSzhzuOzfQ622KcHy3G+QGQcTybi5s1WDtZYe1kRa93O1faOfDwSbxucYfUKxo3jJnbVsgaN2YO2y+a07iLzAszo3G3hrIn+RwP7Vkva5za2mxcVKW+WvTy7UOYv1DOjZY/rsuNUg1yo9iL7IrU5UZ+nnw0awzjP1iCt4sj0wd2Z+IHSygtr+CjWWMYFRxU+41fQdEiQxomL1IJnnhgGE//byXpmfl8/8ks9h+O58JFg/admstjLy6joLCU3j1b8cwjw3nwmaVcLqvgyZdXUFxShlqt4qv3pzFmWBcefWEZBeuP8sWuBRzadJLE6ORKW72GdcG/jQ9zu78o5zCfzOaJ0LcoKy3n+XEfUlJYitpKzcdbX+TY9tNEHTtH14Ht6TumO/d3e5qyy+W4eblUsy/XcI7WfxgzN62U84KJs+RzNHN5gcGAliH3dO5JXE4mTja2RnX78CvjeeneRWSk5vH5ioc4vCuKxHj9+Vt+bhHfvfMnfUM7GtmrKNfywwebiD+bjKOTLcv3v8KrDy4hfG80n69/nMM7zpAYl6qv15D2+Ad4MW/Ie7QPbsEjb07myUlf0LKdLyPv6sMTt39OWVkFby2+lyO7zpJ8PoMLMRrefHAJD305HSEET98TyuPvrCYtM59Fb89g7/E4zl/St++UtDweemOFrPPdAnjhvmHc+7/fSUzJZs6Lv1bW5YZv7mfP0VgeG37VagfqqUUqwcPvT+elKZ+SkZzNF9tfknPlmCq5cmsf5t76Cu17tuKRD2fwxAh9rvz8xI/Jyyqo/UarcvNo0b9Cw7+HGjYDY3TfpwHLLLANgr19uZCbzcX8XMq0Wv6Mi2J4QJtarZteVEhkhiwOhWVlxGdn4evoZFKum48vF3JyuJgnb+Ov2GiGtQ5s0P0ACLo1kOQ4DZqENMrLytm9Yj/9JtxS43rB3r5cyDOog/ja1wFAUbn8ilorlQorlQqpyrzKLs18SczMISk7l7IKLZvDoxnSwdT+jL7BbI+MI7OgqNptdW3qS2JWDkk5sq+bIqMJbW9qa+atwWw7G0dWobGtojIDX9UqJKCbr+745OqOT3QUw9qY2pwTHMzWuFgyivQ22zRpwsmUFErKy6mQJA4nJTE8sHbHtlc3cHOuVdFKujT3JTEjh6SsXMortGw+Fc2QTsa+Fl/WvzLY3sa6UvxaezchPDGFkrJyKrQSx84lEdqpfnEopLp9bnCujxZ5+HEhP5uLBbp2eOEMw5u3rfX6aqHCTm2FWgjsraxJLc4HoKu/Lxeyc7ioazMbz0QztK1pfM+6JZht0XFkFplvf4Z2yssq2LP2KH1HBRuV6Ts6mJ3L5RlSUcfO4eTiQBMfVwA8/d3pNawLW37dV+0+VNXKP2PqppVHki+RU1JicZsAwZ5+XMjP0R+vc2cZ3qJ2dp2sbbjVpxkrYsMBKNNqybtcaqrFdeiPoGYtvhr10aNufsbaufGs+dia3TOYrVeJrX4tm5OYk0tyXn7dHEDRIktvsFsTfy4UZHGxMEc+xomRDPVvZ1RmfIvObL0UTUpRHgBZpeaPc+cAX5LScriUIfdfW49GE9K1Sv9Var7/Mlxmpdb13xJ0CPQlSZNNcmou5eVaduyLYkAvY5sR0cnkF5YCEBmTjJeHaZ5Wla5V8pZNp83nLTP7mOYt6QWFnEmRc8Oiy2XEp2fh4+JE55a+XEzP4VKmvP9bTkQT0uXq/bek239HOxt6BjZl3cEIAMortOQXy/uUF1eAvY8t9j52qKxU+PT1ION4drX7lnowE59+Hia/Z0fkYedji52XfGIc7OnHhTwDjUs4W+s+Sda45sYaV1Zaq3XrlRu10B2vK7nRyWgG15AbSQaxZaVSYWtthVolsLO2Ii2v7iecddWiG1yProsWdWjrx6WUbFJ07Tvs7ygG9DbuZyOjkim40r6jkvHy1AdPcYlOM6xUODnakZaZL9sqq2DP2sP0HRNsZKvvmO7sXCbPAoo6dg4nV30OU6LbhpW1GitrdaU0jZ03mJWfbqLscjkAOel5Zvel3udoXn6m52gta5/D+Do6MaR5a5ZHnzb6vV2XZiQnZqJJypbrY3M4fYZ0MCqTm1VITMQlysuNHxKVnZFP/Fl5sLB5G28K8oqRJGQ7f52kz7BORuX7DO3EznXHAIg6mYiTix3uXs40b+NN1MkLlJaUoa3QcvrwOfoNlwfhL8ancSlBnpHbupkHSZocktPk9r3jYDS33WJcB6djDXQ+LgXvJqY6f0vnFlxKzUGTUbtcoz5aFNSjFSkJaWguZMj1se4ofUd1MyrTd1QwO1fKM/Gijifg5GpfGWcNwU2mRdcdSwx6LQemCiHsgK7A4SrL7xJCnDT42JuaqBkfR2eSC/XBn1JYgI+jaYT38PVn8x2zWTxmMm3dTZOFZs4udPT05mSq6VV1XycnUgoMtlGQj4+ZwbHuvv5snDaLReMn0baJ6TZqwrNpE9INrm5mJGXh2bRmOz6OziQb+VdNHfj4s3nKbBaPNq4DlRBsmjKb43MeYl/SBU6maYztuzqhydXb1+QW4O1ivP/eLo4M7RTIisPhV/fV2YkUgxMjTV4BPs5VbDk7Mqx9IMuPmdpSCcG6+2ew/9n7OXAukfBLGvn45FfZfyfj/fdxdGJ4YFuWhhvbjMnM5NZmzXCzs8POyoqQgFb4OdVRIeuAd5W6TDVTlwChndqw4Zk5fDN3Iv9btR2AuNRMerZqhquDHXbWVgxsH4CvW83JvzmEtm6fG5zro0UOVbUoHx97M+3Qqymbx8xl8ZA7aOvqCUBqcQE/nDnCgUkPcWTKo+SXlbI35bxs19kJjWGbyTdtMz5OjgwLCmTZCdM2IwGLpk3io/EjsbfWX6nPSM7Gw8/NqKyHnzvpBlfe0g3K3P/OXfz02mokrWlAjL93MN/ufZVn+gwgo7hQ72tBPr5OpjHaw9efTdNm8XMttNLX0Vh/G8ImgI+Dk/HxKso3r5te/myecDeLh02hrZtst4WzG5klxXw0YBQbx8/hvf4jsbeylmOgoBb90RUtHmVGiyfP5vjsh9h3yVSLGxoTPc4vwMfJNLaGtw3k95PVa/uYDkH8dTaqXj4oWmREg2iRIT72zpWDWQCaYlNdCnBugquNHUtDZrF+6Dwmtuxi1paXuxOabH28pOUU4O1u2hYHB7dhzWtz+PyRibz+y/bK31VCsOzlGez48H4On00k4rwGrybOpBmcwKRnFeDlUX0fPDa0C4f+Saj8X5LgkwVT+OmDmYwf1rXyd28X077WXK4xtEMgy49WH9v+bi508PPiVJIGbzcnNDnG++/jarr/Q7q2Yf3Lc/jq/om8+ru8/808XMkuKOaNGcNZ8dwMXp02FHsb+SaL0uwy7Dz0Mzhsm9hQmnXZrD8VpRVkncrF69YmJstSD2bi01evJ3KfpD/2ssaZ0U6vpmwedw+LQ++grZvcJ7VwciOztIiP+o9m49i7ea+vrHGWwtvVuG5Tq6vbzm3Y8Nwcvp43kQUr5bpNyytk8e7jbH/lXsIWzKegpJSDMYkm69ZEXbXoBtej66JFnh5Oxu07Mx/PqwxajxnelcPH9e1bpRL8+Pkc1v/6MBcuZpJwQT9DNeNSNh5+7kbrm+YwWXj4u1fa+nrvayyP+4wTuyKJPn4OgKZtfOjUty1fHHyHj3e9TrtbzF+oqv85mlOVvKCadujtz+ZJc1g80jgvWNBnCO8e2WM0yAvg6eNKuiZX748mFw9v87PUrkbr9n7Y2lsTHX5RtpOSg0eVARwPX1cyUnKMtuXp68qFGA2db22Ns5sDtnbW9Appj1eVvBLA3cWBtEwD7czMx8tM33GFcSFdOHjyvMnvw/q1Z/uB+uUatcXDz430ZH0MZSTnmIkzN9Iv6S9MGObKkgTvrH6CL3e+zKjZA+vlw02mRdedBn+QvSRJ4UKIAOQrCOYeBGBu6mydEea2XeXqeER6Kv1/XUhReRkhLVqxcOREBi/7qXK5g5U1344Yzxv7d1FQdhmViVXTrVQdVI1MT2Pg4h8oKisjpGUrvh87gSG/LKrbvpjZmaoiZ3Y9M79VXS8iPZX+v5mvA60kMXr1L7jY2PL9iAm0c/ckKVHfmM3Zr1oDL44J4eMte9HW5K+5faxi66URIXy0w7wtrSRx+/dLcba15au7xtHWy3yHU3X//xcSwvt7TW3GZ2Xx/dGj/DJpMkVlZURlpFMhWU49ahOvADsj49kZGU/PVk15ZEQ/7vthDefSsli0+yg/3DeJotIyYlIyqNDWc3j/Jpo6++9qkTERWRr6r/1Gbof+rVkYMonBfyzExcaWYc3bMnDdt+RdLuWbQROZ2KoTmy7G1SpmXhoWwodh5tvMtF9WkFZQyJRunXhuyEBuad6ULM7IdqoUr06Dbh3elZz0POJOJdK1v/Eskb8W7eb3D/9CkuDxw88Q7ONXZX1je5FpaQxYYqCVYyYw5NfqtVKYcepabVZvt4puZqbSf9V38vFq1pqFoZMYvOYH1EJFZw8fXju0g5MZKbzaewgPdulNVHqGqc2q/VFGKv2X6rS4eSsWjpjI4OUGWrxGp8XDZS2OyTa12VDUJrZeCQ3hgz3Va7u1SkVoYBs+2rO/fk4oWmRIg2iRIaIW+YuVUNHZ3ZdZu5dip7ZiVeg9nMy8xPkC41sBa5NrAOw6Gc+uk/H0CGzKg+P78eDn8q1zWkli2ttLcbK35eMHxtHG36NOeU/3zs0ZE9qFh17WT0p58OXfycwuxM3Fgc9encKFS1mcOpNUq9h+cXQIH2+rPrYdbKz5YupY3tu8h8LSy7Xe/7DweMLC4+nRpikPj+nH/V+vQa1S0b6ZN++t3sXpCxqemxTC3KG9+HrTQfMPLTafeJFxIgfXds5YOxmn7dpyLZnHc2gztflVTVR1NyIrlf5rvpX1qGlrFg6+ncHrfkCtUtG5iS+vHdZpXK9QHuzcB/jOvGPXSK3rNiKesIh4erbW5UYL1+Bib8vgzq0Z+c4i8otL+Xj2GMb2aF93JxQtMqRh8qLaJEY6undpzphhXXjk+d8rf9NqJe59fAlOjrZ89f40tEnGK1eNkavpiVYr8fDA13B0tWfBb4/QskNTLpy9hNpKhbObI4/1fYmgXoG8suIpZrd5uFb7Uu9ztCr/R2Sk0n/Z9/q8YNjtDF75I0NatCazpIiIjFT6+DU3XqkajagLdg42TJk7kKhTFykqNJjJaVKv5vOli/FprPp+F+/8Mp/iosuci0qhosLMOZTZcz/z9OjYnHGDO3P/a8uNfrdSqxjQsw3fLN9b025dE7XJDa9W5qkx75OlycXV05l3Vz/Bxdh6XLy8ibTo38ASM70ANgAf0cDTZoUQ84UQx4QQx+IPHMLf4Eq6n6MTaYXG05oLyi5X3jayOzEBa5UKdzv5ooWVSsV3I8azPuYsWxPMP3hdU5BvNPvHz8nZdBuXL1feerf7QgJWBtuoLelJWXg10w/ieDZrQmZy1lXW0PlXmI+/kX9OpBXVvg6ukHe5lEPJFxnUIsDYfm4Bvq56+76uTqTlFRqV6dTUh4+njmb7s3MZ0bkt/xs/hFAztxKk5hXg52Jgy8WJtHxjW539ffhkymh2Pj6X4R3bsmDMEEKDjG3ll5Zy5EISAwMD0BQU4OdcZf+rHJ8uPj58MXo0f8+dx6i2bXl9SGjlLZArIyMY//tSpq5aSU5JCeezc0z8bihSq9Slj6sT6VXq0pDjCZdo7uGKm4MdAGuPRnLn579z93eryC0q4UJG9bdAXI2bcNqs5bVo3+EqWuRMWrHxFGyjdph8DmuVGndbewb4BnCxIIes0mLKJS1bEmPo6dUUkGff+Bq2GWczbcbPh08njibsobmMaN+W10YMYWg7Ob7TCuSycRlZ5JaU0tXfF5BvV8zS5BjZyUjOxqupfgaBl787WZpcOvVuQ59RwSw5+S4v/DifbgODeO67eQDkpOej1UpIksS66LNGVzB9nZxJNafHBlppTosMSamivw1hE3S6aXi8HJyvrptJ57AWKtxt7dEU5aMpzOdkhjwzeNP5GDp7+JhqcU390cWraHHKRQY1D7jqPlwrmvwqeuzsVBkvV+js68Nn40ez+4G5jAxqy+vDhhjdAjmodQBnUtOqvfWxJhQtahgMtSjP4OHqmuI8/Bz0V/997U11SVOcz9+acxRXlJF9uZij6Yl0cPMx2UZadgG+7vp48XZzIj2n+v7rRNwlmnm54uZoZ/R7QXEpx2OS6NcpgLTMfLwNbmfyauJEhplnobRp6ckLD47gxffWk1egv105M1vefk5eEX8fjqNjoKxvqXmmfa2Jbjb14eM7R7PjqbkM79SWBWP1eYuVSsXnU8fyZ3gU28/EyTZzCvB1M97/qrmQ0f7HX6K5p7z/qTn5pObkc/qCfAK0/WQs7Zt7A2DbxJqSTP0JZ2nWZWzdbczaTDuYhU8/01lemSdzcWrlgI2rfjaWpigff0f9sa9R4y7p+yRNYT6aIgONuxBNZw/TmGgoUnON69anhro9fu4SzTzl3KhP2xZcyswju7CYcq2WHafj6BbgX+261XET3lJkcS06G3HIuH17OJtt360DvHj20ZG89NY68vJNH0dQUFhKRFQKrVp6Vv7m2bQ2OUwTslKMyxTmFhO+L5pbhnauXGf/n8cBiD4ah6TV4uppOmOq/udoBVXyAjPnkObyAlt7bvFpytAWgeybOp8vh4yjn38LPg2R70rN0OTi5aufkeXp60pmmvlbM82htlLxymfTObw7Cq3BQJWnn5uJnYyUHDwNZnB5+rqSmSqX2bbyCI+O/4znpn5Dfk4Rl86bXqjLzi3C22AGr7eHMxnZZnS+hScvzh/Ocx/9YaTzAH2DWxGdkEp2bv1yjdqSkZyNl78+hjz93aqJM/3sryu5MlD5NzcjnwObThLUI6DOPtyEWnRdsdSg1yLgDUmSTtdYsg5IkrRQkqRbJEm6Jc7PgwA3d5o5u2KtUjEusD3bz8cblfey1z+UtZu3L0IIskvkh56+HzKCuJwsfgo/Xu32wlM1BLi50czFBWuVirFtg9hxzngbng76bXT18UVlsI3aEn00jqZt/fAN8MbK2oqQu/pzcMOxGtc7laYhwNWgDtrUog6Q/WtiZ4+L7sGItmor+jdrSXyVB0RHXNLQ0tOdpu4uWKtVjOoaxK6z54zKDP9oEcM+lD9bI2J5c0MYO88a+wBw+pKGlh7uNHWT63J0pyDCoo1tDf1iEaGfy59tZ2J5Y2MYO6PjcXewx9lW56uVmr6tWnAuI4twjYYAd4PjE9SeHeeMbQ5a9BO36T6bY2N5NWwn2+Nl/zzs5RNOf2dnRgS2ZUO05abORiRpaKGrSyu1ilHdgth1xtjX5h76TqxDU2+s1WpyimTxb+Io++rr5kxo50A2n4yunyNSHT83PpbXopbuBDg3oZmTrh227Mj2i3FG5b3sHCu/d/PwQwjILi0muSiP7p7+2Knlq/f9fVtWPmz4dLKGAHd3mrnK8T2mYxA7Y41jJvSbRQzRfbZGxfLa1jB2xMRjb22Fo+5hyXHpGfg6O5FdVISVtZpBk3pxaMspIzuHNp8idGofANrf0prCvGKyUnP5+c11zOr8HHOCX+S9exdyam80Hzwgz04yfI5Bcxf5+5W2OK5dEDsSqtfKbj7GemyOqvrbEDYBTmWkEODirj9erTuYHi97g+PlqbNbWkx6cSHJhXm0dpETo/5+LYnNyTTV4sD2bL9wFS32uooWN21JfE7NCfW1EJ6ioaVhbHUIYmeccWwN/n4RId/Jny3Rsby6PYwdsfp9GtuxPX/W89ZGQNGiBsJQi1yG9qr8PTwrmZZOTWjm6CYf4xad2JkcY7TujkvR3OLZHLUQ2Kmt6Obhb/Sg+ytEXtDQ3Nsdfw+5/xrRK4g94VX6Ly+9HrRv7o21lZqcwhLcnOxxstfFt7Wa3u1bcF6TRVSchuZ+7vh5u2JlpWLogPbsP2bcZnw8nXn72Qm8+cUmLqboL/TY2Vpjb2dd+b1Xt5acS5T9Nso11CpGdwliV5Sxr8M+WcRQ3WdbZCxv/KXPW966fRjn0rNYckD/Ru/IRA0tvNxp2kTe/5E9gthzusr+exrsfzNd/11YQmZ+Eak5BbT0lk+Uegc1r3wAvnMbJ4o1pRSnlaIt15J6MBPPnm4m9V9eVE7O2Tw8e7qbLEs7YHxrI5jRuFYd2J50lT7J00/Wo9Ji0kvMaZzlZp1GXNTlmbq6HRUcxO7I2uVGKTn5dG3ph5213H/2btuChNR6aGddtejG1yOLa1FGvgfN/N3x9ZHb95Db2rP/iHEMens58+aLE3j7k40kJevbt6uLPU6OsmbY2FjRslkTHB1tZVvWagZN6s2hTSeNbB3adJLQaf2AKzlMEVmpubh6OOPoKufPNnbWdA/pyMUYeQD6wMZ/6Hab/Cyspm39sLKxIjfDdPCo3udo6bp2aHiOlniVXMNLn2t8cHQvfZd9x4DlC3k07E8OJCfy5O6NAMREXMK/pSc+Td3l+hjVlUO7ztbozxWeeHMSF8+l88MHm43tjA3m0I5Io7KHdp4h9Hb5+WXtg1tQmF9Cdrp88cRVd7uql78b/Ud0Yc+Gf0y2lXApk+a+bvh5ye17aN8g9h6vovMezrz35Hje+HozFzWmF/Svx62NANH/nMe/tTc+LTzk+rjdTK685RShd/YFoH3PVpW5sq2DDfZOun7OwYYeIR05fzbZZBs1cvNp0XWlwW9vBJAkKQn4vJrFdwkhBhj8/5AkSbV/P7uOCkliwd6d/DJ2MmqhYmXUaWKzM5nRsRsAS8+cYlSbIGZ26kaFVktJRTmPbv8LgFt8mzI5qBNnM9PZdMdsAD44vJe/48+bbOO13WEsmTAZlUrFqsgIYrMymd5Zfn7E7xHhjApsx4wu+m08tnljXXcFbYWWrx79iXe3vIxKrWLrz7u4cObqbwWprIN9O/lljK4Oos3UQesqdbBDrgNvB0c+HjIKlVChEoKN8dGEJZ7DAbXevlbi7Q1h/HDPJPmZWscjiUvL5K5b5f1fceTqz/Gq6uubm8L4aaZsa83JSOLSM7mrp87W8epteTk58t7EEahVAiEEWyJj2B2bQIWLxGthu1gyaTIqIeTjk5nJ9K664xN+df++GTcONzt7yrVaXg3bSV5p7R7W+vTrcOQk5ORCyBR45B6YMubq61RoJd75I4zv752EWiVYdzSS+NRM7uwj+7ryUDjDurRlfI+OlGsrKCkr55ml+lj6dPY43BzsKK/Q8vb6MPKKa+drVW62qwLXTYuObOOX0LtQC8HKuHBiczOY0TYYgKWxJxnVMoiZ7bpToZUoqSjj0b0bADiZkcLmC9FsHHMP5ZKWyKxUlsWeBKyokCTe2BbGT1PlmFl9KpK4jEymdpdjZvk/1ce3p6MjX08eB4BapWLTmRge6Ncb20M92LZ0Pxeikhl99yAANi3ew5Htp+k1rAuLjr9NafFlPnlkcY37Pe+1ybTu0hwkiLcv5eVdO/hlvE4rz5hq5ejAdszo3I0KSUtJeTmPbdHH9+cjxtCnaTPc7ew5cM98Pjt8gJVnInh1T1iD26yQJBYc2sEvw++Qj1fsaWJzMpkRpDte0ScZFdCOmUHdK+0+umdDpd3XDu/ks0FjsVapuJifyzP7Num1eHQVLe6g0+KzOi3uqPf10Z0GWjzYVItrS730SJJ4fXsYP985CbUQrDodSWxGJtOC5bpddpXneAHYWVnRP6AFr2zZUWs/q6JokRENokWGVEgSr5/Yws+3TUMtVKxKOElsXgbT2vQAYFn8CeLzM/lbE8/G4fPRIrHy3Eli89JNbWkl3l8RxtePTUKlEmw4EMm5lEwmD5TjZc3ecIZ0b8vYPh0pr6igtKycF36Q26KXqyOvz9H339uPx7D3dAIOWolPftzJJ/+T2/fGsNMkXMxkwnC5zfyx7RR339EXV2d7nr5vqOxHhZZ7n/+NJm4OvPPcBADUahXb957lsO45MBVaibf+CuPHObKva0/o8pZeulzjKs/x6tHCnwnBHYnWpLP2oRkAfLZ9P4eOnefd1WF8+5Bsc/2hSOI1mdzRX7a5an84Q4PbMq5XR8p0+//cYr0Wvbd6F+/OHoW1WkVSZi4Llm4DQKUWtLu7Jafei0LSgl+IF47NHLi0Q36YftOh8oyw9KPZNOniitpObeiu/JyviFyC7g0wOfYLDm/nl6F3olZd0bgMZrQLBmBpzElGBQTJGnclN/zbUON28NnAsVir1FwsyOGZ/Zu4b3C11VZJvXOjdWF8d5+sRVdyozv66ur2YDjDurZlXE99bD37q1y3pxM1bA+PZeWTMyjXaom6lM6qQ6d58fZaOGuAokVGNExepJX47LsdfPT6FFQqFZt2nOZ8YibjR8rte8OWU8yZ2g9XF3uefHCYvE6Flvuf+hWPJk689MQoVCoVQgW790Xz26pDfPT6FNQvT2Tbb/vkHGZuCACbFu3myLZweg3vyqKT71FadJlPHpYfc9DE15Wnv5uHWqVCqAR/rzvKka3yQMa2X/fy1NdzWRj+MeWXy/nw7q/N7ss1naMd2MEvo6ZUnxe0asfMjsFyOywv59Gdf9ZoV1uh5du3N/DWD/egVgm2rTtOYlwao++6Va6PFUdw93Tii5UP4+Bki1YrMXFWf+4f9xmtgnwZOqEHCdEpfLHqIUDio9/mU1ZSxrZVR0mMTWX0dHlQZ9PvBzm66yy9QtqzaNcLlJSU8elzKyr9eOWb2bi4OVJeXsE3r66lIE++4NhveGcefHUiLp5OfPjMRNIyC/jsRVnn/9odQUJSJrcPldv3uh3hzJ3UFxcne56ZG6qLHS1zX5bf0mtrY8WtXVry/o/6Z0TWhvpokbZCyzcvLOPtVU+gUqnY9vt+LkSnMPru2+T6WPy3nCsP7cyio7pc+bHFALh7ubBgyYMAqK3U7FpzhONhkdVtqlpuNi263oja3JfcGAn49qMGd1xV1gA3SpuhzROHGtxm7De9G9wmgEOiuuZC9UBrW3OZunLZxTKxGzet4Z9d0fWTBxvcJkDEB0/WKWgHjfmgTpW2Z+NzlmkU/yECfn2vwQPR5qIFGgzQ+qMzFrEb/Xo9nqPyLyE5VTS80cuWmTR9bsLCBrfZbolltCjueUWL/m0CV75lkU7RJcyx5kJ1xCHdAu0QyOzY8DmMTW7NZepD3zknai5UR7ZEdG5wmwDnRvxUc6E60u0jy2jR6Y8sq0Wg6FFNDBr3oUW0yP7v2s9oqi0V+fk1F6oHsd/f2uA2O3xqOhOqQSgx/wKNayGnt1/NherB/k+/t4jd0Z1DGtzmloyFihY1Iiwy00tBQaGRcmOOcSsoKPzXULRIQUGhMaBokYKCQmNA0SKLogx6KSjcRChTZxUUFBoDihYpKCg0BhQtUlBQaAwoWmRZLPUgewUFhcaIJNXtUwuEECOFENFCiDghxAtmls8QQoTrPgeEEN0afL8UFBRuLBQtUlBQaAzUVYtqoUeKFikoKNQZRYssijLTS0HhJqKhryIIIdTA18AwIAk4KoTYIEmS4cOjEoBBkiRlCyFGAQsByzyUTkFB4YZA0SIFBYXGgKJFCgoKjQFFiyyLMtNLQeFmouFfhXsrECdJ0jlJki4Dy4EJRpuUpAOSJF15+uYhoNk174eCgsKNjaJFCgoKjYG6alHNeqRokYKCQt1RtMiiKDO9FBRuIkTDv621KXDR4P8krn6FYB6wuaGdUFBQuLFQtEhBQaExoGiRgoJCY0DRIsuiDHopKNxMaOtWXAgxH5hv8NNCSZIWGhYxs5pZ1RZCDEYW1AF180JBQeE/h6JFCgoKjYE6ahHUqEeKFikoKNQdRYssyg076OVwSd3gNkV5g5sEwMrbq8Ft2mkafv8tSXHThq9cuxTLhG/XTx5scJvhT33b4DZlnqxT6bpeRdAJ58KrFEkCmhv83wxINtmuEF2BH4FRkiRl1smJRo71JduGt5nf4CYBEPZ2ljFsAdQl5vrqa6fcuuHv6rfJsowet1vS8FoUM0fRIv6jWtTSK8siduN62TS4TY9FlxvcJsDST68WIvVjxg91i+3asvVgcIPb9A60TEh3+6jhtejUMzemFkGNenTTa1FuS8vk5/Yt/RveaER0w9sEuGyBJwh9V9jwNgHud2hwk6l9G9wkAKM7h1jE7qaI3RaxWxcULbIsyjO9FBRuJhr+OTpHgbZCiFZCCBtgKrDBsIAQogWwFpglSVJMg+yHgoLCjY2iRQoKCo2Bhn+OjqJFCgoKdUfRIotyw870UlBQqAcNfL+4JEnlQohHgK2AGlgkSVKkEOIB3fLvgAWAB/CNEAKgXJKkWxrUEQUFhRsLRYsUFBQaA4oWKSgoNAYULbIoyqCXgsJNREO/DhdAkqRNwKYqv31n8P1e4N6G37KCgsKNiqJFCgoKjQFFixQUFBoDihZZFmXQS0HhZqLh3wyioKCgUHcULVJQUGgMKFqkoKDQGFC0yKIog14KCjcRoh5vBlFQUFBoaBQtUlBQaAwoWqSgoNAYULTIsjT4oJcQ4ifgFuTXZMYAd0uSVCCEcAV+A1rotvuRJEk/X8u2BrRtyYujQ1CrVKw+HsGPfx81W65zUx+W3T+Vp1dsYltkLABv3T6MQUGtySosYsKXv1a/jXYteWFcCGqhYs3RCH7cU802mvnw+0NTeeb3TWyLiDVa1/b+crYsPcCqr7aZrPfAW3fQK7QTpcVlfPz4L8SfvgiAo4s9T3wyg5ZB/kgSfPrkr0QdT2DegtvpPawLRS5qErNy+TP8LE+G9kelUrH6RAQ/7KvGP38fVtw7ladWb2LrmVhsrNT8ds+d2KjVqFUqtp2J5cvdB83X8VhdHR+toY4fnMrTy/X7X5VBzQJ4tU8oaiFYHh3Ot+FHjJb38WvOD8Nu52J+LgBbzsfwxT96n1RC8NeEWWiKCpi7bS0AA9u05OURIaiEilX/RPDDAfP+dfHzYcXcqTy5dhNbz8Ya2Vxz73RS8wp4YMUflb/3b9eSFybojvuRCH7abWx3cMfWPDqiH1pJokIr8d6G3fxzXn4hxsz+3ZncuzMCweojp/lt3z9mfarKy+/B7oPQxB3+XFyrVerOTXYV4Xrp0cBWLXllqNxOVp6KYOGhauLQ14dVs6fyxB+b2BItx6GzrS3vjBpGWy8PkCRe2LSdM7kpJusOaNeSF3RtsUYtenAqzyyrokVjQ7CdX8GWZQdZ9fV2k/UeeGMyvYZ0orT4Mh8/+RvxEUmATos+mqbTIolPn15K1PHzvPDtPTRr4w2AbXNnKrQSFZIWlRCsOBPBd8eN23fvps1YOGYiSXm69h0fy5dHDwHwfugIhgS0JrO4iJG/L6lc57aAAF4JldvhyvDTfH+k+npdPWMaj/+5kS0xsbRyd+fz8WMql7dwdeWz/QdYfFxui4OaB7Cg/xDUQrDi7Gm+PVlFi/ybs3DERJKuaFFCLF8cP4itWs2KCVOxVcm6uflcDJ8eOwDAwNYteXmY7OuqUxEsPFi9Fq2cM5Un1m9ia5Q+Bt4eM4x2Xh5IksSLG7dz8pIcA7e1ainXgS62vj98lTqYNZXHN8ix1aqJO5+PH62vAzdXPttnqvHmULSo4bmeudEVejVpz8NtJ6JCxaaUQyxPDDNafmfzwYT69ABALVS0cPRh8r4F5JcXmdga1LSV3H+rrvTfh42W9/Ftzg/DJnExPweALedj+eKk3Db23Xk/hWWXqZC0VGglxm34BYBberfmoSdGoFIJNv95khW/HTCy2byFB8+8PI7Adr78vHA3q5fJetGsRRNeeWNSZTlff3eW/LiHdSvldnzyqIpfvrFGq4XBoyqYMNX47dEF+fD9xzakJgtsbOD+py/TvJVEZprgmw+syckSCBWEji5n1KQKAAYEtuSlMXKusfp4BD/urT4XWj5/Kk+tlPNNXxcn3ps8Ek9nByQJVh49za+H9DnBbS0CeHXgYL1unjCjm6MNdPOcgW4OMdDNZUuM1uvj2ZanO4xFhYo/ko7yS8LfJr72aNKKp9qPwUqoySkr4oEjP9DC0ZN3uk2tLOPv0ISFsTv4mVj6B7Xk+QmyFq09HMFPu6rkRZ1a84hBXvT+H/q8aNbA7kzq3QUJidiUDP63wjQfNoeiRQ3P9dKifh1a8tyUEFQqFesORPDzduN4CenSmofG9kOSJMq1Eh+u3s3Jc3K8bHp9LoWlZWi1Wsq1EjM++L1yvZ792/Lg86NRqVRsWXuclYuMY7tZgCdPvzmJNh38WfLldtYs2Q+Ap48rz749GXdPJyStxKY1x/hjae36xFtGBPPQZ/egUqvY/NNOVry/vlbrDWoRwIIBg1Gr5Pb97YmquYaufefr86Ivjh3Cz8mZT0JH4uXgiBaJZZHh/Byu142e7u15oM0kVELFFs0hVl3cYWR3crMhDPbuCYBaqGnu4MPUgy9TUF7Ek+2mcWuTTuSUFfDg8ff0Nge044GXxsr1uvooq37cY1yvrbx46p0pBHb0Z8ln21jz897KZU++NZlbQ9qTk1XAg+M/r7Y+bmsZwILbZL1bGVlNnjh2Ihd1erc1PpYvjxwysdNzSCcefOcu2dff9rHyiy0mZR585y56De0i57SPLiYuPBGAJSfeoaigFG2FloqKCh4b+k61/hqiaNGNjyVmej0pSVIegBDiE+AR4D3gYeCMJEnjhBBeQLQQYqkkSfV6b7VKCF4ZN4R7f15Lal4+Kx6Yzq6z8cSnZ5mUe2rEAPbHXjD6fd0/Z1h66BTvTRlx1W28PGEI9/20ltTcfFY8ottGmpltjBrA/pgLZte1+fIfPt/yPIe3hZMYo6ks0yu0E/6tvZnX9zXa9wjgkfen8uToDwF5MOxY2BnevvdHrKzV2NrLrwz/Z08UP7/9B/H3teGZoQN4a/wwJi38ndS8fFbdN52waPN18MywAeyL1/t3ubyCu5espuhyGVYqFUvn3snfcQmcPqcxWu+V8UO4d5Gujh+azq6oavZ/pGkdVy3zZr9hzNi8Ek1hPhsmzGJHYjyxOcZvRj2qSaoc0KrK3E49icvJxMnGttLmgpFDuGep7N/qe6cTFhNPfIaZ/Q813v8rzL61O/EZWTjZ2BiVf+X2Idz3w1o0ufmseHQ6u87Ec85gvw/FXWTXmd8AaOfryUczxzD+oyUE+ngwuXdnpn25jLKKCr6bN4m/oxKqrRdDJo6C6ZPghdrpb/24+fTU4nqkEoLXhg/h7uVr0eTns+bu6YTFxhOXaRqHzw4ewN4E4zh8ZWgIf587z6Pr/8JapcLO2trsNl4er9OivHxWPHwVLarSFg3XtfkmnM83PcvhbadJjDXQoiEd8W/lzbwBb8ha9O5dPDnuY0AeDDu26yxvz19kpEXvPajPhaf8NYfJHToxfsVSNAX5/HHXDHaciyMu29i/o8lJ3PvXepP9W3M2gl/C/+HjYaOM63XYEOasXIMmP5+1s2awM958vT5320D2ntfvc0J2NuOX/Fa5fP+D89kWG1f5/xsDhjLzr1WyFk2ayfYL8cRlm2rRvM3rjH4rrahg+oaVFJXLurl6wjR2JyZwNjudV0cM4Z5la9Hk5bPmnunsjK1GiwYPYN+5KjEwLIS98ed5bK1xDFTWwQo5ttbOmc7OuGrqIMQ4thKyshm/eKm+Dh66j20xcbzUyaT6TVC0yCJcl9zoCioEj7WbxHMnvyO9NJdvbnmSgxmRXChKrSyz8uIuVl7cBUBfj45Mbj7I7ICX3H8PZcYWXf89fjY7EuPM99/b15j1Z+qm5WSXFuttqgSPPj2K559YSkZaHl/9OI+D+2JIPJ9RWSY/r5ivP91K/9uCjGwlJWbxwN0/VtpZtv5x9u+JBkBbAT9/ac1L71/Gw1Pi5Uds6dm3gmYt9QH3xzIrWrbR8vRr5VxKFPz8pTWvfHgZlVpi5v1ltGorUVwELz1kS5ee8kD+/8YNYd5iWX9XPqDLhczkWk8PH8D+OH07rNBKfLDlb86kpOFgY82aB2dwIP4C8elZshYNCmXWH6tl3bxzBjsSzOhmSjW6GRXBL6f/4eOho4x+VyF4ruN4Hjm6iLSSPJb0fYi9aVEkFKZVlnGysuO5jhN4/NjPpJbk4m7jCEBiYQYzD3xVaWfj4BfYnXoGlbDh5duHMH+hnBctf1yXF6Ua5EWxF9kVqcuL/Dz5aNYYxn+wBG8XR6YP7M7ED5ZQWl7BR7PGMCrY+JhWh6JFFuG65EUv3jmEB75aS2pOPkufnc6e0/Gc0+jj5XD0RXafluOlrb8nH8wdw+1v6Qdv7/t8FTmFJcZ2VYKHXxrHS/N/JiM1jy+WPcCh3WdJPJdeWSY/r5hv39tI3yEdjNbVVlTww8ebiTubgr2DDV8uf4h/DsaREBF99X1RqXj0q3k8P/xNMpKy+OrIuxzccIzEs0k11sEbt4Uyc4PcvjfcMYPt1bTveRvXG/1WrtXy1v49RGak4WhtzZ93zmTvxQtAIioEDwfewUunvyGjNIfPuz/N4czTJBpo+5qkMNYkyRc5ejfpxMRmIRTotH176hE2JO/lmaCZxvX6v/G8NO8nMlLz+HzlwxzedZbEeL1m5OcW8d3bf9I3tKPJvm5ff5wNvx/kmffuuGp9vB4Syux1cn2sv0und1lm8sQ/15s3csXX96fz0pRPyUjO5ovtL3FoyykSY/QXi3sN7Yx/ax/m3voK7Xu24pEPZ/DEiHcrlz8/8WPysgqq3YY5FC268VHVd0UhRIAQIkoIsUQIES6EWC2EcDAQUgHYoz+EEuCs+90JyALKdWXXCyGOCyEihRDza7P9Ls18SczMISk7l7IKLZtPRzOkQxuTcjP6BLM9Mo7MQuNE7vj5S+QWl5iUN9pGc18uZuaQlCVvY9OpaAZ3NLONfsFsPx1HlsE2DNctL6tgz/rj9BnRzWi9PiO6snOlfLU06sR5nFwccPd2wcHJjs59Atn6u3zVs7ysgsI8OVk8secs2gp5/mNucQkl5eWVdbApIprQIFP/ZvYOZtsZY/8Aii6XAWClVmGlVpkMMJvUcXg1ddxXV8cFpsnyFYK9/Difl83F/FzKtFr+PBfFsJaB1Zaviq+DE0Oat2Z59OnK37r6+3IhO4ekHNnmxkjz+z+rVzBbo+LILDL2z8fZiZC2rVj9T4Txfjf3JTFDd+wqtGw+Fc2QTsZ2i3V1B2BvY105Ot/auwnhiSmUlJVToZU4di6J0E61289e3cDNuVZF642QpDp9bhT+TT3q6ifH4cVcXRyeiSa0rWkczu4ZzNboOLIM4tDJxoZezZuyKlyOwTKtlvzSUpN1K/Uk20CLzLXFfsFsj4gjq8CMFmXrtOiP4/QZ0cVovT4jurBztXzFLerEeZxc7fVa1DuQrcvkq6GGWmTI+HYdiM3K5GKern3HRDOsde3b95HkS+SUGOtxt6r1GhXF0EAz9dojmK2xsSbt+wr9WrYgMSeH5Lx8AIK9fblgqEXxUQwPMLVbHUXlOt1UqbBSqZCQKrXoYo4+BoaaiYFZtwSzLdpYixxtbLilRVNWnTKNgW5+vlzIMaiDs+btXomt6uugOYk5uZV1UBOKFtWffzs3ukJ7lxZcKs4gpSSLcqmCXan/0M+zc7XlB/v0ICzV/Kxkuf/OMei/zzKsRe3btzmCOviTnJSFJjmH8nItu3dG0m9gO6MyOTlFxESlUF5e/T0f3W9pRcqlbNJS5ZkBcdEqfP0lfPwkrKyhb0gFxw6ojdZJuqCic3fZZtMWEumpgpxscPeAVm3lw2LvIC/LyhB0rZILbaom35zZxzQXSi8o5EyKfOJYdLmM+PQsfFycAOjm48uF3By9bsZeu24CdHJrRlJRJsnF2ZRLFWzThHObj/EAwAi/buxOjSS1RK637MuFJnZ6ebQhqSgLTUkOXVro6uBKXnQymsE15EWSQbu1UqmwtbZCrRLYWVuRlle7E87GqEU3ih79m1rUOcCXixk5XMqU42XriWhCul4lXmytkWpxxh/UuRkpiZloLmVTXl7Bni2n6TvYOLZzswqJibxERRXdyMooIO6sPDBSXHSZiwnpeHi71LzNWwNJjtOgSUijvKyc3Sv2029CzS+3C/Y2bd/DW9WufacXFRKZIetGYVkZ8dlZ+DrKDaGdc0uSi9PRlGRSLlWwJ/0EfTy6VGtrkHdP9qSdqPw/Ijee/DLjXKFd1+YkJ2aiScqW88RNp+gzxEy9RiRRXl5hso2IY+fJz6n+HBB0epejr4+/6qh3Vwjq0YqUhDQ0FzJkX9cdpe8o4/PrvqOC2blSzlujjifg5GpPEx/XOm/LEEWLbnzqPeilIwhYKElSVyAPeAhACPEzoAHaA1/qyn4FdACSgdPA45IkXVGkuZIk9USebvuYEMKjpg37uDihydUn8Jq8Arx1icQVvJ0dGdoxkBVHwuu1cz4uTqQYbCM1t6AyWanchosjoZ0CWXE4/KrrZqRk4+Fn3OA8/NzISM42KuPp54ZvS09yMwt46vNZfLX9RR7/eAa2DjZUZUTHdiRk6tfX5Jnxz9mRYe0DWX7MtA5UQrDugRnsf/Z+DsQnEn5JY7Tcx7VKHeeaqWMXR4aa2f+q+Do4kVKot5VSmI+vg5NJuR7e/my+fQ5LRkymrZs+DF7tO4R3juxBa9Ap+rg4oTE4iUvNK8DH2UwMtA9k+XFT/14aEcKHO/airSIa3lX2O9XMfgOEdmrDhmfm8M3cifxvlXy7WFxqJj1bNcPVwQ47aysGtg/A18103X8NSarb58biX9EjX2cnUvIN2km+aRz6ODkyrF0gy/4xjsPmbq5kFRXz/pjh/HHPDN4eNRR7a9MJuCZalFeAj6sZLepYGy3KwcPXzaiMh29VLcrB09cV35YeshZ9OpOvtj7H4x9Oq5zpdYXOvdtQVHaZc9kGWlSQj6+Tmfbt68+mabP4efwk2ja5usz7OJmpVydnkzLD27bl95PV68+Y9kH8dVZ/JdfH0ZnkAgMtKijAx9E0k+nh48/mKbNZPHoybd31vqqEYNOU2Ryf8xD7ki5wMk2Dj7OxFlUbA0GBLDth7GsLN1eyi4p5b+xw1s+dwduj9THg4+xESlW7TqZ2h7cNvHoddAjir7NR1S7/V1C0yCK50RU8bV1JL8mp/D+9NAdPW/NJv63Kml5N2rM33XwMmfTfRfmVJ2CG9PD2Z/PEu1kyfIpR/w0Sv428k78mzGZakHxy4unlTHpaXmWJjLR8PL3qfkYREtqRXTsiK//PzgAPL328eHhKZGcIo3VattZydJ88EBYXJchIFWSlG5dJ1wjOxwkC22vxdjHNCczmGh0CWX60+nbo7+ZCBz8vTiXJuZavYxWNK8jH17Ea3Zw6i5/H1aybAF62rqQW51b+n1aSi5et8cl9C0dPnK3s+fbWe1nS92FG+3c3sTPMryvbUk7J++fqhCbHoA5yTPsggCGd27DhuTl8PW8iC1bKeVFaXiGLdx9n+yv3ErZgPgUlpRyMSaxxP64bddWiG0uP/hUt8nZ1QpNtEC/ZBXibiZfBXduw7pU5fPnARF5bqn/sgiTBt49M4vfnpjO5v35Ax8PHhfRUfWxnpObVauCqKj7+brRp70f06avP1gLwbNqE9CT9rNaMpCw8m9bcDn2cnKrkGvn4VNO+N981i8VjzbfvZs4udPT05mSqPGDnaetKemmO3p/SHDxsqtf2W9zbsy/j1FV99fR2IV1TpV6vcZCoKr5OTqTUoj66+/qzcdosFlWTJ3r4uZGerJ8dlpGcg4efu2mZS/qcND05Gw8/N0COrXdWP8GXO19m1OyB17pbDct/W4v+da510OuiJEn7dd9/AwYASJJ0D+APnAXu0i0fAZzU/R4MfCWEuKJUjwkhTgGHgOZA25o2LMz9WOXgvzgmhI+3mg5q1BozG6l6JeKFsSF8stnMNsw5WLWIMC0kSRJqKxWBXZqzcfFeHhn2LiVFl7nzkeFG5e4feCsVkpbErByT9Q15aWQIH5kZ2AHQShK3f7eUkE9+pGtTX9p6G4uL2TrGTB1vqUUdm61LYyIyUum3/HtGrVvC4sgT/DDsdgCGNJefWRGRmWpU3mwVV/Hj5eEhfLTT1L+Qtq3IKiwiUpNGVcwfOtP92xkZz/iPlvDYkg08MqIfAOfSsli0+yg/3DeJ7+bdTkxKBhXaRiRK2jp+biz+NT2qStV4eXloCB/uNo1DtUpFJ19vfj8RzoSfl1JcVs79fXrVbhuSGS2qTVuUVzb617wWgVqtIrBLMzb+spdHRnyg06JhRuVCJvbkWEpyTZsgMi2NAUt+YPSyX1ly6h++HzPhqi7Wph2+MiSED/ZUv8/WKhWhbdqwKTrm6narrB+Rnkr/3xYyavUvLI44wcKREyuXaSWJ0at/oe+v39PN25d27p618vWlYSF8GGY+BjrqYmDioqUUlZUzv2+v6n2tWgehtaiDwDZsijL/rMV/DUWLLKxFZtp0NTMp+np2IjI3weytjdXaqtpmMlPpt+I7Rq1fzOIzJ/hhqP6ZW5P++p0xfyxhztbVzO7QnVt9m1WrOXXBykpF3wHt2BN29uo2qmxq/NRyCvPhhftt2breioBACbXBZLCSYvj0DRtmP1iGg2Pt2uGLo0P4eFv17dDBxpovpo7lvc17KCy9rHPL3DEyplI3l//KkvB/+H701XVTtlszaqGivas/Tx5fwmPHfmZum8G0cNDngFZCzW3eHdipiajWZtUYAAiLiGf8B0t4fLE+L3Kxt2Vw59aMfGcRoW/8gL2NNWN7tK+Fl9eJumrRjaVH/4oWmWneZvVnV3g8t7+1hCcXbuChMf0qf7/70xVMe/93Hv5mHXcO7EaPNk1lu2a2ZS4Or4advQ2vfDKN7z/YRFGh6cz6qpjdl1psszbtOyI9jf6//MCoFb+y+PQ/LBxl3L4drK35duR43ti3i4KyK3eZ1qaFy/T26MyZvITKWxuv4qwpDT6gUgu9S09j4OIfGLPsV3459Q/fjzXVu+rOnWtb5qkx7/PIkLd45a4vGDc3hM5965ziW47/thb961zrM72qxmvl/5IkVQghVgDPAj8D9wDvSXLUxQkhEoD2QggHYCjQV5KkIiHEbsDO3MZ0U2rnA4x58iUm36Kfqu/r4kRavvH07E5Nffj4LvlBvu4O9tzWrhUVWi07z8bXaudScwvwc9VfefRxdSItr8o2mvnw0XT9NgYGtaJcqzVZ19PPnUyDUXSAjORsPP3dTctI8kyL6H/OA7DvrxPc+aj+2WND7+zN4Hat+HjHPuYP0J8gm6uDzv4+fDJF9s/NwZ7b2sr+7YzS10F+SSlHzicxMDCAeIOrGZrcAnwN9sHX3P439eHjqQZ1HNSKigrTOtYUFuBncGXYz9GZ1CLj6e16QYddSQm8qVLhbmvPLT5NGdoykJDmrbFVW+FsY8NnIWNY/nc4vi4Gx8fFibSCKvvv58Mnk/T+DQqU979bU1+GtGvNbYEB2FpZ4WRrw4cTR/Ls+i2kVtlvH1cn0vNMp/5f4XjCJZp7uOLmYEdOUQlrj0ay9qh85fnxkf3lK8SNRFP/41Nhr5seGWrRqOdf4s5uBlrkbKYd+vrw6QRdHNrbM6i1HIcnk1PQ5OdzKkW+8r8lKpb7+5hOm0/Nq6JFLubb4kfTzGhRXlUtciMztYoWpVTVIl0ZSdJpkfyMmn0bTxoNeqnUKvqN6sZzh8KY1TVYXwdOzqQWVt++d19I4E1VKO529mSXmN4uCaApKMDP2UB/nJ1IKzC22dnHh8/G6es1pJW8zzviZP0Z1LoVZ9JSjW770xTm428wY8zPyYm0q2jR7sQE3hqoMvE173Iph5IvMqhFAKdiNEZaZDYG/Hz4dKKBFrWR+6OTl1LQ5OUTnizHwNaoWOb3lWNAk1+AX1W7VTXO14fPxhvUgS62dsReqYMAzqSmVXvr47+FokUNr0VBT4XSdGxXQL7672XnVlnOy9aNzNK8qqsDMNi7e7W3NgJoivKN+2+Hmvrvc7ypGoa7rT3ZpcWV7SuzpIitF2IJ9vQjNe08XgYzNDy9ncnMqN3tt1fo1SeQuBgNOdn6NtHECzINZm1lZgjcPYwPh4MjPPCsfGuVJMFjs2zx8pXLlJfDp6/b0H9IBbcOlM8oUvNMcwKT9t3Uh4/vNMi1DPJNK5WKz6eO5c/wKLafiatcJ6Uw31jjaqObg66umwBppbn42OtnaXjbuZJe5dinleSSW1ZESUUZJRVlnMw+T1tnPxKL5Bywn1c7ovKSybos+5OaW4Cvwb09Pm6mfZAhx89dopmnnBfdGticS5l5ZBfKPu84HUe3AP9q173eKFrU8Fo0/qGXuL2fPi/ycXciPbf6eDkRf4nmnq64OdqRU1hSWTa7oJhd4XF0DvDlRPwlMlLz8DKYgeTp40JWeu11Q22l4n+fTGPXxlPs33mmVuukJ2Xh1Uw/IOzZrAmZBjONqkNTUDXXcCathvb91m369m2lUvHdyPGsjznL1nN63cgozcHL1k3vj60bmZeNc7orDPLqwW6DWxurIyM1Dy9f43rNTDPfX9QXTUE+fjXVx2Xj+njDTJ6YkZyNl38Tva/+bmRpcozsZCRn49VUn9N6+buTpTsHv/I3NyOfA5tOEtQjgIiDjeOi4H9ci/51rnWmVwshRF/d92nAPiFEIFTeKz4OuHJPRSIQqlvmgzzl9hzgCmTrhLQ90Ke6jUmStFCSpFskSbrlgpMXLT3caerugrVaxaguQeyKOmdUfvjHixim+2yNjOXNP8NqPeAFEJGkoYXBNkZ3C2LXGeNtjPhgEcPflz/bImJ5a30YYWfijda1slYzaGJPDm0znvZ+aNtpQu/sDUD7HgEU5heTnZZHdnoe6Zeyaap7M1rwwPaVD+jrObgjdzwynAeXbeB44iW5Dtx0/nUOIiza2L+hny8i9DP5s+1MLG9sDGNnVDzuDvY428kPhLe1UtO3dQvOVXnocsQlDS09Deq4axC7zlap448WMexD+bM1IpY3N5iv41PpKbRycae5kyvWKhXjWrdn+4U4ozJe9o6V37t5+aISguzSYj44tpc+y75jwIqFPLrrTw4kJ/LE7o2cTtYQ0MSdZm4uWKtUjOkURFiMsX+hXy0i9Ev5s/VsLK9vDmNndDyfhO1n0Oc/EvrlIp5au4lDCRd5dv0W/XHX7beVWsUoM8e9uYe+c+jQ1BtrtZqcIvnZGk0c7QHwdXMmtHMgm09e/SGZ15X/9rTZ66ZHhlp0zt1LjkNXXRx2DGJnnHG8DPluEYO/lT9bo2N5bVsYO2LjySgsIiWvgFZN5M65b0Bzk4eUg3FMVmpRlbY44sNFDP9A/myLiOWtPwy0yNNAiyb05NC200brHtoWQeiUWwGdFuWV6LQon/TkHL0WDWhn9LDQ7gODSIpLZdeFcwS4udHMRa6Dce2C2JFgrAOeDg6V37v5+CKEuOqJW3iKhpbubvp6bd/epF4H//ATIQvlz5aYWF7dsbNywAtgbPsg/jxr3P5OpWkIcHWnmbNOi9q0Z/t5Y1+97A189fZFIPvaxM4eF92LNGzVVvRv1pL47CxZi9yrxEBsFS36ZhFDdJ+tUbG8tjWMHTFyDGjyq8SATovlOjCw28E0tgZ/v4iQ7+TPluhYXt0eVjngBTC2Y3v+bGy3NoKiRRbQoisDXgBR+Rdpau+Fr10TrISawT7dOZARYbK+o9qOrm5tzC67gmn/3YHtiVfpvz31/be9lTWO1vIt0fZW1tzWNIDo7Ayio5Jp2qwJvn5uWFmpCAntxMF9MdSFwcM6sWt7pNFvbYK0aC4J0lIE5WVwcLeann2Nn0FTWAC6R/MRtllNhy5aHBzlMFv4sTX+LSTGTNG/8fH0JY1xrmUm3xz2ySKG6j7bImN54y99LvTW7cM4l57FkgPGJ5/hqRoCXN1o5qzTzbY16KZ3zboJcCb3Es0dPPG3d8dKqBnu25W9aWeNyvyddpZg9wDUQoWtyppOrs1JKNQ/DHy4X7fKWxsBIi7q8sEmurwoOIjdkbXLi1Jy8una0g873W3bvdu2ICG15kGD68Z/+5aif0WLktRetPByx99DjpcRPYLYE14lXjz18dK+mTfWVmpyCkuws7HCwVZ+mYudjRV927ckLll+wUV05CX8W3rg09QdKys1g0Z24dDu2vdvT75+O4kJ6az99UDNhXVEH42jaVs/fAO8sbK2IuSu/hzccKzG9eRcw7h9m+QaV2nf7w8eTlx2Jj+dOm60Tkx+Iv72XvjotH2QVw8OZZrqt4Paji6ubTiYedpkWVViTifh39JTrldrNYNGd+PQrrM1rlcXwlM1Rnni2LZB7DhXvd519dH1I1X0Lvqf8/i39sanhYfs6+29OLTF+PbNQ1tOEXqnHPbte7aiMK+YrNRcbB1ssHfS5XAONvQI6cj5s6Z3Kvxr/Le16F/nWmd6nQXmCCG+B2KBb4HtuumwAjgFPKgr+yawWAhxWrfseUmSMoQQW4AHhBDhQDTy1NkaqdBKvP1XGD/MmYRKJVh3PJK4tEzu6iUnfSuu8lwFgA/vHMWtrZrj5mBH2LP38lXYQdYdNk6eKrQSb28IY+Fc3TaORRKflsmdveVtrLzKc6wM17W9azzblh0kMTqF0br7hzf9spejOyLoFdqJRYdep6T4Mp8+8Wvl+t++vJLnvrkHa2srUi5k8OkT8iu+H3rnTqxtrFk0W7514FxGFj/NmoRKCNb8E0lceiZ33aKrAzPP8bqCl7Mj700cgVolEEKwJTKG3TEJRqOgV/bhh3tk+5V1fKvOfh2elVYhSSw4sINfRk1BLVSsjDlNbE4mM9p3A2Bp1ClGt2rHzA7BlGu1lFSU82jYnzXafGNLGD9On4RaCNackvd/ag/Zv+Unau+fkV2txDt/hPH9vZNQqwTrjkYSn5rJnX10x/1QOMO6tGV8j46UaysoKSvnmaUbK9f/dPY43BzsKK/Q8vb6MPKKa54+DfD063DkJOTkQsgUeOQemDKmXrtQPf9tgfxX9KhCknh9WxiL7pLjcHV4JHEZmUwLluNl2VWetQTw5vZdfDxuFNZqFRdzcnlho+mr3I20SBhoka4trrxKWzTSojvHs23FIRJjNIye1R+ATb/u5+jOSHoN6cii/QsoKS7j06d+q1z/2/+t4rkv52BtrSYlMdNo2aAJPdn9x3Eqmkq8uieMX8ZPRqVSsepMBLFZmUzvLPv3e0Q4owPbMaNzNyokLSXl5Ty2Rd9mPh8xhj5Nm+FuZ8+Be+bz2eEDrDkRyes7dvHzlMmoVYJVpyOIzcxkWjddvZ66er3aWVnRP6Alr2wzfpV3hSSxYN9OfhkzWdai6NPEZmcyo6NOi86cYlTrIGZ26kbFFS3a8RcA3g6OfDxkFCqhQiUEG+OjCUs8h42k5o1tYfw0VdaM1afkGJjaXadF/9QQA1t38dEEOQaSsvUxUCFJvL49jJ/vlGNr1elIYusQW3IdtOCVLTuuWq4qihZdM/9abnQFraTly5i1vN9tPiqhYnPKES4UpTLWXz4R+CtZfsjvAK8uHM+KpkRb/QvaKiSJBQd38MvIO1ALYdB/BwOwNOokowPaMbNDd33/vWsDAJ72DiwMlR9VYKVS8Uf8GfZcSqBdhcRXn27h3U+moVKr2PrXSS4kZDB2Yg/Zv/UncG/iyNc/zcPB0RZJKzHpzlu5d8Z3FBVdxtbWip69WvHZB5uMfFWr4e5Hynj3RRu0WggZUUHzAIntf8r3Lw4bV8GlRBXfvm+NSi0/rH7+0/K+R0eq2LvDiuattLxwv3xidNfcMiq0Em/9FcaPunxz7Yna55s9WvgzIbgj0Zp01j40A4DPtu/n79jzVEgSr/4dxi8TJqMSBrrZSaebkeGMblNFN7ca6OZwA928W9bNXWV7qJC0fHhmA1/ccg8qIfgz6TjnCtKY1Fy+sLH24hHOF6ZzMD2Gpf0fQ5Ik/kg6yrkC+REStiprensE8m7kOn0MaCXeWRfGd/fJWnQlL7qjr+zrqoPhDOvalnE9O1JeUUFpWTnP/ir7ejpRw/bwWFY+OYNyrZaoS+msOnSa5/tSI4oWXTP/Tl6klXhvZRjfPiznLH8ciiRek8mUAXK8rN4XTmhwW8b1luOlpKyc5xbJ8eLh7Mgn940D5BdtbT4WxYGz8mxzbYWWb975i7e/nYNKrWLb+uNciE9j9B3yXS+bVh3F3cOJL5Y/WKkbE2f24/6JX9CqnS9Dx3UnIUbD1ysfBmDxF9s5VMPbG7UVWr569Cfe3fKyrFU/7+LCmZqfBVYhSSzYK+dFaqFi5Vm5fc/Qte+lkeGMatOOmZ11uUZ5OY9uk+vgFr+mTG7fibMZ6Wy6axYAHxzaRyqJaNHybdwa3ur8IGqhYpvmEIlFGkb76XK6FPlu1n6eXTmRHU1pFW1/vv1suroG4mLtxK+9X+fXC5vZVhHOt29t4K0f56JWCbatPUZiXBqj75I1Y9OKI7h7OvHFqkdwcLJFq5WYOLs/94/9lKLCUp7/aCpdb22Fi5sjv+56gV+/2kE0503q47XdYSyZoMsTI03zxFGB7ZjRRZ97PbZ5I1XRVmj55oVlvL3qCVQqFdt+38+F6BRG332b7Ovivzmy/TS9hnZm0dG3KS2+zCePLQbA3cuFBUvkcFdbqdm15gjHwyJNtmEORYtufERd74WuXFGIAOAvSZKqfx2QBen4yqcNHhmivOYy9aHF4oafNpnwgGXul1Nd00vSq6ewdcNXrl3KtY7Zmse6bndY1Irwp75teKOAyjem9jf3AyO6v1qndrP1n9frZP/f4t/Uo7bvNbwW2ZifqX7NtPjlXM2F6kHUCwENblNdYpnQK3du+Icg2GSpay5UD7QWMBszR9EiS/JvalHorqcskjHHnfNtcJvtFlkm2Xh/2cIGtznjhycb3CZAiU/Da5FXYGbNhepB8Q6vBrd56pkbU4vgxtCjf1OLgh9p+LwIwPfvho/vihoGvepL7JfV3rhUbzp0sdALIO53qLlMHYl+0LPBbQK0e8Myx2tTxO4Gt6loUePCMqMGCgoKjRKhVZ56qKCg8O+jaJGCgkJjQNEiBQWFxoCiRZal3oNekiSdB/6VWV4KCgr15D86dVbRIwWFGwxFixQUFBoDihYpKCg0Bv6jWtRYUGZ6KSjcTCiCqqCg0BhQtEhBQaExoGiRgoJCY0DRIouiDHopKNxMKDNnFRQUGgOKFikoKDQGFC1SUFBoDChaZFGUQS8FhZsIoVxFUFBQaAQoWqSgoNAYULRIQUGhMaBokWVRBr0UFG4mFEFVUFBoDChapKCg0BhQtEhBQaExoGiRRVEGvRQUbia0iqAqKCg0AhQtUlBQaAwoWqSgoNAYULTIogjpPz6qKISYL0nSwpvZruKr4usVRrV7vk4NfnPM+8ISftys3OxxqPh6Y9lVtOi/y40ULze7r5ayq/gqU1ctAkWPGpIbKV5uJLuKrzeWr6BokaVR/dsOXAfmK3YVXy1k90byVUaS6vZRaGhu9jhUfL2x7Cpa9N/lRoqXm91XS9lVfIW6a5GiRw3NjRQvN5Jdxdcby1dFiyyMcnujgsLNhCKQCgoKjQFFixQUFBoDihYpKCg0BhQtsijKoJeCws2Ecr+4goJCY0DRIgUFhcaAokUKCgqNAUWLLMrNMOhlkftubzC7iq+KrzKS1mKmFWrFzR6Hiq83ll1Fi/673EjxcrP7aim7iq+gaNG/z40ULzeSXcXXG8tXRYsszH/+QfYKCgp6RgU8WbeHR5//VHlAooKCQoOjaJGCgkJjoK5aBIoeKSgoNDyKFlmWm2Gml4KCwhWUqbMKCgqNAUWLFBQUGgOKFikoKDQGFC2yKMqgl4LCzYQys1NBQaExoGiRgoJCY0DRIgUFhcaAokUWRfVvO3C9EEK0/Ld9UFD411FehdsoUPRI4aZH0aJGgaJFCjc9ddUiRY8sgqJFCjc9ihZZlP/coJcQoq8QYooQwlv3f1chxO/Avn/ZNbMIIeyEEA8LIb4RQiy68rHAdoKEED9cw/qTDL67N4xXIIQYIYSYJ4QIqPL73GuwOaea362FEMvqaXNbff2pwzbchRC3CiFuu/Jp8I0oYnpdUfTI7DYULboGLdKtb1E9UrTov4eiRWa3oWiRokXKieZ1RtGiardTbz1StEjRIoWa+U8NegkhPgQWAZOBjUKIV4HtwGGg7TXYbS6EWC6E2CuEeEkIYW2wbP01uv0r4AuMAPYAzYD8a/C1qxBimxAiQgjxlhDCRwixBtgJnLkGP18x+L7zGuxUIoR4B3gZ6ALsFEI8arD4kWsw/bgQYn6VbTkCm4Cietr0ugZ/akQIcS/wN7AVeF3397UG35BWW7ePQr2xhB5ZWIugAfVI0SLAMloEFtQjRYv+eyhapGgRihZVT121SNGjenOza5HOJ0vokaJFihYp1MB/7ZleY4DukiSV6Ea6k4GukiTFXqPdRcAa4BAwD9gjhBgnSVImcK3TcQMlSbpDCDFBkqQluqsdW6/B3g/At8BBYCRwAvgdmCFJUsk12BXVfL8WxiEfr3IhxGvA70KI1pIkPXmN2xgKbBFC2EmS9IUQwgtZTHdKkvRCPW26Gl5JqYokSWvrafcKjwO9gEOSJA0WQrRHFtaGRbkqcD2xhB5ZUougYfVI0SLLaBFYVo8ULfrvoWiRokWKFlWHokXXk5tdi8AyeqRokaJFCjXwXxv0Kr4iGJIkZQshohtgwAvAS5Kk73TfHxVCzAT+FkKMB641Qst0f3OEEJ0BDRBwDfZsJUlarPseLYR4BnhBkqSKa7AJYC+E6I48O9BO971S9CRJOlEPm1aSJJXr1s8RQowDFgohVgE29XVUkqQsIcRQYLMQwh+YAHwrSdIX9bUJuAJjMS/0EnCtg14luiQAIYStJElRQoiga7RpiiKo1xNL6JEltQgaVo8ULbKMFoFl9UjRov8eihYpWqRoUXUoWnQ9udm1CCyjR4oWKVqkUAP/tUGvNkKIDQb/Bxj+L0nS+HratdaNSF8R6t+EEBrkkX7H+rsLyALiDvwP2AA46b7Xl6piVwB0FUIIqLfwAaQAn+i+awy+gywmQ+phM14IMUiSpD063yqAeUKIt5CnPtcLg5H+hTo/dwJJV36v52j/BUmS6n0Pey1IEkK4AeuB7UKIbOQrYA2L8jrc64kl9MiSWgQNq0eKFllGi8CyeqRo0X8PRYsULVK0qDoULbqe3OxaBJbRI0WLFC1SqAEh/YdGFYUQg662/ErDrYfdJ4ETVdfXidYHkiQNq49dSyCE2HWVxZIkSfURvpq2aS1JUlnNJU3Wc9D5VGxmWQtJkhLr6c/PV1ks1UcUhRD/SJLUvT7+1GNbg5CvWGyRJOlyQ9oe6Tm/Tg1+S8bChpomfdNhCT1StKjGbf7ntUhn97rokaJF/w0ULVK0SNGi6qmrFoGiR/XlZtciuP56pGhRw6Jo0Y3Lf22mV0J9G+HVkCTp02p+/weot5gK+Z7gCUBT5JH4ZOAPSZKi6mtTkqTB9V23LuiuSAwGpiPf9+1TDzNfSJJ0rxnbzZDv7+5cH98kSbqnPuvVQOXbRnRTW0sN/u8jSdKh+hoWQlROIRZCOAGFwOmGFlNAuYpwfWlwPbKUFkHD65GiRRbTIrCQHila9J9F0aLrgKJFihYp1MhNrUU6vyyuR4oWKVqkYMp/6u2NyNMOARDymzAaBCG/rnaOEGK8kHleCPGXEOJzIYRnPW0+DyxHnt56BDiq+75cCHEtD/JDCOEhhHhUCPG17vOIEKLJtdg0sN1bCPE5cAF5mu9eoH09zVkJIX4TQlTGoRCig87mR9fg41NCiHlmfn9UCPFEPc0uNvh+sMqyb+ppEyHE3UCqECJGCDEKCAfeB04JIabV1261KK/CvZ6sv/KlofTIElqks2sRPVK0yCJaBBbQI0WL/tOsv/JF0SJFi6r8rmhRXbVI0aNrYf2VLzerFulsW0SPFC2qRNEiBRP+a7c3Vk5tFA04zVEIsRL5QYaOgDsQAfwJDACCJUkaWw+bMUCnqlNOhRA2QKQkSfV9dW8HIAz5XvZ/kAW6O/LVjiH1vTohhHgbuBNIBJYB64BjkiS1qo89nU0BfI9cp1OB3sAK4AFJkjZeg90IoEfVUXghhC1wVJKkrvWwWW1sXUusCSFOI1+NcQZOIb8pJV4I4QNsr4+vV2Ok69y63VKUu0iZNltPLKFHltAind0G1yNFiyyjRbr1G1yPFC3676JokaJFihZVT121CBQ9qi83uxbp1m9wPVK0SNEihZr5r93eKFXz/VrpKElSZyGEFZAkSdKVe9K3CCFO1dOmFvBHHo03xE+3rL68CTwuSdJKwx+FEJOBt6n/wwfnA9HIr9n9S5LfYnFNdSzJI67zdVcldiO/WviOa7lV0MC0ybRTSZJKdSJeL5vVfDf3f12okCQpA8gQQhRIkhQPIElSav1dvQr/oUHuGwBL6JEltAgso0eKFllGi8AyeqRo0X8XRYsULVK0qDoULbqe3OxaBJbRI0WLFC1SqIH/2qBXNyFEHvKoub3uO7r/JUmSXOpp9zKygXIhRNW3NdT3FbNPADuFELHARd1vLYBA4JF62gToIknSlKo/SpK0RgjxzjXY9QWGA9OAz4T8IEZ7YXCvc10RQnyJLEQC6AicAKYLIabrfH6svs4KIXwkSUqt+lt97QHNhBBf6Hy98h3d/02vwW6iEOJd5KsIUUKI/7d352GWlPXd/98fWUVABKIgihgXBH8sGiISIS6AIEjABCSCAqPGlcdoJCb6qFGjiUFUFNyiPjNKREGCIgE3TFBcQCABJiAQQXYGZB0hoDJ8f39UtRyanp7eTp9zqt+v66rLPnVX1flWM/2xzn3uuuvDNI/V3Y3maSxzqu6fzf9Pa5r6kUf9yCLoTx6ZRfQli6A/eWQWdZdZZBaZRSthFs2rhZ5F0J88MovMIq1Cpzq9qmq1Ph16zv+QqupbSZ4KPKs9RoDraIZ2ziak755h26Tamr4JfDPJ2sCLgXWA65N8r6oOmsFhz1vJz7P1IeC0JG+lCWmAPwCOBD48w2P+dc/P42udTe0vB94I3An8LbAH8HaaIcqHzeK4E1thoM6XPuVRXzpf+5RHZlF/sgj6k0dmUUeZRWYRZtHKmUXzxiwC+pBHZhFgFmkVOjWn13hJNgPGAvaGWfR2HzpZe1V9YSbHneT91q2qu2a473XARyZqAt5cVY+fVXEPfb/1gDdV1Qfm8rizlWbCwb+lebpIARcDH6yqbw60sAHbY+2Dp/UH/+17v+S94nNkLvJovrOofc8Z5ZFZ1DCLJmYWDY5Z9EATZpFZNM0sAvNoriy0LGr3nbc8MotGi1nUX50a6ZXk7cAaVfW+dtVPaHpn1wC+APzjTI47PjCTrN+srl/NotzJXEIzhHYmPkszDHMin5vhMUmyGs0kiZsB36qq/07yYuAdwMNp7kOfyXEPBf4S2LJd9TOax+R+caa1ArTB+ZDwTPLmqjp6BnV+YxXv9yfTPWZ73HVohkkXcAxwIM39/JcC75vp/6muTPXhcbhJ9gQ+RnPh8rmq+uC49rTtewH/CxxWVf/5kAN1TD/yaABZBDPPI7OIuc+idt85zyOzqLvMIrMIzKKV1mgWzRuzCOhDHplFZtHKmEUP6FSnF3AAsEvP61ur6hltGHyfGXZ6jUmyA7CYJqyS5A7glVV1/gyO9VcrawLWnXGR8Pmqum4l77nPbI4LPJ7msb0fT3I1sBPwt1X19ZkcMMkhNPfM/xXNENcAzwQ+lITZhupK/BVw9Az224nmnv4vA+fQ1DoXlrTHfThwGs3/oRwF7EMzIeUr5uh9GjW3Q2fbv61P0Dx15jrg3CTfqKpLejZ7EfCUdtmR5rx2nNNChlPf8mgus6g9Xj/yyCya3EyzCPqTR0swi7rKLDKLJmMWzSGzaFILPYugP3lkFplFD2EWPVjXOr2oqt77oT/WrluR5OFzcPj/B7yhqs4CSLIzTcDO5JGl/0BzX/NEQ3kfNuMKm0kX96iqq3pXJlkEvJPmMb4zsQOwbVXd394vfgvw5KpaNota3wC8ZFyt/57mCSZfAfoRqDMNwU1oQuNlwEE04fflqrp4lvU8tape2va03wjsVlWV5Cyax+POqT58i/As4OdVdSVAkq8A+9J8CzZmX+CL1dxLfXaSDZJsWlVzPgnksOljHs1lFkF/8sgsmtxsLsj6kUdmUYeZRWbRJMyiuWUWTWKBZxH0J4/MIrNoImZRj651eq2bZI2q+i1AVS0BSLIWMNMnN/b61ViYtsf/YZKZDp/9T+DrE30DkeTVMy0QeAvw3SR7VdX/tMd7O00APHfSPSf3m6qmC7qaR+FePsswBVh/fOi3x7+qHZ7cDzNKlGomifwWzSOQ16IJ1TOTvK+qjpl1UU2Int6GztjruR/nOsffItAMpb625/V1PPQbgom22Yw+PPlkyPQzj+Yyi6A/eWQWTW7Gf9/9zCOzqJPMIrNoMmbR3DKLVm6hZxH0J4/MIrNoImZRj651ep0EfCbJ4VX1vwBJHgEc27bNSJJntj/+NMlnaIZOFs29vWfO8LCLgFtX0rbDDI9JVZ2e5Nc0T/DYD3g18IfAH1fV7TM9LvC0JBe1Pwd4Uvt67DHDM/km5Z4Ztk2q/T+5icIoNENUZ3rctYC9aYJ0C+DjNI+unY3z0k6IWVWv7HmvJwFzPh/Bd+//6rS+RUnyGuA1Pav+uar+uXeTCXYb/7ufyjZdNOd51Kcsgj7kkVnUvyxqjz3XeWQWdZdZZBaZRSsx3Sxqa5ksj8yilVvQWQR9yyOzCLOoZRatRNc6vd5FM1nfNWnuZ4ZmosHPt20zNf4Rqn/X8/NMRw5dNknbTTM5Zs/+30tyGE3Y/xjYtarunc0xga1muf+Ex+wJ6V4Bfn+mB62qlU0QOWNJvkDzlJFvAu+tqv+ei+NW1avb469NM5R4Z5p/Uz8EdpuL95iNNjj/eZJNrqOZR2DM44AbZrBNF/Ujj+Y8i6B/eWQWzX0WQX/yyCzqNLPILDKL5tAq8sgsWrkFn0Xt/nOdR2aRWTQRs6hH2pF6nZLmvvAnty9/XlUz7pHuOebDgP2r6sTZHmsK7/XPVfWaVW854b5jPegB1gJ+C6zggd7+ORuSmmRjmkkoZ/SPKMlTgMfw4GGVAE+geXTxz2dZ4pxJcj8wNg9B7/nOye81yYk03xr8S7vqZcAGVfXS2Ry335KsDlwO7ApcD5wLHFQ999An2Zvm6Sd70Qyr/XhVPWsA5Q7EXOfRfGZR+34zyiOzqH/6mUdmUXeZRWbRXDOLHsosWrWFmkXtvvOSR2bRA02YRWYRQFV1ZgHe1vPzAePa/mEOjv+DOax1w5UsGwHXDfp3OUG9z6b5RuJk4BnAfwPLgJuBPWd4zH+jmXhx/PodgFMHfc7z/Pu9cCrrhnGhCcrLgSuA/9uuex3wuvbn0Dw95ApgKbDDoGuep99L3/JoLrOoPd7I5JFZ1Pffr1nUscUs6tvv1Szq7+/XLOrYYhb17fdqFvX392sWdWDp1EivJP9ZVc8c//NEr2d4/HfR3Md8Ag/0JlNVt83gWCuAq3nwvbRjPf+bVdWas6l1riU5D3gH8EiaYZQvqqqzkzyN5ukYz5jBMf+7qv6/lbQtraptZlX0CEmyBPh0VZ3dvt4ROLSq3jDQwjRj/cyjucyi9ngjk0dmUX+ZRd1jFvWHWdRfZlH3mEX9YRb1l1nUDV2b0ysr+Xmi1zMxNondG3vWFTO7t/lKmnu4rxnfkGT8UNJhsHpVfQcgzZMwzgaoqkuTGf9q156kbbaPLh41OwKHJBn797A58LMkS5n5JJQarH7m0VxmEYxWHplF/WUWdY9Z1B9mUX+ZRd1jFvWHWdRfZlEHdK3Tq1by80Svp3/wqifO9hg9jgYeBTwkTIEj5/B95krvc1TH33s/09/tuUn+oqo+27syyauAhzwiuOP2HHQBmnN9y6M5ziIYrTwyi/rLLOoes6g/zKL+Mou6xyzqD7Oov8yiDuja7Y0raIa0jj329H/HmoC1q2qNGR73bVV1ZPvzAVX11Z62f6iqd8yi5omeCPGpmv1TheZUP363SR4DfA34DQ8E6A7AmsBLqmrZbOuWBqVPfzN9y6L2GEOfR2aRND1mUX+YRdL0mEX9YRZJq9apTq9+6fM96CP5RIi5lOT5NI+ZBbi4qv59kPVIw2oe5i1c0HlkFklTYxb1l1kkTY1Z1F9mkbqia7c39ks/70Hfsqq263n9H0kunOUxR0pV/QfwH4OuQxoB/Z63cEHnkVkkTZlZ1EdmkTRlZlEfmUXqiocNuoAR0c+5wv4rybPHXrRPhPjRLI8pqZv6Om8h5pGkqTGLJA0Ds0jSKnl74xT0a66w9tg/A7bkgYkSNwd+RjMpoU+EkPQ7/cyi9vjmkaRVMoskDQOzSNJU2Ok1YEmeMFl7VV09X7VIWtjMI0nDwCySNAzMIqkb7PSSJEmSJElS5zinlyRJkiRJkjrHTi9JkiRJkiR1jp1ekiRJkiRJ6hw7vSRJkiRJktQ5dnpJkiRJkiSpc+z0kiRJkiRJUufY6SVJkiRJkqTOsdNLkiRJkiRJnWOnlyRJkiRJkjrHTi9JkiRJkiR1jp1ekiRJkiRJ6hw7vSRJkiRJktQ5dnpJkiRJkiSpc+z0kiRJkiRJUufY6SVJkiRJkqTOsdNLkiRJkiRJnWOnlyRJkiRJkjrHTi9JkiRJkiR1jp1ekiRJkiRJ6hw7vSRJkiRJktQ5dnpJkjopyVVJdptg/cVJnjeL434zyaGzqU2SVmYso9JYnOT2JD8ddF2S5tfYdUySdyT53ADef4sklWT1eXq/xyT5QZJfJflw73nPdy3qFv/RSJIWlKp6+iz3f9Fc1SJJ441lVJJdgN2Bx1XV3YOtStKgVNU/DLqGefIa4BZg/aqqQRej7nCklyRJkjR8ngBcZYeXpFHXjlxdVd/DE4BL7PDSXLPTS9OS5G+SXN8OO70sya5JHpbkb5NckeTWJCcm2bBnn1ckubpt+7+9txwlWZLk/T3bPi/JdT2vH5vkX5P8Mskvkrypp+097Xt9sa3n4iQ79LQ/PsnJ7b63Jjm2p+2VSX7W3jLw7SRP6OfvTdJgJXlamyF/Pi6DnpXkvCTLk9yU5CPt+rWT/EubHXckOTfJY9q2M5O8uv35sCQ/SvLRdrsrk/xRu/7aJDd7K6Sk6Wgz6rXA54CdktyV5L1j10jtLT+3tNsdPOh6JfVX+5nnX3peH9Lz2epdE1zX/KS9JrkxybFJ1uzZt5K8Lsn/tJ+DPpEkbdtqSY5q8+VKYO9V1DV2DXRMkjuTXJpk1572M5N8IMmPgP8Ffr+9Rjq33f7cJH/UbrsEOBR4W5t5u40/73Hv/cgkn2/P8fok70+y2kx/x+o2O700ZUm2BA4H/rCq1gP2AK4C3gTsBzwXeCxwO/CJdp+tgU8Br2jbNgIeN8X3exhwKnAhsBmwK/DmJHv0bPYnwFeADYBvAMe2+64G/BtwNbBFu/9X2rb9gHcAfwr8HnAW8OWp/yYkjZIkzwS+A/yfqvrKuOaPAR+rqvWBJwEntusPBR4JPJ4mt14H3LOSt9gRuKjd7niarPlD4MnAy4Fjk6w7ZyckaSG4giZ3flJV61bV37XrNwE2prmuORT45/b6TNIC0H62+iRwMLApzbXKZj2brADeQpMTO9F8fnrDuMO8mOY6ZTvgpTSf6QD+om17BrADsP8UStoRuLJ9v78DTk7P4Aeaz4CvAdYDfgWcBnyc5prpI8BpSTaqqsOALwFHtpl3xire9wvAfTTXWs8AXgi8egr1agGy00vTsQJYC9g6yRpVdVVVXQG8Fvi/VXVdVf0aeA+wf5qJBvcH/q2qftC2vQu4f4rv94fA71XV+6rqN1V1JfBZ4M97tvlhVZ1eVSuA42jCG+BZNJ1sf11Vd1fVvVX1w7bttcA/VtXPquo+4B+A7R3tJXXSLjQd4odW1b9N0P5b4MlJNq6qu6rq7J71GwFPrqoVVXV+VS1fyXv8oqoWtzl0Ak1H2fuq6tdV9R3gNzQXZZI0F97V5sv3aT5AvnTQBUmaN/sDp1bVD6vqN8C7gd/dDther5xdVfdV1VXAZ2gGJvT6YFXdUVXXAP8BbN+ufylwdFVdW1W3Af84hXpubvf5bVWdAFzGg0eILamqi9vPXC8E/qeqjmvr+zJwKbDPdH4B7cj7FwFvbj/n3Qx8lAd/RpR+x04vTVlV/Rx4M02n1s1JvpLksTT3X3+tHUZ7B/Azmg6yx9B0PF3bc4y7gVun+JZPAB47dtz22O9ojztmWc/P/wus3Xa2PR64ug3YiY77sZ5j3gaEB39LIqkbXgf8uKr+YyXtrwKeClzaDrN/cbv+OODbwFeS3JDkyCRrrOQYN/X8fA9AVY1f50gvSXPh9nFzfF1Nc60laWEY/9nqf+n5bJXkqUn+LcmyJMtpvtzfeNwxxn9+GrtGedCxafJl7Li7tLcd3pXk4p5trh83B9f4TOo93mN7j9mz/XQ/gz0BWAO4sefz3GeAR0/zOFog7PTStFTV8VW1M03YFPBPNGH2oqraoGdZu6quB26k6YACIMk6NKMnxtwNrNPzepOen6+lGUHRe9z1qmqvKZR6LbB5Jn6s7bXAa8cd9+FV9eMpHFfSaHkdTRZ8dKLGqvqfqnoZzYXSPwEnJXlE+43le6tqa+CPaIb7HzJvVUvSxB6V5BE9rzcHbhhUMZLm3Y30TBWT5OE8+LPVp2hGTz2lnbrhHTRf7k/12I/veb352A9VdVZ72+G6456CvdnYnGA9+/RmUm+H2A00nyF7bQ5cP8X6xlwL/BrYuOez3PqzfTq3ustOL01Zki2TvCDJWsC9NKMXVgCfBj4wdntgkt9Lsm+720nAi5Ps3E6i+D4e/O/uAmCvJBsm2YRmJNmYnwLL00ye//B2csX/L8kfTqHcn9IE9weTPCLNpNTPads+Dbw9ydgjwR+Z5IBp/0IkjYJfAXsCf5zkg+Mbk7w8ye9V1f3AHe3qFUmen2Sbdn7A5TS3O66Yr6IlaRLvTbJmkl1oOuS/OuiCJM2bk4B92gnh1wTey4M7tdajuW65K8nTgNdP49gnAm9K8rgkjwL+dgr7PLrdZ43289RWwOkr2fZ04KlJDkqyepIDga1p5mGesqq6kWau1g8nWT/NQ9WelGT8bZwSYKeXpmct4IPALTTDYh9N8+3Bx2jmzPlOkl8BZ9NMakhVXQy8kWZy5xtpJrm/rueYx9FMVH8VTXidMNbQzo+zD8195r9o3/dzNBM2Tqpn3ycD17TveWDb9jWaER1faYf9/jfNfeGSOqiq7gB2B16U5O/HNe8JXJzkLpos+/Oqupdm1OlJNBeOPwO+D0z4BCFJmkfLaK6lbqCZ9Pl1VXXpYEuSNF/az1b/h+ahOTfSfLl3M83IJ4AjgIPa9Z+l57PVFHyWZmqHC4H/BE6ewj7nAE+h+Zz2AWD/qppwKpt2/YuBt9Lckvk24MVVdcs0ahxzCLAmcAlNJp5EM7G/9BB58C24Uv8luQp49RSeyiFJkiQgyfOAf6mqKT0FW1L3tU+HvoPmdsZfzPN7H0bzmW7n+Xxfaboc6SVJkiRJ0ghIsk+Sddr5/Y4CltLcNSNpAnZ6SZIkSZI0GvalucX5BppbC/+8vH1LWilvb5QkSZIkSVLnONJLkiRJkiRJnWOnlyRJkiRJkjpn9UEXMFMbb7xxbbHFFoMuQ9IsnH/++bdU1e8Nuo7ZMIuk0WcWSRoWo55HZpHUDaOeRb1GttNriy224Lzzzht0GZJmIcnVg65htswiafSZRZKGxajnkVkkdcOoZ1Evb2+UJEmSJElS59jpJUmSJEmSpM6x00uSJEmSJEmdY6eXJEmSJEmSOsdOL0mSJEmSJHWOnV6SJEmSJEnqHDu9JEmSJEmS1Dl2ekkaWkmuSvKbJBuPW39BkkqyRZIl7TZ39SwXJtml5/Xd7fa922w+qPOS1B1Jtk5yXpLb2+WMJFv3tK+V5NNJbkpyW5JTk2w2yJoljbYkB7W5c1eSG5N8M8nOSd6T5LdJftUulyc5NsmmPfs+L8l1Pa/XTHJykh8lWT/JoUnOT7I8yXVJjkyy+mDOVNKwaj+n3dPm0O1JTkvy+Lat9/PZbUm+m+RpExzjzHbftcatn+jz3YEzrdVOL0nD7hfAy8ZeJNkGePi4bY6sqnV7lu2q6qyx18DT2+026NnmmnmqX1K33QDsD2wIbAx8A/hKT/tfAjsB2wKPBe4AjpnfEiV1RZK/Ao4G/gF4DLA58Elg33aTE6pqPZpMegmwCXB+b8dXz7HWAk4GNgBeWFXLgXWAN9Pk2Y7ArsARfTshSaNsn/az1qbATTz4+ubItm0z4Hrg8707JtkC2AUo4E8mOPb4z3cnzLRIO70kDbvjgEN6Xh8KfHFAtUhaoNpvNN+e5JL2W8nFSdauqjuq6qqqKiDACuDJPbs+Efh2Vd1UVffSdIg9vee4H0tybTuq4vwku8zriUkaGUkeCbwPeGNVnVxVd1fVb6vq1Kr6695t2/UXAwcCvwTeOu5Y6wCnAmsAe1fV3e1+n2q/OPxNVV0PfAl4Tv/PTtKoaq9vTgK2nqDtHuBEYPtxTYcAZwNLaD7f9Y1DVTVazlsMS08adBWaX2cDr0iyFXA5zcXbzsD7B1qVFg5zRw84GNgDuJvmw+I724UkdwDr0nyh+O6efT4PfCzJ2Civg4Fv9rSfS/Mh9k6aUWFfTbJFewEpaYxZDM2o0bWBr011h6pakeQUmuwasxZNDt0JHFBVv57kEH8MXDyDWqWR9dXLv8rpV54+6DJGRtuJfiDN57bxbY+guWvn5+OaDgE+ApwDnJ3kMVV1Uz/qc6SXRsvSk2DZ0kFXofk3Ntprd+BSmiGyvY5IckfP8oV5r1DdZe7oAcdW1bVVdRvwAXpuva6qDYBHAocD/9Wzz+XANTS5tRzYiqaTa2y/f6mqW6vqvqr6MM2H0S37fSLSyDGLATYCbqmq+6a53w00tzuOWY+mA+0Lk3V4JVkE7AAcNd1CpVF2+pWnc9ltlw26jFHw9fZLv+U0n9M+1NN2RNv2K5oBC68Ya0iyM/AE4MSqOh+4Ajho3LF7P9/dMpsiHeml0bPJNrDotEFXobnwykx1y+OAH9DcJjTRrY1HVdU756os6SHMnW6behZd2/Pz1TRzdP1OVd2d5NPAL5NsVVU3A5+iGZmxEc0IsbfRjLDYESDJW4FXt8cqYH2auXQkjbcQsnjyPLoV2DjJ6tPs+NoMuK3n9S3Am4AvJrmrqr49fock+wEfBHarqll94JRG0ZYbbsniPRcPuoyBWcKSqWy2X1WdkWQ1mnkFv9/zMJ+jquqd7cPDvkXzhd5FbduhwHd6suX4dt1He449Z5/vHOklaehV1dU0E9rvRTPhqiQNwuN7ft6cZvTEeA+jmQh67AmN2wFLquq2dkTFMcCzkmzczt/1N8BLgUe1o8XupJkbTJLG+wlwL7DfVHdI8jBgH+Cs3vVVdTLwF8BJSZ4/bp89gc/STFK94IfXSZpcVa1oM2UFzaiu3rZraKZv+FiShyd5OM11z3OTLEuyDHgLsF2S7fpRn51ekkbFq4AXjE20KkkD8MYkj0uyIfAO4IQkuyd5RpLVkqxPMz/F7cDP2n3OBQ5J8sgkawBvAG5ov91cD7iPZpLp1ZO8m2aklyQ9RFXdSTNn4CeS7JdknSRrJHlRkiN7t23XbwV8meYJjh+Z4Hhfprkl+5Qkz2n3ewHN5PV/VlU/7fMpSeqANPYFHsUD1z+/U1Xfpfmi8DU0nfYraCa9375dtqLpmD9k/L5zwU4vSSOhqq6oqvNW0vy2JHf1LA7Dl9QPxwPfAa5sl/cDG9B8qLyTZk6KJwN79kxEfwTNyIz/oenc2gt4Sdv2bZpbHS+nuV3yXh58C6UkPUhVfQT4K5qHaPySJjMOB77ebnJgkrtoHpzxDZpbIv+gqiYamUpVfYHmyY6nJXkW8C6a+QlP77mu+uZE+0pa8E5t82Y5zVynh7ZPjZ3Ih2imeHgNsLiqrqmqZWMLcCxwcJI5n4LLOb0kDa2q2mIl6+/jgdt/DmuXyY5zFd4uJGn2zq2qfxy37qvtMqGqupXmiY0Tta2gGcX6qp7VR060rSSNqaov0YzGGu/HwHtWse+ZwOPGrfssze2MAM8fv48kjbeyz2lt22ETrDsBOGGSfU4ETmxfPmT/2XCklyRJkiRJkjrHTi9JkiRJkiR1jrc3SpIkrcJkw/glSZI0nBzpJUmSJEmSpM6x00uSJEmSJEmdY6eXJEmSJEmSOsdOL0mSJEmSJHWOE9lrNJy3GJaeBMsugk22HXQ1krpoLGfGM3ckLUQry8RBMYulzvjq5V/l9CtPH3QZK3XpbZfytA2fNugyNEcc6aXRsPQkWLZ00FVI6jJzRpIeYCZK6pPTrzydy267bNBlaIFwpJdGxybbDLoCSV23yTaw6LQHr1u892BqkaRBmygTB8Usljplyw23ZPGeiwddxoQWfWvRoEvQHHKklyRJkiRJkjrHTi9JkiRJkiR1jp1ekiRJkiRJ6hw7vSRJkiRJktQ5dnpJkiRJkiSpc+z0kiRJkiRJUufY6SVJkiRJkqTOsdNLkiRJkiRJnWOnl6ShleSqJLv1vP7zJLcneW6SSnJXu9yU5N+S7D7B/ve02yxLsiTJuvN/JpJGnXkkaRiMy5Kx5di2bdMkn01yQ7v+yjZrnta2bzEur+5KcmHbdliSFe265UkuTPLiQZ6rpOE1StdFdnpJGglJDgU+AewNXN2u3qCq1gW2A74LfC3JYeN23afdZnvgGcDb56VgSZ1lHkkasH2qat2e5fAkGwE/BtYBdgHWA54JfB/Yfdz+G/Tsu13P+p+0GbUB8EngK0k26PfJSBptw35dZKeXpKGX5DXAh4E9qurH49urallVfQx4D/BPSR6SbVW1DPg2TahK0oyYR5KG1FuA5cArquqKatxRVYur6pjpHKiq7geOAx4BPKUPtUrqiFG4Llq9HweV+mrZUli896Cr0Px5PbAzsGtVXbiKbU8GPgRsCfystyHJ44AXAf/ejyLVceaOGuaRNEhm8WR2A77WdljNSpLVgEXAb3lg1Ia0oFx222Us+taiQZcx7EbiushOL42WbfYfdAWaf7sD/wEsncK2N7T/u2HPuq8nKWBdmiD9u7ktT51n7ugB5pE0KGZxr68nua/n9V8DGwPLxlYk+RPgi8BqNLctvrBn+1uSjP38/qo6qv352UnuoBnhdR/w8qq6uT+nIA2vvX5/r0GXMCpG4rrITi+Nlh0WNYu64ZVZ9TbwOuBdwOeSvKqqapJtN2v/97aedftV1RlJngscT3NReMcMqtVCZe5039SyCMwjaXAWShZPLY/2q6ozelckeTWw6djrqvoGsEG7/uXj9t+4qu7joc6uqp3byaQ/TzM32InTKV/qggOeegAHPPWAQZcxUEtYMpXNRuK6yDm9JA27m4FdaS68PrmKbV/Sbn/Z+Iaq+j6wBDhqfJskTZF5JGlYfQ/Yb6L5cqarqu4C3gC8IskzZl2ZpK4aiesiO70kDb2qugF4AbBnko+Ob0/ymCSH0wyJffsk81kcDeyeZPt+1Sqp28wjSUPqI8CjgOOSPCmN9ZjhxNBVdSvwOeDdc1eipK4Zhesib2+UNBKq6tokLwB+AGzSrr4jzaQUdwPnAQdU1bcmOcYvk3yRZhjun/W7ZkndZB5JGrBTk6zoef3dqnpJkmcDfw/8EFgPuKn9+fUzfJ+jgSuSbFtVF82mYEndNezXRXZ6SRpaVbXFuNe/AB7fvnzZdPdv1830wk/SAmYeSRoGE2VJT9sNwKsmab8KmHDSsKpaAg+exKeqrgPWmn6VkrpulK6L7PSSJEmShsV5i2HpSYOuApZdBJtsO+gqJPXJVy//KqdfefpA3vvS2y7laRs+bSDvrYXHOb0kSZKkYbH0JFg2lae/S9LMnX7l6Vx220PmFJc6x5FekiRJ0jDZZBtYdNpga1i892DfX1Lfbbnhlizec/G8v++iby2a9/fUwuVIL0mSJEmSJHWOnV6SJEmSJEnqHDu9JEmSJEmS1Dl2ekmSJEmSJKlznMhew2Vlj+n2sdmSJEmSJGkaHOml4eJjuiVJkiRJ0hxwpJeGz0SP6fax2ZIkSZIkaRoc6SVJkiRJkqTOsdNLkiRJkiRJnWOnlyRJkiRJkjrHTi9JkiRJkiR1jp1ekiRJkiRJ6hw7vSRJkiRJktQ5dnpJ6oQkhyX54aDrkCRJkiQNBzu9JA2tJFcluSfJXT3LsTM81plJ7m2PcWeSHyTZpqf90CTnJ1me5LokRyZZfe7ORtIoa/PoN0k2Hrf+giSVZIskS9ptejPrwiS79Ly+u92+d5vNB3VekkaLWSRpmCXZOsl5SW5vlzOSbN3TvlaSTye5KcltSU5Nslk/a7LTS9Kw26eq1u1ZDh+/wTQ6pw6vqnWBjYAzgeN62tYB3gxsDOwI7AocMZvCJXXOL4CXjb1oO84fPm6bI8dl1nZVddbYa+Dp7XYb9GxzzTzVL6kbzCJJw+oGYH9gQ5rPVd8AvtLT/pfATsC2wGOBO4Bj+lmQnV6SRk57K+OPknw0yW3Aex5oyjHtSK5Lk+w60f5VdR9N+G7ds+5T7cXgb6rqeuBLwHP6fCqSRstxwCE9rw8FvjigWiQtXGaRpIFqR52+Pckl7YiuxUnWrqo7quqqqiogwArgyT27PhH4dlXdVFX30nwme3rPcT+W5Nr27pvzk+wy21q9dUfSyp23GJaeNOgqVmZHmpB8NLAGcGC77iSabxX+FDg5yROr6rbeHZOsCRwMnD3J8f8YuLgPdasrhvvvQ/1xNvCKJFsBl9Pkzs7A+wdaldQvy5bC4r0HXYUeyizSyLvststY9K1Fgy5Ds3MwsAdwN3Aq8M52IckdwLo0A63e3bPP54GPJRkb5XUw8M2e9nOB9wF30owK+2qSLdoOshlxpJeklVt6UnPBO1hfT3JHz/IX7fobquqYqrqvqu5p190MHF1Vv62qE4DLgN6r9Y+3AXwXcDjw3oneMMkiYAfgqH6ckDpiOP4+NP/GRljsDlwKXD+u/YhxmfWFea9Qmgvb7A+bbLPq7TQoZpFG1l6/vxdbbrjloMvQ7B1bVde2Aww+QM9t11W1AfBIms9c/9Wzz+XANTSZtRzYiqaTa2y/f6mqW9vPeB8G1gJm9Y/FkV6SJrfJNrDotP4c+5WZylb7VdUZvSuSHAZcO8G217dDacdcTXOv+Jg3VdXnkjyM5tbFbyR5blVd1HPs/YAPArtV1S1TOg8tXP38+9D8mVoWjTkO+AHN8PyJbic6qqreORdlSQO1w6Jm0fyaeh6ZRRpZBzz1AA546gGDLkOTWMKSqWzW+3ls/OcuquruJJ8Gfplkq6q6GfgUsDbNHMt3A2+jGem1I0CStwKvbo9VwPo0d/HMmCO9JI2qmmDdZkl6rxY3p5lM8cE7Vt1fVWcBPwdeOLY+yZ7AZ2kmz3cIj6SHqKqraSaR3gs4ecDlSFqgzCJJQ+DxPT9P+LmLps9pHWDsCY3bAUuq6raq+jXNJPbPSrJxO3/X3wAvBR7Vjha7k2ZusBlzpJekLnk08KYknwT2oxkue/pEGybZiWYi+4vb1y+gmbz+JVX103mpVtKoehXNxdjd03h6rCTNNbNoHhx/zjWccsH4u0dH32W3PZdnPOP7gy5Do+2NSf4N+F/gHcAJSXYHbgEuAh5BM9fg7cDP2n3OBQ5Jcma73xtopq25Jcl6wH3AL4HVk/wtzUivWXGkl6Rhd2qSu3qWr02y7TnAU2iC9gPA/lV1a0/7sWPHobkt4J1VNTZx4rto7js/vee9eidVlCQAquqKqjpvJc1vG5dZ3iYtqS/MovlxygXXc8mNywddhjSMjge+A1zZLu8HNgC+TDNC6wqaJzfu2TMR/RHAvcD/0HRu7QW8pG37Ns2tjpfT3C55LxNPaTMtfiMgaWhV1RaTNC8Zt+2SnnWHT3Cs563ivZ4/ndokLSwry6Oquo8Hht0f1i6THecqZjlMX9LCZRYNxtabrs8Jr91p0GXMqUXf+udBl6DRd25V/eO4dV9tlwm1AxIOXknbCpoRrK/qWX3kbIt0pJckSZIkSZI6x04vSZIkSZIkdY63N0qSJEmSJGlKVjENzVBxpJckSZIkSZI6x04vSZIkSZIkdY6dXpIkSZIkSeocO70kSZIkSZLUOU5kr9GxbCks3nvQVSwsyy6CTbYddBXScDlvMSw9yb8PSZIkacjZ6aXRsM3+g65AkhpLT2o64SVJkiQNNTu9NBp2WNQsml+OrJMmtsk2g65AkiRJ0io4p5ckSZIkSZI6x04vSZIkSZIkdY6dXpIkSZIkSeocO70kSZIkSZLUOU5kr/44b3HzhLPpWnYRbLLt3NcjDdjx51zDKRdcP+gyNJll+3LC5qcMugpJfTQSWWwWSZI0Zxzppf5YehIsWzroKqShccoF13PJjcsHXYYkLWhmsSRJC4sjvdQ/m2wDi06b3j6L9+5PLdIQ2HrT9TnhtTsNugytzOL3D7oCSfNg6LPYLJIkac440kuSJEmSJEmdY6eXpKGV5Kok9yS5q2c5tm3bNMlnk9zQrr8yyZIkT2vbt0hS4/a9sG07LMmKdt3yJBcmefEgz1XScGvzaLcJ1q+f5Ogk17SZ8vP29cYT7Zfkz5PcnuS581m/pG5LsnWS89p8uT3JGUm27mlfK8mnk9yU5LYkpybZbJA1Sxpdo3RdZKeXpGG3T1Wt27McnmQj4MfAOsAuwHrAM4HvA7uP23+Dnn2361n/k6paF9gA+CTwlSQb9PtkJHVHkjWB7wFPB/YE1gf+CLgVeNYE2x8KfALYu6q+P4+lSuq+G4D9gQ2BjYFvAF/paf9LYCdgW+CxwB3AMfNboqQuG9brIju9JI2itwDLgVdU1RXVuKOqFlfVtC7gqup+4DjgEcBT+lCrpO46BNgceElVXVJV91fVzVX191V1eu+GSV4DfBjYo6p+PIhiJY2+dpTE25Nc0o6OWJxk7fY66KqqKiDACuDJPbs+Efh2Vd1UVffSdIg9vee4H0tybTsC/vwku8zriUnqgqG8LnIie0mTW7Z0GB8wsBvwtbbDalaSrAYsAn4LXD3b42mBGc6/D82f3YBvVdVdq9ju9cDOwK5VdWH/y5LUN+ctbp5SPlgHA3sAdwOnAu9sF5LcAaxLM7jh3T37fB74WJKxUV4HA9/saT8XeB9wJ82osK8m2aLtIFNHXXbbZSz61qJBl6HuGMrrIkd6SVq5bfZvnsI5WF9PckfP8hc0w/aXjW2Q5E/atl8l+c64/W/p2feInvXPbi8M7wWOAl5eVTf3+2TUIcPx96HB2gi4cQrb7Q6cDSztbzmS+m7pSc0XHoN1bFVdW1W3AR8AXjbWUFUbAI8EDgf+q2efy4FrgOtpRstvRdPJNbbfv1TVrVV1X1V9GFgL2LLfJ6LB2ev392LLDf1PrDk1lNdFjvSStHI7LGqWfnllprLVflV1Ru+KJK8GNh17XVXfADZo17983P4bV9V9Exz37KraOcm6NN9+7gKcOJ3ytcD1++9D82dqWTSRW+nJokm8DngX8Lkkr2pvP5I0qjbZBhad1p9jTy2Pru35+WqaObp+p6ruTvJp4JdJtmq/1PsUsDbNh9K7gbfRjPTaESDJW4FXt8cqmrl4Np7VuWioHfDUAzjgqQcMugwNqSUsmcluQ3ld5EgvSaPoe8B+SWadYe3w2zcAr0jyjFlXJmkhOQPYI8kjVrHdzcCuNJ3rn+x7VZK67vE9P29OM4n9eA+jeeDP2BMatwOWVNVtVfVrmknsn5Vk43b+rr8BXgo8qh0tdifN3GCSNFVDeV1kp5ekUfQR4FHAcUmelMZ6wPYzOVhV3Qp8jgfPfSFJ462RZO2xheYhGNcC/5rkaUkelmSjJO9IslfvjlV1A/ACYM8kHx1A7ZK6441JHpdkQ+AdwAlJdk/yjCSrJVmf5lrpduBn7T7nAockeWSSNWi+8Luhqm6heQr2fcAvgdWTvJtmpJckTWYkrovs9JI07E5NclfP8rX2Au3ZNPNx/RD4FXABzUXb62f4PkcDeyXZdg5qltRNpwP39Czvopm09VLguzTz5PyU5pagc8bvXFXX0lzg7Z/kH+epZkndczzwHeDKdnk/sAHwZZoRWlfQPLlxz56J6I+guW76H5rOrb2Al7Rt36a51fFymtsl7+XBt1BK0kRG4rrIOb0kDa2q2mKSthuAV03SfhUrGZZfVUvgwTeqV9V1NJO2StJDTJZHwJvbZZX7VdUvePCtSZI0XedW1fgPiF9tlwm1o9oPXknbCpprqt7rqiNnW6Sk7hql6yJHekmSJEmSJKlzHOklSZIkSRpZx59zDadccH1fjn3JjcvZelOnOJNGlSO9JEmSJGkEVNUWVXXGoOsYNqdccD2X3Lh80GVIGkKO9JIkSZIkjbStN12fE16705wf98DP/GTOjylp/jjSS5IkSZIkSZ1jp5ckSZIkSZI6x04vSZIkSZIkdY5zekmStCrnLYalJzU/L7sINtl2sPVIUhf1Zu2w8v8DJGmkONJLkqRVWXoSLFs66CokqdvMWknSHHOklyRJU7HJNrDoNFi896ArkaTuGsvaYeX/B0jSSHGklyRJkiRJkjrHTi9JkiRJkiR1jp1ekiRJkiRJ6hw7vSRJkiRJktQ5dnpJkiRJkiSpc+z0kiRJkiRJUufY6SVJkiRJkqQ5l+SwJD8c1Pvb6aW5cd5iWLz3A8uyiwZdkTogyVVJdptg/fpJjk5yTZK7kvy8fb3xRPsl+fMktyd57nzWL6lbkhyU5Lw2d25M8s0kOyd5T5LfJvlVu1ye5Ngkm/bs+7wk1/W8XjPJyUl+1GbaoUnOT7I8yXVJjkyy+mDOVNKwmuwaJ0m1+XRXkpuS/FuS3SfY/552m2VJliRZd/7PRNIoG5clY8uxMzzWmUnubY9xZ5IfJNmmp31W10h2emluLD0Jli0ddBVaAJKsCXwPeDqwJ7A+8EfArcCzJtj+UOATwN5V9f15LFVShyT5K+Bo4B+AxwCbA58E9m03OaGq1gM2BF4CbAKc39vx1XOstYCTgQ2AF1bVcmAd4M3AxsCOwK7AEX07IUkjr/caB7i6Xb1BVa0LbAd8F/haksPG7bpPu832wDOAt89LwZK6Zp+qWrdnOXz8BtPonDq8zaWNgDOB43raZnWNZKeX5s4m28Ci05plk20HXY266xCaD5svqapLqur+qrq5qv6+qk7v3TDJa4APA3tU1Y8HUayk0ZfkkcD7gDdW1clVdXdV/baqTq2qv+7dtl1/MXAg8EvgreOOtQ5wKrAGTWf83e1+n6qqs6rqN1V1PfAl4Dn9PztJo2hV1zhVtayqPga8B/inJA/53FdVy4Bv03R+SdKstbcy/ijJR5PcRpNBbVOOaUdyXZpk14n2r6r7gK8AW/esm9U1ksPmNXyWLW1ukZQmthvwraq6axXbvR7YGdi1qi7sf1nSKpy3uBkVq1G0E7A28LWp7lBVK5KcAuzRs3ot4JvAncABVfXrSQ7xx8DFM6hVUr8N/lp1Otc4JwMfArYEftbbkORxwIuAf+9HkVpAvMbRg+1I03H1aJov+Q5s151EM1rrT4GTkzyxqm7r3bG9q+dg4OxJjj+tayRHemm4bLN/M2JMWrmNgBunsN3uNGHpfbcaDt4GPso2Am5pv32cjhtobnccsx5NB9oXJuvwSrII2AE4arqFSuqz4bhWnc41zg3t//Zm0deT/Aq4FrgZ+Lu5LU8Ljtc4C9XXk9zRs/xFu/6Gqjqmqu6rqnvadTcDR7cj4k8ALqO5NXvMx5PcAdwFHA68d6I3nMk1kiO9NFx2WNQsWhhemZnsdSvwkDlyJvA64F3A55K8qqpqJm8mzamx28A1XFadRbcCGydZfZodX5sBvd9g3gK8Cfhikruq6tvjd0iyH/BBYLequmUa7yVpPvT7WnVq10bTucbZrP3f3izar6rOaB/wczzNyIs7ZlCt9ACvcbplalm0X1Wd0buinUPw2gm2vX5cVl0NPLbn9Zuq6nPtrdjPAb6R5LlV9bsn5M30GsmRXpJGzRnAHkkesYrtbqaZ5HAXmsmmJWmmfgLcC+w31R3ai7Z9gLN611fVycBfACclef64ffYEPkszMaxfmUtamelc47yk3f6y8Q3tA36W4KhSSXNroo74zZL09qRtzgMjUR/YsZmv+Szg58ALx9bP5hrJTi9Jw26NJGuPLTRP8rgW+NckT0vysCQbJXlHkr16d6yqG4AXAHsm+egAapfUAVV1J/Bu4BNJ9kuyTpI1krwoyZG927brtwK+TPMEx49McLwv0wzdPyXJc9r9XkAzMeufVdVP+3xKkkbcqq5xkjwmyeE0ty6+varuX8mhjgZ2T7J9v2qVJJr5vd7UXicdAGwFnD7Rhkl2opnI/uL29ayukby9UdKwGx+GH6CZzP69NI/ifhRwE3AKcM74navq2jYof5Dk3qrysdySpq2qPpLkJuCdNBdevwLOp8mkFwIHtsPuQ/PN5XeBP2g/mE50vC+0k7WeluSFNLcqPRI4veeL0LOq6kX9OytJo6z3Goemkx3gjnY0xd3AeTQPzfjWJMf4ZZIv0mTQn/W7ZkmdcmqSFT2vv0vzmWwi5wBPoZnq4SZg/6q6taf92CRHtz8vA95ZVd9sX8/qGslOL0lDq6q2mKT5ze2yyv2q6hfA4+eoLEkLVFV9iabDa7wf88AjuVe275nA48at+yzNUH2A54/fR5LGW8U1zsumu3+77vVzUZukhWMVn9OWjNt2Sc+6wyc41vNW8V6zukay00uSJEkaJsuWwuK9V71d1yy7CDbZdtBVSJI6xE4vSZIkaVhss/+gK5AkqTPs9JIkSZKGxQ6LmmUhWoij2yRJfeXTGyVJkiRJktQ5jvSSJEnSUDr+nGs45YLr5+x4l9y4nK03XX/OjidJkoabI70kSZI0lE654HouuXH5oMuQJEkjypFekiRJGlpbb7o+J7x2pzk51oGf+cmcHEeSJI0GO70kSZquZUunP+Hysotgk237U48kSeqbS25cbqf5ZJbtywmbnzLoKqQJ2eklSdJ0bLP/oCuQJEnzZN/tNxt0CZJmwU4vSZKmY4dFzTJd0x0ZJkmSBu6gHTfnoB03H3QZw23x+wddgbRSTmQvSZIkSZKkznGklyRJkiRpXh1/zjWccsH1c3KsS25cztabrj8nx5LULY70kiRJkiTNq1MuuJ5Lblw+6DIkdZwjvSRJkiRJ827rTdfnhNfuNOvj+GRFSSvjSC9JkiRJkiR1jp1ekiRJkiRJ6hw7vSRJkiRJktQ5dnpJkiRJkiSpc+z0kjS0klyV5J4kdyW5PclpSR7fti1J8pu27bYk303ytAmOcWa771rj1vfuP7YcOF/nJmm0mEeShkGbRbtNsH79JEcnuabNkJ+3rzeeaL8kf97m0XPns35J3TDuumhsObZt2zTJZ5Pc0K6/sr3WeVrbvkWSGrfvhW3bYUlWtOuWJ7kwyYtnU6udXpKG3T5VtS6wKXATcExP25Ft22bA9cDne3dMsgWwC1DAn0xw7COrat2e5YR+nICkzjCPJA2dJGsC3wOeDuwJrA/8EXAr8KwJtj8U+ASwd1V9fx5LldQt+4y7djk8yUbAj4F1aK571gOeCXwf2H3c/hv07Ltdz/qftNdUGwCfBL6SZIOZFmmnl6SRUFX3AicBW0/Qdg9wIrD9uKZDgLOBJcCh/a1Q0kJhHkkaMocAmwMvqapLqur+qrq5qv6+qk7v3TDJa4APA3tU1Y8HUaykTnsLsBx4RVVdUY07qmpxVR2zqp17VdX9wHHAI4CnzLSg1We6o7RKy5bC4r0HXYU6Isk6wIE0HxrHtz0CeBnw83FNhwAfAc4Bzk7ymKq6qd+1aoStLLeWXQSbbNu/42ukmEdSH5mTM7Eb8K2qumsV270e2BnYtaou7H9ZWlD821VjN+BrbYfVrCRZDVgE/Ba4eqbHsdNL/bHN/oOuQN3x9ST3AesCNwN79LQdkeRwmmH8VwP7jjUk2Rl4AnBiVd2S5ArgIOCjE+wPcF9VbdzH89Cw63dumYtdYB5J/WROztRGwPlT2G534D+Apf0tRwuOf7sL1dh10Zi/BjYGlo2tSPInwBeB1WhuW3xhz/a3JBn7+f1VdVT787OT3EEzwus+4OVVdfNMi7TTS/2xw6JmkSbzyqx6G9ivqs5oe/r3Bb6fZOyWoqOq6p1JNge+BWwJXNS2HQp8p6puaV8f367r/ZB5VFW9c7anoY6YLLfm4ptLc3F4TS2LwDyS+sucnE4e9bqVZq7BVXkd8C7gc0leVVU1kzeTHsK/3e6Zxue03hVJXk1PHlXVN4AN2vUvH7f/xlV1Hw91dlXtnGRdmjlSd6GZOmJGnNNL0kioqhVVdTKwgmZofm/bNcBfAh9L8vAkDwdeCjw3ybIky2juL98uyXbjjy1J02EeSRoyZwB7tLdXT+ZmYFeaD5Cf7HtVkhai7wH7JZl1X1N7y/YbgFckecZMj2Onl6SRkMa+wKOAn41vr6rvAjcArwH2o/kwujXNZNLbA1sBZ9HMqyNJM2YeSRqwNZKsPbbQTPR8LfCvSZ6W5GFJNkryjiR79e5YVTcALwD2TPLRCY4tSbPxEZrro+OSPKm9ZlqPhz7gZ0qq6lbgc8C7Z1pQ529vPP6cazjlgusHXUb3LduXEzY/ZdBVqJtOTbICKJp5cg6tqot77v/u9SGaoL0cWNyOuPidJMcCH0/yN32uWVI3mUeShsHp415/gGby6PcC36X5wHkTcArNwzMepKquTfIC4AdJ7q2qt/e5XkndNHZdNOa7VfWSJM8G/h74IbAeTR79kOZhGjNxNHBFkm2r6qJVbTxe5zu9Trngei65cTlbb7r+oEuRNE1VtcUkbYdNsO4E4IRJ9jmRB+4Hf8j+krQy5pGkYTBZFgFvbpdV7ldVvwAeP0dlSVpgVnFddAPwqknarwIm/MawqpYAS8atuw5Ya/pVNjrf6QWw9abrc8Jrdxp0Gd22+P2DrkCSJEmSJOl3nNNLkiRJkiRJnWOnlyRJkiRJkjrHTi9JkiRJkiR1jp1ekiRJkiRJ6hw7vSRJkiRJktQ5dnpJkiRJkiSpc+z0kiRJkiRJUufY6SVJkiRJkqTOsdNLkiRJkiRJnWOnlyRJkiRJkjrHTi9JkiRJkiR1zuqDLkCSJEnz5/hzruGUC64fdBlTcsmNy9l60/UHXYYkSRpRjvSSJElaQE654HouuXH5oMuQJEnqO0d6SZIkLTBbb7o+J7x2p0GXsUoHfuYngy5BkiSNMEd6SZIkSZIkqXPs9JIkSZpDSQ5L8sNB1yFJkrTQ2eklaeQk2TrJeUlub5czkmzd075Wkk8nuSnJbUlOTbLZIGuWNNqSXJXkniR39SzHzvBYZya5tz3GnUl+kGSbnvZDk5yfZHmS65IcmcQpKSSNz6Lbk5yW5PFt25Ikv2nbbkvy3SRPm+AYZ7b7rjVufe/+Y8uB83VukkZHm0W/SbLxuPUXJKkkW6wkUy5MskvP67vb7Xu32Xwua7XTS9IougHYH9gQ2Bj4BvCVnva/BHYCtgUeC9wBHDO/JUrqoH2qat2e5fDxG0yjc+rwqloX2Ag4Eziup20d4M00+bYjsCtwxGwKl9Qp+7T5sSlwEw++xjmybdsMuB74fO+OSbYAdgEK+JMJjn3kuJw7oR8nIKkTfgG8bOxF+wXew8dtMz5Ttquqs8ZeA09vt9ugZ5tr5rJIO70kDa32G4S3J7mk/UZycZK1q+qOqrqqqgoIsAJ4cs+uTwS+XVU3VdW9NB1iT+857seSXNuOojg/yS7zemKSOqO9lfFHST6a5DbgPQ805Zh2JNelSXadaP+quo8mo7buWfep9oLwN1V1PfAl4Dl9PhVJI6a9xjmJnvzoabsHOBHYflzTIcDZwBLg0P5WKKnjjqPJlDGHAl8cUC0r5VB5jbbzFsPSkwZdhfrrYGAP4G7gVOCd7UKSO4B1aTrw392zz+eBjyUZG+V1MPDNnvZzgfcBd9KMCvtqki3ai0dp/phhXbEjTcfVo4E1gAPbdSfRjNb6U+DkJE+sqtt6d0yyJk1GnT3J8f8YuLgPdS9Il9y43KdCqhOSrEOTNw/JjySPoBmB8fNxTYcAHwHOAc5O8piquqnftc4H/7aleXc28IokWwGX0+TRzsD7B1rVOI700mhbehIsWzroKtRfx1bVte0HxQ/QM4S2qjYAHgkcDvxXzz6XA9fQDOtfDmxF08k1tt+/VNWtVXVfVX0YWAvYst8nIj2EGTZqvp7kjp7lL9r1N1TVMW2m3NOuuxk4uqp+294edBmwd8+xPt523N9Fk2HvnegNkywCdgCO6scJLTT7br8ZW2+6/qDLkGbr621+LAd2Bz7U03ZE2/Yrmg+frxhrSLIz8ATgxKo6H7gCOGjcsY/oybhb+ncKc8u/bWlgxkZ77Q5cSvP5q9cR466dvjDfBTrSS6Nvk21g0WmDrkIz8cpMZatre36+mmaOrt+pqruTfBr4ZZKtqupm4FPA2jRz5dwNvI1mpNeOAEneCry6PVYB69OMxpDmnxk2eFPLIoD9quqM3hVJDuPBOTXm+vYW7DHj8+tNVfW5JA+juXXxG0meW1UX9Rx7P+CDwG5VNTIfPofZQTtuzkE7zun8uNKcOvF1U9psv6o6I8lqwL7A9/PAA32Oqqp3thNBf4vmS72xXDkU+E5Pnhzfrvtoz7GPqqp3zvI05p1/29LcmmIWQdPp9QOa6WUmurVx4JniSC9Jw+7xPT9vTjOJ/XgPo5n4eewJjdsBS6rqtqr6Nc0Er89KsnE7f9ffAC8FHtWOFruTZm4wSZqJmmDdZkl6c2XC/Kqq+6vqLJpbkF44tj7JnsBnaSasdjigpIeoqhVVdTLN3KY7j2u7hmYKh48leXiSh9Nc+zw3ybIky4C3ANsl2W6+a5fUDVV1Nc2E9nsBJw+4nAnZ6SVp2L0xyeOSbAi8Azghye5JnpFktSTr08xNcTvws3afc4FDkjwyyRrAG2huP7oFWA+4D/glsHqSd9OM9JKkufRo4E1J1khyAM1t1qdPtGGSnWgmor64ff0Cmsnr/6yqfjpP9UoaMWnsCzyKB66BfqeqvkvT2f4aYD+azrGtaSa3354ml87iwRNRS9J0vQp4QVXdPehCJmKnl6RhdzzwHeDKdnk/sAHwZZoRWlfQPLlxz56J6I8A7gX+h6Zzay/gJW3bt2ludbyc5naje5n41iRJGu/UJHf1LF+bZNtzgKcAt9DMR7h/Vd3a037s2HFobg14Z1WNPXDjXTTzFZ7e8169D+OQtLCd2mbHcpp8ObSqVvawiw/RTPPwGmBxVV1TVcvGFuBY4OAkTnsjaUaq6oqqOm8lzW8bd+0079M1GG6Sht25VfWP49Z9tV0m1H6wPHglbStovo14Vc/qI2dbpKRuq6otJmleMm7bJT3rDp/gWM9bxXs9fzq1SVo4JsuiqjpsgnUnACdMss+JwInty4fsL0kTWVkWVdV9PDBtzGGsIleq6ir6PM2MI70kSZIkSZLUOXZ6SZIkSZIkqXO8vVHS0FrF7USSJEmSJK2UI70kSZIkSZLUOXZ6SZIkSZIkqXPs9JIkSZIkSVLn2OklSZIkSZKkznEie82dZUth8d7z/J4XwSbbzu97SlqY+pFxZpgkSZLUN3Z6aW5ss/+gK5Ck/jHjJEmSpJFjp5fmxg6LmmW+zffIMkkLU78yzgyTJEmS+sY5vSRJkiRJktQ5dnpJkiRJkiSpc+z0kiRJkiRJUufY6SVJkiRJkqTOsdNLkiRJkiRJnWOnlyRJkiRJkjrHTi9JkiRJkiR1jp1ekiRJktQxSQ5L8sNB1yFJg2Snl6Shl+SgJOcluSvJjUm+mWTnJO9J8tskv2qXy5Mcm2TTnn2fl+S6ntdrJjk5yY+SrJ/k0CTnJ1me5LokRyZZfTBnKmlYJbkqyT1tDo0tx7Ztmyb5bJIb2vVXJlmS5Glt+xZJaty+F7ZthyVZ0a5bnuTCJC8e5LlKGl6TZdEMjnVmknvbY9yZ5AdJtulp9xpJ0kqNymc0O70kDbUkfwUcDfwD8Bhgc+CTwL7tJidU1XrAhsBLgE2A83tDtedYawEnAxsAL6yq5cA6wJuBjYEdgV2BI/p2QpJG2T5VtW7PcniSjYAf02TJLsB6wDOB7wO7j9t/g559t+tZ/5OqWpcmmz4JfCXJBv0+GUkj6yFZNH6DaXw4PLzNn42AM4Hjetq8RpI0oVH6jGanl6ShleSRwPuAN1bVyVV1d1X9tqpOraq/7t22XX8xcCDwS+Ct4461DnAqsAawd1Xd3e73qao6q6p+U1XXA18CntP/s5PUEW8BlgOvqKorqnFHVS2uqmOmc6Cqup/mA+cjgKf0oVZJHdWOGv1Rko8muQ14zwNNOaYdyXVpkl0n2r+q7gO+Amzds85rJEkPMWqf0RyeqtG3bCks3nvQVag/dgLWBr421R2qakWSU4A9elavBXwTuBM4oKp+Pckh/hi4eAa1SjNjho263YCvtR1Ws5JkNWAR8Fvg6tkerysuuXE5B37mJ4MuQxoFO9J0XD2a5gPkge26k2hGS/wpcHKSJ1bVbb07JlkTOBg4e5Lje420Csefcw2nXHD9oMuQ+m2kPqPZ6aXRts3+g65A/bURcEv77eN03EAzlHbMejTh/LLJwjTJImAH4NXTLVSaETNs1Hw9SW8e/TXNB8llYyuS/AnwRWA1mtsWX9iz/S1Jxn5+f1Ud1f787CR30Izwug94eVXd3J9TGC37br/ZoEuQhtFEWfRb4IaeEab3tXlzM3B0VRVwQpK3AnvzwG2MH09yFM2tRPfQdIw9hNdIU3PKBddzyY3L2XrT9QdditRPI/UZzU4vjbYdFjWLRtMrs6otbgU2TrL6NEN1M6D3G8xbgDcBX0xyV1V9e/wOSfYDPgjsVlW3TOO9pJkzw4bDqrNozH5VdUbviiSvBn43P0VVfQPYoF3/8nH7b7ySLDu7qnZOsi7weZq5wU6calFddtCOm3PQjpsPugxp3pz4uiltNlEWHQZcO8G217cdXmOuBh7b8/pNVfW5JA+juXXoG0meW1UX9Rx7P7xGmrKtN12fE16706DLkGZlFVk0Up/RnNNL0jD7CXAvsN9Ud2gv2vYBzupdX1UnA38BnJTk+eP22RP4LM3EsEtnWbOkheV7wH5t9sxKVd0FvAF4RZJnzLoySQtNTbBus/QMMaWZbPqGh+xYdX9VnQX8HPjdCFWvkSRNYKQ+o9npJWloVdWdwLuBTyTZL8k6SdZI8qIkR/Zu267fCvgyzdNBPjLB8b4MHA6ckuQ57X4voJkY8c+q6qd9PiVJ3fMR4FHAcUmelMZ6wPYzOVhV3Qp8jib7JGm2Hg28qb1OOgDYCjh9og2T7EQzkf3F7WuvkSQ9xKh9RrPTS9JQq6qPAH8FvJPmiR/X0oTi19tNDkxyF3AH8A2a4bZ/UFUP+RazPd4XaJ4aclqSZwHvAh4JnJ7krnb5Zv/OSNIIO7UnJ+5K8rV2qP2zab7x/CHwK+ACmnkqXj/D9zka2CvJtnNQs6TueUgWTbLtOTRPg70F+ACwf9u5PubYsePQzPP1zqoauw7yGknShEbpM5pzekkaelX1JZqe/vF+zAOP5F7ZvmcCjxu37rM0Q2UBnj9+H0kar6q2mKTtBuBVk7RfBUw4cVhVLQGWjFt3Hc0TjSTpQSbLIh6aJUt61h0+wbGet4r38hpJ0kqNymc0R3pJkiRJkiSpc+z0kiRJkiRJUufY6SVJkiRJkqTOsdNLkiRJkiRJnWOnlyRJkiRJkjrHTi9JkiRJkiR1zuqDLkCSJEmStPBccuNyDvzMTwZdxpy55MblbL3p+oMuQ1IPO70kSZIkSfNq3+03G3QJkhYAO70kSZIkSfPqoB0356AdNx90GXOqS6PWpK5wTi9JkiRJkiR1jp1ekiRJkiRJ6hw7vSRJkiRJktQ5dnpJkiRJkiSpc+z0kiRJkiRJUufY6SVJkiRJkqTOsdNLkiRJkiRJnWOnlyRJkiRJkjrHTi9JIyfJmklOSnJVkkryvHHtz0/yH0nuTHLVBPtv0bb/b5JLk+w2T6VL6hjzSNIwMIskDYNhzCI7vSSNqh8CLweWTdB2N/D/gL9eyb5fBv4L2Aj4v8BJSX6vH0VKWhDMI0nDwCySNAyGKovs9JI0tNpvCN6e5JIktydZnGTtqvpNVR1dVT8EVozfr6p+WlXHAVdOcMynAs8E/q6q7qmqfwWWAn/Wtj8pyb8nuTXJLUm+lGSDvp6opKFnHkkaBmaRpGEwSlm0+izPdSRccuNyDvzMTwZdhqSZORjYg+ZbgVOBd7bLTD0duLKqftWz7sJ2PUCAfwR+AKwP/CvwHuDNs3hPwCySOsA8kjQMOpNFXWS+agEZiSzq/EivfbffjK03XX/QZUiauWOr6tqqug34APCyWR5vXeDOcevuBNYDqKqfV9V3q+rXVfVL4CPAc2f5nmaR1A3mkaRh0Iks6iLzVQvMSGRR50d6HbTj5hy04+aDLkPSBE583ZQ2u7bn56uBx87ybe+i+Wag1/rArwCSPBr4OLALTcA+DLh9lu9pFklDbIpZBOaRpD5bSNdGXWS+qiu6lEWdH+klaeQ9vufnzYEbZnm8i4HfT7Jez7rt2vXQDJktYNuqWp9mEsbM8j0ldYN5JGkYmEWShsFIZJGdXpKG3RuTPC7JhsA7gBMAkqyVZO12mzWTrJ0kbdvD2rY1mpdZO8maAFV1OXAB8Hft+pcA29LcEw7NtwZ3AXck2YyVP1lE0sJjHkkaBmaRpGEwEllkp5ekYXc88B2aJ3xcCby/XX8ZcA+wGfDt9ucntG1/3L4+neZbh3vaY4z5c2AHmuGwHwT2b+8LB3gvzVND7gROA07ux0lJGknmkaRhYBZJGgYjkUWdn9NL0sg7t6r+cfzKqtpiZTtU1ZlMMtS1qq4CnreStouBPxi3+sOrLlPSAmAeSRoGZpGkYTASWeRIL0mSJEmSJHWOnV6SJEmSJEnqHG9vlDS0JhsaK0nzyTySNAzMIknDYJSyyJFekiRJkiRJ6hw7vSRJkiRJktQ5dnpJkiRJkiSpc+z0kiRJkiRJUufY6SVJkiRJkqTOSVUNuoYZSfJL4OpB1zFDGwO3DLqIWfIchsOon8OWVbXeoIuYjRHNolH/dzOmC+fhOQyHhZJFXfhvNRUL5Txh4ZzrQjlPGPE8GtB1UVf/fXTxvDyn0THSWdRr9UEXMFNV9XuDrmGmkpxXVTsMuo7Z8ByGw6ifQ5LzBl3DbI1iFo36v5sxXTgPz2E4LJQs6sJ/q6lYKOcJC+dcF8p5wujn0SCui7r676OL5+U5jY5Rz6Je3t4oSZIkSZKkzrHTS5IkSZIkSZ1jp9dg/POgC5gDnsNwGPVzGPX6R1VXfu9dOA/PYTh04RymwvPsnoVyrgvlPGFhnetc6ervrIvn5TmNjs6c18hOZC9JkiRJkiStjCO9JEmSJEmS1Dl2evVRkj2TXJbk50n+doL2RyY5NcmFSS5OsmgQdU5mVefQbvO8JBe05/D9+a5xMlOpv93uD5OsSLL/fNY3FVP4d3Rwkova5cdJthtEnZOZwjkkycfb9ouSPHMQdXaNGTQ8zKLhsBCyqAt/91PVlXxYlS7kx1R1IWemYiFkUT90Md+6mmNdzK0u5tOCyaKqcunDAqwGXAH8PrAmcCGw9bht3gH8U/vz7wG3AWsOuvZpnsMGwCXA5u3rRw+67unU37PdvwOnA/sPuu4Z/Df4I+BR7c8vAs4ZdN0zOIe9gG8CAZ49bOcwiosZNDyLWTQcy0LIoi783c/xuQ59PszFefZsN5T5Mcf/TYc6Z+bwPEc6iwb4exupfOtqjnUxt7qYTwspixzp1T/PAn5eVVdW1W+ArwD7jtumgPWSBFiXJpjvm98yJzWVczgIOLmqrgGoqpvnucbJTKV+gP8D/CswTLWPWeU5VNWPq+r29uXZwOPmucZVmcp/h32BL1bjbGCDJJvOd6EdYwYND7NoOCyELOrC3/1UdSUfVqUL+TFVXciZqVgIWdQPXcy3ruZYF3Ori/m0YLLITq/+2Qy4tuf1de26XscCWwE3AEuBv6yq++envCmZyjk8FXhUkjOTnJ/kkHmrbtVWWX+SzYCXAJ+ex7qmYyr/DXq9iqY3fphM5Ryme55aNTNoeJhFw2EhZFEX/u6nqiv5sCpdyI+p6kLOTMVCyKJ+6GK+dTXHuphbXcynBZNFqw+6gA7LBOvGPypzD+AC4AXAk4DvJjmrqpb3ubapmso5rA78AbAr8HDgJ0nOrqrL+13cFEyl/qOBv6mqFc2XQkNnKufQbJg8nyZgd+5rRdM3lXOY8nlqysyg4WEWDYeFkEVd+Lufqq7kw6p0IT+mqgs5MxULIYv6oYv51tUc62JudTGfFkwW2enVP9cBj+95/Tiabx16LQI+WFUF/DzJL4CnAT+dnxJXaSrncB1wS1XdDdyd5AfAdsAwBPFU6t8B+EobthsDeyW5r6q+Pi8VrtpUzoEk2wKfA15UVbfOU21TNdV/R6s8T02LGTQ8zKLhsBCyqAt/91PVlXxYlS7kx1R1IWemYiFkUT90Md+6mmNdzK0u5tPCyaLpTgLmMrWFpkPxSuCJPDAx3NPHbfMp4D3tz48Brgc2HnTt0zyHrYDvtduuA/w38P8Nuvap1j9u+yUM2SSKU/xvsDnwc+CPBl3vLM5hbx48SeJPB133qC9m0ODrn855jNveLBrcOYx0FnXh736Oz3Xo82EuznPc9kOXH3P833Soc2YOz3Oks2iAv7eRyreu5lgXc6uL+bSQssiRXn1SVfclORz4Ns2TEf5fVV2c5HVt+6eBvweWJFlK8w/pb6rqloEVPc5UzqGqfpbkW8BFwP3A56rqvwdX9QOm+N9gqE3xHN4NbAR8sv225L6q2mFQNY83xXM4nebpID8H/pfmmzrNghk0PMyi4bAQsqgLf/dT1ZV8WJUu5MdUdSFnpmIhZFE/dDHfuppjXcytLubTQsqitD14kiRJkiRJUmf49EZJkiRJkiR1jp1ekiRJkiRJ6hw7vSRJkiRJktQ5dnpJkiRJkiSpc+z0kiRJkiRJUufY6aU5kWRFkguSXJzkwiR/leRhbdsOST4+yb5bJDlo/qqV1FVmkaRhYBZJGgZmkQSpqkHXoA5IcldVrdv+/GjgeOBHVfV3U9j3ecARVfXivhYpqfPMIknDwCySNAzMIsmRXuqDqroZeA1weBrPS/JvAEme237bcEGS/0qyHvBBYJd23VvabxXOSvKf7fJH7b7PS3JmkpOSXJrkS0nStv1hkh+332D8NMl6SVZL8qEk5ya5KMlrB/U7kTT/zCJJw8AskjQMzCItVKsPugB1U1VdmWbo7KPHNR0BvLGqfpRkXeBe4G/p+RYhyTrA7lV1b5KnAF8Gdmj3fwbwdOAG4EfAc5L8FDgBOLCqzk2yPnAP8Crgzqr6wyRrAT9K8p2q+kU/z13S8DCLJA0Ds0jSMDCLtBDZ6aV+ygTrfgR8JMmXgJOr6rr2i4BeawDHJtkeWAE8taftp1V1HUCSC4AtgDuBG6vqXICqWt62vxDYNsn+7b6PBJ4CGKjSwmIWSRoGZpGkYWAWaUGx00t9keT3acLwZmCrsfVV9cEkpwF7AWcn2W2C3d8C3ARsR3ML7r09bb/u+XkFzb/hABNNThfg/1TVt2dxKpJGmFkkaRiYRZKGgVmkhcg5vTTnkvwe8Gng2Br3pIQkT6qqpVX1T8B5wNOAXwHr9Wz2SJpvBe4HXgGstoq3vBR4bJI/bN9jvSSrA98GXp9kjXb9U5M8YvZnKGkUmEWShoFZJGkYmEVaqBzppbny8HYo6xrAfcBxwEcm2O7NSZ5P8w3AJcA3gfuB+5JcCCwBPgn8a5IDgP8A7p7sjavqN0kOBI5J8nCae8V3Az5HM7T2P9vJFH8J7Ders5Q07MwiScPALJI0DMwiLXgZ18krSZIkSZIkjTxvb5QkSZIkSVLn2OklSZIkSZKkzrHTS5IkSZIkSZ1jp5ckSZIkSZI6x04vSZIkSZIkdY6dXpIkSZIkSeocO70kSZIkSZLUOXZ6SZIkSZIkqXP+fyPWnqky7+hkAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1386,7 +1386,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAU4AAAEeCAYAAADl3fyeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACBlklEQVR4nO2dd3wUxfvH389dQkhIQqhJqKEJ0kFRVJRIr6KgdFAB6xd77w27iKg/CwqCivSi0pGioCK9JEBIQiiBFJKQRk3u5vfHbpJrSS7kDgH3/XrtK3e7M8/MPLv3ZHZndj6ilMLAwMDAwH1M/3YFDAwMDC43jMBpYGBgUEaMwGlgYGBQRozAaWBgYFBGjMBpYGBgUEaMwGlgYGBQRozAaWBgYFBGjMBpYGBgUEaMwGlgYGBQRozA+R9GRJ4TkWMikiMiMSLSVURMIvK8iMSLSLqIzBWRqjZ5RonIYf3YSyJySES66cemi8gEm7SRIpJo872WiCwQkRMikiAij9oce10v63u9PtEicq3N8boislDPmy4in9scGyMi+0TkpIisFJH63vSbgYEROP+jiEhTYDzQQSkVBPQEDgGPArcDnYFawEng//Q8zYEvgVH6sWpAHTfLMwG/AruA2kBX4HER6WmT7DZgNhAC/AJ8ruc1A0uAw0CEnn+2fux24EVgIFAD2ADMct8TBgZlxwic/10sgB/QXER8lVKHlFLxwAPAS0qpRKXUOeB14E4R8QHuBJYopf7Qj70CWN0srwNQQyn1plLqvFLqIPANMNQmzUal1DKllAX4AWij778OLVA/o5Q6pZQ6q5TaqB97AHhXKbVPKZUPvAO0NXqdBt7E59+ugMG/g1IqTkQeRwuMLURkJfAkUB9YJCK2AdEChKIFr6M2Nk6JSLqbRdYHaolIps0+M1oPsYBkm8+ngYp6wK4LHNYDoyu7k0Vkos0+QeuVHnazbgYGZcLocf6HUUr9pJTqhBZ8FPA+WmDsrZQKsdkqKqWOAUloQQwAEQlAu10v4BQQYPM9zObzUSDBwW6QUqqPG1U9CtTTg6irYw842PVXSv3lhl0DgwvCCJz/UUSkqYh0ERE/4CxwBq1n+RXwdsGtrojUEJEBerb5QD8R6SQiFYA3sb+GdgJ9RKSqiIQBj9sc2wxk6wNS/iJiFpGWItLBjepuRgva74lIJRGpKCI36ce+Al4QkRZ6fSuLyF1ldoiBQRkwAud/Fz/gPSAN7Ra5Jtogy2S0gZlVIpIDbAKuB1BKRQP/A35CC2QngUQbmz+gDf4cAlYBcwoO6M8t+wNtgQS93G+ByqVV1CZvY+CIXuYQ/dgitJ7ybBHJBqKA3mXyhIFBGRFjIWOD8iAih4BxSqnf/u26GBhcLIwep4GBgUEZMQKngYHBZYGITBORVBGJKua4iMinIhInIrtFpL236mIEToNyoZSKMG7TDS4S04FeJRzvDTTRt/vRXtbwCkbgNDAwuCxQSv0BZJSQZADwvdLYBISISLg36mIETgMDgyuF2ti8oIE2+6K2Nwq6bN8csiZf5dXpABvOetM6vHd9V6/a3/dmI6/ar5hs9qp9ALF41/6ZcC8X4GUCjnn3HOyd8ISU10ZZfqfm8NgH0G6xC5iilJpShuJc1dcrceKyDZwGBgaXPla3lzIAPUiWJVA6kojNm21oC9AcL4e9YjFu1Q0MDLxGnrK4vXmAX4DR+uh6RyBLKZXkCcOOGD1OAwMDr1GWHmdpiMgsIBKorq/z+hrgC6CU+gpYBvQB4tAWibnXY4U7YAROAwMDr2Hx4JuJSqlhpRxXaK8Eex0jcBoYGHgNq3fGZv51jMBpYGDgNSxG4CxCRCzAHptds5VS7+nrJb4J3IW2NiPAPKXU28Xkux1NCuFn4CDgj7bC+NMXUi9XvPQerP8bqlaBX6eX317UFpjzFVgt0Kk39B5if/xUDsz4GE4kga8v3P0U1I6wT1PF/2a++fN1TGZhxcw/mffZKqdyHnx7MB26tuDcmfNMfPR74vdo09Omb5nA6VNnsVqsWPKtPNbzPQBGPN2XXiM7kZWeA8BbRzaz/mgCAJ3rRvDqjV0wizBn/x6+3LnZrqyO4XWZ0vN2EnOyAFiREMun2//Gz2xmzm1D8TObMYuJ5QkHmLTVeZnLTo3q81KvSEwmE/O3R/HNn1tc+q5lrVDmjB3Kk/OXsXJfLBXMZn68dzAVzGbMJhOr9sXy2fq/ne03rs+LfSIxiWb/2w3F2599/1CenLuMVXtjCQsO5L1BvageGIBSMHfrHn7YtMMpX+e6EbzaSffPvj18ucPBP7XqMqWXjX8OxvLptr8JrxTEx117UyOgElalmLV3N9/t2X7R7XdqUp8X+kRiNpmYvy2Kb/8oxj+1Q5n1wFCemrOMVdGxAEy4ozudmzYk49RpBnz2g8t85cHocdpzRinV1sX+CWiL17ZSSp0VkSDgqZLyiUgEsEEp1U9E/IEdIrJIKfXnBdbNjtt7w/CB8Pw75bdltcBP/wdPvAtVqsM7j0CbjlDLRqRh+Wyo2wgefg2SjsCs/4Mn37e1YqJJ1dd4uP/npB0/yeSVz/PPyt0cOVC0+HmHri2o1aAmYzu+RrNrGjD+g2E80fuDwuPPD5xEdsYpHFn89RoWfKm9/Vgwj9Mkwps3dWPk0nkkn8rhl4EjWX0onrhM+4XbtyQnMnbFIrt95ywWhv86l9P5efiYTMy/bRjrjySwI7VooNIkwqt9ujDmh4WkZOcw777hrI2JJz7N/gUPkwhPd+vExviiRdnPWyzcM2M+p/M0+zPvHcwfsQnsOpZsl++Vfl0YO0OzP/eB4azbH0/8CWf7T/XoxJ9xRfYtVsUHK/5gb1IqARV8WfDgCP6KP2yX1yTCmzd3Y+Svun8G6f456eCfpETGLrf3T76yMuGv9USnpVLJ15df7xzFhsTDdnkvhv2X+3dh3Heaf+Y8OJx1+1z758menfgz1n5R/EU79jJz0y7eu7Mn3iDvCl19zWPTkfTVwO8DHlFKnQVQSuUopV5314ZS6gzaYrgem+3foQ2EBHnGVkIM1KwFNcLBxxc6RMIuhw7S8SPQrK32ObwepKVA9smi48F+rTmTf5jkw2nk51n4ffFWOvZqY2ejY682rJm3CYD92xIIDA6gSs3gC6pz25phHM4+ydGcLPKsVn6N20+PCPcnx5/OzwPAx2TCx2RCOfQgWtcO40hGJomZmv1l0TF0beZsf+R1bVm1L46MU6ft7efZ2DebnPonrevo9k9mkWexsmxPDF1c2e/YltV740i3sX8i9xR7k1K1cs7nEX8ig9DgQLt8bWuGcTjrwvxz4vQpotM0+6fy8og/mUFYpYtrv1WdMI6kF/ln+Z4YulztbH9Ex7asjrb3D8C2Q8fIOuO9tz0sKLe3y4kLDZz+IrLTZhuCvsisUirHzXyLHA+KSBW0F/T/uMB6eZXMdKhao+h7SHU4mWafpm4D2KH3lRP2Q0aKfZoK5lDO5Rf1qNKOn6RaWIidjWrhIaQdK4q2aUknqR6upVEo3p7zKJ+ueoHeozrZ5es/JpIv1r3EE5+MIriCHwChAUEczy06JUmncgmt5PyfpH1oLZbfOZrpvQfRpEqRGoZJhGWDRrNt9MNsPHaYnanJdvlCgwJJyi6yn5ydS2iQ/Y+7ZlAlujdrzOytu53KNYmw6IER/PnMA/x18Ai7jyU75A0kOavIfkp2rlPwqxlUiW5XN2b2Fmf7BdQKCebq8BrsSnSof6Ugjp9ywz9htVh+12im97X3TwF1goJpXr0mO1Pspw163X6wvX+Ss3Op6co/zRszZ3Px/vEWFuX+djnhsVt1EWnt8P1e4DE0TZoblVJHXeXTuVlEdgNNgfeUUsku0vzruLrrEIeXvHoNgTlfwpsPQe0GULcxmOz+PZX+VpjLFHqSp/p9REZKFpWrB/HO3Ec5GptM1KY4ls74g1kfL0MpGP18f17uFcmzv690qp9Wmn15UWkp3DRzCqfz84is24ApPW/n1tlTAbAqRZ8F3xNcwY+vewzgqirVOWD7n8AN+y/2jOSj3zZgdeFAq1Lc8fVMgvz8+HxIf5rUqEbsiaJbUZf1d7DzQu9IJq5ybR8goIIvnw7tx3vLf+fUufN2x1yfDQf/nEjhph90/9RrwJRet3PrrKlF9n18+bLnbbz55zpy8/59+44X6gt9I5m4snj/eBPPzeK8tPDkqHocmqBWkH6L/h3wnb52Xmkv1RY847wK2Kg/49zpmEhE7kd/l/XLD2py/6hSVRc8SpXqkHGi6HtmGoQ4dA78K8E9+tCWUvDi3VDdRrLsvCUZP5+iHdVrVSE9OcvORlpSJtVrVylKE16F9ORMADJStLRZaTn8tWwnTdtFELUpjswTRb2O5T9u5MXRTwCQfCqHWoFFPZzwSoGknsq1K8/2x7j+aAITTCaqVPTn5Nkzhfuzz59jU9JROteNsAucKdm5hAcX2Q8LDiQ1x/75a8taoXx8p6bJFhLgzy1NGpBvtbImJr4wTc65c2w+nMjNjSPsAmdKdi5hlYvsh7qyXzuUiXfZ27dYrazZH4+PycTkof34dfd+Vu+Lw5HkUznUqlQG/xxJYMLNRf7xMZn4qudtLD6wj5UJsRffvoN/XPm/Re1QJg7R/FMlwJ9brtL9sy8eb2NxHdovezz2jFMpdRqYCnwuIhUBRMQMVCiDjQPAu8BzxRyfopS6Vil17cUOmgARTSH1GKQlQ34ebFmvDQ7ZcjpXOwawcTk0aakF0wKyz+3B3yeC0HrV8PE10/n2a9m00v4WatPK3XS9SzPc7JoGnMo5w8nUbPwCKuBfSbsF9wuoQPvIqzm0X3sV1/YZ6I192nIgQwtuu1KTiahchTpBlfE1mejfuBmrD9v/YGr4FwlTtqkRhiCcPHuGqhX9C2/5/cw+3FS7PvGZ9oMOe44lU79aFWqHBONrMtGnRVPWxhy0S9Pt02l0naxtq/bG8ubStayJiadKgD9Bfrp9HzM3NKjHwTQX9qvq9s0m+rRqyrr99va7T5pGN31btTeWN5esZc1+rY0Tbu/OwRMZzPjLeTS60D8hDv45VIJ/aoYhIoX/VN6P7ElcZgZTd2/7V+xHFfi/iuaf3i7802PiNLrr28roWN76de1FCZoAeUrc3i4nLrTH6S8iO22+r1BKPQ+8BLwFROlCX2eAGZTtRfuvgKdFpIFSKuEC61fIU2/A5p2QmQWRd8L4e+HOvhdmy2yGYf+DT14EqxVu6gG1IuD3Jdrxzv20kfTvPgQxaaPtesfPBgtxGW8yYfYEzGYTq2b9xZGYJPqMvhmAZd9vYMtvUXTo2pJp/7zJ2TPnmfTY9wBUqRHMK989oNfFxPpFW9i2bi8AY18dSMOWdUApUo5m8Mjf67TSlOLVjWv4vs8gzGJibsweYk+mM+JqbUBq5r5d9G7YlJHN22BRVs7m5/PIGq1BNQMqMfHW3pjEhEmEpfExrD1i/6O0KMVby9YydeRATCIs2BlN3Il0hlyjPbmZs63452o1Aivx3u09MZsEEWFF9AHWx9qfcotVMWHpWr4dPRCTSVi4Xbd/rW7fxXPTAtrXq8WAts2JST7BwodGAPDJb3/yR+whu/q/umEN3/fT/bNf909z3T97d9G7UVNGtmiDxWrlrCWfR1Zr/rk2rDaDmrZgX/oJlt01GoAP/tnA+iMJF8++VfH2krV8c7fmn0XboolLTWdIB90/JTz3BfhwcG+ua1CXkICKrH1mHJ+v/ZuF26JLzFMWrtQe52Ur1mYsK1cyxrJypWMsK1cynlhWbteRum7/TtvUO3rZRFnjzSEDAwOvcaX2OI3AaWBg4DUsV+jKlUbgNDAw8BrWy2zQx12MwGlgYOA1zivvPwv/NzACp4GBgdewGrfqBgYGBmXDGBwyMDAwKCMWZfQ4DQwMDMqE1ehxXlp4e4L6zRW9a/9dLy7lBSDnL/8L1uzlc2w+7d3ekPL17sslku9V8x7hvLpsQ0yJXJmtMjAwuCQwBocMDAwMyojFmMdpYGBgUDaMN4cMDAwMyojVGFU3MDAwKBtGj9PAwMCgjOT911+5LE5L3UW69cDTSqmtDvvvAT4EjgG+wD5gtFLqtIg8CYwD8oETwBillL2OqRt4QvO8rFyQbnuFm/l22wRMZhMrZvzB3EnLnJI89MFwOvRozbnT55n40FTidh3G18+Hj1a8gG8FH8w+Zjb8vJUf31kMwOiX7+CGPu2wWhWZadk8fGgjqac0CYVb6kXw2i23YhJhzt4ovtpmr+t9fe06TOl7O4nZuq53fCyfbdFUNt/v2pMuEQ1JP3OaXj/NcNkcb+uq33RVfZ4fEIlZTCzYHMXU9fb2b23ekEd63ohVKSxWxXu/rGfHIW3t7JE3tWPQ9S0RhPmb9/DjRmdd9VsiInjlVs3+nKg9fL3Zdf1bhYayYPgwHl2ylBWxmozFve3bM7hVSwBi0tJ4dsVKzltKXufzlvoRvKqfj7nRxZyPfrdzVD8fK+Nj+WzzphJt2tLpqvo831/315Yovv29mPNRJ5SfHh7K0z8tY1WUsyyHJzAmwBcvtFaILpVREnOUUuP1tD8BQ4DvgB3AtXoQfQj4QD/mNp7RPC87ZddtNyHBr/Fy5CTSjmXw6fpX2bRsJ0diihbJ79CjNbUahTKm7fM069CQ8ZNG8XiXCeSdy+e5fh9w9tQ5zD5mJq56ga2rd7N/y0HmT17O9xM04dABD3bj0VE38PL63zRd78iujFo8n+TcHH4eMoLfDsYRd9JeomLL8UTGLVnsVNsF+6L4fvcOJnbv7bo1F0FX/eU7unDfNwtJzsphziPDWbc3noOpRfY3xR1l3d4fAbgqrDofjezLbR/NoHFoNQZd35Jhn80iz2Lhq7ED+WN/AkfSMu3sv961C3fPX0ByTg6LRoxgTVw8cRnO9X/ulpvZcKio/qGBgdzdvh09p8/gXH4+n/brS/9mTVkQvdelrwrsvBHZldGLtPOxeMgIfkuIcypvy/FExv26uFg7Jdl/aUAX7pu6kJSsHOaM13XWU13orPfuxJ8Hytw/KRNX6gT4cv87EJFDIvKqiGwE7tJ3jxSRv0QkSkSuc5HHB6gEnARQSq3TNYsANgF1yloPT2ieXwhl1m33bQ2WwyQfOqHpqi/YzA1929kluaFPO9bM+guA/VsOElg5gKqhmsbS2VPnAPDxNePj41MoaHg6p2i2eMUAv0IlxTahYRzOzORotq7rfSCG7g0bu13dzcePkXm2+Jno3tZVb1U3jCNpmSRmZJFvsbJ8VwxdWtjbP3M+r/CzfwXfQpXHhjWrsvtIEmfz8rFYFVsPJtK1hX3b24Tp/snS6r8kZj/dGjvXf3S7tqyIjSX9tH39fUwmKvr4YBbB38eXlNxTTnntynM4H0tiy3Y+SqNV3TCOpmv+yrNYWbYrhlubu9BZv7Etq/c4nw9PY1Emt7fLibLU1pWWegFnlVKdlFKz9e+VlFI3Ag8D02zSDdG1io4BVYFfXZQzFlhehnoBntE8vyiYQsFiq6ueQbVaVeySVKsVwonEoh7CiWMnC9OYTML/bXyD2fGT2b4umpitRRpAd78ykB/2TuTWwR2ZtEkLvGGVAkmy0VVPzs0hLNBedxs0Xe9lw0bx3W0DaVLVWde7OLyuq17ZQVc9y1k3HKBri0b88vTdfDHmdl6ZtxqAuJR0rmlQh8oBFano68PNzSIIC7HPGxoYSFKOTf1zcgkNDHJK06NxE37aZV//lNxcvt2ylQ33jePvBx8g5/w5Nh4uuQcXFmh/PpJycwit5NyedmG1WDpsFNPKej6CA0ly8JeTDn1wJbq2aMycf7yvs27B5PZ2OVGW2p5RSrW12ebYHJvjkHYWgFLqDyBYREIK0um3+2Foz0ufsc0kIiOBa9GehZYJdzXPT+domudrf3GleX4xcL51cdR9Ehdi4gVprFbF/zq9xsirn6TpNQ2of3XtwjQz3lrIqOZPsW7uJka3aVeCLfvv0ampdJrxDX1m/cCMXTv4uu+A8jTngnTVIz/+lta1wmhSwz5IuKNLDrAmOp7bPprBozN+YXzPGwE4mJrBtPVb+Oa+gXw19g4OJKVhsTr62lWj7NO8HBnJBxuc6x/s50e3xo2I/HYqN349hQBfXwZcfbUrgyW2yLE10SdSuXn6N/Sd9QPf79rB1/08ez6e7xfJx8svjs66VYnb2+WEp0bVHe9PHM+I3XellBKRX4FHgPcARKQbmkpmZ6XUOVeF2OqqP/V2TfoPL5II9oTm+UXBmgxmW131qmQkZdolSTt2khp1qhZ+r1G7ilOaU1ln2L0xhmu7teLwvmN2x9bN28RLjzzPJ//8RVJuDuE2PaiwwCBSStL1PpzAW6auTrrqxeF1XfUsB131yoGcyC7+dnhbwjHqVqtMSEBFMk+fZeGWaBZu0VQbH+t1k13vFbQeZniQTf2DAknJtfdPq7BQJvfVdcn9/Yls2ACLsuJjMnE0K5uMM5qfVsbG0r5WOD/v21ds/ZIdzkd4YJCzzvp5+/PxZlnOR1Yu4Q7+SnXwV4s6oXw0vEhn/eam2vlYu9fzksF5V+i76t7qbw0BEJFOQJZSKstFmk5AvJ6uHfA1cJtSKrU4o7a66rZBEzyjeX5RyNsD5ghC61fXdNUHXcemZfYjvZuW76DrMK3X1KxDQ05lnyEjJYvK1YKoVNkfgAoVfWkX2ZyjsUkA1GoUWpi/Y5+2HNQHf3anJBMREkKdYE33vP9VTfktwf4HUj3ARtc71F7XuzS8raselZhMveqabriP2UTvNk1Zt9feft1qRdfC1bVr4ms2k3laey5btZLmr7CQILq2bMzynTF2eXcn2/unX9NmrIm3tx/57VQ669uKA7G8+tsaVsfFczw7h7bhYVT00YLDjfXqEe8wyOOI4/no16Qpvx0s/ny0Dg3DVIbzEZWYTD0bnfU+LvzV84Np9Hhf21ZFxTJh8VqvBE3Q1uN0d7ucKMu/g+K01F1xUkT+AoKBMTb7h+jB1AQkAvfo+z8EAoF5+q3lEaXUbWWom4c0z8tO2XXbLajsN3l70VuYzCZW/bCBw/uP02dMJADLpq1n88rddOjRmmm73ufc6fN8/PBUAKqGVeapr8ZhNpsQk/DHoi1sXrELgDGv30mdJmEoqyLlaDqP/1Gkq/7a72v5/rZBmEwm5u2NIjYjneEtNd3tn6J206fxVYxoWaSr/uiKpYW1ndyzLx1r16FKRX/+uvd+PvnnL+bujSpqzUXQVX/n57V8PW4gZpOwaEs08SnpDO6o2Z+7aTfdWzXhtvbNybdaOJuXz9Mzi+o/aXR/QgIqkm+x8vbitWSfsb+ZsSjFG2vXMX3QIEwmYX5UFLHp6Qxrrdmftbv4+u9KTmZFbCy/jBqJxWolOjWV2bv3FJu+oLzX169lxgD9fEQ7n4/eja9iRKsinfVHly8t0aajv97+ZS1Txug661ujiU9NZ/D1ur8uwnNNW67UN4cuW1313w95V1fd28vK9bnqJq/aj3m7pVft+2V4/wfhU/IAdbk5E+rda9/by8r5H/fuOYh+r/y66u/u7eO2E15ovuyy6XZemf8ODAwMLgmsyuT2Vhoi0ktEYkQkTkSc7nZFpLKI/Coiu0QkWkTu9UqjMF65NDAw8CKeeuVSf7nm/4DuaI/5tojIL0op27cN/gfsVUr1F5EaQIyIzFRKnXdhslwYgdPAwMBreHBi+3VAnFLqIICIzAYGALaBUwFBog2UBAIZaK9xexzjVt3AwMBrlGUep4jcLyJbbbb7bUzVBo7afE/U99nyOXA1cBxtnvhjSimrN9pl9DgNDAy8RlneCFJKTQGmFHPY9bsQ9vQEdgJdgEbAahHZoJTKdrsSbmL0OA0MDLyGB98cSgTq2nyvg9aztOVeYKHSiAMSgGYea4wNRuA0MDDwGlZMbm+lsAVoIiINRKQCMBT4xSHNEaArgIiEAk2Bg3gB41bdwMDAa+RZPdM3U0rli8h4YCVgBqYppaJF5EH9+FfAW8B0EdmDdmv/nFLKK8v4XLaB873ru3rVvrd1z5cd+NOr9vu09PWqfano5TcEAFXCcnaeQEIql56oHOQfPORV+z41a5SeqDw4LVNedjz55pBSahmwzGHfVzafjwM9PFZgCVy2gdPAwODS53J7B91djMBpYGDgNS635eLcxQicBgYGXuNKXeTDCJwGBgZe40rVHDICp4GBgdfIs/7H5YENDAwMyorxjNPAwMCgjBi36g7ok1EfR3sntEbBRFMRaYamld4eeEkp9ZFNnl7AZLQJrN8qpS50plivb/58HZNZWDHzT+Z9tsopwYNvD6ZD1xacO3OeiY9+T/webX2A6VsmcPrUWawWK5Z8K4/11Kow4um+9BrZiaz0HPwDK1LB18z5c3msmPEHcyctc7L/0AfD6dCjNedOn2fiQ1OJ23UYXz8fPlrxAr4VfDD7mNnw81Z+fGcxAKNfvoMb+rTDalVkpmWDKRasxaqEFPLSe7D+b6haBX6d7r6DrunSgofeGYLJZGLFjxuZ++kK5za8M4QO3VppPnpkOnG7jxQeM5mET397ifTkTF4b/jkADVvW4ZGPRlLBzxe/Sn74VvDBkm9hxay/mfd/vznZf/DNQXTo0lyz/8RM4qMSqd2wJi98eU9hmvB61fnho2UsnrqeTn3bMvLJ3tRtEsrj/SZyYHNsudsyY/s7nM49p51vi4VHu71TZPO9YZjMJlbM3cy8r9c51/+VAXSIbMa5M3lMfG4O8dGattOAuzvRa8j1iMCKOf+wePpGAEY82p1eg68nK0NbgXnaM9PZvHyHk11Hru3Zloc/uReT2cTyqWuY8/5it/L877Nx+m/gL+Z97uI3MOEu/TeQx8THin4DlYL9efzjEdRvWgulYNITP7B/WwJjX72D67u3Ij/PQtKhEwAhQGaplSkBo8fpzJ/AEmC9w/4M4FHgdtudbq6n5w5m4P9eGf45acdPMnnl8/yzcjdHDhTJynbo2oJaDWoytuNrNLumAeM/GMYTvT8oPP78wElkZzgvL7746zUs+noN3/79Bk/3fo+0Yxl8uv5VNi3byZGYotdiO/RoTa1GoYxp+zzNOjRk/KRRPN5lAnnn8nmu3wecPXUOs4+ZiateYOvq3ezfcpD5k5fz/YRFAAx4sBvtO/4Plf1aqY29vTcMHwjPv1MWF5n43/vDefHOSaQdP8mnq19k04pdHDmQVNSGbi2p1TCUMde9rPnowxE83vPdonIf6MrR2CQCgvwL94197U5mfriE7eui+XHPB6Qey+CZQZ8yeenT/LMqiiOxNuegS3NqNajB2E5v0ax9BOPfHcwT/T/m2MFUxvfUzoXJJPyw9S3+0uU/Dsck8dZ9U3n0/SLlaZNJyt2W526fSHZGrpPNl8Z8S1pyFpMXPso/a6I5Elf0j6xD52bUiqjO2K7v06xtPca/MZAn7vyM+k1C6TXkeh4f+Cl5eRYmTBvH5nX7OX5Ye0Fl8XcbWDD1d8C9CfAmk4lHPh/Lcz3eIi0xg883v8vfv2zlyL7EUvO8NOxz0pIymbziOf5Z5eI30LAmY294XfP/+0N5oo8mHvvghLvYunYvb4/7Fh9fM37+FQDY8ft+vnv7Z6wWK2Nevh3gBeC5UhtRAlfqqHqprRKRCBHZLyIzRGS3iMwXkQCl1A6l1CHH9EqpVKXUFiDP4VDhenr6wqIF6+khIveJyBZ95eYFIhJA8VwHxCUfTiM/z8Lvi7fSsVcbuwQde7VhzbxNAOzflkBgcABVagaX1lQArmofwfGEEyQfOqHZX7CZG/q2s0tzQ592rJml6Zbv33KQwMoBVA3V3kI5e0rTtPHxNePj41MoxXs6p+gtmIoBfjgv7OKaDm0gJKj0dHb4tiYpIZVCHy3awg297X10Q++2rJn7t9aGbQkEVvYvbEP18BA6dG/Fih832ttVioCgijRt34DM9FySjqRr9n/eTscereySduzRijXzN2v2tx8iMNjf6Ry07dSUpMNppB47CcDRuBSOHbTvhTdt36BcbXFFoc2jGZrNpTvp2K2Fff27tWDNom2azZ1HCAyuSJUaQdRtHMr+nYc5dzYPq8XKns0HubHHhcuUNL2uMcfjkklOSCU/L5/1c/7kxgHXupenwP+Lt9Gxp8NvoGdr1sz9R6v/9kOFv4GAwIq07NiYlT9p129+noVT2ZoQ3Pbf92G1aKuw7d+WANpCGuUiX5nc3i4n3K1tU2CKUqo1kA08fAFllbSe3kKlVAelVBtgHzDWXTtpx09SLSzELkG18BDS9B8jQFrSSaqHa2kUirfnPMqnq16g96hOdvn6j4nk+a/GElqvGoEhAbr9DKrVqmJvv1YIJxKL1AxPHDtZmMZkEv5v4xvMjp/M9nXRxGwtWmPg7lcG8sPeidw6uCMqZ3IJTSwnplBOHC+qX9rxTKqFO7QhPIQTNj46cfwk1XQfPfD2EKa+sQDloEH+1UtzGPf6nbw+83/UiqjO9Hd/1ewnZ1It3D5QVQurTNrxzKI6JGVSPcw+Tefb2vP7z9tKbEq18JBytUUpeGf+43y25iV6j77Ztc3kLKo5BNpqocGk2UgypyVnUT20MocPJNOyQ0OCQgLwq+hLh8hm1LBpe/9RN/LFkid54t27CAwpXUK1eu2qnEgskkNOS8ygeu1qJeRwkSfppLP/w0NIO+78GwirX52s9FyenDyKz1e/wGMTR+AXUMGpjB6ayuryUhtQCleqrrq7gfOoUqrg5eof0aR9y0pJ6+m1FJEN+sv5I4AWLtIiIvePGTPm/Tlz5gw4esZx4edSCtKTPNXvIx7p/i6vDP+cfvd2pmXHxgAsnfEHY65/halvLuTcmfPc9/ZQm7wO9sW5hII0Vqvif51eY+TVT9L0mgbUv7pordUZby1kVPOnWDd3E1JplKsmeoji61eYopg2XNejFZlpOcTtOuJ0vN+9nfn65bl8/sxP7N9+mMc/Gm6b2Q37RZ99fM1c36MlG5bsLLklJfjanTRP9n2f8V0m8PKQT+k/JpKWNzRxmd69+iuOxqcyb8o63plxH29NG8fBfcex6L20pTP/ZkyX9/hf/0lknMjhgYmjS2ybVo6rqpR8N+Iqj+MNTHH1N/uYaNyqLkunb2B893c5e/o8g8fbv9499LFeWPItADNLrn3p/NcDp+OZvBD5vpLW05sOjFdKtQLeAFyuIKGUmjJt2rSRQ4YM2V7XvzkA1WtVIT3ZXrY9LSmT6rWLeiXVw6uQnpwJQEaKljYrLYe/lu2kabsIADJP5GC1Kk4cP8npnLM0vaaBbr8qGTY9D4C0YyepUadq4fcatas4pTmVdYbdG2O4tpv9LSzAunmbwM+LaxFYk6lRq6h+1WuFkJFsX7+04yepYeOjGrWqkJGcRYvrGtOxVxtmbH+H56fcR5tOzXj2S03hudvQG/lzyXbSjp/Ekm+hadv6mv2wENKT7deKTUvKpHqtkKI6hIeQnlJ0nq69tTnxexLJTMspsSlpx09ecFuAwr+F57t9hLPNsMqkpzrUPzmr8C7FMc2qeVt4ZMBknh3+JTlZpzl2SHu+mZmei9WqUEqxfM4/NO3QuMS2AZxIzKBGnaIeZvU6VUk/XrI2u1OecBe/geMnqV7L8TeQRdrxTNKSMonZcQiAjUu207h1vcJ03QZfz3XdW/LB/76DC/ud2/FfD5z1ROQG/fMwYGNJiYuhpPX0goAkEfFF63GWaie0XjV8fM10vv1aNq2014retHI3Xe/qCECzaxpwKucMJ1Oz8QuogH8lPwD8AirQPvJqDu3XYnfB87cDOw5Tv2k4yYfTNPuDrmPTMvuR0U3Ld9BVu5WhWYeGnMo+Q0ZKFpWrBVGpsjaYUqGiL+0im3M0VhvEqNUotDB/xz5tweKVZQI18vZQq2FNCn10Rwc26QMwhW1YsYuug7VT2uyaBoVt+G7CIka1fo6727/Ie/d/w66N+/ngoWkApCdn0vqmq4jZcYgGV9ciJTFDsz+gPZtW2+uJb1q1h653XqfZbx/BqZyznLQJTpED2rO+lNt0gJgdhy64LX4BFfAPtD3fzTm073iRzTpVNJt927Jpjf0Y5aY10XS94xrNZtt6Wv1PaEG+clXtFrxGeAg39WjF77/uBKBKjaKH0Tf2aMmhqKOURsyWOGo3CScsoiY+vj5EDrmJv3/Z6laeot/ANWxa5fAbWLWHroOv1+rfPqLwN3DyRDYnjp2kdqOaALS9uVnhQNs1tzbnrvE9eOPurzh3xnGI4sK4UgOnu6Pq+4C7ReRrIBb4UkQeBZ4FwoDdIrJMKTVORMKArUAwYBWRx4HmSqlsV+vp6fZfAf4BDqNphZQ0HJIPjJ8w+5GlZrOJVbP+4khMEn3051fLvt/Alt+i6NC1JdP+eZOzZ84z6bHvAahSI5hXvnsAALPZxPpFW9i2TvvBjH11IA1b1gGlOJ5wgvrNajFl6zus+mEDh/cfp8+YSM3+tPVsXrmbDj1aM23X+5w7fZ6PH54KQNWwyjz11TjMZhNiEv5YtIXN+o98zOt3UqdJGMqqSDmajsp+xC3HP/UGbN4JmVkQeSeMvxfu7FtaLgtfPD+Lt+c9jslkYtVPf3I4Jok+99yitWH6H2xevYcO3VoybcvbnDtzno8fnV5qXSY/8QMPvjMEs9nEqdyzVAqqyJR1L7FqziaOHEimz0hNK37Zj3+yZe1eOnRpwbSNr3L27HkmPVl01+dX0Zd2tzTj0+fn2Nm/sVdrHnrrTipXDeSNGQ9wcM9RXho8+YLbUqVGMK/OeAgAs4+ZdQs2s22tdsl98fwsJnx3H2aziVXzNnMkNoU+w7R/tstmbWLL+v10iLyaaWuf166h5+YW1vPl/xtNcJVK5OdZ+OL1ReTqgytjn+tLw6trgYKUYxlMGvVJqT61Wqx8/shU3l3xEiaziZXfrePw3uJH1G3zTJg1Xqv/rL+L+Q20YNqmN7T6P/5DYf4vX5rLs1/ci6+vD0mH05j0uPb7ePidwfhW8OXtOYXX5lfAg6U2oqS6XqHzOKX05ykSASxRSl340KEX6B36ULlvI0pCXfbrcUZ61b6xHmfpXO7rcS5P/qLcUa/7+ifc/p2ujpx02URZ480hAwMDr3G53YK7S6mBU5+reUn1Ng0MDC4P/rOB08DAwOBCUVdo4Ly8pusbGBhcVlgRt7eLjYj0E5ELioFG4DQwMPAal/h0pKFArIh8ICJXlyWjcatuYGDgNSwekgf2BkqpkSISjDY3/TsRUWgru81SSpX4Zsal2yoDA4PLHqXE7e3fqZ/KBhagLToUDtwBbBeREidaX7Y9zn1vNvKqfTnv3RPpbd3zZVHrvWq/6XcPedU+gPmcd+3nBXt1KjCWgNDSE5WDismXvizFpTyqLiK3AfeirSn8A3CdUipVX51tH/BZcXkv28BpYGBw6VPK+zX/NncCk5RSf9juVEqdFpExJWU0btUNDAy8xqU8qg4kOQZNEXkfQCm1pqSMRuA0MDDwGharye3tX6C7i3293clo3KobGBh4jUvxVl1EHkJbjL2RiNguKxWEJglUKkbgNDAw8BqX6JtDP6Gtbv8u8LzN/hylVMmLoeoYgdPAwMBrXKKBUymlDonI/xwPiEhVd4KnETgNDAy8xiU6HeknoB+wDW2Ve9tKKqBhaQY8GjhFJFcpFah/7oOmod4VGAPcB5wAKqEtVvxygTSwiKxHm3x6FjgP3KeU2ulOmZ3rRvDqjV0wizBn/x6+3LnZ7njH8LpM6Xk7iTmatMCKhFg+3f43fmYzc24bip/ZjFlMLE84wKStfznZv6VeBK/dcismEebsjeKrbfb2r69dhyl9bycxW7cfH8tnWzSFzfe79qRLREPSz5ym108z7Gy+vWmE1zTPLRYL+GZA3m4nu45cqG67LTc3rM/L3SIxm0zM3RnFlE1bXKZrFR7KvNFDeXzxMlbEaJrpQX5+vNOnO01qVAOleH7ZanYeS7LL16lxfV7qFYnJZGL+9ii+2ejafstaocwZN5Qn5y9j5d5YKviY+fHewVQwmzGbTKzaG8tn6/92yndLRASvRGr1n7NnD19vKab+oaEsGDaMR5cuZUWsVv9727dncEtt8bCYtDSeXbmS8xaLXb7OdSN49Sb9Gt3n4hqt5eIa3aZfowOG4mfS6r/8oOtr1Nv+KQ+X4jNOpVQ/0USZOiulnMW13MArPU4R6Yo2ebSHUuqILhw1SSn1kX58CLBWRFoppU7o2UYopbaKyL3Ah7ge8bLDJMKbN3Vj5NJ5JJ/K4ZeBI1l9KJ64zHS7dFuSExm7YpHdvnMWC8N/ncvp/Dx8TCbm3zaM9UcS2JGaZG8/siujFs8nOTeHn4eM4LeDccSdtO/JbzmeyLgli53qt2BfFN/v3sHE7kUDdQU2X+7ygVc0z7euiaJDt5a8+f0zqIzSBeEuTLe9CJMIr/fowj2zF5KcncOCe4azNjaeuPQMp3TPRHZiQ8Jhu/0vd4/kj4OHeGTREnxNJir6+jrle7VPF8b8sJCU7Bzm3TectTHxxJ9wtv90905sjC+yfz7fwj0z5nP6vHaOZ44ZzB9xCexKTLbL93qXLty9YAHJOTksGjGCNfHxxGU423/u5pvZcLjIfmhgIHe3a0fPGTM4l5/Pp3370r9pUxbs3WuX781O3Ri5xOYaPRxP3EkX1+hyF9foLzbX6ADX16g3/VNerJfoK5dKKSUii4BrLiS/x1slIjcD3wB9lVLxrtIopeYAq4DhLg7/TZFscIm0rRnG4eyTHM3JIs9q5de4/fSIcP+NotP5mq6Kj8mEj8mEctCmahMaxuHMTI5m6/YPxNC9YekCXAVsPn6MTIdVzAtsekvzHKBSsD9Y7PXJi+OCdNttaF0rjMMnMzmaqflo6b4Yul7lfA5GX9uWlTFxZJw6XbgvsEIFOtStzbxdUQDkWa3knLN/Xah17TCOZGSSeDKLPIuVZVExdG3qbH/k9W1ZtdfePsDp8/o5NpvwMZucekBtwvRznKXVf8n+/XRr5KL+bduyIjaW9NP29n1MJir6+GAWwd/Xl5RTp+yOO12j8Z69Rr3tn/KiyrD9C2wSkQ4XktHTgdMP+Bm4XSm1v5S024FmLvb3Aha7U1hoQBDHc4vexU86lUtoJeco0D60FsvvHM303oNoUqVIHdAkwrJBo9k2+mE2HjvMzlT7/7RhlQJJsrGfnJtDWGCgs/2wWiwbNorvbhtIk6ola2I72vS05vkPu95j3Bt3onImllgPTxEWGEhSto2PcnIJDbL3UWhgJbpf1ZhZO+wfHdQNqUzG6TO837cHP987grd7d8Pf1/4mKDTYwX52LqHB9vZrBlWie7PGzN7q/GjCJMKiB0fw5zMP8Ff8EXYfsz/HoYGBJOXYnuNcQoOCnNL0aNKEn3bb20/JzeXbrVvZMG4cfz/wADnnzrHxsH2POrSSwzWaW8o12sfFNXrnaLbd/TAbE52vUW/7p7x48l11EeklIjEiEicizxeTJlJEdopItIj8XorJW4G/RSReRHaLyB6H6UnF4unAmQf8BYx1I62jp2aKSCLwHMW8Iyoi94vIVhHZmrNhk2tNaof/XVFpKdw0cwq953/P9KjtTOl5e+Exq1L0WfA9N/z4NW1qhHFVleqO5Tnbd/jXGJ2aSqcZ39Bn1g/M2LWDr/sOKK69Jdj0nOb5qDbP8/XLc5HKF3jvXVbc0AV/qVskH67bgNVhv9lkokVYTX7asZsB383kTF4+D9xQegfA0f6LvSL56Ddn+6Cd4zu+mknkx9/SunYYTWra/2Nz+XN1sPNyZCQfbHC2H+znR7dGjYicOpUbp0whwNeXAVfbr07mUgLdwU7UiRRu+tHmGu11u139+8z/nht++Jo2NZ2vUdfV95x/yo2HupwiYgb+D22CenNgmIg0d0gTAnwB3KaUagHcVUrteqO9p94F6I82YNTfnWZ5+hmnFRgM/CYiLyqlSvr1tkNTwyxgBLALeA/NQQMdMyilpgBTACK+/kgln8qhVmDRf+/wSoGknsq1y5Obd77w8/qjCUwwmahS0Z+TZ88U7s8+f45NSUfpXDeCAyfTCvcn5eYQbmM/LDCIlJLsH07gLVNXJ/u2ONosi074zf2voWOvNlzXrSW+fr4EBPnz7Jdj+OChaXQbeiNfvqipRm74eRt8U5rKsmdIzsklPNjGR0GBpOba3662DA9l0oA+AFQJ8KdzowbkW63sPJ5EcnYOu45rvZwV+2N54IZr7fKmZDvYDw4kNcfBfq1QPr5Tsx8S4M8tTTT7a/YXPSnKOXuOzYcSublxBLGpRc8Xk3NzCQ+yPceBpOTan+NWoaFM7qPX39+fyAYNsFit+JhMHM3OJuOMdq5XxsbSPjycn/ftK7LveI0GBpJ6uoRr6EgCE24u5ho9fpTO9eyvUW/7p7x4cDrSdUCcUuoggIjMBgYAtrrOw4GFBQM+SqkSn1cppQ7rtmoCZVIf9PgzTqXUabTIPUJEXPY8RWQQ0AOY5ZA3D3gZ6OjOwqK7UpOJqFyFOkGV8TWZ6N+4GasP2z9WreEfUPi5TY0wBOHk2TNUrehPcAVdc9vsw0216xOfaf9AfXdKMhEhIdQJDtbsX9WU3xLs7VcPsLEfGoaIFBs0bW16S/McNK1sLIdKc59H2HM8mYgqVahTWfNR36ubsibWXjO+y5fTuFXfVu6P5fWVa/ktNp60U6dJysmlQVXtn8QNEXWJS8twsl+/WhVqhwTjazbRp2VT1sbY2+82eRpdP9G2VXtjeXPpWtbsj6dKgD9BFfVz7GPmhob1OOhgf3ey/Tnu16wZaw7a24+cOpXO+rYiNpZX16xhdXw8x3NyaBsWRkUfrf9xY716xDsMKjldo42asfpQCddozRKu0Tr1iT95cf1TXqxWcXsrhdqArVB9Is5jIVcBVURkvYhsE5HRJRkUkdtEJBZIAH4HDqFNjC8Vr4yqK6UyRKQX8IeIFPx7fEJERqJNR4oCutiMqNvmPSMiE4GnKeWW36IUr25cw/d9BmEWE3Nj9hB7Mp0RV2uDLTP37aJ3w6aMbN4Gi7JyNj+fR9YsAaBmQCUm3tobk5gwibA0Poa1Rw462X/t97V8f9sgTCYT8/ZGEZuRzvCWrQH4KWo3fRpfxYiWRfYfXbG0MP/knn3pWLsOVSr689e99/PJP38xd28Ur/2+1qua5+fP5aOyniw1D1yobru9j95YvZZpQwdiFmH+7mji0tIZ1k7zkeNzTUfeWrWOibf1xtds4mhmFs8vXWVv36p4a9lapo4aiEmEBTuiiTuRzpBrNftzXDy3K6BGUCXeu70nZpMgIqyIPsD6AwnO9V+3jumDBmESYX5UFLHp6Qxrrdd/d/H2dyUnsyI2ll9GjsRitRKdmsrsPXuc7L+6cQ3f93W4Rpvr1+he/Rpt0QaL1cpZSz6P/GZzjXYp5Rr1sn/KTRl6nCJyP3C/za4p+l0mFPPUw+G7D9ooeVfAH+355Sal1IFiinwL6Aj8ppRqJyK3oi1qXHpdS9NVv1SJ+Pojr1bc2+txNn0jxqv2jfU4S8f763FavWrf2+tx7n/9iXL/CBrOesdtJx8c9mKx5YnIDcDrSqme+vcXAJRS79qkeR6oqJR6Xf8+FVihlJpXjM2tSqlrRWQX0E4pZRWRzUqp60qr66U5ycrAwODKwHPzkbYATUSkgYhUQNML+sUhzc/AzSLioy9GfD3agsTFkSkigcAfaIPTk4F8d5plvHJpYGDgNTw1OKSUyheR8cBKwAxMU0pFi8iD+vGvlFL7RGQFsBttoPpbpVRUCWYHoL2t+ATa4HRl4E136mMETgMDA+/hwachSqllwDKHfV85fP8Q7c1Dd+zZTj+YUWxCFxiB08DAwGuo0kfLLzoikoPrkC5ob2MGl2bDCJwGBgZe5NILnEqpcrxkrGEETgMDA+9xCU7aEZFgpVS2iFR1ddxYj9PAwODf5RIMnFxq63EaGBgY2HEJLmSslOqn/21woTYu28Dp7cm/3kYqlunV2DLj7QnqMfd+6VX7AC3+z7ttMJ3z7o/aL+3yvkY9waX+fo2ItAYisImFSqmFpeW7bAOngYHBZcAlOKpegIhMA1oD0WjzPkG7VTcCp4GBwb+HXNo9zo5KqealJ3PGeOXSwMDAe1zaS8D/7bimp7sYPU4DAwPvcQkODtkwAy14JgPnKJoA37q0jEbgNDAw8B6X9q36NGAUmupumZayMgKngYGB9/Duynrl5YhSynGFJbe44MApIha0SC2ABRivlPpLRCLQlnKKASqgyWOM1Vd3R0R8gGTgG6XUCzb21qNpqxcsnz5BKTW/tHp0auSgKf1nCZrSY3VN6X2xVDA7aErvc60p7Q37nRrV5/Xfh2Mym1gx62/m/d9vTvYefHMQHbo013TVn5hJfFQitRvW5IUv7ylME16vOj98tIzFU9fTqW9bRj7Zm7pNQnm830TibGx5W/e8JDyh296pcX1e7BuJSUzM3xbFtxuKOQe1Q5l9/1CenLuMVdGxhAUH8t6gXlQPCkApmLtlDz9s2uGU72L7p1OT+rzQTytv/pYovv2j+PbMemgoT81exqqo2BJtXkz7ZeLSvlXfLyI/Ab+i3aoD3p+OdEYp1RZARHoC7wKd9WPxSqm2usDSajQdopn6sR5oQXWwrktk25kfoZSy1SEqkWI1pR2W/zeJ8HQ3B01pi64pnadrSt87mD9iE9h1LNmr9vccT+HVPl14pd9k0pIymbz0af5ZFcWR2KJyO3RpTq0GNRjb6S2atY9g/LuDeaL/xxw7mMr4nh9oZZqEH7a+xV+67MbhmCTeum8qj74/xKlu3tQ9Lw1P6La/0r8LY6dr52Dug8NZt9+1bvhTPTrxZ1xR/S1WxQcr/mBvUioBFXxZ8NAI/oo/bJf3YvvHJMLLt3Vh3DStPXMe1tuT6lzek7068Wfs4WIs/Tv2y8olPqrujxYwe9jsc2s6kqdG1YOBk447lVIWYDP22iDDgMnAEbRl6y+YQk1pXdN7WXQMXZu50JS+ri2r9rnQlM6z0aw2m5wex3jDfoHN5CPpmq76z9vp2KOVXb6OPVqxZv5mAPZvP0RgsD9Vatov2NK2U1OSDqeRqssIH41L4dhBZ20qb+uel0a5ddvrhHEk3UY3fE8MXa52cQ46tmV1dBzpuUX1P5F7ir1Jmk9On88j/kSGk3TuxfZPK4f2LN/tuj0jbnBujzt4236ZuYRH1ZVS97rYxriTtzyB01/XL94PfIum32GHiFREW4V5hf7dH00PZAmaUJujvsdM3eZOESlVpzQ0yIWmdFAZNaUf0DWlD7rQ3PaCfUebacmZVAuvbJevWlhl0o5nFqVJyqR6mH2azre15/eftzmV6Yi3dc+9Tc3gQJKziuqfkuX6HHS7ujGztxSvr1MrJJirw2uwK9H+HF9s/4RWtm9PclYuNR110IMr0a1FY+b845bE90W1fyUgIs/qfz8TkU8dN3dslCdwnlFKtVVKNQN6Ad9LkSB4IxHZCaSjPYAtOEP9gHW6EuYC4A79dr6AEbrNtkqp0jVK3dBVf7FnKZrSX+ua0rXCtOdU3rbvWmjbvthS9Nx9fM1c36MlG5bsdGHMgX9B99yTuFbosq/nC30imbjK9TkACKjgy6dD+/He8t85de68/cGL7B/XT/wc2tM3kokrim/Pv2m/zPVR7m8XkQI5ja1oC304bqXike6DUupvEakO1NB3FTzjDAfWi8ht+ujVMOAmETmkp6sG3Ao4j464wFYFL7TfXaTUCb9wTekYG03pc+fYfFjXlD5RFK/LpVldjP3tR4/b2aweFkJ6cradzbSkTKrXCilKEx5CekpW4fdrb21O/J5EMtNyKA1v6557m5TsXMIqF9U/tLKLc1A7lImDbc7BVZru+Zp98fiYTEwe2o9fd+9n9d44HLnY/knOsm9PWOVAUrPty2tRO5SJQ4vKu6VpAywWrT2l4W37ZeYSfOVSKfWr/rdw1XcRMQGBSqnsYjPa4JHAKSLN0HRA0oFCkWilVJKuPPeCPmreCairlDqn57sXLZi6FTh1qdApAM3emKT2HCvSlE7NzqVPi6Y8vdBeFrnbp9MKP787oAfrDySwJkbTlM63aM+k/HzM3NCgHt86jJh7w36BzdC6VUlPzqLzgPa8P95+1f5Nq/bQ/95b+P3n7TRrH8GpnLOcTC06n5ED2rPejdt0sNc9T8nJpe/VTXnyF/s2dPmyqA3v9+3BurgEfovVfkQFuucJGSdd6p57G7tzkJNLn1ZNeWaeff27f1xU/3fu0M+BHgQm3NGdgycymPHXdtf2L7J/oo4lU796FWpX0a6p3q2b8uwc+/J6fFRU3tuDevB7TILbQc3b9svMJTw4pI+oP4g2K2gbUFlEPtblN0qkPIHTX78dB+0O4W6llMXFbeZi4HXgMWBtQdDU+Rn4QET8LqQCFqVrSo/UNaV36prS1+ia0ttK0JQOdKEpHeusue0N+28tW8uEmQ9r05TmbOLIgWT6jLwJgGU//smWtXvp0KUF0za+ytmz55n05MxCu34VfWl3SzM+fX6OXXk39mrNQ2/dSeWqgbwx4wHuyslgzJxFXtc9L41y67ZbFROWrOXbuwdiMgkLt0cTl5rOkA76OSjhuWb7erUY0LY5McknWPjwCAA+Wf0nf8QeKrJ/kf1jsSre/mUt39yrXVOLtuntuU5vz+byPXf0tv2ycomPqjfXFzQegaZl9BxaAC01cF62uurN3ph0eVZcp8E3CaUnKgdx/7vgpQbd4kpYVi4/oPQ05cG39CcplzR73ym/rnqjiR+7/TuNf+rJi3pfLyLRQFu0hY0/V0r9LiK7lFJtSstrLPJhYGDgPS7h6UjA18AhoBLwh4jUBy7eM04DAwMDV1zKt+pKqU+BwulHInIEbbC6VIzAaWBg4D0uwVH14tDfYsx3J60ROA0MDLzGpdzjLA9G4DQwMPAeV2jgNAaHDAwMvMYl+uaQVjeRABF5RUS+0b83EZF+7uQ1AqeBgYH3uLRH1b9DWx3pBv17IjDBnYxG4DQwMPAaYnV/+xdopJT6AMgDUEqdobjX/R24bJ9xisW79s1nvWtfnfVuAeayrf5WZrw9OR0g+n/enWR/1Q8PetW+1c+7I8pnars1AGxQPOf1FdsUgIg0wmZB45K4bAOngYHBZcClPTj0GtqSl3VFZCZwE3CPOxmNwGlgYOA1LuXpSEqp1SKyHW1BdQEeU0qluZPXeMZpYGDgPS7hwSERuQk4q5RaCoQAL+qvXZaKETgNDAy8xyUcOIEvgdMi0gZ4BjgMfO9ORiNwGhgYeI1LfFQ9X3/NcgDwqVJqMuCWQpYROA0MDLyGJyfAi0gvEYkRkTh9gfTi0nUQEYuI3FmKyRwReQEYCSzVZXzcknG9oMEhEQkDPgE6oA3fHwIeB3YB+4GKQA7wfwXL04vIPcC1Sqnx+jL136GtvPwIMBdopH//VSlVrFMc6dS4Pi/20TW3t5eguV3LRnN7r43mdqCuub3Vteb2TVfV5/kBkZjFxILNUUxdb2//1uYNeaTnjViVwmJVvPfLenYcOg7AyJvaMej6lgjC/M17+HGjs32Aa7q04KF3hmAymVjx40bmfrrCKc1D7wyhQ7dWms76I9OJ230EgBnb3+F07jmsFisWi4VHuznr8HZq7KANv7EEbfhxujb83lgq+Dhow+8tRnvey7rnpVFe7fZbIiJ4uat2jufu3sPXm4vRVQ8LZf6IYTz261JWHIilQZUqTL6taFXmepUr88mffzF9m30bOjVy8P+fJfh/rO7/fbFUMDv4f59r/3euE8FrHbtiFmF2zG6+3L3Z7njH8Lp80/0OjuZo8isrDh3g0x1FdkwiLBkwiuTTuYxZVaoybtnw0C24HtT+D+iONlF9i4j8opTa6yLd+8BKN8wOAYYDY5VSySJSDzcWMYYLCJy6INsiYIZSaqi+ry0QiqY11E7f1xBYKCImpdR3Dvm/Qovs96IF2Y+UUutEpAKwRkR6K6Xs1/t3gUmEV/p1YewMXXP7gXJobj/oWnP75Tu6cN83C0nOymHOI8NZtzeegzYa1ZvijrJu748AXBVWnY9G9uW2j2bQOLQag65vybDPZpFnsfDV2IH8sT+BI2mZ9nUzCf97fzgv3jmJtOMn+XT1i2xasYsjB5IK03To1pJaDUMZc93LNLumAeM/HMHjPd8tPP7c7RPJzsgt1kcuteFd+Ojp7g7a8Pm6Nvx5XRt+zGD+iEuwU4r0tu65O5RHu90kwuvdu3D33AUk5+SwcNQI1sS71lV/9pab2XCoqP4JJ09y24wfC4//+dD9rIqNc8rn0v9pLvzfzcH/Ft3/ebr/7x3MH7EJ7Dpm7/+3buzOiOVzST6Vwy8DRvHbkXhiM+21DrckJxYbFMe0uIa4zHQCK1yQEEPJeO7Z5XVAnFLqIICIzEa7xd7rkO4RNCHIUlUFlVLJwMc234/gxWectwJ5SqmvbArcCRx1qNRB4EngUYf8k9FE2kYrpaxKqdNKqXV6nvPAdqCOOxVpXUfXPbfV3Hale96xLav3xpF+qmya263qhnEkLZPEjCzyLVaW74qhSwt7+2fO5xV+9q/gWyhH2bBmVXYfSeJsXj4Wq2LrwUS6tmjsVLem7RuQlJBK8uE0TWd90RZu6G2/APUNvduyZq7WQ9i/LYHAyv5UDa3sjouKtOELfBQVQ9emLnx0fVtW7XWhDa+3z8esa8M7/BC8rXvuDuXRbm8TruuqZ+m66vv3062xC1319m1ZGRtL+mnXOuQ31q/HkcxMjmfbL/te6H9dt31ZdAxdXV2j17Vl1T4X/s/T/W/S/e+Qr22NcA5ln+Rojmb/14P76V7f+TorjrCAQLrUbcjsmD1u5ykLZblVF5H7RWSrzXa/jana2MeYRH1fUVkitYE70DpmpddNpKOIbBGRXBE5r9/eZ5We88ICZ0vclNBEC4LNbL4PB64BhiqlnF57EJEQoD+wxh3jNYMcNLezc51+eOXR3K5Z2VnT21GjGqBri0b88vTdfDHmdl6ZtxqAuJR0rmlQh8oBFano68PNzSIIC3HOWy08hBPHi3ofacczqRZexTnNsZOF308cP0m18BBAi9PvzH+cz9a8RO/RNzvZDw12oQ3vwkclasM/qGvDxztrz3tb99zbhAYGkpTjoKseGOSUpkeTJvy0s/j6923WlCX7YpztB7nwvwv/lOj/B3T/H3T2f1hAIEmniuwnncohLMD5OmtfsxbL77ibGT0H0SSkSAb7tRu68M7m37F6a1i7DKPqSqkpSqlrbbYpNpZcK0Xb8wnwnFLK3fcKP0cTi4wF/IFxaI8DSsXbE+AdG1sQSK8D/rRLKOIDzEIb3TrolnE3NLFf6H3hmtvuaHoDrImOZ010PNc0qM34njdy3zcLOJiawbT1W/jmvoGcPpfHgaQ0LFbnvK411JXbaZ7s+z4ZyVlUrh7Eu/Mf52hsMlF/x7psa3H2X+xVijb8VzMJqujH50P606RmNWJTi24Dva577mXcqf/LXSL54Pfi6+9rMtG1USM++mOjWwU42n+xZyn+/3omQX66/2tUs5Owdm3fnqi0FG6c/TWn8/O4tU4Dvul+B5HzvqVL3YaknzlNVHoKHcPrumxbefHgaHkiYFvJOsBxhzTXArP130t1oI+I5CulFhdnVCkVJyJmPdh+JyJ/uVOZCwmc0UBpo1UFtKNI/B20gaNXgbki0lMpFW1zbAoQq5T6pDhjtrrqYX3vIqVuuL3mtivd89qhTLzLXvfcYrWyZr+D5vY+Z83tlCxnTe8TDhrVtmxLOEbdapUJCahI5umzLNwSzcItWhMf63WTXc+sgLTjJ6lRq2rh9+q1QshIznROU7uoF1qjVhUykrU7ioK/WWk5/LVsJ03bR9gFznJpw++30YY/e47Nh3TteZvA6W3dc2+TnJtLeJCjrrr98+KWoaF80l/XIff3J7KB5p/f4jT/dG7YgL2pKS5v48vl/xgb/587x+bDuv9tAmfyqVzCKxXZD68URMpp+/rn5hX9M1qXmMBbJhNV/Py5NrQ23eo3JrJuQ/zMPgRVqMAnkX15fP3SUrxWBjzXkd0CNBGRBsAxYCjaHWxRUUoVKhSKyHRgSUlBE20OZwVgp4h8ACSh6Q+VyoUEzrXAOyJyn1KqYB27Dtjoqev7IoCPgM9s9yul/hKRB9GG/29RSh0RkQlAZbSucrHY6qpf/aquq161FM3tSQ6a2zEJhQFhwu0la25HJSZTT9eoTsnOpXebpjw7y95+3WqVOZquBa+ra9fE12wm87S2gEfVSv5knDpDWEgQXVs2ZuT/zXYqI2bHIWo1rElovWqkJ2XS+Y4OvP/At3ZpNq3YRf+xt7J+4RaaXdOAU9lnyEjJwi+gAiaTcCb3HH4BFWgf2ZyZHy2xy7vnuIMuecumPL3AQRt+so02/O26Lvl+XRveaiXnrK4N37AU7Xkv6J57m91JydSvElKkq96sGU8uWWaX5tZvphZ+fr93T9bFHywMmgD9mjXlVxe36eDgn+xc+rRoytMLHfz/qY3/B+j+idH9b7GSc073fwNn/+86kUSD4CrUDaxM8ukc+jdsxqPr7K+BGv6VOHFGC9ZtaoRhEuHkuTN8sHUDH2zdAGgj7/e36uDZoInnXrlUSuWLyHi00XIzME0pFa3HEmzHXMrAKLTHleOBJ9B6tIPcyVjmwKmUUiJyB/CJPpfqLEXTkRqJyA6KpiN9ZjuibmNjiYjUAFaISG/gJbTe6Ha9m/25Uupbx3yOWKyKCUvX8u1oG83tE+kMuVbXkHbxzKgAO83th3TN7d8cNLetind+XsvX4wZiNgmLtkQTn5LO4I6a/bmbdtO9VRNua9+cfKuFs3n5PD2z6MKbNLo/IQEVybdYeXvxWrLPOC+8YrVY+eL5Wbw973FMJhOrfvqTwzFJ9LnnFgCWTf+Dzav30KFbS6ZteZtzZ87z8aPTAahSI5hXZ2irFJl9zKxbsJlta6Pt7Fusujb8KF0bfof7PqoR5EIb/kCC8znwou65O5RHu92iFG/8to7v7hyE2STM2xNFbHo6w9rouuq7StYhr+jjw00R9Xl51W/F2n9r2VqmjtT9v1P3/zW6f7aV4P9AF/6PdfC/Urz612983/tObTrVgT3EZqYzopk2wDhz/y76NLiKkVe3Jd9q5awln0fW/uqeczyBBx+dKqWWoemf2+5zGTCVUve4Ya9gCsNZ4I2y1OWy1VW/+lXv6qp7e1m5OtP2lZ6oHBwaf7VX7Xt7WT+4/JeV8zl9eS8rd3jcM+VuQKsn3f+d7vm4/DruZUF/V/11oD42nUilVMPS8hqrIxkYGHiNS3l1JGAq2i36NrSXb9zGCJwGBgZe4xIPnFnuvGjjCiNwGhgYeI9LO3CuE5EPgYXYrPyulCp1pNIInAYGBt7j0g6c1+t/r7XZp4AupWU0AqeBgYHXuJRv1ZVSt15oXiNwGhgYeI9LMHCKyEil1I8i8qSr40qpj13tt8UInAYGBl7jX1qguDQK3g5ytTSMW6HeCJwGBgZe4xK9VV8KoJRymvQuIv3dMXDZBs4z4d6dgW0+7d3F8SXEvWXhLpS8YO9esaZz3p+r7O0J6gdGXchbeu7TeJZ3618x6TL4+V6agXONvlbGIdudInIv8DJQ6qtVhnSGgYGB97g0xdqeAFaLSJOCHbqExpNAZ3cMXAb/sgwMDC5XLsVbdaXUMhE5BywXkdvRFhfqANyilDpZYmYdo8dpYGDgPS7NHidKqTXAPcB6oCHQ1d2gCUaP08DAwIuIi8W7/21EJActVAvgB3QFUnU9NKWUCi7NhhE4DQwMvMYleqt+gQpVRRiB08DAwHtcgoHTE3glcIpIrlLKSTFKREYDz6J1kQVtFeePbJa5ny8iVdHE2j51tQiyI53rRvBqpy6YRZizbw9f7nDQlK5Vlym9biexQFP6YCyfbvub8EpBfNy1NzUCKmFVill7d/PdHud3+2+JiOCVWzXN7TlRJWhuh4ayYPgwHl2ylBWxmnTFve3bM7hVSwBi0tJ4dsVKzlss3BIRwVurRmIym1gxdzPzvl7nZO/BVwbQIbIZ587kMfG5OcRHHwNgwN2d6DXkekRgxZx/WDxd07kZ8Wh3eg2+nqwMbaXvd2L+YX1CQlEbIiMxm0zM2bOHr7eU0IZhw3h0qUMbWtq0YaXWBltublifl7tp9ufujGLKpmLsh4cyb/RQHl+8jBUxmv0gPz/e6dOdJjWqgVI8v2w1O48l2eXztu55aZRbt71+BK9Garrqc6P28FUx/m8dGsqCocN4dNlSluv+v6ddO4a0bIUIzNmzh+92ONf95kb1eamnpms/b0cU3/xVvP/njBnKEws13fYCTCIsGDeclOxcHpzzc9kbWAKXYo/TE1y0Hqe+0vvjQA+l1HERqYi2dL1tmspoS+NPcSdomkR48+ZujPx1nqYpPWgkqw/FE3fSQVM6KZGxyxfZ7ctXVib8tZ7otFQq+fry652j2JB42C6vSYTXu3bh7vma5vaiESNYExdPXIazJvZzDprboYGB3N2+HT2nz+Bcfj6f9utL/2ZNWbR3H6937cIrd3xJWnIWkxc+yj9rojkSl1qYt0PnZtSKqM7Yru/TrG09xr8xkCfu/Iz6TULpNeR6Hh/4KXl5FiZMG8fmdfs5fjgNgMXfbWDB1N8BOPBweFEbunTh7gU2bYgvpg0338yGww5taNeOnjP0NvTtS/+mTVmwd69dvtd7dOGe2QtJzs5hwT3DWRvrWpf8mchObEg4bLf/5e6R/HHwEI8sWoKvyURFX1+nfN7UPXeH8uq2v9GlC6MXavVfPHwEvxXj/2c72fv/qmrVGNKyFXfM+ok8i4XpAweyLiGBQ5mZdvle7dWFe2dquu3zxw1n7YFidNu72uu2FzD6unbEp2UQWKFC2RtYGldo4LyYo+ovAE8rpY4DKKXOFmgW6QQCy4GflFJuLf3dtmYYh7NsNKXj9tMjwlmz2hUnTp8iOk0LVqfy8og/mUFYJftOcpuwMA5nFmluL4kpRnO7XVtWuNDc9jGZqOjjg1kEfx9fUnJPFdpMPpqh6agv3UnHbi3s8nXs1oI1izQF5v07jxAYXJEqNYKo2ziU/TsPc+5sHlaLlT2bD3Jjj5YlttOpDfv3062Riza0daMNvr6knLIXGmtdS9cl13XDl+6LoetVLuxf25aVMfa64YEVKtChbm3m7YoCIM+q6evY1d/LuufuUC7ddhfXUHcX/r+7bVtWxsWSZlP/RlWrsjMpibP5+ViU4p/ERHo0ttdML/B/gW770ugYujZ1tj+qQ1tW7o9z8k9oUCCRTRowf0fUhTWwFMTq/nY5cTEDZ2l67B8DG5VSk9w1GFopiON2mtK5hFZyvsLbh9Vi+V2jmd53EE2qVHM6XicomObVa7Izxf4W0W3N7cZN+MlBmyYlN5dvt2xlw33j+PvBB8g5f46Nhw872UxLzqJaqP1bRNVCg0lLyrRLUz20MocPJNOyQ0OCQgLwq+hLh8hm1Agvytt/1I18seRJnnj3LoL9/Fy3ITeX0CAXbWjShJ92u2jD1q1sGDeOvx94gJxzWhtsCQt00A3PcdYNDw2sRPerGjNrh739uiGVyTh9hvf79uDne0fwdu9u+Pv6OOT1ru65twlzqH9Srov6V9KuoZkO/j+Qns51deoQUrEiFX18iIxoQLhj3uBAkm38n1KMbnu3Zo2Z7ULf6MWekXxYjDSxJxDl/nY5cSnN41wLDBCRmu5mcEcTO+pECjf9MIXe875n+p7tTOl1u93xAB9fvux5G2/+uc5ORhVc67Y73nu8HBnJBxucL7xgPz+6NW5E5LdTufHrKQT4+jLg6qtd23RTR/1ofCrzpqzjnRn38da0cRzcdxyLRftXvXTm34zp8h7/6z+JjBM5vNhZewHCdRPK0IZGjYicOpUbpxS1wb6yrszb23mpWyQfrnO2bzaZaBFWk5927GbAdzM5k5fPAzd0KM38BeueL4s54PL4xcbRP69ERvK+C//HZ2Tw9ZYtfD9wENPvGMj+tBNYlH3XzPXl5OD/HpF8tMbZfmSTBmScOk10cipeQyn3t8uIizmqHg1cgxYgXTEb2AgsE5FblVJO91S2uupVhw8iOTScWnaa0oGknipeU3r9kQQm3GyiSkV/Tp49g4/JxFc9b2PxgX2sTIjFkeQcZ83tFAfN7VZhoUzua6O53bABFmXFx2TiaFY2GWfOALAyNpb2tcJZvHefnc3qYZVJT822s5mWnEX18BCXaVbN28KqedrD/7uf6kWarquemV5Ur+Vz/uGlwfdrbXDUDQ900YbQUCb3sdcNt1j1NmQ7tCE8nJ/3FQnNJec46IYHBZKa66AbHh7KpAG6/QB/OjfSdMN3Hk8iOTuHXceTAVixP5YHbrjWLq+3dc+9jWP9wwOdr9FWoaF82se5/qvj45kbHcXcaO02+umbbiI5xz5vcnYuYTb+Dw127f+PB9r4v7Fmv03tMLpc1ZBbGkfg5+NDoF8FPry9F88sXuGx9l9uPUl3uZiB813gAxHpp5RKFhE/4AGl1KcFCZRSn4hIOLBIRPoopey6gLa66hFffqR2pSYTEVKFOkGVSTmVQ//GzXj0N3td6Br+AZw4o/1g2tQMQ0Q4eVYLBO9H9iQuM4Opu10/QdidnExESAh1goNJyc2lX9NmPLHMXnM78tsize0PevZk7cGDrI6Lp01YGG3Dw6jo48PZ/HxurFePPSkphTZD61QhPSWbzn3b8v6TP9nZ3LQmmv6jbuL3JTtp1rYep3LOcvKE9n+kctVKZGWcokZ4CDf1aMWTd30OQJUaQYVpbuzRkgNpaa7b0MxFG6a6aEO83oYw5zbYsud4MhFVqhTpkl/dlCd/sZdx6fJlkW74+317sC4ugd9itaCWlJNLg6pVSMg4yQ0RdYlzGNTwtu65t9mdnExEFftr6PHl9vXvPM3G/z16si5B8z9ANX9/0s+coVZQED0bN2HQ7Fl2efccTyaiahXqhASTkp1L3xZNeWqRvf+7fm6j235bD9bHarrta2Li+XjtnwBcV78OYzpe49GgCVyxg0PeCpwBIpJo8/1jpdTHIhIK/FYwQx+Y5phRKfWciHwH/CAiw5RSxT42tijFqxvW8H2/QdpUlf17iD2Zzojmuqb03l30btSUkS3aYCnQlF69BIBrw2ozqGkL9qWfYNldowH44J8NrD+SYGf/jbXrmD5oECaTMD9K19xurWtu7y7+mdqu5GRWxMbyy6iRWKxWolNTmb17T6HNCd/dh9lsYtW8zRyJTaHPsI4ALJu1iS3r99Mh8mqmrX2es2fOM+m5uYV2X/6/0QRXqUR+noUvXl9Ebrb2T2Dsc31peHUtUJByLIPHf/+9qA3r9DbIBbZhpE0b9uxxOgdvrF7LtKEDMYswf3c0cWnpDGun299Rsi75W6vWMfG23viaTRzNzOL5pauc7XtR99wdyqvb/vradcwYqPl/XrRW/+G6/x2fKzvyRf/+hFT0J99q5bW1a8h2GDyzKMWbK9by7XDN/wt2abrtQ9tr9mdvL9m+t7ncBn3c5bLVVY/48iPv6qp7eVm5q75MKj1ROSiYjuQtLsaycsrHu9fm5b6snG+ud89BzCvl1zm/6a6Jbp/EP+c9dVF11cuD8eaQgYGB97hMO2alYQROAwMDr2EMDhkYGBiUFSNwGhgYGJQNo8dpYGBgUEYuxfU4PYEROA0MDLzHlRk3jcBpYGDgPYxbdQMDA4OyYtyq/7dQvt494fkHD3nVviUg1Kv2/dLMXrUPYPXz7nxob09Qjxvm3Qn2rT9+yKv2PcKVGTcvqdWRDAwMrjA8uayciPQSkRgRiROR510cHyEiu/XtLxFp4402gdHjNDAw8CKeGlUXETPwf0B3IBHYIiK/KKX22iRLADorpU7qihNTgOs9UgEHjB6ngYGB9/Ccrvp1QJxS6qC+atpsYIBdUUr9ZaONvgmo45lGOGP0OA0MDLyGeO5d9drAUZvviZTcmxyLJsXjFYzAaWBg4D3KsKyc7ULlOlP0NXihODEA13ZuRQucndwvvWwYgdPAwMBrlKXHabtQuQsSgbo23+sAx53KE2kNfAv0VkqlOx73FB4NnCKigB+VUqP07z5AEvCPUqqfiNwDfAgcs8l2NzBD/1wPyNK3NKVUt9LK9LauuiO31I/g1VtuxSTC3OgovtpmX971teswpd/tHM3WylsZH8tnmzeVarckru3Zloc/uReT2cTyqWuY8/7iMuXvXDeCV2+y8dFOFz7qaeOjBM1HfmYzcwYMxc9kxmwysfzgASZt/avEsjo1qc8L/TSN9flbovj2D9ca3y1rhzLroaE8NXsZq6KcZUvsbDaqz0u9NF3y+duj+ObPYmzWCmXO2KE8OV/TDa9gNvPjvYOpYNbqv2pfLJ+t/9spn7d1z0ujvLrtN11Vn+cHaLrzCzZHMXW9ff1vbd6QR3reiFUpLFbFe7+sZ8chLeaMvKkdg65viSDM37yHHzeWvf4l4rnpSFuAJiLSAC1+DAWG2yYQkXrAQmCUUsqrAlOe7nGeAlqKiL9S6gzaCNgxhzRzlFLjHfa1BRCR6cASpdR8dwrztq66q/LeiOzK6EXzSc7NYfGQEfyWEOekkb3leCLjfl3sThNKb6PJxCOfj+W5Hm+RlpjB55vf5e9ftnJkX2LpmfU6v9mpGyOX6D4aOJLVh134KNnZR+csFob/MpfT+Xn4mEzMHzCM9UcS2JHqehFmkwgv39aFcdM0je85Dw9n3f544lOdNb6f7NWJP2OdNb5d2Xy1TxfG/KDZnHffcNbGFKMb3s1eN/y8xcI9M+ZzOk+r/8x7B/NHbAK7jiXb5fOm7rk7lFe3/eU7unDfNwtJzsphziPDWbc3noM2Pt8Ud5R1ezV9+avCqvPRyL7c9tEMGodWY9D1LRn22SzyLBa+GjuQP/YncCStbPUvCU+Nqiul8kVkPLASMAPTlFLRIvKgfvwr4FWgGvCFLniYr5S6tjib5cEbo+rLgQJhgWHArBLSlgtv66o70iZU18jO1jWyY2Po3rBxiXnKS9PrGnM8LpnkhFTy8/JZP+dPbhzg/rXQtmYYh7NtfBTvvo8ATufnAZq+uo/J5KQwaUurOmEcSc8k8WQWeRYry3fH0OVq57JG3NCW1dFxpOeWLp7WunYYRzKKdMOXRcfQtZmzzZHXtWXVPnvddoDTeTb1N5ucau9t3XN3KI9ue6u6YRxJyyQxI4t8i5Xlu2Lo0sK+/mfO5xV+9q/gW7i4cMOaVdl9JImzeflYrIqtBxPp2sLD17MHVS6VUsuUUlcppRoppd7W932lB02UUuOUUlWUUm31zStBE7wTOGcDQ0WkItAa+Mfh+BAR2Wmz+V9oQd7WVXckLDCQpFxbjewcQl0E23ZhtVg6bBTTbhtIk6rO5ZWF6rWrciKxqHeYlphB9dru2wytFMTxXAddb1c+Cq3F8jtHM72PvY9MIiy7czTb7n6YjYmH2Zma7JS3sKzKgSRn2WigZ+VSM9hB4zu4Et1aNGbOP+5p4YQGOei2F6Mb3r1ZY2ZvdbZpEmHRAyP485kH+OvgEXYfs6+/t3XPvU1NB5+nuPA5QNcWjfjl6bv5YsztvDJvNQBxKelc06AOlQMqUtHXh5ubRRAWUnLnoayI1f3tcsLjg0NKqd0iEoHW21zmIomrW/ULoiy66qfz84is14ApvW7n1llFqoIl6aq7U6Lj/8noE6ncPP0bTuflEVm/AV/3G0CX75006dzGlQ57WXSi3NHdjjqRwk0/uvaRVSn6zP+e4Ap+fN1zAFdVqc6Bk2lul+XooRf6RjJxRfEa6O4YdTzHL/aM5KPfXNu0KsUdX88kyM+Pz4f0p0mNasSeKHnM4EJ0z0/n5bnUPfc27vwGANZEx7MmOp5rGtRmfM8bue+bBRxMzWDa+i18c99ATp/L40BSGhZPv1tuSGeUiV+Aj4BItGcOHuFi66o7kpybY9ejCA8Mci7vvE15hxN409S1sLwL4URiBjXqFLmwep2qpB/PKCGHQ51P5VAr0EHX+7T7Piog+/w5Nh0/Sud6EcUGzuSsXMIq22igVw4kNdte47tF7VAmDi3S+L6laQMsFitr9sXjipRsB9324EBScxx0w2uF8vGdms2QAH9uaaLphq+JKbKZc+4cmw8ncnPjCLvA6W3dc2+T4uDz0MqBnHDwuS3bEo5Rt1plQgIqknn6LAu3RLNwSzQAj/W6ya736hGuzLjptTeHpgFvKqX2lJqyDCilpiilrlVKXRvUqSO2uuq+JhP9Gzdj9SH7H2AN/4DCz2XVVXdkd0qRRrmvyUS/Jk357aB9edUDisprHRqGyaa8CyFmSxy1m4QTFlETH18fIofcxN+/bHU7/67UZCIq2/iokRs+Qqtz1Yr+BFfwA8DP7MNNdeoTf7L4oB11LJn61atQu0owvmYTvVs3Zd2+g3Zpenw0je4fatvKqFje+mVtsUETYM+xZOpXq0LtEM3nfVo0ZW2Mvc1un06j62RtW7U3ljeXrmVNTDxVAvwJ8tPr72Pmhgb1OOio226je+5rMtGvaTN+O2hvv/O0qdyib8tjY3lt7Ro73XOgUPf8l5j9xbbFG0QlJlNP97mP2UTvNk1Zt9e+/nWrVS78fHXtmviazWSePgtA1Upa/cNCgujasjHLd3pWf16sVre3ywmv9DiVUonA5GIODxER24mpDyulSp7jUgze1lV3Vd7r69cyY8AgTCaTppGdkc7wlrpGdtRueje+ihGtisp7dPnSC2laIVaLlc8fmcq7K17CZDax8rt1HN7r3oh6QZ1f3biG7/vqPopx4aOGDj76TfNRzYBKTOzSG5OYMImwND6GtUcOFl+WVfH2L2v55t6B2rPFbdHEpaYz5DrNP3M2l13j26IUby1by9SRms0FOzXd8CHX6Da3FW+zRmAl3ru9J2aTICKsiD7A+lj78+tt3XN3KJduu1Xxzs9r+XrcQMwmYdGWaOJT0hncUav/3E276d6qCbe1b06+1cLZvHyenll0TU4a3Z+QgIrkW6y8vXgt2WfKXv8SubziodsYuurFYMrz7pJmjR4v39zO0oj9witrGxQScORiLCvnXfvng7177V/uy8pFfVB+XfWeHd5w28krt7xm6KobGBgYGINDBgYGBmXFCJwGBgYGZeQKfcZpBE4DAwOvcbmNlruLETgNDAy8h3GrbmBgYFBGjMBpYGBgUEauzDt1I3AaGBh4Dw9KZ1xSXLaBM+CYdydgS75XzeNTs4ZX7VdM9v4EdW9zprZ3T0LFJO9e/t6eoL77yS+9ah+eKL8JI3AaGBgYlBHLlXmvbgROAwMD72H0OA0MDAzKiBE4DQwMDMqIpxdGvkQwAqeBgYH3uMgr4l8sjMBpYGDgPYzBIQMDA4MyYjzjdA8RmQpci6YjdQC4RymVKyKVgR+Benq5HymlvitveZ2a1OeFPpGYTSbmb4vi2z+2uEzXsnYosx4YylNzlrEqWtMXmnBHdzo3bUjGqdMM+OwH98q7qj7P94/ELCYWbIni29+LKa9OKD89PJSnf1rGqqhYJxuvbByOySysmPkX8z5f5ZT/wQl30aFrC86dyWPiY98Tv+coAJWC/Xn84xHUb1oLpWDSEz+wf1sCY1+9g+u7tyI/z0LSoRM8tvsvcs5qq3l3alyfl3pFYjKZmL89im82FlPnWqHMGTeUJ+cvY+XeWCr4mPnx3sFUMJsxm0ys2hvLZ+v/Ltk/TerzQj/9fGwp5Xw8NJSnZjv7x5HOdSJ4rWNXzCLMjtnNl7s32x3vGF6Xb7rfwdGcLABWHDrApzuK6mkSYcmAUSSfzmXMqoVO9m9uVJ+XekZiEhPzdkTxzV+u69wqPJQ5Y4byxMJlrNxXVGeTCAvGDSclO5cH5/zslO+mq+rz/AD9mtkcxdT19vZvbd6QR3reiFUpLFbFe7+sZ8eh4wCMvKkdg65viSDM37yHHzfuKNFXrnjpPVj/N1StAr9OL3P28mEETrd5QimVDSAiHwPjgfeA/wF7lVL9RaQGECMiM5VSpUlLFotJhJf7d2HcdwtJyc5hzoPDWbcvnvgTGU7pnuzZiT9jD9vtX7RjLzM37eK9O3u6Xd5LA7pw39SFpGTlMGe8Xl6qi/J6d+LPA4eLtfFK74mkJWUyecVz/LNqN0cOFMnWdujagloNazL2htdp1j6C8e8P5Yk+HwJaQN26di9vj/sWH18zfv4VANjx+36+e/tnrBYrY16+nfs7dWDibxsxifBqny6M+UHz0bz7hrM2xrWPnu7eiY3xRXU+n2/hnhnzOX0+Dx+TiZljBvNHXAK7El1LBJtEePm2Loybpp+Ph4ezbn8x/unlfD6Ks/nWjd0ZsXwuyady+GXAKH47Ek9spr1S5ZbkRJdBEWBMi2uIy0wnsILzkvImEV7t1YV7Z2p1nj9uOGsPxBOf5sI/Xe39U8Do69oRn5ZBYIUKrn1yRxfu+2YhyVk5zHlkOOv2xnPQxieb4o6ybu+PAFwVVp2PRvblto9m0Di0GoOub8mwz2aRZ7Hw1diB/LE/gSNpmaX6zZbbe8PwgfD8O2XK5hmu0MB5wWJtIhIhIvtFZIaI7BaR+SISYBM0BfCnSOdOAUH6/kAgA8jX0y4WkW0iEq0rWbpFqzphHEnPJPFkFnkWK8v3xNDl6kZO6UZ0bMvq6DjST52227/t0DGyzpx1u82t6oZxND2TxAytvGW7Yri1uYvybmzL6j1xZDiUZ2sj+Ug6+XkWfl+8jY4929il6dizNWvmanL0+7cfIjA4gCo1gwkIrEjLjo1Z+ZMm0ZSfZ+FUtiYEt/33fVj150n7tyUQpmtrt64dxpGMIh8ti4qha1PnOo+8vi2r9jrX+fT5PAB8zCZ8zKYSfwdO52N3MefjBv185Dr7x5G2NcI5lH2SozlZ5Fmt/HpwP93rNy41XwFhAYF0qduQ2TGudQNb1wrj8MlMEjM1+0ujXftnVIe2rNwfR/pp+zqHBgUS2aQB83dEubTfqm4YR9K0aybfYmX5rhi6tLC3f0b3MYB/Bd/CYNOwZlV2H0nibF4+Fqti68FEurZwv+0FdGgDIRdX7r0Iq9X97TKivCqXTYEpSqnWQDbwMICIfAckA82Az/S0nwNXA8eBPcBjShUOuY1RSl2Ddov/qIi4JSkcGhxoJ2eanJ1LTT1gFFAzqBLdmje+IKEwV+Ul2ZSXkpVLqGN5wZXo2qIxc/5xXZ6jjbSkk1QLr2yXplp4CGnHT9qlqR4eQlj96mSl5/Lk5FF8vvoFHps4Ar8A515Oj2E38kfcoaLysu195FTnoEp0b9aY2Vud62wSYdGDI/jzmQf4K/4Iu4+57m2CJk1rdz6yXJyP4Ep0K8E/joQFBJJ0qshm0qkcwgICndK1r1mL5XfczYyeg2gSUnT5vHZDF97Z/DvWYnRqQ4MDSbbxT0p2LqFBLq6hZo2Z7UIY7sWekXxYjKY7QE0Hn6S48AlA1xaN+OXpu/lizO28Mm81AHEp6VzToA6VAypS0deHm5tFEBbinPeSRin3t8uI8gbOo0qpP/XPPwKdAJRS9wK1gH3AEP14T2Cnvr8t8LmIBOvHHhWRXcAmoC7QxFVhInK/iGwVka0nt/+NS2UnhxPwQt9IJq4s/sIuEy4KVA4/yOf7RfLx8hLKc1Vph6Rap9whiVKYfUw0blWXpdM3ML77u5w9fZ7B43vYpRv6WC8s+RZ+3V28TK2jQN+LvSL5qJgfv1Up7vhqJpEff0vr2mE0qVn8/zTXSlsuzseKMpwPlz63JyothRtnf03vRTOYHr2db7rfAUCXug1JP3OaqPSUMtXZ0T8v9YjkozXOdY5s0oCMU6eJTk4tm30XQXxNdDy3fTSDR2f8wvieNwJwMDWDaeu38M19A/lq7B0cSErDcrnNi7RY3d8uI8r7jNPxLBZ+V0pZRGQO8AzwHXAv8J7Srso4EUkAmolIANANuEEpdVpE1gMVXRam1BRgCkDzlyep5OxcwioX3YOEBQeSmnPKLk+L2qFMHNIHgCoB/txyVQMsVmuJWt7FkZKVS7hNeaGVA0nNdiivTigfDS8q7+amDci3Wlm7N96ljerhVUhPzrKzkXb8JNVrVXFOoyAtKZOYHYcA2LhkO4MfKXo+223w9VzXvSUv3DUZ7o7QysvOJTy4ZB+1rBXKx3dqdQ4J8OeWJlqd1+wv8lHO2XNsPpTIzY0jiE21f75YQHKWw/lw5Z/aoUwcanM+mjbAYin+fCSfyiW8UpHN8EpBpJzOtUuTm1f0mHxdYgJvmUxU8fPn2tDadKvfmMi6DfEz+xBUoQKfRPbl8fVF8rjJ2bmE2fgnNDiQ1FwH/4SH8vHAojp3bqz5p03tMLpc1ZBbGkfg5+NDoF8FPry9F88sXlGYN8XBJ6GVAznh4BNbtiUco261yoQEVCTz9FkWbolm4ZZoAB7rdZNd7/VyQBnzOF1ST0RuUEr9DQwDNopIY6VUnP4ssz9Q0PU5AnQFNohIKNpt/kHgJuCkHjSbAR3dLTzqWDL1q1WhdpVgUrNz6d2qKc/OW26XpsfEaYWf3x7Yg99jEi4oaAJEJSZTz6a8Pm2a8sws+/J6fmBT3l09+H1fQmHQtLURWq8a6UmZdL79Gt5/2H5ywaZVe+g/pjO/L95Ks/YRnMo5w8nUbABOHDtJ7UY1ORafStubm3HkQBIA19zanLvG9+DZOyZx7kzRM7M9x3UfhQSTmpNLn5ZNeXqBfZ27TS6q87u392D9gQTW7I+nSoCmF55z9hx+PmZuaFiPb/90PeIM+vmobnM+Wjfl2TkO5+MjG/8MKv187DqRRIPgKtQNrEzy6Rz6N2zGo+uW2KWp4V+JE2e0YNSmRhgmEU6eO8MHWzfwwdYNgDbyfn+rDnZBs8A/EVWrUCckmJTsXPq2aMpTi+zr3PVzG//c1oP1sQmsiYlnTUw8H6/Vbriuq1+HMR2vsQuaoJ9v3Scp2bn0btOUZx2umbrVKnM0XfvneXXtmviazWSe1p69V63kT8apM4SFBNG1ZWNG/t/sYn11SXK59ZDdpLyBcx9wt4h8DcQCXwKr9VtwAXYBBWtrvQVMF5E9+rHnlFJpIrICeFBEdgMxaLfrbmGxKt5espZv7h6IySQs2hZNXGo6Qzq0BmDOlpKfo304uDfXNahLSEBF1j4zjs/X/s3CbdEll/fLWqaM0cvbGk18ajqDr9fKm+vGc7sCGxNmjcdsNrFq1t8ciUmiz+ibAVj2/Qa2/BZFh64tmLbpDc6eOc+kx4umSn350lye/eJefH19SDqcxqTHvwfg4XcG41vBl7fnPALAlrMneX3JGixWxVvL1jJ11EBt2syOaOJOpDPkWt1HLp5rFlAjqBLv3d4Ts0kQEVZEH2D9gYRS2/bNvVpZhefjOr2sC3jObFGKV//6je9734lZTMw9sIfYzHRGNNMG1Gbu30WfBlcx8uq25FutnLXk88jaX8tk/80Va/l2+EDMIizYpflnaHutzrO3l+/ZuMWqeOfntXw9biBmk7BoSzTxKekM7qhfM5t2071VE25r35x8q4Wzefk8PbMouE8a3Z+QgIrkW6y8vXgt2WfOlbkOT70Bm3dCZhZE3gnj74U7+5arWe5zmT27dBdxfJ7jdkaRCGCJUqqlR2vkJs1fnuTVM+Lt9TjrTS957mJ5SXjQ5WNij2G64Elk7nOq4eW9Hqevl++qvb0epynsgOvH1mWgV+Uxbv9OV2RNK3d5FwvjzSEDAwPvcYX2OC84cCqlDgH/Sm/TwMDg8kBZLP92FbyC0eM0MDDwHsbgkIGBgUEZuUKnI5V3AryBgYFBsSircnsrDRHpJSIxIhInIs+7OC4i8ql+fLeItPdKozACp4GBgTdRVve3EhARM/B/QG+gOTBMRJo7JOuN9tZhE+B+tOmRXsG4VTcwMPAaHhwcug6IU0odBBCR2cAAYK9NmgHA9/rbiZtEJEREwpVSSZ6qRCFKqf/EBtxv2L9y7V8Jbbjc7XuifsBWm+1+m2N3At/afB8FfO6QfwnQyeb7GuBab9T1v3Sr7vZydYb9y9L+xSjDsO9FlFJTlFLX2mxTbA67sTyOW2k8wn8pcBoYGFy+JKKtnFZAHbQlKsuaxiMYgdPAwOByYAvQREQaiEgFYCjwi0OaX4DR+uh6RyBLeeP5Jv+twaEppScx7F/G9i9GGYb9fwmlVL6IjAdWAmZgmlIqWkQe1I9/BSwD+gBxwGm0pSy9wgUv8mFgYGDwX8W4VTcwMDAoI0bgNDAwMCgjRuA0MDAwKCP/ucApIvX/7ToYGBhc3lyxgVNEbhCRO0Wkpv69tYj8BGz8l6vmNiJSUUT+JyJfiMi0gs2L5TUVkW88YGegzecqJaUtRxk9RWSsrkRgu3+Mh+zfXcx+XxGZ5QH7q8prowxlVRGR60TkloLtYpV9pXJFBk4R+RCYBgwClorIa8Bq4B+KkR4uo/26IjJbRDaIyIsi4mtzbHF57dvwAxCGJq38O9qE3nILMuj/RFaJSJSITBCRUBFZgPaK2t7S8rvByzaf13jAnh0i8g7wEtAKWCMij9gcHu+hYh4TEbs3bUSkEtqUl9MesF/DAzZKRUTGAX+gTeN5Q//7+sUo+0rmSp3H2Rdop5Q6q/d4jgOtlVKeEvqZBixAE5YbC/wuIv2VUumAJx8FNFZK3SUiA5RSM/Qe80oP2P0GbeWYv4FewHbgJ2CEUuqsB+xLMZ89RX+085svIq8DP4lIQ6XUEx4srxuwQkQqKqU+FZEaaEFzjVLKaUmzC6Cybc/cEaXUQg+UAfAY0AHYpJS6VVeSfcNDtv+zXKmB80xBAFBKnRSRGA8GTYAa+oRbgEdEZCTwh4jchmffjS3Q+c0UkZZAMhDhAbt+Sqnp+ucYEXkaeF4p5amlbPxFpB3aHU1F/XNhQFNKbS+nfR+lVL5uK1NE+gNTRGQeUKGcttHtZohIN2C5iNRCW3nnS6XUp56wD1QG+lH8+9WeCpxn9Q4EIuKnlNovIk09ZPs/y5UaOBuJiO3rWBG235VSt5XTvq/eEykIzj+KSDJab7BSOW3bMkXvMb+C9jpZoP65vDgGs1ygtYgIeCSwJQEf65+TbT6DFhS6lNN+vIh0Vkr9DqAH/LEiMgHt8Uy5sekNTkGr/xogsWC/B3qEh5VSHnkeWwqJIhICLEaT7j6Jl97f/i9xRb45JCKdSzpe8IMrh/0ngO2OdvRg9IFSqnt57HsbEVlXwmGllCpvYCupbF+lVF7pKUu0EYBWzzMujtVTSh0pj33dznclHFblDXoiskMp1a48Ni6gzM5oPd0VSqmLIPB85XKlBk6P/Hj+TfRnUQOA2mi9tOPAz0qp/f9qxS4AvSd7KzAc6K+UCi2nvW+VUuNc7K+DFhQuefVVEWmtlNqtf/ZTSp2zOdZRKbXJA2UUPtIQkUCgGXBQKZVRXtv/da7IUXW02xIA9NFij6JPE7pbRG7TV2J5TkSWiMhkEanuAfvPAbPRbqU3o60MI8BscaG1coFlVBORR0Tk//RtvIhU9YRtmzKuF5HJwGG0Rw0b0H685cVHRH4UkcLrV0Su1u1/5AH7iMiTIjLWxf5HRORxDxQx3ebz3w7HviivcRG5B0gRkQMi0hvYDbwP7BKRYeW1/1/nSu1xFt4GeeOWSETmog3cVAKqAFHAr0AnoK1Sql857R8AWjje0oq2nFa0UqpcU6r0ILMW7ZnsDrSg3A7oDnQpb69WRN4GBgNHgFnAImCrUqpBeeza2BfgazTfDwWuB+YADyqllnqojCigveMtrYj4AVuUUq3Lab/Ya9QT16yI7EHr5QcBu9BmIcSLSCiwurz1/69zpQ4OqWI+e4rmSqmWIuIDJCqlCp6prhCRXR6wbwVqofXUbAnXj5WXt4DHlFJzbXeKyCDgbco/wHI/EIM25WmJPqrrsfOgtP/29+u92fVoU8Du8sTtrUMxTs8BlVLnCgbRymu/mM+uvl8IFqVUGpAmIrlKqXgApVSKZ6r/3+ZKDZxtRCQbrSflr39G/66UUsHltH8eCtcIdByh9MSUnsfRJnbHAkf1ffWAxnhmgncrpdSdjjuVUgtEm1xeXsKAHsAw4BN9MMrf9plbeRCRz9CCi6ApHm4HhovIcACl1KPlLUMvJ1QpleK4zxO2gToi8ilaGwo+o3+v7QH7R0TkXbQe534RmYg2xakb2qwHg3JwRQZOpZTZy0V49aJXSq0QkavQlP1q63YT0W4RPRGYT13gMbfQ67gcbQ5kRbT5igHAMRFZo5QaXs4ithbz2ZN8iPbW2VNogRngGuADYKIH7D9j89mxDZ5o00jgf0AW8Dza22cvoD0+uccD9v/TXJHPOB0Rkdpoq0YDHC9vr0eKeY+5AKXUjPLYL6XsQKVUbjltJGI/t7LwEPC4Uqqui2PlRkSCgEeVUm97w76n0QdVngdaovVwo4H3lFLL/9WKGfzrXJGBU0ReAHyVUm/q34+g/ef1BWYopd71cHnBaI8Ayv0euRtlHVFK1SunjddKOq6UKtcreSJiRhscqo02PShKRPoBLwL+nhis0/95PQYUvAWzD/hUKfV9eW27UfbjSqlPymnDUS/HjvK+pKHPdR2PFvA/A4agPbveD7xZ3n++/3Wu1MC5HbhZKXVK/75DKdVO/0H/rpTq5KFyrgW+Q3uOJEAmMEYpta2cdp8s7hDwklKqXNOGRKSOUiqxmGP9lVK/ltP+dDS1wc1oI96HgRvQXutcXB7buv3RwBPAk2i30QK0R7u9nuzt4Omhf14n0J5fz0JbfMZuxMYDL2nM1e37o/1z2QfMRXvPP0wpNao89v/rXLGBUynV3ub7PQXvZovINqXUNR4qZzfwP6XUBv17J+ALD0xVOYsWBFw9UnhCKRVSTvsxQE+l1CGH/fcCLyulGpXTfhTaoipW/RlnGtqCJcnlsWtjfxMw1EX9I4DZSqmOniinhPKPlvdxhv5PvDvaAFprYCkwSykV7YEqIiI7lVJt9RkASUC4Ukrp33cZ05HKxxU5OAQEis2rfTZB0w8o74i6LTkFQVMvZ6OIeOJ2fTuw2FXPVbRlwsrLE2jvLfdR+uIn+uON4UCJr6u6yXmllBVAn4p0wFNBUyfYMWjqZR3SH5t4m3L3NvQBtBVoU9j80ALoehF5Uyn1WXnt25SjRGSZPoWr4PuV11u6yFypgXM+8LWIjFdKnYbCtRQ/14+VCxEp6M1uFpGv0W63FNpzpPXltY8ma5pezLFry2tcKbVMRM6hjXrfDoxDW3rsFqXUyfLaB5rpvXHQbkEb6d8LpoOVt7fj9I66m8fcRv8H6CrACNrtryfK8ENbAnEY2qpXn+K5VZG2FgwkKpv36kWkER5Y0/W/zpV6q25Gm8g9jqJJ5PWAqWi3ouUdVf/XFsnwJPqjhcXAX8Bg5Zm1OJFS5EmUUo4T+8tq/zSadrbTIaChUsqTK1R5BRGZgTZavxzt8UKUl8qpCDyM9labQlNA+NJT5/q/yhUZOAsQEX+0SeMAccrFajrlsG0C7nR8+8bbiMgUpdT9pacs0UZBb0oAP7TXRy147gUBV2VWB9KVBy44EWkChFL0ckAB9dGmm7kKqpcUImKlaM6srU88eg70QaIc4Ed91zAgRCk12BP2/6tckYt8iMizAHqgbKaU2lMQND30Zgz6MzxPyTTYISJVi9mqAX3Ka18pFaSUCtb/VlBKVbL5Xu4frIh0FJH1IrJQRNrpg0VRaItO9CqvfWASkK2UOmy7oUlaTPKAfa+jlDLp/i44F8GePAc2NFVKjVVKrdO3+ymawmVwgVyRPU7bUXUXI+x238tZzitoz9TmYPPGjSrnsl0iYkF7xGA7RaWgh1hbKeWRVc69hYhsRZuzWRltIeDeSqlNoi2VN6u88zhFJEoVs3SciOxRSrUqj/0rCX1q2FdKf49fRK4H7lZKPfyvVuwy50odHCpJ88aTKxwUPHT/n80+BTQsp92DQFflYk1REXG8Pb0U8VFKrQLQR4k3AShNtsET9iuWcMwjAzdXENcDo/WXQEB71r9PtNWTPDFQ95/kSg2c3l55RjPkoWXSXPAJ2pJprhZj/sBLZXoS2xWcHJ8re8L/W0TkPqWUnZSxaOtnluvlgysQTzwaMXDgSr1Vt6DdOhdMHSmQcxWgolLKt7i8btp/Vin1gf75LqXUPJtj7yilXiyPfRtbl+WI6EXwfyjaGp/nKQqU16IJtd3h4TmjBgZOXJGB09tcxGeoxohoCYjIrWhTekBb4Hntv1kfg/8OV+qture5WM9Qmyql2th8XyeeWSj5ikAptQ4oaU6tgYFXuCKnI10ELsozVGCHiBS+d62PiP7pQfsGBgYXgHGrfgF4+xmeTTn70Obc2Y2Iog2+GCOiBgb/EkbgvITx9quLBgYGF4YROA0MDAzKiPGM08DAwKCMGIHTwMDAoIwYgdPAwMCgjBiB08DAwKCMGIHTwMDAoIz8P2HdcmV3IdtgAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAU4AAAEeCAYAAADl3fyeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAACBlklEQVR4nO2dd3wUxfvH389dQkhIQqhJqKEJ0kFRVJRIr6KgdFAB6xd77w27iKg/CwqCivSi0pGioCK9JEBIQiiBFJKQRk3u5vfHbpJrSS7kDgH3/XrtK3e7M8/MPLv3ZHZndj6ilMLAwMDAwH1M/3YFDAwMDC43jMBpYGBgUEaMwGlgYGBQRozAaWBgYFBGjMBpYGBgUEaMwGlgYGBQRozAaWBgYFBGjMBpYGBgUEaMwGlgYGBQRozA+R9GRJ4TkWMikiMiMSLSVURMIvK8iMSLSLqIzBWRqjZ5RonIYf3YSyJySES66cemi8gEm7SRIpJo872WiCwQkRMikiAij9oce10v63u9PtEicq3N8boislDPmy4in9scGyMi+0TkpIisFJH63vSbgYEROP+jiEhTYDzQQSkVBPQEDgGPArcDnYFawEng//Q8zYEvgVH6sWpAHTfLMwG/AruA2kBX4HER6WmT7DZgNhAC/AJ8ruc1A0uAw0CEnn+2fux24EVgIFAD2ADMct8TBgZlxwic/10sgB/QXER8lVKHlFLxwAPAS0qpRKXUOeB14E4R8QHuBJYopf7Qj70CWN0srwNQQyn1plLqvFLqIPANMNQmzUal1DKllAX4AWij778OLVA/o5Q6pZQ6q5TaqB97AHhXKbVPKZUPvAO0NXqdBt7E59+ugMG/g1IqTkQeRwuMLURkJfAkUB9YJCK2AdEChKIFr6M2Nk6JSLqbRdYHaolIps0+M1oPsYBkm8+ngYp6wK4LHNYDoyu7k0Vkos0+QeuVHnazbgYGZcLocf6HUUr9pJTqhBZ8FPA+WmDsrZQKsdkqKqWOAUloQQwAEQlAu10v4BQQYPM9zObzUSDBwW6QUqqPG1U9CtTTg6irYw842PVXSv3lhl0DgwvCCJz/UUSkqYh0ERE/4CxwBq1n+RXwdsGtrojUEJEBerb5QD8R6SQiFYA3sb+GdgJ9RKSqiIQBj9sc2wxk6wNS/iJiFpGWItLBjepuRgva74lIJRGpKCI36ce+Al4QkRZ6fSuLyF1ldoiBQRkwAud/Fz/gPSAN7Ra5Jtogy2S0gZlVIpIDbAKuB1BKRQP/A35CC2QngUQbmz+gDf4cAlYBcwoO6M8t+wNtgQS93G+ByqVV1CZvY+CIXuYQ/dgitJ7ybBHJBqKA3mXyhIFBGRFjIWOD8iAih4BxSqnf/u26GBhcLIwep4GBgUEZMQKngYHBZYGITBORVBGJKua4iMinIhInIrtFpL236mIEToNyoZSKMG7TDS4S04FeJRzvDTTRt/vRXtbwCkbgNDAwuCxQSv0BZJSQZADwvdLYBISISLg36mIETgMDgyuF2ti8oIE2+6K2Nwq6bN8csiZf5dXpABvOetM6vHd9V6/a3/dmI6/ar5hs9qp9ALF41/6ZcC8X4GUCjnn3HOyd8ISU10ZZfqfm8NgH0G6xC5iilJpShuJc1dcrceKyDZwGBgaXPla3lzIAPUiWJVA6kojNm21oC9AcL4e9YjFu1Q0MDLxGnrK4vXmAX4DR+uh6RyBLKZXkCcOOGD1OAwMDr1GWHmdpiMgsIBKorq/z+hrgC6CU+gpYBvQB4tAWibnXY4U7YAROAwMDr2Hx4JuJSqlhpRxXaK8Eex0jcBoYGHgNq3fGZv51jMBpYGDgNSxG4CxCRCzAHptds5VS7+nrJb4J3IW2NiPAPKXU28Xkux1NCuFn4CDgj7bC+NMXUi9XvPQerP8bqlaBX6eX317UFpjzFVgt0Kk39B5if/xUDsz4GE4kga8v3P0U1I6wT1PF/2a++fN1TGZhxcw/mffZKqdyHnx7MB26tuDcmfNMfPR74vdo09Omb5nA6VNnsVqsWPKtPNbzPQBGPN2XXiM7kZWeA8BbRzaz/mgCAJ3rRvDqjV0wizBn/x6+3LnZrqyO4XWZ0vN2EnOyAFiREMun2//Gz2xmzm1D8TObMYuJ5QkHmLTVeZnLTo3q81KvSEwmE/O3R/HNn1tc+q5lrVDmjB3Kk/OXsXJfLBXMZn68dzAVzGbMJhOr9sXy2fq/ne03rs+LfSIxiWb/2w3F2599/1CenLuMVXtjCQsO5L1BvageGIBSMHfrHn7YtMMpX+e6EbzaSffPvj18ucPBP7XqMqWXjX8OxvLptr8JrxTEx117UyOgElalmLV3N9/t2X7R7XdqUp8X+kRiNpmYvy2Kb/8oxj+1Q5n1wFCemrOMVdGxAEy4ozudmzYk49RpBnz2g8t85cHocdpzRinV1sX+CWiL17ZSSp0VkSDgqZLyiUgEsEEp1U9E/IEdIrJIKfXnBdbNjtt7w/CB8Pw75bdltcBP/wdPvAtVqsM7j0CbjlDLRqRh+Wyo2wgefg2SjsCs/4Mn37e1YqJJ1dd4uP/npB0/yeSVz/PPyt0cOVC0+HmHri2o1aAmYzu+RrNrGjD+g2E80fuDwuPPD5xEdsYpHFn89RoWfKm9/Vgwj9Mkwps3dWPk0nkkn8rhl4EjWX0onrhM+4XbtyQnMnbFIrt95ywWhv86l9P5efiYTMy/bRjrjySwI7VooNIkwqt9ujDmh4WkZOcw777hrI2JJz7N/gUPkwhPd+vExviiRdnPWyzcM2M+p/M0+zPvHcwfsQnsOpZsl++Vfl0YO0OzP/eB4azbH0/8CWf7T/XoxJ9xRfYtVsUHK/5gb1IqARV8WfDgCP6KP2yX1yTCmzd3Y+Svun8G6f456eCfpETGLrf3T76yMuGv9USnpVLJ15df7xzFhsTDdnkvhv2X+3dh3Heaf+Y8OJx1+1z758menfgz1n5R/EU79jJz0y7eu7Mn3iDvCl19zWPTkfTVwO8DHlFKnQVQSuUopV5314ZS6gzaYrgem+3foQ2EBHnGVkIM1KwFNcLBxxc6RMIuhw7S8SPQrK32ObwepKVA9smi48F+rTmTf5jkw2nk51n4ffFWOvZqY2ejY682rJm3CYD92xIIDA6gSs3gC6pz25phHM4+ydGcLPKsVn6N20+PCPcnx5/OzwPAx2TCx2RCOfQgWtcO40hGJomZmv1l0TF0beZsf+R1bVm1L46MU6ft7efZ2DebnPonrevo9k9mkWexsmxPDF1c2e/YltV740i3sX8i9xR7k1K1cs7nEX8ig9DgQLt8bWuGcTjrwvxz4vQpotM0+6fy8og/mUFYpYtrv1WdMI6kF/ln+Z4YulztbH9Ex7asjrb3D8C2Q8fIOuO9tz0sKLe3y4kLDZz+IrLTZhuCvsisUirHzXyLHA+KSBW0F/T/uMB6eZXMdKhao+h7SHU4mWafpm4D2KH3lRP2Q0aKfZoK5lDO5Rf1qNKOn6RaWIidjWrhIaQdK4q2aUknqR6upVEo3p7zKJ+ueoHeozrZ5es/JpIv1r3EE5+MIriCHwChAUEczy06JUmncgmt5PyfpH1oLZbfOZrpvQfRpEqRGoZJhGWDRrNt9MNsPHaYnanJdvlCgwJJyi6yn5ydS2iQ/Y+7ZlAlujdrzOytu53KNYmw6IER/PnMA/x18Ai7jyU75A0kOavIfkp2rlPwqxlUiW5XN2b2Fmf7BdQKCebq8BrsSnSof6Ugjp9ywz9htVh+12im97X3TwF1goJpXr0mO1Pspw163X6wvX+Ss3Op6co/zRszZ3Px/vEWFuX+djnhsVt1EWnt8P1e4DE0TZoblVJHXeXTuVlEdgNNgfeUUsku0vzruLrrEIeXvHoNgTlfwpsPQe0GULcxmOz+PZX+VpjLFHqSp/p9REZKFpWrB/HO3Ec5GptM1KY4ls74g1kfL0MpGP18f17uFcmzv690qp9Wmn15UWkp3DRzCqfz84is24ApPW/n1tlTAbAqRZ8F3xNcwY+vewzgqirVOWD7n8AN+y/2jOSj3zZgdeFAq1Lc8fVMgvz8+HxIf5rUqEbsiaJbUZf1d7DzQu9IJq5ybR8goIIvnw7tx3vLf+fUufN2x1yfDQf/nEjhph90/9RrwJRet3PrrKlF9n18+bLnbbz55zpy8/59+44X6gt9I5m4snj/eBPPzeK8tPDkqHocmqBWkH6L/h3wnb52Xmkv1RY847wK2Kg/49zpmEhE7kd/l/XLD2py/6hSVRc8SpXqkHGi6HtmGoQ4dA78K8E9+tCWUvDi3VDdRrLsvCUZP5+iHdVrVSE9OcvORlpSJtVrVylKE16F9ORMADJStLRZaTn8tWwnTdtFELUpjswTRb2O5T9u5MXRTwCQfCqHWoFFPZzwSoGknsq1K8/2x7j+aAITTCaqVPTn5Nkzhfuzz59jU9JROteNsAucKdm5hAcX2Q8LDiQ1x/75a8taoXx8p6bJFhLgzy1NGpBvtbImJr4wTc65c2w+nMjNjSPsAmdKdi5hlYvsh7qyXzuUiXfZ27dYrazZH4+PycTkof34dfd+Vu+Lw5HkUznUqlQG/xxJYMLNRf7xMZn4qudtLD6wj5UJsRffvoN/XPm/Re1QJg7R/FMlwJ9brtL9sy8eb2NxHdovezz2jFMpdRqYCnwuIhUBRMQMVCiDjQPAu8BzxRyfopS6Vil17cUOmgARTSH1GKQlQ34ebFmvDQ7ZcjpXOwawcTk0aakF0wKyz+3B3yeC0HrV8PE10/n2a9m00v4WatPK3XS9SzPc7JoGnMo5w8nUbPwCKuBfSbsF9wuoQPvIqzm0X3sV1/YZ6I192nIgQwtuu1KTiahchTpBlfE1mejfuBmrD9v/YGr4FwlTtqkRhiCcPHuGqhX9C2/5/cw+3FS7PvGZ9oMOe44lU79aFWqHBONrMtGnRVPWxhy0S9Pt02l0naxtq/bG8ubStayJiadKgD9Bfrp9HzM3NKjHwTQX9qvq9s0m+rRqyrr99va7T5pGN31btTeWN5esZc1+rY0Tbu/OwRMZzPjLeTS60D8hDv45VIJ/aoYhIoX/VN6P7ElcZgZTd2/7V+xHFfi/iuaf3i7802PiNLrr28roWN76de1FCZoAeUrc3i4nLrTH6S8iO22+r1BKPQ+8BLwFROlCX2eAGZTtRfuvgKdFpIFSKuEC61fIU2/A5p2QmQWRd8L4e+HOvhdmy2yGYf+DT14EqxVu6gG1IuD3Jdrxzv20kfTvPgQxaaPtesfPBgtxGW8yYfYEzGYTq2b9xZGYJPqMvhmAZd9vYMtvUXTo2pJp/7zJ2TPnmfTY9wBUqRHMK989oNfFxPpFW9i2bi8AY18dSMOWdUApUo5m8Mjf67TSlOLVjWv4vs8gzGJibsweYk+mM+JqbUBq5r5d9G7YlJHN22BRVs7m5/PIGq1BNQMqMfHW3pjEhEmEpfExrD1i/6O0KMVby9YydeRATCIs2BlN3Il0hlyjPbmZs63452o1Aivx3u09MZsEEWFF9AHWx9qfcotVMWHpWr4dPRCTSVi4Xbd/rW7fxXPTAtrXq8WAts2JST7BwodGAPDJb3/yR+whu/q/umEN3/fT/bNf909z3T97d9G7UVNGtmiDxWrlrCWfR1Zr/rk2rDaDmrZgX/oJlt01GoAP/tnA+iMJF8++VfH2krV8c7fmn0XboolLTWdIB90/JTz3BfhwcG+ua1CXkICKrH1mHJ+v/ZuF26JLzFMWrtQe52Ur1mYsK1cyxrJypWMsK1cynlhWbteRum7/TtvUO3rZRFnjzSEDAwOvcaX2OI3AaWBg4DUsV+jKlUbgNDAw8BrWy2zQx12MwGlgYOA1zivvPwv/NzACp4GBgdewGrfqBgYGBmXDGBwyMDAwKCMWZfQ4DQwMDMqE1ehxXlp4e4L6zRW9a/9dLy7lBSDnL/8L1uzlc2w+7d3ekPL17sslku9V8x7hvLpsQ0yJXJmtMjAwuCQwBocMDAwMyojFmMdpYGBgUDaMN4cMDAwMyojVGFU3MDAwKBtGj9PAwMCgjOT911+5LE5L3UW69cDTSqmtDvvvAT4EjgG+wD5gtFLqtIg8CYwD8oETwBillL2OqRt4QvO8rFyQbnuFm/l22wRMZhMrZvzB3EnLnJI89MFwOvRozbnT55n40FTidh3G18+Hj1a8gG8FH8w+Zjb8vJUf31kMwOiX7+CGPu2wWhWZadk8fGgjqac0CYVb6kXw2i23YhJhzt4ovtpmr+t9fe06TOl7O4nZuq53fCyfbdFUNt/v2pMuEQ1JP3OaXj/NcNkcb+uq33RVfZ4fEIlZTCzYHMXU9fb2b23ekEd63ohVKSxWxXu/rGfHIW3t7JE3tWPQ9S0RhPmb9/DjRmdd9VsiInjlVs3+nKg9fL3Zdf1bhYayYPgwHl2ylBWxmozFve3bM7hVSwBi0tJ4dsVKzltKXufzlvoRvKqfj7nRxZyPfrdzVD8fK+Nj+WzzphJt2tLpqvo831/315Yovv29mPNRJ5SfHh7K0z8tY1WUsyyHJzAmwBcvtFaILpVREnOUUuP1tD8BQ4DvgB3AtXoQfQj4QD/mNp7RPC87ZddtNyHBr/Fy5CTSjmXw6fpX2bRsJ0diihbJ79CjNbUahTKm7fM069CQ8ZNG8XiXCeSdy+e5fh9w9tQ5zD5mJq56ga2rd7N/y0HmT17O9xM04dABD3bj0VE38PL63zRd78iujFo8n+TcHH4eMoLfDsYRd9JeomLL8UTGLVnsVNsF+6L4fvcOJnbv7bo1F0FX/eU7unDfNwtJzsphziPDWbc3noOpRfY3xR1l3d4fAbgqrDofjezLbR/NoHFoNQZd35Jhn80iz2Lhq7ED+WN/AkfSMu3sv961C3fPX0ByTg6LRoxgTVw8cRnO9X/ulpvZcKio/qGBgdzdvh09p8/gXH4+n/brS/9mTVkQvdelrwrsvBHZldGLtPOxeMgIfkuIcypvy/FExv26uFg7Jdl/aUAX7pu6kJSsHOaM13XWU13orPfuxJ8Hytw/KRNX6gT4cv87EJFDIvKqiGwE7tJ3jxSRv0QkSkSuc5HHB6gEnARQSq3TNYsANgF1yloPT2ieXwhl1m33bQ2WwyQfOqHpqi/YzA1929kluaFPO9bM+guA/VsOElg5gKqhmsbS2VPnAPDxNePj41MoaHg6p2i2eMUAv0IlxTahYRzOzORotq7rfSCG7g0bu13dzcePkXm2+Jno3tZVb1U3jCNpmSRmZJFvsbJ8VwxdWtjbP3M+r/CzfwXfQpXHhjWrsvtIEmfz8rFYFVsPJtK1hX3b24Tp/snS6r8kZj/dGjvXf3S7tqyIjSX9tH39fUwmKvr4YBbB38eXlNxTTnntynM4H0tiy3Y+SqNV3TCOpmv+yrNYWbYrhlubu9BZv7Etq/c4nw9PY1Emt7fLibLU1pWWegFnlVKdlFKz9e+VlFI3Ag8D02zSDdG1io4BVYFfXZQzFlhehnoBntE8vyiYQsFiq6ueQbVaVeySVKsVwonEoh7CiWMnC9OYTML/bXyD2fGT2b4umpitRRpAd78ykB/2TuTWwR2ZtEkLvGGVAkmy0VVPzs0hLNBedxs0Xe9lw0bx3W0DaVLVWde7OLyuq17ZQVc9y1k3HKBri0b88vTdfDHmdl6ZtxqAuJR0rmlQh8oBFano68PNzSIIC7HPGxoYSFKOTf1zcgkNDHJK06NxE37aZV//lNxcvt2ylQ33jePvBx8g5/w5Nh4uuQcXFmh/PpJycwit5NyedmG1WDpsFNPKej6CA0ly8JeTDn1wJbq2aMycf7yvs27B5PZ2OVGW2p5RSrW12ebYHJvjkHYWgFLqDyBYREIK0um3+2Foz0ufsc0kIiOBa9GehZYJdzXPT+domudrf3GleX4xcL51cdR9Ehdi4gVprFbF/zq9xsirn6TpNQ2of3XtwjQz3lrIqOZPsW7uJka3aVeCLfvv0ampdJrxDX1m/cCMXTv4uu+A8jTngnTVIz/+lta1wmhSwz5IuKNLDrAmOp7bPprBozN+YXzPGwE4mJrBtPVb+Oa+gXw19g4OJKVhsTr62lWj7NO8HBnJBxuc6x/s50e3xo2I/HYqN349hQBfXwZcfbUrgyW2yLE10SdSuXn6N/Sd9QPf79rB1/08ez6e7xfJx8svjs66VYnb2+WEp0bVHe9PHM+I3XellBKRX4FHgPcARKQbmkpmZ6XUOVeF2OqqP/V2TfoPL5II9oTm+UXBmgxmW131qmQkZdolSTt2khp1qhZ+r1G7ilOaU1ln2L0xhmu7teLwvmN2x9bN28RLjzzPJ//8RVJuDuE2PaiwwCBSStL1PpzAW6auTrrqxeF1XfUsB131yoGcyC7+dnhbwjHqVqtMSEBFMk+fZeGWaBZu0VQbH+t1k13vFbQeZniQTf2DAknJtfdPq7BQJvfVdcn9/Yls2ACLsuJjMnE0K5uMM5qfVsbG0r5WOD/v21ds/ZIdzkd4YJCzzvp5+/PxZlnOR1Yu4Q7+SnXwV4s6oXw0vEhn/eam2vlYu9fzksF5V+i76t7qbw0BEJFOQJZSKstFmk5AvJ6uHfA1cJtSKrU4o7a66rZBEzyjeX5RyNsD5ghC61fXdNUHXcemZfYjvZuW76DrMK3X1KxDQ05lnyEjJYvK1YKoVNkfgAoVfWkX2ZyjsUkA1GoUWpi/Y5+2HNQHf3anJBMREkKdYE33vP9VTfktwf4HUj3ARtc71F7XuzS8raselZhMveqabriP2UTvNk1Zt9feft1qRdfC1bVr4ms2k3laey5btZLmr7CQILq2bMzynTF2eXcn2/unX9NmrIm3tx/57VQ669uKA7G8+tsaVsfFczw7h7bhYVT00YLDjfXqEe8wyOOI4/no16Qpvx0s/ny0Dg3DVIbzEZWYTD0bnfU+LvzV84Np9Hhf21ZFxTJh8VqvBE3Q1uN0d7ucKMu/g+K01F1xUkT+AoKBMTb7h+jB1AQkAvfo+z8EAoF5+q3lEaXUbWWom4c0z8tO2XXbLajsN3l70VuYzCZW/bCBw/uP02dMJADLpq1n88rddOjRmmm73ufc6fN8/PBUAKqGVeapr8ZhNpsQk/DHoi1sXrELgDGv30mdJmEoqyLlaDqP/1Gkq/7a72v5/rZBmEwm5u2NIjYjneEtNd3tn6J206fxVYxoWaSr/uiKpYW1ndyzLx1r16FKRX/+uvd+PvnnL+bujSpqzUXQVX/n57V8PW4gZpOwaEs08SnpDO6o2Z+7aTfdWzXhtvbNybdaOJuXz9Mzi+o/aXR/QgIqkm+x8vbitWSfsb+ZsSjFG2vXMX3QIEwmYX5UFLHp6Qxrrdmftbv4+u9KTmZFbCy/jBqJxWolOjWV2bv3FJu+oLzX169lxgD9fEQ7n4/eja9iRKsinfVHly8t0aajv97+ZS1Txug661ujiU9NZ/D1ur8uwnNNW67UN4cuW1313w95V1fd28vK9bnqJq/aj3m7pVft+2V4/wfhU/IAdbk5E+rda9/by8r5H/fuOYh+r/y66u/u7eO2E15ovuyy6XZemf8ODAwMLgmsyuT2Vhoi0ktEYkQkTkSc7nZFpLKI/Coiu0QkWkTu9UqjMF65NDAw8CKeeuVSf7nm/4DuaI/5tojIL0op27cN/gfsVUr1F5EaQIyIzFRKnXdhslwYgdPAwMBreHBi+3VAnFLqIICIzAYGALaBUwFBog2UBAIZaK9xexzjVt3AwMBrlGUep4jcLyJbbbb7bUzVBo7afE/U99nyOXA1cBxtnvhjSimrN9pl9DgNDAy8RlneCFJKTQGmFHPY9bsQ9vQEdgJdgEbAahHZoJTKdrsSbmL0OA0MDLyGB98cSgTq2nyvg9aztOVeYKHSiAMSgGYea4wNRuA0MDDwGlZMbm+lsAVoIiINRKQCMBT4xSHNEaArgIiEAk2Bg3gB41bdwMDAa+RZPdM3U0rli8h4YCVgBqYppaJF5EH9+FfAW8B0EdmDdmv/nFLKK8v4XLaB873ru3rVvrd1z5cd+NOr9vu09PWqfano5TcEAFXCcnaeQEIql56oHOQfPORV+z41a5SeqDw4LVNedjz55pBSahmwzGHfVzafjwM9PFZgCVy2gdPAwODS53J7B91djMBpYGDgNS635eLcxQicBgYGXuNKXeTDCJwGBgZe40rVHDICp4GBgdfIs/7H5YENDAwMyorxjNPAwMCgjBi36g7ok1EfR3sntEbBRFMRaYamld4eeEkp9ZFNnl7AZLQJrN8qpS50plivb/58HZNZWDHzT+Z9tsopwYNvD6ZD1xacO3OeiY9+T/webX2A6VsmcPrUWawWK5Z8K4/11Kow4um+9BrZiaz0HPwDK1LB18z5c3msmPEHcyctc7L/0AfD6dCjNedOn2fiQ1OJ23UYXz8fPlrxAr4VfDD7mNnw81Z+fGcxAKNfvoMb+rTDalVkpmWDKRasxaqEFPLSe7D+b6haBX6d7r6DrunSgofeGYLJZGLFjxuZ++kK5za8M4QO3VppPnpkOnG7jxQeM5mET397ifTkTF4b/jkADVvW4ZGPRlLBzxe/Sn74VvDBkm9hxay/mfd/vznZf/DNQXTo0lyz/8RM4qMSqd2wJi98eU9hmvB61fnho2UsnrqeTn3bMvLJ3tRtEsrj/SZyYHNsudsyY/s7nM49p51vi4VHu71TZPO9YZjMJlbM3cy8r9c51/+VAXSIbMa5M3lMfG4O8dGattOAuzvRa8j1iMCKOf+wePpGAEY82p1eg68nK0NbgXnaM9PZvHyHk11Hru3Zloc/uReT2cTyqWuY8/5it/L877Nx+m/gL+Z97uI3MOEu/TeQx8THin4DlYL9efzjEdRvWgulYNITP7B/WwJjX72D67u3Ij/PQtKhEwAhQGaplSkBo8fpzJ/AEmC9w/4M4FHgdtudbq6n5w5m4P9eGf45acdPMnnl8/yzcjdHDhTJynbo2oJaDWoytuNrNLumAeM/GMYTvT8oPP78wElkZzgvL7746zUs+noN3/79Bk/3fo+0Yxl8uv5VNi3byZGYotdiO/RoTa1GoYxp+zzNOjRk/KRRPN5lAnnn8nmu3wecPXUOs4+ZiateYOvq3ezfcpD5k5fz/YRFAAx4sBvtO/4Plf1aqY29vTcMHwjPv1MWF5n43/vDefHOSaQdP8mnq19k04pdHDmQVNSGbi2p1TCUMde9rPnowxE83vPdonIf6MrR2CQCgvwL94197U5mfriE7eui+XHPB6Qey+CZQZ8yeenT/LMqiiOxNuegS3NqNajB2E5v0ax9BOPfHcwT/T/m2MFUxvfUzoXJJPyw9S3+0uU/Dsck8dZ9U3n0/SLlaZNJyt2W526fSHZGrpPNl8Z8S1pyFpMXPso/a6I5Elf0j6xD52bUiqjO2K7v06xtPca/MZAn7vyM+k1C6TXkeh4f+Cl5eRYmTBvH5nX7OX5Ye0Fl8XcbWDD1d8C9CfAmk4lHPh/Lcz3eIi0xg883v8vfv2zlyL7EUvO8NOxz0pIymbziOf5Z5eI30LAmY294XfP/+0N5oo8mHvvghLvYunYvb4/7Fh9fM37+FQDY8ft+vnv7Z6wWK2Nevh3gBeC5UhtRAlfqqHqprRKRCBHZLyIzRGS3iMwXkQCl1A6l1CHH9EqpVKXUFiDP4VDhenr6wqIF6+khIveJyBZ95eYFIhJA8VwHxCUfTiM/z8Lvi7fSsVcbuwQde7VhzbxNAOzflkBgcABVagaX1lQArmofwfGEEyQfOqHZX7CZG/q2s0tzQ592rJml6Zbv33KQwMoBVA3V3kI5e0rTtPHxNePj41MoxXs6p+gtmIoBfjgv7OKaDm0gJKj0dHb4tiYpIZVCHy3awg297X10Q++2rJn7t9aGbQkEVvYvbEP18BA6dG/Fih832ttVioCgijRt34DM9FySjqRr9n/eTscereySduzRijXzN2v2tx8iMNjf6Ry07dSUpMNppB47CcDRuBSOHbTvhTdt36BcbXFFoc2jGZrNpTvp2K2Fff27tWDNom2azZ1HCAyuSJUaQdRtHMr+nYc5dzYPq8XKns0HubHHhcuUNL2uMcfjkklOSCU/L5/1c/7kxgHXupenwP+Lt9Gxp8NvoGdr1sz9R6v/9kOFv4GAwIq07NiYlT9p129+noVT2ZoQ3Pbf92G1aKuw7d+WANpCGuUiX5nc3i4n3K1tU2CKUqo1kA08fAFllbSe3kKlVAelVBtgHzDWXTtpx09SLSzELkG18BDS9B8jQFrSSaqHa2kUirfnPMqnq16g96hOdvn6j4nk+a/GElqvGoEhAbr9DKrVqmJvv1YIJxKL1AxPHDtZmMZkEv5v4xvMjp/M9nXRxGwtWmPg7lcG8sPeidw6uCMqZ3IJTSwnplBOHC+qX9rxTKqFO7QhPIQTNj46cfwk1XQfPfD2EKa+sQDloEH+1UtzGPf6nbw+83/UiqjO9Hd/1ewnZ1It3D5QVQurTNrxzKI6JGVSPcw+Tefb2vP7z9tKbEq18JBytUUpeGf+43y25iV6j77Ztc3kLKo5BNpqocGk2UgypyVnUT20MocPJNOyQ0OCQgLwq+hLh8hm1LBpe/9RN/LFkid54t27CAwpXUK1eu2qnEgskkNOS8ygeu1qJeRwkSfppLP/w0NIO+78GwirX52s9FyenDyKz1e/wGMTR+AXUMGpjB6ayuryUhtQCleqrrq7gfOoUqrg5eof0aR9y0pJ6+m1FJEN+sv5I4AWLtIiIvePGTPm/Tlz5gw4esZx4edSCtKTPNXvIx7p/i6vDP+cfvd2pmXHxgAsnfEHY65/halvLuTcmfPc9/ZQm7wO9sW5hII0Vqvif51eY+TVT9L0mgbUv7pordUZby1kVPOnWDd3E1JplKsmeoji61eYopg2XNejFZlpOcTtOuJ0vN+9nfn65bl8/sxP7N9+mMc/Gm6b2Q37RZ99fM1c36MlG5bsLLklJfjanTRP9n2f8V0m8PKQT+k/JpKWNzRxmd69+iuOxqcyb8o63plxH29NG8fBfcex6L20pTP/ZkyX9/hf/0lknMjhgYmjS2ybVo6rqpR8N+Iqj+MNTHH1N/uYaNyqLkunb2B893c5e/o8g8fbv9499LFeWPItADNLrn3p/NcDp+OZvBD5vpLW05sOjFdKtQLeAFyuIKGUmjJt2rSRQ4YM2V7XvzkA1WtVIT3ZXrY9LSmT6rWLeiXVw6uQnpwJQEaKljYrLYe/lu2kabsIADJP5GC1Kk4cP8npnLM0vaaBbr8qGTY9D4C0YyepUadq4fcatas4pTmVdYbdG2O4tpv9LSzAunmbwM+LaxFYk6lRq6h+1WuFkJFsX7+04yepYeOjGrWqkJGcRYvrGtOxVxtmbH+H56fcR5tOzXj2S03hudvQG/lzyXbSjp/Ekm+hadv6mv2wENKT7deKTUvKpHqtkKI6hIeQnlJ0nq69tTnxexLJTMspsSlpx09ecFuAwr+F57t9hLPNsMqkpzrUPzmr8C7FMc2qeVt4ZMBknh3+JTlZpzl2SHu+mZmei9WqUEqxfM4/NO3QuMS2AZxIzKBGnaIeZvU6VUk/XrI2u1OecBe/geMnqV7L8TeQRdrxTNKSMonZcQiAjUu207h1vcJ03QZfz3XdW/LB/76DC/ud2/FfD5z1ROQG/fMwYGNJiYuhpPX0goAkEfFF63GWaie0XjV8fM10vv1aNq2014retHI3Xe/qCECzaxpwKucMJ1Oz8QuogH8lPwD8AirQPvJqDu3XYnfB87cDOw5Tv2k4yYfTNPuDrmPTMvuR0U3Ld9BVu5WhWYeGnMo+Q0ZKFpWrBVGpsjaYUqGiL+0im3M0VhvEqNUotDB/xz5tweKVZQI18vZQq2FNCn10Rwc26QMwhW1YsYuug7VT2uyaBoVt+G7CIka1fo6727/Ie/d/w66N+/ngoWkApCdn0vqmq4jZcYgGV9ciJTFDsz+gPZtW2+uJb1q1h653XqfZbx/BqZyznLQJTpED2rO+lNt0gJgdhy64LX4BFfAPtD3fzTm073iRzTpVNJt927Jpjf0Y5aY10XS94xrNZtt6Wv1PaEG+clXtFrxGeAg39WjF77/uBKBKjaKH0Tf2aMmhqKOURsyWOGo3CScsoiY+vj5EDrmJv3/Z6laeot/ANWxa5fAbWLWHroOv1+rfPqLwN3DyRDYnjp2kdqOaALS9uVnhQNs1tzbnrvE9eOPurzh3xnGI4sK4UgOnu6Pq+4C7ReRrIBb4UkQeBZ4FwoDdIrJMKTVORMKArUAwYBWRx4HmSqlsV+vp6fZfAf4BDqNphZQ0HJIPjJ8w+5GlZrOJVbP+4khMEn3051fLvt/Alt+i6NC1JdP+eZOzZ84z6bHvAahSI5hXvnsAALPZxPpFW9i2TvvBjH11IA1b1gGlOJ5wgvrNajFl6zus+mEDh/cfp8+YSM3+tPVsXrmbDj1aM23X+5w7fZ6PH54KQNWwyjz11TjMZhNiEv5YtIXN+o98zOt3UqdJGMqqSDmajsp+xC3HP/UGbN4JmVkQeSeMvxfu7FtaLgtfPD+Lt+c9jslkYtVPf3I4Jok+99yitWH6H2xevYcO3VoybcvbnDtzno8fnV5qXSY/8QMPvjMEs9nEqdyzVAqqyJR1L7FqziaOHEimz0hNK37Zj3+yZe1eOnRpwbSNr3L27HkmPVl01+dX0Zd2tzTj0+fn2Nm/sVdrHnrrTipXDeSNGQ9wcM9RXho8+YLbUqVGMK/OeAgAs4+ZdQs2s22tdsl98fwsJnx3H2aziVXzNnMkNoU+w7R/tstmbWLL+v10iLyaaWuf166h5+YW1vPl/xtNcJVK5OdZ+OL1ReTqgytjn+tLw6trgYKUYxlMGvVJqT61Wqx8/shU3l3xEiaziZXfrePw3uJH1G3zTJg1Xqv/rL+L+Q20YNqmN7T6P/5DYf4vX5rLs1/ci6+vD0mH05j0uPb7ePidwfhW8OXtOYXX5lfAg6U2oqS6XqHzOKX05ykSASxRSl340KEX6B36ULlvI0pCXfbrcUZ61b6xHmfpXO7rcS5P/qLcUa/7+ifc/p2ujpx02URZ480hAwMDr3G53YK7S6mBU5+reUn1Ng0MDC4P/rOB08DAwOBCUVdo4Ly8pusbGBhcVlgRt7eLjYj0E5ELioFG4DQwMPAal/h0pKFArIh8ICJXlyWjcatuYGDgNSwekgf2BkqpkSISjDY3/TsRUWgru81SSpX4Zsal2yoDA4PLHqXE7e3fqZ/KBhagLToUDtwBbBeREidaX7Y9zn1vNvKqfTnv3RPpbd3zZVHrvWq/6XcPedU+gPmcd+3nBXt1KjCWgNDSE5WDismXvizFpTyqLiK3AfeirSn8A3CdUipVX51tH/BZcXkv28BpYGBw6VPK+zX/NncCk5RSf9juVEqdFpExJWU0btUNDAy8xqU8qg4kOQZNEXkfQCm1pqSMRuA0MDDwGharye3tX6C7i3293clo3KobGBh4jUvxVl1EHkJbjL2RiNguKxWEJglUKkbgNDAw8BqX6JtDP6Gtbv8u8LzN/hylVMmLoeoYgdPAwMBrXKKBUymlDonI/xwPiEhVd4KnETgNDAy8xiU6HeknoB+wDW2Ve9tKKqBhaQY8GjhFJFcpFah/7oOmod4VGAPcB5wAKqEtVvxygTSwiKxHm3x6FjgP3KeU2ulOmZ3rRvDqjV0wizBn/x6+3LnZ7njH8LpM6Xk7iTmatMCKhFg+3f43fmYzc24bip/ZjFlMLE84wKStfznZv6VeBK/dcismEebsjeKrbfb2r69dhyl9bycxW7cfH8tnWzSFzfe79qRLREPSz5ym108z7Gy+vWmE1zTPLRYL+GZA3m4nu45cqG67LTc3rM/L3SIxm0zM3RnFlE1bXKZrFR7KvNFDeXzxMlbEaJrpQX5+vNOnO01qVAOleH7ZanYeS7LL16lxfV7qFYnJZGL+9ii+2ejafstaocwZN5Qn5y9j5d5YKviY+fHewVQwmzGbTKzaG8tn6/92yndLRASvRGr1n7NnD19vKab+oaEsGDaMR5cuZUWsVv9727dncEtt8bCYtDSeXbmS8xaLXb7OdSN49Sb9Gt3n4hqt5eIa3aZfowOG4mfS6r/8oOtr1Nv+KQ+X4jNOpVQ/0USZOiulnMW13MArPU4R6Yo2ebSHUuqILhw1SSn1kX58CLBWRFoppU7o2UYopbaKyL3Ah7ge8bLDJMKbN3Vj5NJ5JJ/K4ZeBI1l9KJ64zHS7dFuSExm7YpHdvnMWC8N/ncvp/Dx8TCbm3zaM9UcS2JGaZG8/siujFs8nOTeHn4eM4LeDccSdtO/JbzmeyLgli53qt2BfFN/v3sHE7kUDdQU2X+7ygVc0z7euiaJDt5a8+f0zqIzSBeEuTLe9CJMIr/fowj2zF5KcncOCe4azNjaeuPQMp3TPRHZiQ8Jhu/0vd4/kj4OHeGTREnxNJir6+jrle7VPF8b8sJCU7Bzm3TectTHxxJ9wtv90905sjC+yfz7fwj0z5nP6vHaOZ44ZzB9xCexKTLbL93qXLty9YAHJOTksGjGCNfHxxGU423/u5pvZcLjIfmhgIHe3a0fPGTM4l5/Pp3370r9pUxbs3WuX781O3Ri5xOYaPRxP3EkX1+hyF9foLzbX6ADX16g3/VNerJfoK5dKKSUii4BrLiS/x1slIjcD3wB9lVLxrtIopeYAq4DhLg7/TZFscIm0rRnG4eyTHM3JIs9q5de4/fSIcP+NotP5mq6Kj8mEj8mEctCmahMaxuHMTI5m6/YPxNC9YekCXAVsPn6MTIdVzAtsekvzHKBSsD9Y7PXJi+OCdNttaF0rjMMnMzmaqflo6b4Yul7lfA5GX9uWlTFxZJw6XbgvsEIFOtStzbxdUQDkWa3knLN/Xah17TCOZGSSeDKLPIuVZVExdG3qbH/k9W1ZtdfePsDp8/o5NpvwMZucekBtwvRznKXVf8n+/XRr5KL+bduyIjaW9NP29n1MJir6+GAWwd/Xl5RTp+yOO12j8Z69Rr3tn/KiyrD9C2wSkQ4XktHTgdMP+Bm4XSm1v5S024FmLvb3Aha7U1hoQBDHc4vexU86lUtoJeco0D60FsvvHM303oNoUqVIHdAkwrJBo9k2+mE2HjvMzlT7/7RhlQJJsrGfnJtDWGCgs/2wWiwbNorvbhtIk6ola2I72vS05vkPu95j3Bt3onImllgPTxEWGEhSto2PcnIJDbL3UWhgJbpf1ZhZO+wfHdQNqUzG6TO837cHP987grd7d8Pf1/4mKDTYwX52LqHB9vZrBlWie7PGzN7q/GjCJMKiB0fw5zMP8Ff8EXYfsz/HoYGBJOXYnuNcQoOCnNL0aNKEn3bb20/JzeXbrVvZMG4cfz/wADnnzrHxsH2POrSSwzWaW8o12sfFNXrnaLbd/TAbE52vUW/7p7x48l11EeklIjEiEicizxeTJlJEdopItIj8XorJW4G/RSReRHaLyB6H6UnF4unAmQf8BYx1I62jp2aKSCLwHMW8Iyoi94vIVhHZmrNhk2tNaof/XVFpKdw0cwq953/P9KjtTOl5e+Exq1L0WfA9N/z4NW1qhHFVleqO5Tnbd/jXGJ2aSqcZ39Bn1g/M2LWDr/sOKK69Jdj0nOb5qDbP8/XLc5HKF3jvXVbc0AV/qVskH67bgNVhv9lkokVYTX7asZsB383kTF4+D9xQegfA0f6LvSL56Ddn+6Cd4zu+mknkx9/SunYYTWra/2Nz+XN1sPNyZCQfbHC2H+znR7dGjYicOpUbp0whwNeXAVfbr07mUgLdwU7UiRRu+tHmGu11u139+8z/nht++Jo2NZ2vUdfV95x/yo2HupwiYgb+D22CenNgmIg0d0gTAnwB3KaUagHcVUrteqO9p94F6I82YNTfnWZ5+hmnFRgM/CYiLyqlSvr1tkNTwyxgBLALeA/NQQMdMyilpgBTACK+/kgln8qhVmDRf+/wSoGknsq1y5Obd77w8/qjCUwwmahS0Z+TZ88U7s8+f45NSUfpXDeCAyfTCvcn5eYQbmM/LDCIlJLsH07gLVNXJ/u2ONosi074zf2voWOvNlzXrSW+fr4EBPnz7Jdj+OChaXQbeiNfvqipRm74eRt8U5rKsmdIzsklPNjGR0GBpOba3662DA9l0oA+AFQJ8KdzowbkW63sPJ5EcnYOu45rvZwV+2N54IZr7fKmZDvYDw4kNcfBfq1QPr5Tsx8S4M8tTTT7a/YXPSnKOXuOzYcSublxBLGpRc8Xk3NzCQ+yPceBpOTan+NWoaFM7qPX39+fyAYNsFit+JhMHM3OJuOMdq5XxsbSPjycn/ftK7LveI0GBpJ6uoRr6EgCE24u5ho9fpTO9eyvUW/7p7x4cDrSdUCcUuoggIjMBgYAtrrOw4GFBQM+SqkSn1cppQ7rtmoCZVIf9PgzTqXUabTIPUJEXPY8RWQQ0AOY5ZA3D3gZ6OjOwqK7UpOJqFyFOkGV8TWZ6N+4GasP2z9WreEfUPi5TY0wBOHk2TNUrehPcAVdc9vsw0216xOfaf9AfXdKMhEhIdQJDtbsX9WU3xLs7VcPsLEfGoaIFBs0bW16S/McNK1sLIdKc59H2HM8mYgqVahTWfNR36ubsibWXjO+y5fTuFXfVu6P5fWVa/ktNp60U6dJysmlQVXtn8QNEXWJS8twsl+/WhVqhwTjazbRp2VT1sbY2+82eRpdP9G2VXtjeXPpWtbsj6dKgD9BFfVz7GPmhob1OOhgf3ey/Tnu16wZaw7a24+cOpXO+rYiNpZX16xhdXw8x3NyaBsWRkUfrf9xY716xDsMKjldo42asfpQCddozRKu0Tr1iT95cf1TXqxWcXsrhdqArVB9Is5jIVcBVURkvYhsE5HRJRkUkdtEJBZIAH4HDqFNjC8Vr4yqK6UyRKQX8IeIFPx7fEJERqJNR4oCutiMqNvmPSMiE4GnKeWW36IUr25cw/d9BmEWE3Nj9hB7Mp0RV2uDLTP37aJ3w6aMbN4Gi7JyNj+fR9YsAaBmQCUm3tobk5gwibA0Poa1Rw462X/t97V8f9sgTCYT8/ZGEZuRzvCWrQH4KWo3fRpfxYiWRfYfXbG0MP/knn3pWLsOVSr689e99/PJP38xd28Ur/2+1qua5+fP5aOyniw1D1yobru9j95YvZZpQwdiFmH+7mji0tIZ1k7zkeNzTUfeWrWOibf1xtds4mhmFs8vXWVv36p4a9lapo4aiEmEBTuiiTuRzpBrNftzXDy3K6BGUCXeu70nZpMgIqyIPsD6AwnO9V+3jumDBmESYX5UFLHp6Qxrrdd/d/H2dyUnsyI2ll9GjsRitRKdmsrsPXuc7L+6cQ3f93W4Rpvr1+he/Rpt0QaL1cpZSz6P/GZzjXYp5Rr1sn/KTRl6nCJyP3C/za4p+l0mFPPUw+G7D9ooeVfAH+355Sal1IFiinwL6Aj8ppRqJyK3oi1qXHpdS9NVv1SJ+Pojr1bc2+txNn0jxqv2jfU4S8f763FavWrf2+tx7n/9iXL/CBrOesdtJx8c9mKx5YnIDcDrSqme+vcXAJRS79qkeR6oqJR6Xf8+FVihlJpXjM2tSqlrRWQX0E4pZRWRzUqp60qr66U5ycrAwODKwHPzkbYATUSkgYhUQNML+sUhzc/AzSLioy9GfD3agsTFkSkigcAfaIPTk4F8d5plvHJpYGDgNTw1OKSUyheR8cBKwAxMU0pFi8iD+vGvlFL7RGQFsBttoPpbpVRUCWYHoL2t+ATa4HRl4E136mMETgMDA+/hwachSqllwDKHfV85fP8Q7c1Dd+zZTj+YUWxCFxiB08DAwGuo0kfLLzoikoPrkC5ob2MGl2bDCJwGBgZe5NILnEqpcrxkrGEETgMDA+9xCU7aEZFgpVS2iFR1ddxYj9PAwODf5RIMnFxq63EaGBgY2HEJLmSslOqn/21woTYu28Dp7cm/3kYqlunV2DLj7QnqMfd+6VX7AC3+z7ttMJ3z7o/aL+3yvkY9waX+fo2ItAYisImFSqmFpeW7bAOngYHBZcAlOKpegIhMA1oD0WjzPkG7VTcCp4GBwb+HXNo9zo5KqealJ3PGeOXSwMDAe1zaS8D/7bimp7sYPU4DAwPvcQkODtkwAy14JgPnKJoA37q0jEbgNDAw8B6X9q36NGAUmupumZayMgKngYGB9/Duynrl5YhSynGFJbe44MApIha0SC2ABRivlPpLRCLQlnKKASqgyWOM1Vd3R0R8gGTgG6XUCzb21qNpqxcsnz5BKTW/tHp0auSgKf1nCZrSY3VN6X2xVDA7aErvc60p7Q37nRrV5/Xfh2Mym1gx62/m/d9vTvYefHMQHbo013TVn5hJfFQitRvW5IUv7ylME16vOj98tIzFU9fTqW9bRj7Zm7pNQnm830TibGx5W/e8JDyh296pcX1e7BuJSUzM3xbFtxuKOQe1Q5l9/1CenLuMVdGxhAUH8t6gXlQPCkApmLtlDz9s2uGU72L7p1OT+rzQTytv/pYovv2j+PbMemgoT81exqqo2BJtXkz7ZeLSvlXfLyI/Ab+i3aoD3p+OdEYp1RZARHoC7wKd9WPxSqm2usDSajQdopn6sR5oQXWwrktk25kfoZSy1SEqkWI1pR2W/zeJ8HQ3B01pi64pnadrSt87mD9iE9h1LNmr9vccT+HVPl14pd9k0pIymbz0af5ZFcWR2KJyO3RpTq0GNRjb6S2atY9g/LuDeaL/xxw7mMr4nh9oZZqEH7a+xV+67MbhmCTeum8qj74/xKlu3tQ9Lw1P6La/0r8LY6dr52Dug8NZt9+1bvhTPTrxZ1xR/S1WxQcr/mBvUioBFXxZ8NAI/oo/bJf3YvvHJMLLt3Vh3DStPXMe1tuT6lzek7068Wfs4WIs/Tv2y8olPqrujxYwe9jsc2s6kqdG1YOBk447lVIWYDP22iDDgMnAEbRl6y+YQk1pXdN7WXQMXZu50JS+ri2r9rnQlM6z0aw2m5wex3jDfoHN5CPpmq76z9vp2KOVXb6OPVqxZv5mAPZvP0RgsD9Vatov2NK2U1OSDqeRqssIH41L4dhBZ20qb+uel0a5ddvrhHEk3UY3fE8MXa52cQ46tmV1dBzpuUX1P5F7ir1Jmk9On88j/kSGk3TuxfZPK4f2LN/tuj0jbnBujzt4236ZuYRH1ZVS97rYxriTtzyB01/XL94PfIum32GHiFREW4V5hf7dH00PZAmaUJujvsdM3eZOESlVpzQ0yIWmdFAZNaUf0DWlD7rQ3PaCfUebacmZVAuvbJevWlhl0o5nFqVJyqR6mH2azre15/eftzmV6Yi3dc+9Tc3gQJKziuqfkuX6HHS7ujGztxSvr1MrJJirw2uwK9H+HF9s/4RWtm9PclYuNR110IMr0a1FY+b845bE90W1fyUgIs/qfz8TkU8dN3dslCdwnlFKtVVKNQN6Ad9LkSB4IxHZCaSjPYAtOEP9gHW6EuYC4A79dr6AEbrNtkqp0jVK3dBVf7FnKZrSX+ua0rXCtOdU3rbvWmjbvthS9Nx9fM1c36MlG5bsdGHMgX9B99yTuFbosq/nC30imbjK9TkACKjgy6dD+/He8t85de68/cGL7B/XT/wc2tM3kokrim/Pv2m/zPVR7m8XkQI5ja1oC304bqXike6DUupvEakO1NB3FTzjDAfWi8ht+ujVMOAmETmkp6sG3Ao4j464wFYFL7TfXaTUCb9wTekYG03pc+fYfFjXlD5RFK/LpVldjP3tR4/b2aweFkJ6cradzbSkTKrXCilKEx5CekpW4fdrb21O/J5EMtNyKA1v6557m5TsXMIqF9U/tLKLc1A7lImDbc7BVZru+Zp98fiYTEwe2o9fd+9n9d44HLnY/knOsm9PWOVAUrPty2tRO5SJQ4vKu6VpAywWrT2l4W37ZeYSfOVSKfWr/rdw1XcRMQGBSqnsYjPa4JHAKSLN0HRA0oFCkWilVJKuPPeCPmreCairlDqn57sXLZi6FTh1qdApAM3emKT2HCvSlE7NzqVPi6Y8vdBeFrnbp9MKP787oAfrDySwJkbTlM63aM+k/HzM3NCgHt86jJh7w36BzdC6VUlPzqLzgPa8P95+1f5Nq/bQ/95b+P3n7TRrH8GpnLOcTC06n5ED2rPejdt0sNc9T8nJpe/VTXnyF/s2dPmyqA3v9+3BurgEfovVfkQFuucJGSdd6p57G7tzkJNLn1ZNeWaeff27f1xU/3fu0M+BHgQm3NGdgycymPHXdtf2L7J/oo4lU796FWpX0a6p3q2b8uwc+/J6fFRU3tuDevB7TILbQc3b9svMJTw4pI+oP4g2K2gbUFlEPtblN0qkPIHTX78dB+0O4W6llMXFbeZi4HXgMWBtQdDU+Rn4QET8LqQCFqVrSo/UNaV36prS1+ia0ttK0JQOdKEpHeusue0N+28tW8uEmQ9r05TmbOLIgWT6jLwJgGU//smWtXvp0KUF0za+ytmz55n05MxCu34VfWl3SzM+fX6OXXk39mrNQ2/dSeWqgbwx4wHuyslgzJxFXtc9L41y67ZbFROWrOXbuwdiMgkLt0cTl5rOkA76OSjhuWb7erUY0LY5McknWPjwCAA+Wf0nf8QeKrJ/kf1jsSre/mUt39yrXVOLtuntuU5vz+byPXf0tv2ycomPqjfXFzQegaZl9BxaAC01cF62uurN3ph0eVZcp8E3CaUnKgdx/7vgpQbd4kpYVi4/oPQ05cG39CcplzR73ym/rnqjiR+7/TuNf+rJi3pfLyLRQFu0hY0/V0r9LiK7lFJtSstrLPJhYGDgPS7h6UjA18AhoBLwh4jUBy7eM04DAwMDV1zKt+pKqU+BwulHInIEbbC6VIzAaWBg4D0uwVH14tDfYsx3J60ROA0MDLzGpdzjLA9G4DQwMPAeV2jgNAaHDAwMvMYl+uaQVjeRABF5RUS+0b83EZF+7uQ1AqeBgYH3uLRH1b9DWx3pBv17IjDBnYxG4DQwMPAaYnV/+xdopJT6AMgDUEqdobjX/R24bJ9xisW79s1nvWtfnfVuAeayrf5WZrw9OR0g+n/enWR/1Q8PetW+1c+7I8pnars1AGxQPOf1FdsUgIg0wmZB45K4bAOngYHBZcClPTj0GtqSl3VFZCZwE3CPOxmNwGlgYOA1LuXpSEqp1SKyHW1BdQEeU0qluZPXeMZpYGDgPS7hwSERuQk4q5RaCoQAL+qvXZaKETgNDAy8xyUcOIEvgdMi0gZ4BjgMfO9ORiNwGhgYeI1LfFQ9X3/NcgDwqVJqMuCWQpYROA0MDLyGJyfAi0gvEYkRkTh9gfTi0nUQEYuI3FmKyRwReQEYCSzVZXzcknG9oMEhEQkDPgE6oA3fHwIeB3YB+4GKQA7wfwXL04vIPcC1Sqnx+jL136GtvPwIMBdopH//VSlVrFMc6dS4Pi/20TW3t5eguV3LRnN7r43mdqCuub3Vteb2TVfV5/kBkZjFxILNUUxdb2//1uYNeaTnjViVwmJVvPfLenYcOg7AyJvaMej6lgjC/M17+HGjs32Aa7q04KF3hmAymVjx40bmfrrCKc1D7wyhQ7dWms76I9OJ230EgBnb3+F07jmsFisWi4VHuznr8HZq7KANv7EEbfhxujb83lgq+Dhow+8tRnvey7rnpVFe7fZbIiJ4uat2jufu3sPXm4vRVQ8LZf6IYTz261JWHIilQZUqTL6taFXmepUr88mffzF9m30bOjVy8P+fJfh/rO7/fbFUMDv4f59r/3euE8FrHbtiFmF2zG6+3L3Z7njH8Lp80/0OjuZo8isrDh3g0x1FdkwiLBkwiuTTuYxZVaoybtnw0C24HtT+D+iONlF9i4j8opTa6yLd+8BKN8wOAYYDY5VSySJSDzcWMYYLCJy6INsiYIZSaqi+ry0QiqY11E7f1xBYKCImpdR3Dvm/Qovs96IF2Y+UUutEpAKwRkR6K6Xs1/t3gUmEV/p1YewMXXP7gXJobj/oWnP75Tu6cN83C0nOymHOI8NZtzeegzYa1ZvijrJu748AXBVWnY9G9uW2j2bQOLQag65vybDPZpFnsfDV2IH8sT+BI2mZ9nUzCf97fzgv3jmJtOMn+XT1i2xasYsjB5IK03To1pJaDUMZc93LNLumAeM/HMHjPd8tPP7c7RPJzsgt1kcuteFd+Ojp7g7a8Pm6Nvx5XRt+zGD+iEuwU4r0tu65O5RHu90kwuvdu3D33AUk5+SwcNQI1sS71lV/9pab2XCoqP4JJ09y24wfC4//+dD9rIqNc8rn0v9pLvzfzcH/Ft3/ebr/7x3MH7EJ7Dpm7/+3buzOiOVzST6Vwy8DRvHbkXhiM+21DrckJxYbFMe0uIa4zHQCK1yQEEPJeO7Z5XVAnFLqIICIzEa7xd7rkO4RNCHIUlUFlVLJwMc234/gxWectwJ5SqmvbArcCRx1qNRB4EngUYf8k9FE2kYrpaxKqdNKqXV6nvPAdqCOOxVpXUfXPbfV3Hale96xLav3xpF+qmya263qhnEkLZPEjCzyLVaW74qhSwt7+2fO5xV+9q/gWyhH2bBmVXYfSeJsXj4Wq2LrwUS6tmjsVLem7RuQlJBK8uE0TWd90RZu6G2/APUNvduyZq7WQ9i/LYHAyv5UDa3sjouKtOELfBQVQ9emLnx0fVtW7XWhDa+3z8esa8M7/BC8rXvuDuXRbm8TruuqZ+m66vv3062xC1319m1ZGRtL+mnXOuQ31q/HkcxMjmfbL/te6H9dt31ZdAxdXV2j17Vl1T4X/s/T/W/S/e+Qr22NcA5ln+Rojmb/14P76V7f+TorjrCAQLrUbcjsmD1u5ykLZblVF5H7RWSrzXa/jana2MeYRH1fUVkitYE70DpmpddNpKOIbBGRXBE5r9/eZ5We88ICZ0vclNBEC4LNbL4PB64BhiqlnF57EJEQoD+wxh3jNYMcNLezc51+eOXR3K5Z2VnT21GjGqBri0b88vTdfDHmdl6ZtxqAuJR0rmlQh8oBFano68PNzSIIC3HOWy08hBPHi3ofacczqRZexTnNsZOF308cP0m18BBAi9PvzH+cz9a8RO/RNzvZDw12oQ3vwkclasM/qGvDxztrz3tb99zbhAYGkpTjoKseGOSUpkeTJvy0s/j6923WlCX7YpztB7nwvwv/lOj/B3T/H3T2f1hAIEmniuwnncohLMD5OmtfsxbL77ibGT0H0SSkSAb7tRu68M7m37F6a1i7DKPqSqkpSqlrbbYpNpZcK0Xb8wnwnFLK3fcKP0cTi4wF/IFxaI8DSsXbE+AdG1sQSK8D/rRLKOIDzEIb3TrolnE3NLFf6H3hmtvuaHoDrImOZ010PNc0qM34njdy3zcLOJiawbT1W/jmvoGcPpfHgaQ0LFbnvK411JXbaZ7s+z4ZyVlUrh7Eu/Mf52hsMlF/x7psa3H2X+xVijb8VzMJqujH50P606RmNWJTi24Dva577mXcqf/LXSL54Pfi6+9rMtG1USM++mOjWwU42n+xZyn+/3omQX66/2tUs5Owdm3fnqi0FG6c/TWn8/O4tU4Dvul+B5HzvqVL3YaknzlNVHoKHcPrumxbefHgaHkiYFvJOsBxhzTXArP130t1oI+I5CulFhdnVCkVJyJmPdh+JyJ/uVOZCwmc0UBpo1UFtKNI/B20gaNXgbki0lMpFW1zbAoQq5T6pDhjtrrqYX3vIqVuuL3mtivd89qhTLzLXvfcYrWyZr+D5vY+Z83tlCxnTe8TDhrVtmxLOEbdapUJCahI5umzLNwSzcItWhMf63WTXc+sgLTjJ6lRq2rh9+q1QshIznROU7uoF1qjVhUykrU7ioK/WWk5/LVsJ03bR9gFznJpw++30YY/e47Nh3TteZvA6W3dc2+TnJtLeJCjrrr98+KWoaF80l/XIff3J7KB5p/f4jT/dG7YgL2pKS5v48vl/xgb/587x+bDuv9tAmfyqVzCKxXZD68URMpp+/rn5hX9M1qXmMBbJhNV/Py5NrQ23eo3JrJuQ/zMPgRVqMAnkX15fP3SUrxWBjzXkd0CNBGRBsAxYCjaHWxRUUoVKhSKyHRgSUlBE20OZwVgp4h8ACSh6Q+VyoUEzrXAOyJyn1KqYB27Dtjoqev7IoCPgM9s9yul/hKRB9GG/29RSh0RkQlAZbSucrHY6qpf/aquq161FM3tSQ6a2zEJhQFhwu0la25HJSZTT9eoTsnOpXebpjw7y95+3WqVOZquBa+ra9fE12wm87S2gEfVSv5knDpDWEgQXVs2ZuT/zXYqI2bHIWo1rElovWqkJ2XS+Y4OvP/At3ZpNq3YRf+xt7J+4RaaXdOAU9lnyEjJwi+gAiaTcCb3HH4BFWgf2ZyZHy2xy7vnuIMuecumPL3AQRt+so02/O26Lvl+XRveaiXnrK4N37AU7Xkv6J57m91JydSvElKkq96sGU8uWWaX5tZvphZ+fr93T9bFHywMmgD9mjXlVxe36eDgn+xc+rRoytMLHfz/qY3/B+j+idH9b7GSc073fwNn/+86kUSD4CrUDaxM8ukc+jdsxqPr7K+BGv6VOHFGC9ZtaoRhEuHkuTN8sHUDH2zdAGgj7/e36uDZoInnXrlUSuWLyHi00XIzME0pFa3HEmzHXMrAKLTHleOBJ9B6tIPcyVjmwKmUUiJyB/CJPpfqLEXTkRqJyA6KpiN9ZjuibmNjiYjUAFaISG/gJbTe6Ha9m/25Uupbx3yOWKyKCUvX8u1oG83tE+kMuVbXkHbxzKgAO83th3TN7d8cNLetind+XsvX4wZiNgmLtkQTn5LO4I6a/bmbdtO9VRNua9+cfKuFs3n5PD2z6MKbNLo/IQEVybdYeXvxWrLPOC+8YrVY+eL5Wbw973FMJhOrfvqTwzFJ9LnnFgCWTf+Dzav30KFbS6ZteZtzZ87z8aPTAahSI5hXZ2irFJl9zKxbsJlta6Pt7Fusujb8KF0bfof7PqoR5EIb/kCC8znwou65O5RHu92iFG/8to7v7hyE2STM2xNFbHo6w9rouuq7StYhr+jjw00R9Xl51W/F2n9r2VqmjtT9v1P3/zW6f7aV4P9AF/6PdfC/Urz612983/tObTrVgT3EZqYzopk2wDhz/y76NLiKkVe3Jd9q5awln0fW/uqeczyBBx+dKqWWoemf2+5zGTCVUve4Ya9gCsNZ4I2y1OWy1VW/+lXv6qp7e1m5OtP2lZ6oHBwaf7VX7Xt7WT+4/JeV8zl9eS8rd3jcM+VuQKsn3f+d7vm4/DruZUF/V/11oD42nUilVMPS8hqrIxkYGHiNS3l1JGAq2i36NrSXb9zGCJwGBgZe4xIPnFnuvGjjCiNwGhgYeI9LO3CuE5EPgYXYrPyulCp1pNIInAYGBt7j0g6c1+t/r7XZp4AupWU0AqeBgYHXuJRv1ZVSt15oXiNwGhgYeI9LMHCKyEil1I8i8qSr40qpj13tt8UInAYGBl7jX1qguDQK3g5ytTSMW6HeCJwGBgZe4xK9VV8KoJRymvQuIv3dMXDZBs4z4d6dgW0+7d3F8SXEvWXhLpS8YO9esaZz3p+r7O0J6gdGXchbeu7TeJZ3618x6TL4+V6agXONvlbGIdudInIv8DJQ6qtVhnSGgYGB97g0xdqeAFaLSJOCHbqExpNAZ3cMXAb/sgwMDC5XLsVbdaXUMhE5BywXkdvRFhfqANyilDpZYmYdo8dpYGDgPS7NHidKqTXAPcB6oCHQ1d2gCUaP08DAwIuIi8W7/21EJActVAvgB3QFUnU9NKWUCi7NhhE4DQwMvMYleqt+gQpVRRiB08DAwHtcgoHTE3glcIpIrlLKSTFKREYDz6J1kQVtFeePbJa5ny8iVdHE2j51tQiyI53rRvBqpy6YRZizbw9f7nDQlK5Vlym9biexQFP6YCyfbvub8EpBfNy1NzUCKmFVill7d/PdHud3+2+JiOCVWzXN7TlRJWhuh4ayYPgwHl2ylBWxmnTFve3bM7hVSwBi0tJ4dsVKzlss3BIRwVurRmIym1gxdzPzvl7nZO/BVwbQIbIZ587kMfG5OcRHHwNgwN2d6DXkekRgxZx/WDxd07kZ8Wh3eg2+nqwMbaXvd2L+YX1CQlEbIiMxm0zM2bOHr7eU0IZhw3h0qUMbWtq0YaXWBltublifl7tp9ufujGLKpmLsh4cyb/RQHl+8jBUxmv0gPz/e6dOdJjWqgVI8v2w1O48l2eXztu55aZRbt71+BK9Garrqc6P28FUx/m8dGsqCocN4dNlSluv+v6ddO4a0bIUIzNmzh+92ONf95kb1eamnpms/b0cU3/xVvP/njBnKEws13fYCTCIsGDeclOxcHpzzc9kbWAKXYo/TE1y0Hqe+0vvjQA+l1HERqYi2dL1tmspoS+NPcSdomkR48+ZujPx1nqYpPWgkqw/FE3fSQVM6KZGxyxfZ7ctXVib8tZ7otFQq+fry652j2JB42C6vSYTXu3bh7vma5vaiESNYExdPXIazJvZzDprboYGB3N2+HT2nz+Bcfj6f9utL/2ZNWbR3H6937cIrd3xJWnIWkxc+yj9rojkSl1qYt0PnZtSKqM7Yru/TrG09xr8xkCfu/Iz6TULpNeR6Hh/4KXl5FiZMG8fmdfs5fjgNgMXfbWDB1N8BOPBweFEbunTh7gU2bYgvpg0338yGww5taNeOnjP0NvTtS/+mTVmwd69dvtd7dOGe2QtJzs5hwT3DWRvrWpf8mchObEg4bLf/5e6R/HHwEI8sWoKvyURFX1+nfN7UPXeH8uq2v9GlC6MXavVfPHwEvxXj/2c72fv/qmrVGNKyFXfM+ok8i4XpAweyLiGBQ5mZdvle7dWFe2dquu3zxw1n7YFidNu72uu2FzD6unbEp2UQWKFC2RtYGldo4LyYo+ovAE8rpY4DKKXOFmgW6QQCy4GflFJuLf3dtmYYh7NsNKXj9tMjwlmz2hUnTp8iOk0LVqfy8og/mUFYJftOcpuwMA5nFmluL4kpRnO7XVtWuNDc9jGZqOjjg1kEfx9fUnJPFdpMPpqh6agv3UnHbi3s8nXs1oI1izQF5v07jxAYXJEqNYKo2ziU/TsPc+5sHlaLlT2bD3Jjj5YlttOpDfv3062Riza0daMNvr6knLIXGmtdS9cl13XDl+6LoetVLuxf25aVMfa64YEVKtChbm3m7YoCIM+q6evY1d/LuufuUC7ddhfXUHcX/r+7bVtWxsWSZlP/RlWrsjMpibP5+ViU4p/ERHo0ttdML/B/gW770ugYujZ1tj+qQ1tW7o9z8k9oUCCRTRowf0fUhTWwFMTq/nY5cTEDZ2l67B8DG5VSk9w1GFopiON2mtK5hFZyvsLbh9Vi+V2jmd53EE2qVHM6XicomObVa7Izxf4W0W3N7cZN+MlBmyYlN5dvt2xlw33j+PvBB8g5f46Nhw872UxLzqJaqP1bRNVCg0lLyrRLUz20MocPJNOyQ0OCQgLwq+hLh8hm1Agvytt/1I18seRJnnj3LoL9/Fy3ITeX0CAXbWjShJ92u2jD1q1sGDeOvx94gJxzWhtsCQt00A3PcdYNDw2sRPerGjNrh739uiGVyTh9hvf79uDne0fwdu9u+Pv6OOT1ru65twlzqH9Srov6V9KuoZkO/j+Qns51deoQUrEiFX18iIxoQLhj3uBAkm38n1KMbnu3Zo2Z7ULf6MWekXxYjDSxJxDl/nY5cSnN41wLDBCRmu5mcEcTO+pECjf9MIXe875n+p7tTOl1u93xAB9fvux5G2/+uc5ORhVc67Y73nu8HBnJBxucL7xgPz+6NW5E5LdTufHrKQT4+jLg6qtd23RTR/1ofCrzpqzjnRn38da0cRzcdxyLRftXvXTm34zp8h7/6z+JjBM5vNhZewHCdRPK0IZGjYicOpUbpxS1wb6yrszb23mpWyQfrnO2bzaZaBFWk5927GbAdzM5k5fPAzd0KM38BeueL4s54PL4xcbRP69ERvK+C//HZ2Tw9ZYtfD9wENPvGMj+tBNYlH3XzPXl5OD/HpF8tMbZfmSTBmScOk10cipeQyn3t8uIizmqHg1cgxYgXTEb2AgsE5FblVJO91S2uupVhw8iOTScWnaa0oGknipeU3r9kQQm3GyiSkV/Tp49g4/JxFc9b2PxgX2sTIjFkeQcZ83tFAfN7VZhoUzua6O53bABFmXFx2TiaFY2GWfOALAyNpb2tcJZvHefnc3qYZVJT822s5mWnEX18BCXaVbN28KqedrD/7uf6kWarquemV5Ur+Vz/uGlwfdrbXDUDQ900YbQUCb3sdcNt1j1NmQ7tCE8nJ/3FQnNJec46IYHBZKa66AbHh7KpAG6/QB/OjfSdMN3Hk8iOTuHXceTAVixP5YHbrjWLq+3dc+9jWP9wwOdr9FWoaF82se5/qvj45kbHcXcaO02+umbbiI5xz5vcnYuYTb+Dw127f+PB9r4v7Fmv03tMLpc1ZBbGkfg5+NDoF8FPry9F88sXuGx9l9uPUl3uZiB813gAxHpp5RKFhE/4AGl1KcFCZRSn4hIOLBIRPoopey6gLa66hFffqR2pSYTEVKFOkGVSTmVQ//GzXj0N3td6Br+AZw4o/1g2tQMQ0Q4eVYLBO9H9iQuM4Opu10/QdidnExESAh1goNJyc2lX9NmPLHMXnM78tsize0PevZk7cGDrI6Lp01YGG3Dw6jo48PZ/HxurFePPSkphTZD61QhPSWbzn3b8v6TP9nZ3LQmmv6jbuL3JTtp1rYep3LOcvKE9n+kctVKZGWcokZ4CDf1aMWTd30OQJUaQYVpbuzRkgNpaa7b0MxFG6a6aEO83oYw5zbYsud4MhFVqhTpkl/dlCd/sZdx6fJlkW74+317sC4ugd9itaCWlJNLg6pVSMg4yQ0RdYlzGNTwtu65t9mdnExEFftr6PHl9vXvPM3G/z16si5B8z9ANX9/0s+coVZQED0bN2HQ7Fl2efccTyaiahXqhASTkp1L3xZNeWqRvf+7fm6j235bD9bHarrta2Li+XjtnwBcV78OYzpe49GgCVyxg0PeCpwBIpJo8/1jpdTHIhIK/FYwQx+Y5phRKfWciHwH/CAiw5RSxT42tijFqxvW8H2/QdpUlf17iD2Zzojmuqb03l30btSUkS3aYCnQlF69BIBrw2ozqGkL9qWfYNldowH44J8NrD+SYGf/jbXrmD5oECaTMD9K19xurWtu7y7+mdqu5GRWxMbyy6iRWKxWolNTmb17T6HNCd/dh9lsYtW8zRyJTaHPsI4ALJu1iS3r99Mh8mqmrX2es2fOM+m5uYV2X/6/0QRXqUR+noUvXl9Ebrb2T2Dsc31peHUtUJByLIPHf/+9qA3r9DbIBbZhpE0b9uxxOgdvrF7LtKEDMYswf3c0cWnpDGun299Rsi75W6vWMfG23viaTRzNzOL5pauc7XtR99wdyqvb/vradcwYqPl/XrRW/+G6/x2fKzvyRf/+hFT0J99q5bW1a8h2GDyzKMWbK9by7XDN/wt2abrtQ9tr9mdvL9m+t7ncBn3c5bLVVY/48iPv6qp7eVm5q75MKj1ROSiYjuQtLsaycsrHu9fm5b6snG+ud89BzCvl1zm/6a6Jbp/EP+c9dVF11cuD8eaQgYGB97hMO2alYQROAwMDr2EMDhkYGBiUFSNwGhgYGJQNo8dpYGBgUEYuxfU4PYEROA0MDLzHlRk3jcBpYGDgPYxbdQMDA4OyYtyq/7dQvt494fkHD3nVviUg1Kv2/dLMXrUPYPXz7nxob09Qjxvm3Qn2rT9+yKv2PcKVGTcvqdWRDAwMrjA8uayciPQSkRgRiROR510cHyEiu/XtLxFp4402gdHjNDAw8CKeGlUXETPwf0B3IBHYIiK/KKX22iRLADorpU7qihNTgOs9UgEHjB6ngYGB9/Ccrvp1QJxS6qC+atpsYIBdUUr9ZaONvgmo45lGOGP0OA0MDLyGeO5d9drAUZvviZTcmxyLJsXjFYzAaWBg4D3KsKyc7ULlOlP0NXihODEA13ZuRQucndwvvWwYgdPAwMBrlKXHabtQuQsSgbo23+sAx53KE2kNfAv0VkqlOx73FB4NnCKigB+VUqP07z5AEvCPUqqfiNwDfAgcs8l2NzBD/1wPyNK3NKVUt9LK9LauuiO31I/g1VtuxSTC3OgovtpmX971teswpd/tHM3WylsZH8tnmzeVarckru3Zloc/uReT2cTyqWuY8/7iMuXvXDeCV2+y8dFOFz7qaeOjBM1HfmYzcwYMxc9kxmwysfzgASZt/avEsjo1qc8L/TSN9flbovj2D9ca3y1rhzLroaE8NXsZq6KcZUvsbDaqz0u9NF3y+duj+ObPYmzWCmXO2KE8OV/TDa9gNvPjvYOpYNbqv2pfLJ+t/9spn7d1z0ujvLrtN11Vn+cHaLrzCzZHMXW9ff1vbd6QR3reiFUpLFbFe7+sZ8chLeaMvKkdg65viSDM37yHHzeWvf4l4rnpSFuAJiLSAC1+DAWG2yYQkXrAQmCUUsqrAlOe7nGeAlqKiL9S6gzaCNgxhzRzlFLjHfa1BRCR6cASpdR8dwrztq66q/LeiOzK6EXzSc7NYfGQEfyWEOekkb3leCLjfl3sThNKb6PJxCOfj+W5Hm+RlpjB55vf5e9ftnJkX2LpmfU6v9mpGyOX6D4aOJLVh134KNnZR+csFob/MpfT+Xn4mEzMHzCM9UcS2JHqehFmkwgv39aFcdM0je85Dw9n3f544lOdNb6f7NWJP2OdNb5d2Xy1TxfG/KDZnHffcNbGFKMb3s1eN/y8xcI9M+ZzOk+r/8x7B/NHbAK7jiXb5fOm7rk7lFe3/eU7unDfNwtJzsphziPDWbc3noM2Pt8Ud5R1ezV9+avCqvPRyL7c9tEMGodWY9D1LRn22SzyLBa+GjuQP/YncCStbPUvCU+Nqiul8kVkPLASMAPTlFLRIvKgfvwr4FWgGvCFLniYr5S6tjib5cEbo+rLgQJhgWHArBLSlgtv66o70iZU18jO1jWyY2Po3rBxiXnKS9PrGnM8LpnkhFTy8/JZP+dPbhzg/rXQtmYYh7NtfBTvvo8ATufnAZq+uo/J5KQwaUurOmEcSc8k8WQWeRYry3fH0OVq57JG3NCW1dFxpOeWLp7WunYYRzKKdMOXRcfQtZmzzZHXtWXVPnvddoDTeTb1N5ucau9t3XN3KI9ue6u6YRxJyyQxI4t8i5Xlu2Lo0sK+/mfO5xV+9q/gW7i4cMOaVdl9JImzeflYrIqtBxPp2sLD17MHVS6VUsuUUlcppRoppd7W932lB02UUuOUUlWUUm31zStBE7wTOGcDQ0WkItAa+Mfh+BAR2Wmz+V9oQd7WVXckLDCQpFxbjewcQl0E23ZhtVg6bBTTbhtIk6rO5ZWF6rWrciKxqHeYlphB9dru2wytFMTxXAddb1c+Cq3F8jtHM72PvY9MIiy7czTb7n6YjYmH2Zma7JS3sKzKgSRn2WigZ+VSM9hB4zu4Et1aNGbOP+5p4YQGOei2F6Mb3r1ZY2ZvdbZpEmHRAyP485kH+OvgEXYfs6+/t3XPvU1NB5+nuPA5QNcWjfjl6bv5YsztvDJvNQBxKelc06AOlQMqUtHXh5ubRRAWUnLnoayI1f3tcsLjg0NKqd0iEoHW21zmIomrW/ULoiy66qfz84is14ApvW7n1llFqoIl6aq7U6Lj/8noE6ncPP0bTuflEVm/AV/3G0CX75006dzGlQ57WXSi3NHdjjqRwk0/uvaRVSn6zP+e4Ap+fN1zAFdVqc6Bk2lul+XooRf6RjJxRfEa6O4YdTzHL/aM5KPfXNu0KsUdX88kyM+Pz4f0p0mNasSeKHnM4EJ0z0/n5bnUPfc27vwGANZEx7MmOp5rGtRmfM8bue+bBRxMzWDa+i18c99ATp/L40BSGhZPv1tuSGeUiV+Aj4BItGcOHuFi66o7kpybY9ejCA8Mci7vvE15hxN409S1sLwL4URiBjXqFLmwep2qpB/PKCGHQ51P5VAr0EHX+7T7Piog+/w5Nh0/Sud6EcUGzuSsXMIq22igVw4kNdte47tF7VAmDi3S+L6laQMsFitr9sXjipRsB9324EBScxx0w2uF8vGdms2QAH9uaaLphq+JKbKZc+4cmw8ncnPjCLvA6W3dc2+T4uDz0MqBnHDwuS3bEo5Rt1plQgIqknn6LAu3RLNwSzQAj/W6ya736hGuzLjptTeHpgFvKqX2lJqyDCilpiilrlVKXRvUqSO2uuq+JhP9Gzdj9SH7H2AN/4DCz2XVVXdkd0qRRrmvyUS/Jk357aB9edUDisprHRqGyaa8CyFmSxy1m4QTFlETH18fIofcxN+/bHU7/67UZCIq2/iokRs+Qqtz1Yr+BFfwA8DP7MNNdeoTf7L4oB11LJn61atQu0owvmYTvVs3Zd2+g3Zpenw0je4fatvKqFje+mVtsUETYM+xZOpXq0LtEM3nfVo0ZW2Mvc1un06j62RtW7U3ljeXrmVNTDxVAvwJ8tPr72Pmhgb1OOio226je+5rMtGvaTN+O2hvv/O0qdyib8tjY3lt7Ro73XOgUPf8l5j9xbbFG0QlJlNP97mP2UTvNk1Zt9e+/nWrVS78fHXtmviazWSePgtA1Upa/cNCgujasjHLd3pWf16sVre3ywmv9DiVUonA5GIODxER24mpDyulSp7jUgze1lV3Vd7r69cyY8AgTCaTppGdkc7wlrpGdtRueje+ihGtisp7dPnSC2laIVaLlc8fmcq7K17CZDax8rt1HN7r3oh6QZ1f3biG7/vqPopx4aOGDj76TfNRzYBKTOzSG5OYMImwND6GtUcOFl+WVfH2L2v55t6B2rPFbdHEpaYz5DrNP3M2l13j26IUby1by9SRms0FOzXd8CHX6Da3FW+zRmAl3ru9J2aTICKsiD7A+lj78+tt3XN3KJduu1Xxzs9r+XrcQMwmYdGWaOJT0hncUav/3E276d6qCbe1b06+1cLZvHyenll0TU4a3Z+QgIrkW6y8vXgt2WfKXv8SubziodsYuurFYMrz7pJmjR4v39zO0oj9witrGxQScORiLCvnXfvng7177V/uy8pFfVB+XfWeHd5w28krt7xm6KobGBgYGINDBgYGBmXFCJwGBgYGZeQKfcZpBE4DAwOvcbmNlruLETgNDAy8h3GrbmBgYFBGjMBpYGBgUEauzDt1I3AaGBh4Dw9KZ1xSXLaBM+CYdydgS75XzeNTs4ZX7VdM9v4EdW9zprZ3T0LFJO9e/t6eoL77yS+9ah+eKL8JI3AaGBgYlBHLlXmvbgROAwMD72H0OA0MDAzKiBE4DQwMDMqIpxdGvkQwAqeBgYH3uMgr4l8sjMBpYGDgPYzBIQMDA4MyYjzjdA8RmQpci6YjdQC4RymVKyKVgR+Benq5HymlvitveZ2a1OeFPpGYTSbmb4vi2z+2uEzXsnYosx4YylNzlrEqWtMXmnBHdzo3bUjGqdMM+OwH98q7qj7P94/ELCYWbIni29+LKa9OKD89PJSnf1rGqqhYJxuvbByOySysmPkX8z5f5ZT/wQl30aFrC86dyWPiY98Tv+coAJWC/Xn84xHUb1oLpWDSEz+wf1sCY1+9g+u7tyI/z0LSoRM8tvsvcs5qq3l3alyfl3pFYjKZmL89im82FlPnWqHMGTeUJ+cvY+XeWCr4mPnx3sFUMJsxm0ys2hvLZ+v/Ltk/TerzQj/9fGwp5Xw8NJSnZjv7x5HOdSJ4rWNXzCLMjtnNl7s32x3vGF6Xb7rfwdGcLABWHDrApzuK6mkSYcmAUSSfzmXMqoVO9m9uVJ+XekZiEhPzdkTxzV+u69wqPJQ5Y4byxMJlrNxXVGeTCAvGDSclO5cH5/zslO+mq+rz/AD9mtkcxdT19vZvbd6QR3reiFUpLFbFe7+sZ8eh4wCMvKkdg65viSDM37yHHzfuKNFXrnjpPVj/N1StAr9OL3P28mEETrd5QimVDSAiHwPjgfeA/wF7lVL9RaQGECMiM5VSpUlLFotJhJf7d2HcdwtJyc5hzoPDWbcvnvgTGU7pnuzZiT9jD9vtX7RjLzM37eK9O3u6Xd5LA7pw39SFpGTlMGe8Xl6qi/J6d+LPA4eLtfFK74mkJWUyecVz/LNqN0cOFMnWdujagloNazL2htdp1j6C8e8P5Yk+HwJaQN26di9vj/sWH18zfv4VANjx+36+e/tnrBYrY16+nfs7dWDibxsxifBqny6M+UHz0bz7hrM2xrWPnu7eiY3xRXU+n2/hnhnzOX0+Dx+TiZljBvNHXAK7El1LBJtEePm2Loybpp+Ph4ezbn8x/unlfD6Ks/nWjd0ZsXwuyady+GXAKH47Ek9spr1S5ZbkRJdBEWBMi2uIy0wnsILzkvImEV7t1YV7Z2p1nj9uOGsPxBOf5sI/Xe39U8Do69oRn5ZBYIUKrn1yRxfu+2YhyVk5zHlkOOv2xnPQxieb4o6ybu+PAFwVVp2PRvblto9m0Di0GoOub8mwz2aRZ7Hw1diB/LE/gSNpmaX6zZbbe8PwgfD8O2XK5hmu0MB5wWJtIhIhIvtFZIaI7BaR+SISYBM0BfCnSOdOAUH6/kAgA8jX0y4WkW0iEq0rWbpFqzphHEnPJPFkFnkWK8v3xNDl6kZO6UZ0bMvq6DjST52227/t0DGyzpx1u82t6oZxND2TxAytvGW7Yri1uYvybmzL6j1xZDiUZ2sj+Ug6+XkWfl+8jY4929il6dizNWvmanL0+7cfIjA4gCo1gwkIrEjLjo1Z+ZMm0ZSfZ+FUtiYEt/33fVj150n7tyUQpmtrt64dxpGMIh8ti4qha1PnOo+8vi2r9jrX+fT5PAB8zCZ8zKYSfwdO52N3MefjBv185Dr7x5G2NcI5lH2SozlZ5Fmt/HpwP93rNy41XwFhAYF0qduQ2TGudQNb1wrj8MlMEjM1+0ujXftnVIe2rNwfR/pp+zqHBgUS2aQB83dEubTfqm4YR9K0aybfYmX5rhi6tLC3f0b3MYB/Bd/CYNOwZlV2H0nibF4+Fqti68FEurZwv+0FdGgDIRdX7r0Iq9X97TKivCqXTYEpSqnWQDbwMICIfAckA82Az/S0nwNXA8eBPcBjShUOuY1RSl2Ddov/qIi4JSkcGhxoJ2eanJ1LTT1gFFAzqBLdmje+IKEwV+Ul2ZSXkpVLqGN5wZXo2qIxc/5xXZ6jjbSkk1QLr2yXplp4CGnHT9qlqR4eQlj96mSl5/Lk5FF8vvoFHps4Ar8A515Oj2E38kfcoaLysu195FTnoEp0b9aY2Vud62wSYdGDI/jzmQf4K/4Iu4+57m2CJk1rdz6yXJyP4Ep0K8E/joQFBJJ0qshm0qkcwgICndK1r1mL5XfczYyeg2gSUnT5vHZDF97Z/DvWYnRqQ4MDSbbxT0p2LqFBLq6hZo2Z7UIY7sWekXxYjKY7QE0Hn6S48AlA1xaN+OXpu/lizO28Mm81AHEp6VzToA6VAypS0deHm5tFEBbinPeSRin3t8uI8gbOo0qpP/XPPwKdAJRS9wK1gH3AEP14T2Cnvr8t8LmIBOvHHhWRXcAmoC7QxFVhInK/iGwVka0nt/+NS2UnhxPwQt9IJq4s/sIuEy4KVA4/yOf7RfLx8hLKc1Vph6Rap9whiVKYfUw0blWXpdM3ML77u5w9fZ7B43vYpRv6WC8s+RZ+3V28TK2jQN+LvSL5qJgfv1Up7vhqJpEff0vr2mE0qVn8/zTXSlsuzseKMpwPlz63JyothRtnf03vRTOYHr2db7rfAUCXug1JP3OaqPSUMtXZ0T8v9YjkozXOdY5s0oCMU6eJTk4tm30XQXxNdDy3fTSDR2f8wvieNwJwMDWDaeu38M19A/lq7B0cSErDcrnNi7RY3d8uI8r7jNPxLBZ+V0pZRGQO8AzwHXAv8J7Srso4EUkAmolIANANuEEpdVpE1gMVXRam1BRgCkDzlyep5OxcwioX3YOEBQeSmnPKLk+L2qFMHNIHgCoB/txyVQMsVmuJWt7FkZKVS7hNeaGVA0nNdiivTigfDS8q7+amDci3Wlm7N96ljerhVUhPzrKzkXb8JNVrVXFOoyAtKZOYHYcA2LhkO4MfKXo+223w9VzXvSUv3DUZ7o7QysvOJTy4ZB+1rBXKx3dqdQ4J8OeWJlqd1+wv8lHO2XNsPpTIzY0jiE21f75YQHKWw/lw5Z/aoUwcanM+mjbAYin+fCSfyiW8UpHN8EpBpJzOtUuTm1f0mHxdYgJvmUxU8fPn2tDadKvfmMi6DfEz+xBUoQKfRPbl8fVF8rjJ2bmE2fgnNDiQ1FwH/4SH8vHAojp3bqz5p03tMLpc1ZBbGkfg5+NDoF8FPry9F88sXlGYN8XBJ6GVAznh4BNbtiUco261yoQEVCTz9FkWbolm4ZZoAB7rdZNd7/VyQBnzOF1ST0RuUEr9DQwDNopIY6VUnP4ssz9Q0PU5AnQFNohIKNpt/kHgJuCkHjSbAR3dLTzqWDL1q1WhdpVgUrNz6d2qKc/OW26XpsfEaYWf3x7Yg99jEi4oaAJEJSZTz6a8Pm2a8sws+/J6fmBT3l09+H1fQmHQtLURWq8a6UmZdL79Gt5/2H5ywaZVe+g/pjO/L95Ks/YRnMo5w8nUbABOHDtJ7UY1ORafStubm3HkQBIA19zanLvG9+DZOyZx7kzRM7M9x3UfhQSTmpNLn5ZNeXqBfZ27TS6q87u392D9gQTW7I+nSoCmF55z9hx+PmZuaFiPb/90PeIM+vmobnM+Wjfl2TkO5+MjG/8MKv187DqRRIPgKtQNrEzy6Rz6N2zGo+uW2KWp4V+JE2e0YNSmRhgmEU6eO8MHWzfwwdYNgDbyfn+rDnZBs8A/EVWrUCckmJTsXPq2aMpTi+zr3PVzG//c1oP1sQmsiYlnTUw8H6/Vbriuq1+HMR2vsQuaoJ9v3Scp2bn0btOUZx2umbrVKnM0XfvneXXtmviazWSe1p69V63kT8apM4SFBNG1ZWNG/t/sYn11SXK59ZDdpLyBcx9wt4h8DcQCXwKr9VtwAXYBBWtrvQVMF5E9+rHnlFJpIrICeFBEdgMxaLfrbmGxKt5espZv7h6IySQs2hZNXGo6Qzq0BmDOlpKfo304uDfXNahLSEBF1j4zjs/X/s3CbdEll/fLWqaM0cvbGk18ajqDr9fKm+vGc7sCGxNmjcdsNrFq1t8ciUmiz+ibAVj2/Qa2/BZFh64tmLbpDc6eOc+kx4umSn350lye/eJefH19SDqcxqTHvwfg4XcG41vBl7fnPALAlrMneX3JGixWxVvL1jJ11EBt2syOaOJOpDPkWt1HLp5rFlAjqBLv3d4Ts0kQEVZEH2D9gYRS2/bNvVpZhefjOr2sC3jObFGKV//6je9734lZTMw9sIfYzHRGNNMG1Gbu30WfBlcx8uq25FutnLXk88jaX8tk/80Va/l2+EDMIizYpflnaHutzrO3l+/ZuMWqeOfntXw9biBmk7BoSzTxKekM7qhfM5t2071VE25r35x8q4Wzefk8PbMouE8a3Z+QgIrkW6y8vXgt2WfOlbkOT70Bm3dCZhZE3gnj74U7+5arWe5zmT27dBdxfJ7jdkaRCGCJUqqlR2vkJs1fnuTVM+Lt9TjrTS957mJ5SXjQ5WNij2G64Elk7nOq4eW9Hqevl++qvb0epynsgOvH1mWgV+Uxbv9OV2RNK3d5FwvjzSEDAwPvcYX2OC84cCqlDgH/Sm/TwMDg8kBZLP92FbyC0eM0MDDwHsbgkIGBgUEZuUKnI5V3AryBgYFBsSircnsrDRHpJSIxIhInIs+7OC4i8ql+fLeItPdKozACp4GBgTdRVve3EhARM/B/QG+gOTBMRJo7JOuN9tZhE+B+tOmRXsG4VTcwMPAaHhwcug6IU0odBBCR2cAAYK9NmgHA9/rbiZtEJEREwpVSSZ6qRCFKqf/EBtxv2L9y7V8Jbbjc7XuifsBWm+1+m2N3At/afB8FfO6QfwnQyeb7GuBab9T1v3Sr7vZydYb9y9L+xSjDsO9FlFJTlFLX2mxTbA67sTyOW2k8wn8pcBoYGFy+JKKtnFZAHbQlKsuaxiMYgdPAwOByYAvQREQaiEgFYCjwi0OaX4DR+uh6RyBLeeP5Jv+twaEppScx7F/G9i9GGYb9fwmlVL6IjAdWAmZgmlIqWkQe1I9/BSwD+gBxwGm0pSy9wgUv8mFgYGDwX8W4VTcwMDAoI0bgNDAwMCgjRuA0MDAwKCP/ucApIvX/7ToYGBhc3lyxgVNEbhCRO0Wkpv69tYj8BGz8l6vmNiJSUUT+JyJfiMi0gs2L5TUVkW88YGegzecqJaUtRxk9RWSsrkRgu3+Mh+zfXcx+XxGZ5QH7q8prowxlVRGR60TkloLtYpV9pXJFBk4R+RCYBgwClorIa8Bq4B+KkR4uo/26IjJbRDaIyIsi4mtzbHF57dvwAxCGJq38O9qE3nILMuj/RFaJSJSITBCRUBFZgPaK2t7S8rvByzaf13jAnh0i8g7wEtAKWCMij9gcHu+hYh4TEbs3bUSkEtqUl9MesF/DAzZKRUTGAX+gTeN5Q//7+sUo+0rmSp3H2Rdop5Q6q/d4jgOtlVKeEvqZBixAE5YbC/wuIv2VUumAJx8FNFZK3SUiA5RSM/Qe80oP2P0GbeWYv4FewHbgJ2CEUuqsB+xLMZ89RX+085svIq8DP4lIQ6XUEx4srxuwQkQqKqU+FZEaaEFzjVLKaUmzC6Cybc/cEaXUQg+UAfAY0AHYpJS6VVeSfcNDtv+zXKmB80xBAFBKnRSRGA8GTYAa+oRbgEdEZCTwh4jchmffjS3Q+c0UkZZAMhDhAbt+Sqnp+ucYEXkaeF4p5amlbPxFpB3aHU1F/XNhQFNKbS+nfR+lVL5uK1NE+gNTRGQeUKGcttHtZohIN2C5iNRCW3nnS6XUp56wD1QG+lH8+9WeCpxn9Q4EIuKnlNovIk09ZPs/y5UaOBuJiO3rWBG235VSt5XTvq/eEykIzj+KSDJab7BSOW3bMkXvMb+C9jpZoP65vDgGs1ygtYgIeCSwJQEf65+TbT6DFhS6lNN+vIh0Vkr9DqAH/LEiMgHt8Uy5sekNTkGr/xogsWC/B3qEh5VSHnkeWwqJIhICLEaT7j6Jl97f/i9xRb45JCKdSzpe8IMrh/0ngO2OdvRg9IFSqnt57HsbEVlXwmGllCpvYCupbF+lVF7pKUu0EYBWzzMujtVTSh0pj33dznclHFblDXoiskMp1a48Ni6gzM5oPd0VSqmLIPB85XKlBk6P/Hj+TfRnUQOA2mi9tOPAz0qp/f9qxS4AvSd7KzAc6K+UCi2nvW+VUuNc7K+DFhQuefVVEWmtlNqtf/ZTSp2zOdZRKbXJA2UUPtIQkUCgGXBQKZVRXtv/da7IUXW02xIA9NFij6JPE7pbRG7TV2J5TkSWiMhkEanuAfvPAbPRbqU3o60MI8BscaG1coFlVBORR0Tk//RtvIhU9YRtmzKuF5HJwGG0Rw0b0H685cVHRH4UkcLrV0Su1u1/5AH7iMiTIjLWxf5HRORxDxQx3ebz3w7HviivcRG5B0gRkQMi0hvYDbwP7BKRYeW1/1/nSu1xFt4GeeOWSETmog3cVAKqAFHAr0AnoK1Sql857R8AWjje0oq2nFa0UqpcU6r0ILMW7ZnsDrSg3A7oDnQpb69WRN4GBgNHgFnAImCrUqpBeeza2BfgazTfDwWuB+YADyqllnqojCigveMtrYj4AVuUUq3Lab/Ya9QT16yI7EHr5QcBu9BmIcSLSCiwurz1/69zpQ4OqWI+e4rmSqmWIuIDJCqlCp6prhCRXR6wbwVqofXUbAnXj5WXt4DHlFJzbXeKyCDgbco/wHI/EIM25WmJPqrrsfOgtP/29+u92fVoU8Du8sTtrUMxTs8BlVLnCgbRymu/mM+uvl8IFqVUGpAmIrlKqXgApVSKZ6r/3+ZKDZxtRCQbrSflr39G/66UUsHltH8eCtcIdByh9MSUnsfRJnbHAkf1ffWAxnhmgncrpdSdjjuVUgtEm1xeXsKAHsAw4BN9MMrf9plbeRCRz9CCi6ApHm4HhovIcACl1KPlLUMvJ1QpleK4zxO2gToi8ilaGwo+o3+v7QH7R0TkXbQe534RmYg2xakb2qwHg3JwRQZOpZTZy0V49aJXSq0QkavQlP1q63YT0W4RPRGYT13gMbfQ67gcbQ5kRbT5igHAMRFZo5QaXs4ithbz2ZN8iPbW2VNogRngGuADYKIH7D9j89mxDZ5o00jgf0AW8Dza22cvoD0+uccD9v/TXJHPOB0Rkdpoq0YDHC9vr0eKeY+5AKXUjPLYL6XsQKVUbjltJGI/t7LwEPC4Uqqui2PlRkSCgEeVUm97w76n0QdVngdaovVwo4H3lFLL/9WKGfzrXJGBU0ReAHyVUm/q34+g/ef1BWYopd71cHnBaI8Ayv0euRtlHVFK1SunjddKOq6UKtcreSJiRhscqo02PShKRPoBLwL+nhis0/95PQYUvAWzD/hUKfV9eW27UfbjSqlPymnDUS/HjvK+pKHPdR2PFvA/A4agPbveD7xZ3n++/3Wu1MC5HbhZKXVK/75DKdVO/0H/rpTq5KFyrgW+Q3uOJEAmMEYpta2cdp8s7hDwklKqXNOGRKSOUiqxmGP9lVK/ltP+dDS1wc1oI96HgRvQXutcXB7buv3RwBPAk2i30QK0R7u9nuzt4Omhf14n0J5fz0JbfMZuxMYDL2nM1e37o/1z2QfMRXvPP0wpNao89v/rXLGBUynV3ub7PQXvZovINqXUNR4qZzfwP6XUBv17J+ALD0xVOYsWBFw9UnhCKRVSTvsxQE+l1CGH/fcCLyulGpXTfhTaoipW/RlnGtqCJcnlsWtjfxMw1EX9I4DZSqmOniinhPKPlvdxhv5PvDvaAFprYCkwSykV7YEqIiI7lVJt9RkASUC4Ukrp33cZ05HKxxU5OAQEis2rfTZB0w8o74i6LTkFQVMvZ6OIeOJ2fTuw2FXPVbRlwsrLE2jvLfdR+uIn+uON4UCJr6u6yXmllBVAn4p0wFNBUyfYMWjqZR3SH5t4m3L3NvQBtBVoU9j80ALoehF5Uyn1WXnt25SjRGSZPoWr4PuV11u6yFypgXM+8LWIjFdKnYbCtRQ/14+VCxEp6M1uFpGv0W63FNpzpPXltY8ma5pezLFry2tcKbVMRM6hjXrfDoxDW3rsFqXUyfLaB5rpvXHQbkEb6d8LpoOVt7fj9I66m8fcRv8H6CrACNrtryfK8ENbAnEY2qpXn+K5VZG2FgwkKpv36kWkER5Y0/W/zpV6q25Gm8g9jqJJ5PWAqWi3ouUdVf/XFsnwJPqjhcXAX8Bg5Zm1OJFS5EmUUo4T+8tq/zSadrbTIaChUsqTK1R5BRGZgTZavxzt8UKUl8qpCDyM9labQlNA+NJT5/q/yhUZOAsQEX+0SeMAccrFajrlsG0C7nR8+8bbiMgUpdT9pacs0UZBb0oAP7TXRy147gUBV2VWB9KVBy44EWkChFL0ckAB9dGmm7kKqpcUImKlaM6srU88eg70QaIc4Ed91zAgRCk12BP2/6tckYt8iMizAHqgbKaU2lMQND30Zgz6MzxPyTTYISJVi9mqAX3Ka18pFaSUCtb/VlBKVbL5Xu4frIh0FJH1IrJQRNrpg0VRaItO9CqvfWASkK2UOmy7oUlaTPKAfa+jlDLp/i44F8GePAc2NFVKjVVKrdO3+ymawmVwgVyRPU7bUXUXI+x238tZzitoz9TmYPPGjSrnsl0iYkF7xGA7RaWgh1hbKeWRVc69hYhsRZuzWRltIeDeSqlNoi2VN6u88zhFJEoVs3SciOxRSrUqj/0rCX1q2FdKf49fRK4H7lZKPfyvVuwy50odHCpJ88aTKxwUPHT/n80+BTQsp92DQFflYk1REXG8Pb0U8VFKrQLQR4k3AShNtsET9iuWcMwjAzdXENcDo/WXQEB71r9PtNWTPDFQ95/kSg2c3l55RjPkoWXSXPAJ2pJprhZj/sBLZXoS2xWcHJ8re8L/W0TkPqWUnZSxaOtnluvlgysQTzwaMXDgSr1Vt6DdOhdMHSmQcxWgolLKt7i8btp/Vin1gf75LqXUPJtj7yilXiyPfRtbl+WI6EXwfyjaGp/nKQqU16IJtd3h4TmjBgZOXJGB09tcxGeoxohoCYjIrWhTekBb4Hntv1kfg/8OV+qture5WM9Qmyql2th8XyeeWSj5ikAptQ4oaU6tgYFXuCKnI10ELsozVGCHiBS+d62PiP7pQfsGBgYXgHGrfgF4+xmeTTn70Obc2Y2Iog2+GCOiBgb/EkbgvITx9quLBgYGF4YROA0MDAzKiPGM08DAwKCMGIHTwMDAoIwYgdPAwMCgjBiB08DAwKCMGIHTwMDAoIz8P2HdcmV3IdtgAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1425,7 +1425,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAASsAAAEWCAYAAAA+QLHHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAbRklEQVR4nO3de7yd45338c83QYKcEGcirZaWcehM0AN1ijoXbTxahsjoVA2j2uqjVS1PR0tVVUnRhxmGcSxxpg6dUodqxIxIlRqHRIIgiJBKNfF7/riu/bizsvbea++99l77yv6+X6/1std93fe9fyuJ7+u677XW9VNEYGbW3w1qdQFmZo1wWJlZERxWZlYEh5WZFcFhZWZFcFiZWREcVmZWBIeVmRXBYWVmRXBY9TOSTpD0gqS3JP1J0q6SBkn6lqRnJL0m6RpJq1eOOVTSrDz2HUkzJY3PY5dIOrWy706S5lSeryfpOkmvSnpO0rGVsVPy77o01/O4pHGV8Q0lTcnHviZpcmXsHyQ9IekNSXdI2qg3/9xs+eew6kckbQocA2wTEcOB3YGZwLHA/sCOwHrAG8DP8zGbAecDh+axNYANGvx9g4CbgenA+sCuwHGSdq/s9lngKmAUcBMwOR87GLgFmAWMzcdflcf2B04EPgesCdwHXNn4n4TZshxW/csSYAiwmaQVI2JmRDwDHAl8JyLmRMRfgFOACZJWACYAt0TEb/PYd4H3Gvx92wBrRsT3I+LdiHgWuBD4QmWf+yPitohYAlwGbJW3b0sKx29GxMKIWBQR9+exI4HTIuKJiFgM/BDY2rMr64kVWl2AvS8inpZ0HCmMNpd0B/B1YCPgeknVEFoCrE0KjNmVcyyU9FqDv3IjYD1J8yvbBpNmQm3mVn7+MzA0h+SGwKwcRvXO+zNJP6lsE2n2NavB2syW4plVPxMRV0TE9qT/4QP4ESmM9oyIUZXH0Ih4AXiJFBwASFqFdCnYZiGwSuX5OpWfZwPP1Zx3eETs1UCps4ExObjqjR1Zc96VI+LBBs5rVpfDqh+RtKmkXSQNARYB75BmUBcAP2i7jJK0pqT98mHXAvtI2l7SSsD3Wfrv9VFgL0mrS1oHOK4yNhVYkG/qryxpsKS/kbRNA+VOJQXl6ZJWlTRU0qfy2AXAtyVtnusdKenALv+BmFU4rPqXIcDpwDzS5ddapBvVPyPd3L5T0lvAQ8B2ABHxOHA0cAUpPN4A5lTOeRnpBvpM4E7g6raBfB9qX2Br4Ln8ey8CRnZWaOXYDwHP5995UB67njQjvErSAuAPwJ5d+pMwqyEvvrf8kTQT+FJE3N3qWsyaxTMrMyuCw8rMiuDLQDMrgmdWZlaEDj8UOnr06Bg7dmwflWJmzfbII4/Mi4g1W11HM3QYVmPHjmXatGl9VYuZNZmk5eYbA74MNLMiOKzMrAgOKzMrgsPKzIrgsDKzIjiszKwIDiszK4LDymwAy81F3pU0umb7o5JC0tjcdORdSW9XHtMl7VB5vjDvX91nTDNrdViZ2XPAF9ueSNoCWLlmnzMiYljlsVVE3Nf2HNg87zeqss/zzSzSa7DbsqZdDDOubXUV1ncuAw4Dzs3PJwKXAqe2e0QLeGZly5pxLcyd0eoqrO88BIyQ9NHcYu0g4D9aXNMyPLOy+tbZAibd2uoqrKf+QY3u2Ta7uhd4EnihZvx4ScdUnt8YERN7XmDjHFZmBimsfgt8gHQJWOvMiDipb0tami8DzYyImEW60b4XMKXF5dTlmZWZtTkCWC03yu132eCZlZkBEBHPRER7C9j975rPUM3r0+LwzMpsQIuIse1sXwy03Z0/PD86Os/Myv69wjMrMyuCw8rMiuCwMrMiOKzMrAgOKzMrgt8NtKT65eW5j8E6W7a2HrManllZ4i8vWz/nsLL3tX152bMq64ccVmZWBIeVmRXBYWVmRXBYmVkRHFZmVgSHlZkVwWFlNoDlvoHjK8+/IOkNSTvW9AF8WdItknarc/w7eZ+5ucfgsN6o1WFlZgBImgj8HNgbmJU3j8p9AbcC7gKul3R4zaH75n22Bj4GfLs36nNYmRmSvgz8BNg9Ih6sHY+IuRHxM+AU4EeSlsmOiJgL3EEKrabzdwOtvrkz4OK9W12F9Y2jgO2BXSNieif7TgF+DGwKPFEdkLQBsCfwn71RpMPKlrXFhFZXYH1rN+A3QCNfDn0x/3f1yrYbJAUwjBRUJze3vMRhZcsaNyk9rHyNNTn9CvBd4CJJR0REdLDv+vm/r1e27R8Rd0vaEbgCGA3M70a1HfI9KzN7BdgV2AE4r5N9D8j7/6l2ICLuBS4BzmxyfYDDysyAiHgR2AXYQ9JPa8clrZ3bx58MfDsi3mvnVGcDu0nautk1+jLQzACIiNmSdiG1kV8nb54vScBCYBpwYET8qoNzvCrpUtJl5eebWZ/DymwAq+0bGBHPARvmp1/s6vF521HNqK2WLwPNrAgOKzMrgsPKzIrgsDKzIjiszKwIfjdwIKr2CGzjXoHWz3lmNRC5R6AVyDOrgaqtR2Abr7Bg/ZxnVmZWBIeVmRXBYWVmRXBYmVkRHFZmVgSHlZkVwWFlZg2RdLik+1v1+x1WZgNYTZPStsfkbp7rHkmL8jnelPRbSVtUxidKekTSAklzJJ0hqeHPejqszGzfiBhWeRxTu0MXQuWY3PB0DeAe4LLK2CrAcaSGEtuR1n0/vtEi/Ql2s1ap9x3NfiJ3Xf5HYCowkdRI4uk0pHOBw4CXgKMj4te1x0fEYklXAd+qbDu/sssLki4Hdm60Js+szFql/39HczvgWWAt4Ac120aTmkdMkbR67YGSVgIOAR7q4PyfBh5vtBjPrMxaqfY7ms3WWN/AGyQtrjz/JvBX4MWIODdvW5z6RvAKcHbuLXi1pG8Ae/P+5d45ks4kXfK9A3yu3i+UNAkYB3yp0ZfimZWZ7R8RoyqPC/P22XX2faGmCeosYL3K82MjYhQwFNgHuFbSUmsPSdofOB3YMyLmNVqkw8rM2lOvM/P6uTVXmzG831L+/QMj3ouI+0j3uT7Ttl3SHsCFpJv6XboGdliZWVesBRwraUVJBwIfBW6rt6OkTwCbke9L5Z6ElwOfj4ipXf3FvmdlZjdLWlJ5fhdwYzv7/h74MDAPeBmYEBGvVcYnSzo7/zwXOCkibs/PvwuMBG6rTM7ui4g9GynSYWU2gNVrUlpxSc2+l1S2LfNZrIjYqZPf1fDHFOrxZaCZFcFhZWZFcFiZWREcVmZWBN9gt/fNneEuN33JvRq7xGFlyRYTWl2BWYccVpaMm5Qe1nc8i+0S37MysyI4rMysCA4rMyuC71mVrLsrTfpdKCuQZ1Yl6/8rTZo1jWdWpevOSpN+F8oK5JmVmRXBYWU2gHXUN1DSupIulPRi3v6spEskfSSPj5UUNcdOz2OHS1qSty2QNF3SPj2p1ZeBZrZvRNxd3SBpDeDB/NiB1NFmJHAAsBvwZGX3URFRbTjR5ncRsb2kQaS2XldJ2iAi5nenSIeVWSv13+9jfg1YABwaEe/lbfOBi7t6ooh4T9JlwAWkVUYf7k5BDiuzVunf38ccD1xfCapukzQYmERq7zWru+dxWJm1Sl98H7P7fQNHk9ZQB0DSZ4FLgcGky7vPVPafV1lT/dSIODP//HFJ84FVgcXA30fEK915GeAb7GZWv2/ga8C6bTtExE25H+DXgJVqjh9dOfbMyvaH8jGrATeR7n11m8PKzOr5NbB/vjneIxHxNvBPwKGSPtbd8ziszKyes0gzosskbaxkOLB1d06W23VdBHyvuwU5rMzs5prPSl2f27p/HFgE3A+8BTwKDAeO6ubvORvYq7adfKN8g91sAOuob2BEvAgc0cH4TKDuHfyaHoNt2+YAQ7peZeKZlZkVwWFlZkVwWJlZERxWZlYEh5WZFcFhZWZFcFiZWREcVmZWBIeVmRXBYWVmRXBYmVkRHFZmVgSHlZkVwasulKS2XbzbwNsA4plVSdwu3pos9w0cX2f7CElnS3o+r3H1dH4+ut5xkr4g6Q1JO/ZWrQ6r0rS1i590q2dV1iskrURa1nhzYA9gBPBJ0rrs29bZfyLwc2DviLi3t+ryZeBA1X/71VnrHQaMAXbO66cDvAL8S+2Okr4M/BDYPSKm9WZRDquBqH/3q7PWGw/8qhJU7TkK2B7YNSKm93ZRDquBqC/61Vn/0FjfwFprAI80sN9uwG+APrmR6ntWZlZrqZ6BHfgKsAlwkSpdTnuLw8rMat0N7C5p1U72ewXYldS89LzeLsphZWYrShra9gAuA2YD10n6iKRBktaQdKKkvaoH5g44uwB7SPppbxbpsDKz24B3Ko/vkm6yPwncBSwApgKjgd/XHhwRs0mBNUHSab1VpG+wmw1gHfUNBI7Lj06Pi4jngA2bVFZdnlmZWREcVmZWBIeVmRXBYWVmRXBYmVkRHFZmVgSHlZkVwWFlZkVwWJlZERxWZlYEh5WZFcFhZWZFcFiZWREcVmZWBIeV2QCW+/+9k3sDviHpVkkb5rFLJL2bx16XdJekj9Q5xz352CE126vHtz0O6m6tDisz2zcihpHWXX8ZOLcydkYeWx94AfjX6oGSxpKWNQ7gs3XOfUZEDKs8ru5ukV58r3Tu/2dNEhGLJF0LnF1n7B1J1wC/rBk6DHiItILoxDrjTeOwKpn7/1kTSVoFOIgUPrVjqwJfBJ6uGToMOIsUVg9JWjsiXu6N+hxWJXP/P+tMY30Db5C0GBhG6lize2XseEnHkFrIzwL2axuQtD2wEXBNRMyT9AxwMPDTOscDLI6I0d19Kb5nZWb7R8QoYAhwDHCvpHXy2Jl5bCypmcSmleMmAndGxLz8/Iq8rerMiBiVH90OKvDMysyyiFgCTJH0C1Jb+OrY85K+Cvy7pFvy5v8FDJY0Nz8fAoyStFVvtJNvWlhd8fvnufHRF5p1Oqtn7n5cPebGVldhy6ncVfmzwGrAE8A+1fGIuEvSi8CXSZeLS4AtgHcru11Duo/1jWbX17SwuvHRF/jjSwvYbN0RzTqlmfWNmyUtIX38YBYwMSIeb6cj/I9JN9SfAi6OiOerg5ImA+dIOqHZRTb1MnCzdUdw9ZGfaOYpreriU1tdgS1nOuobGBGH19l2NdDuZ6Ui4hrS7ApgmeN7wjfYzawIDiszK4LDysyK4LAysyI4rMysCA4rMyuCw8rMiuCwMrMiOKzMrAgOKzMrgsPKzIrgsDKzIjiszKwIDiszK4LDysyWIWkzSdNyP8A3JN0tabPK+BBJF0h6OfcUvFnS+r1Zk8PKzOp5EZgArA6MBm4CrqqMfxX4BLAlsB4wn6X7DTad12C3jk27GGZc2+oqrJdImgn8AjiU1OT0BuCoiJhPCqC25Y6XAB+qHPoB4I62tluSriKtINp23p8BnwNGAv8DHBcR9/WkVs+srGMzrk2NVG15dgip/dbGwCbASW0DkuYDi0izph9WjvlX4FOS1sv9Bg8Bbq+MPwxsTZqZXQH8UtLQnhTpmZV1bp0tYNKtra7CuqOxvoGTI2I2gKQfkILpJICIGJUbnE4krc/e5ingeVJL+SXADFIbL/Jx/1HZ9yeSTiK18ep21xvPrMxsduXnWaR7UP9fRCwELgAulbRW3nw+MBRYA1gVmEJlZiXpG5KekPRmnp2NJN376jaHlZltWPl5DOnmeq1BwCpA2zt+WwGXRMTrEfEX0mxsW0mjJe0AnEDqK7habpL6JtDQNK89DiszO1rSBpJWB04Erpa0m6SPSRosaQTp5vkbpH6CkO5JHSZppKQVgX8CXszdmYcDi4FXgRUkfY/Ufr5HHFZmdgVwJ/BsfpwKjAKuJM2IniG9E7hHRCzKxxxPuvH+P6RQ2gs4II/dQbokfIp0WbmIpS81u8U32M3s4Yg4rWbbL/Ojroh4jfQOYL2xJcAR+dHmjJ4W6ZmVmRXBYWVmRfBloNkA1lH7+P7GMyszK4JnVqWZOwMu3rsPf99jsM6Wfff7zNrhsCrJFhNaXYFZyzisSjJuUnr0pb6cxZl1wPeszKwIDiszK4LDysyK4LAysyI4rMysCA4rMyuCw8rMiuCwMhvgJB2cewS+LeklSbdL2l7SKZL+Kumt/HhK0mRJ61aO3UnSnMrzlSRNkfSApBGSJkp6RNICSXMknSGpW5/vdFiZDWCSvg6cTepcszZpWePzgP3yLldHxHBSl5oDgHWAR6qBVTnXENJa7KOAz0TEAtJSyMeR1l/fDtiVtHBflzmszAYoSSOB7wNHR8SUiFgYEX+NiJsj4pvVffP2x4GDSCuDfqPmXKsANwMrAnvnJhNExPkRcV9EvBsRLwCXA5/qTr3+uo11rq+/PG195ROkDjXXN3pARCyRdCOpz2CbIaRljN8EDswNJNrzaeDxbtTqsLJO+MvTy7M1gHkRsbiLx71IuixsM5wUfF/sKKgkTQLGAV/qaqHgsLLOtOLL09Y8HTc5fQ0YLWmFLgbW+sDrlefzgGNJfQXfjog7ag+QtD9wOjA+d8DpMt+zMhu4fkfqPLN/owdIGgTsC9xX3R4RU4B/BK6VtHPNMXsAFwL7RsSM7hbrmZXZABURb+aefj+XtJjUjuuvwHhgZ+DPbfvm3oAfAk4hvSN4Vp3zXSlpJeBGSXtGxAOSdiHdVD8gIqb2pF7PrMwGsIg4C/g6cBLpXb7ZwDHADXmXgyS9DcwHbiJdOv5dRNTr2kxE/DvpncJbJW0LfJfUOv62/DmutyXdXu/YznhmZTbARcTlpNlPrQdJM6mOjr0H2KBm24Wkyz5IM7Sm8MzKzIrgsDKzIjiszKwIDiszK4LDysyK4LAysyI4rMysCA4rMyuCw8rMiuCwMrMiOKzMrAgOKzMrgsPKzIrgsDKzIjiszKwIDiszW0ZuVnqtpJmSQtJONeM7S/qNpDclzaxz/Ng8/mdJT0oa39OaHFZm1p77gb8H5tYZWwj8G/DNOmMAVwL/Teqg8x3S2uxr9qSYpq4U+seXFnDQL37XzFOaWS/Ks6JfAIcC65KWMz4qIhaROjUjaUntcXk99an1ZkySNgH+ltSV+R3gOknHAZ8HLpC0MWkl0a2AAO4gNVqd31GtTZtZ7bf1+my27ohmnc7M+s4hpKalGwObkNZj74nNgWcj4q3Ktul5O4CA04D1gI8CG9LJ8snQxJnVwduN4eDtxjTrdGbWBNd8paHdJkfEbABJPwDOpWeBNYzUnbnqTVK/QSLiaeDpvP1VSWcBJ3d2UjeMMLPZlZ9nkWY8PfE2UHuZNQJ4C0DSWsA5wA6kbs6DgDc6O6lvsJvZhpWfx5Daw/fE48AHJQ2vbNsqb4d0CRjAlhExgnQTv8PW0eCwMjM4WtIGklYHTgSuBpA0RNLQvM9KkoZKUh4blMdWTE81NDc4JSKeAh4FTs7bDwC2BK7L5xpOmn3Nl7Q+7b+juBSHlZldQerG/Gx+nJq3/wl4h3Sv6Y7880Z57NP5+W2k2dg7+RxtvgCMI13enQ5MiIhX89j/Ib1b+CZwKzClkSJ9z8rMHo6I02o3RsTY9g7IzU3bvXSLiJnATu2MPQ78Xc3mn3RWpGdWZlYEh5WZFcGXgWYDWEeXev2NZ1ZmVgSHlZkVQRHR/qD0KukTrSUaDcxrdRE9VPprcP2tt2lEDO98t/6vw3tWEdGjJR1aSdK0iBjX6jp6ovTX4PpbT9K0VtfQLL4MNLMiOKzMrAjLc1j931YX0ASlvwbX33rLw2sAOrnBbmbWXyzPMyszW444rMysCMWHlaQ9JP1J0tOSvlVnfKSkmyVNl/S4pEmtqLM9ndWf99lJ0qO5/nv7usbONPIa8n7bSFoiaUJf1teZBv4NHSLpsfx4UNJWraizPQ3UL0nn5PHHJP1tK+rssYgo9gEMBp4BPgisRFqUfrOafU4EfpR/XhN4HVip1bV3of5RwB+BMfn5Wq2uu6uvobLff5LWP5rQ6rq7+HfwSWC1/POewO9bXXcX698LuJ20pMvH+1P9XXmUPrPaFng6Ip6NiHeBq4D9avYJYHhe4XAYKawW922Z7Wqk/oOBKRHxPEBEvNLHNXamkdcA8M+klSKLqz8iHoyItjXCHwI26OMaO9LIn/9+wKWRPASMkrRuXxfaU6WH1fosvdj9nLytajKp3c+LwAzgqxHxXt+U16lG6t8EWE3SPZIekXRYn1XXmE5fQ1669gDggj6sq1GN/B1UHUGapfQXjdTf1dfYL5W+REy9lQprP4uxO2k96F1IfdHuknRfRCzo5doa0Uj9K5BWVdwVWBn4naSHIq1z3R808hrOBk6IiCV5Ce/+pJH6047SzqSw2r5XK+qaRupv+DX2Z6WH1RyW7syxAct25pgEnB7p4v1pSc8BHwGm9k2JHWqk/jnAvIhYCCyU9FtSp5D+ElaNvIZxwFU5qEYDe0laHBE39EmFHWukfiRtCVwE7BkRr/VRbY1o9N9Qp6+x32v1TbMe3lxcgbTA/Qd4/+bi5jX7nA+ckn9eG3gBGN3q2rtQ/0eBX+d9VwH+APxNq2vvymuo2f8S+tcN9kb+DsaQmnJ+stX1drP+vVn6BvvUVtfdnUfRM6uIWCzpGFLnjcHAv0XE45K+kscvAP4FuETSDNJf1gkR0S+W/Wik/oh4QtKvgMeA94CLIuIPrat6aQ3+HfRbDdb/PWAN4Lw8O1wc/WQ1hgbrv430juDTwJ9JVxvF8ddtzKwIpb8baGYDhMPKzIrgsDKzIjiszKwIDiszK4LDqiB5xYK21RemS/q6pEF5bJykczo4dqykg/uuWrPm8kcXCiLp7YgYln9eC7gCeCAiTm7g2J2A4yNin14t0qyXeGZVqEirL3wZOCavV7STpFsAJO2YZ2CPSvpvScOB04Ed8rav5ZnWfZL+Kz8+mY/dKX9p+lpJT0q6PK9Y0bYe1YN5VjdV0nBJgyX9WNLDea2kI1v1Z2LLt6I/wT7QRcSz+TJwrZqh44GjI+IBScOARcC3qMysJK0C7BYRiyR9GLiS9B0+gI8Bm5O+P/YA8ClJU4GrgYMi4mFJI4B3SF/sfTMitpE0BHhA0p0R8VxvvnYbeBxW5av3jfoHgLMkXU5aC2tOndUOVgQmS9oaWEJaiqbN1IiYAyDpUWAs8CbwUkQ8DBB51QpJnwG2rKz+ORL4MOCwsqZyWBVM0gdJQfMK6QvPAETE6ZJuJX0f7CFJ4+sc/jXgZdIKDoNIs682f6n8vIT070TUX1ZEwD9HxB09eClmnfI9q0JJWpO0mN3kqHmXRNLGETEjIn4ETCMtifMWMLyy20jSTOk94FDSl2A78iSwnqRt8u8YLmkF0hdoj5K0Yt6+iaRVe/4KzZbmmVVZVs6XZSuSlma+DDirzn7H5YXilpDWb7+dtGLDYknTScu0nAdcJ+lA4DfAwo5+cUS8K+kg4FxJK5PuV40nrfE0FvivfCP+VWD/Hr1Kszr80QUzK4IvA82sCA4rMyuCw8rMiuCwMrMiOKzMrAgOKzMrgsPKzIrw/wDFWnc6VAVBqAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAASsAAAEWCAYAAAA+QLHHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbRklEQVR4nO3de7yd45338c83QYKcEGcirZaWcehM0AN1ijoXbTxahsjoVA2j2uqjVS1PR0tVVUnRhxmGcSxxpg6dUodqxIxIlRqHRIIgiJBKNfF7/riu/bizsvbea++99l77yv6+X6/1std93fe9fyuJ7+u677XW9VNEYGbW3w1qdQFmZo1wWJlZERxWZlYEh5WZFcFhZWZFcFiZWREcVmZWBIeVmRXBYWVmRXBY9TOSTpD0gqS3JP1J0q6SBkn6lqRnJL0m6RpJq1eOOVTSrDz2HUkzJY3PY5dIOrWy706S5lSeryfpOkmvSnpO0rGVsVPy77o01/O4pHGV8Q0lTcnHviZpcmXsHyQ9IekNSXdI2qg3/9xs+eew6kckbQocA2wTEcOB3YGZwLHA/sCOwHrAG8DP8zGbAecDh+axNYANGvx9g4CbgenA+sCuwHGSdq/s9lngKmAUcBMwOR87GLgFmAWMzcdflcf2B04EPgesCdwHXNn4n4TZshxW/csSYAiwmaQVI2JmRDwDHAl8JyLmRMRfgFOACZJWACYAt0TEb/PYd4H3Gvx92wBrRsT3I+LdiHgWuBD4QmWf+yPitohYAlwGbJW3b0sKx29GxMKIWBQR9+exI4HTIuKJiFgM/BDY2rMr64kVWl2AvS8inpZ0HCmMNpd0B/B1YCPgeknVEFoCrE0KjNmVcyyU9FqDv3IjYD1J8yvbBpNmQm3mVn7+MzA0h+SGwKwcRvXO+zNJP6lsE2n2NavB2syW4plVPxMRV0TE9qT/4QP4ESmM9oyIUZXH0Ih4AXiJFBwASFqFdCnYZiGwSuX5OpWfZwPP1Zx3eETs1UCps4ExObjqjR1Zc96VI+LBBs5rVpfDqh+RtKmkXSQNARYB75BmUBcAP2i7jJK0pqT98mHXAvtI2l7SSsD3Wfrv9VFgL0mrS1oHOK4yNhVYkG/qryxpsKS/kbRNA+VOJQXl6ZJWlTRU0qfy2AXAtyVtnusdKenALv+BmFU4rPqXIcDpwDzS5ddapBvVPyPd3L5T0lvAQ8B2ABHxOHA0cAUpPN4A5lTOeRnpBvpM4E7g6raBfB9qX2Br4Ln8ey8CRnZWaOXYDwHP5995UB67njQjvErSAuAPwJ5d+pMwqyEvvrf8kTQT+FJE3N3qWsyaxTMrMyuCw8rMiuDLQDMrgmdWZlaEDj8UOnr06Bg7dmwflWJmzfbII4/Mi4g1W11HM3QYVmPHjmXatGl9VYuZNZmk5eYbA74MNLMiOKzMrAgOKzMrgsPKzIrgsDKzIjiszKwIDiszK4LDymwAy81F3pU0umb7o5JC0tjcdORdSW9XHtMl7VB5vjDvX91nTDNrdViZ2XPAF9ueSNoCWLlmnzMiYljlsVVE3Nf2HNg87zeqss/zzSzSa7DbsqZdDDOubXUV1ncuAw4Dzs3PJwKXAqe2e0QLeGZly5pxLcyd0eoqrO88BIyQ9NHcYu0g4D9aXNMyPLOy+tbZAibd2uoqrKf+QY3u2Ta7uhd4EnihZvx4ScdUnt8YERN7XmDjHFZmBimsfgt8gHQJWOvMiDipb0tami8DzYyImEW60b4XMKXF5dTlmZWZtTkCWC03yu132eCZlZkBEBHPRER7C9j975rPUM3r0+LwzMpsQIuIse1sXwy03Z0/PD86Os/Myv69wjMrMyuCw8rMiuCwMrMiOKzMrAgOKzMrgt8NtKT65eW5j8E6W7a2HrManllZ4i8vWz/nsLL3tX152bMq64ccVmZWBIeVmRXBYWVmRXBYmVkRHFZmVgSHlZkVwWFlNoDlvoHjK8+/IOkNSTvW9AF8WdItknarc/w7eZ+5ucfgsN6o1WFlZgBImgj8HNgbmJU3j8p9AbcC7gKul3R4zaH75n22Bj4GfLs36nNYmRmSvgz8BNg9Ih6sHY+IuRHxM+AU4EeSlsmOiJgL3EEKrabzdwOtvrkz4OK9W12F9Y2jgO2BXSNieif7TgF+DGwKPFEdkLQBsCfwn71RpMPKlrXFhFZXYH1rN+A3QCNfDn0x/3f1yrYbJAUwjBRUJze3vMRhZcsaNyk9rHyNNTn9CvBd4CJJR0REdLDv+vm/r1e27R8Rd0vaEbgCGA3M70a1HfI9KzN7BdgV2AE4r5N9D8j7/6l2ICLuBS4BzmxyfYDDysyAiHgR2AXYQ9JPa8clrZ3bx58MfDsi3mvnVGcDu0nautk1+jLQzACIiNmSdiG1kV8nb54vScBCYBpwYET8qoNzvCrpUtJl5eebWZ/DymwAq+0bGBHPARvmp1/s6vF521HNqK2WLwPNrAgOKzMrgsPKzIrgsDKzIjiszKwIfjdwIKr2CGzjXoHWz3lmNRC5R6AVyDOrgaqtR2Abr7Bg/ZxnVmZWBIeVmRXBYWVmRXBYmVkRHFZmVgSHlZkVwWFlZg2RdLik+1v1+x1WZgNYTZPStsfkbp7rHkmL8jnelPRbSVtUxidKekTSAklzJJ0hqeHPejqszGzfiBhWeRxTu0MXQuWY3PB0DeAe4LLK2CrAcaSGEtuR1n0/vtEi/Ql2s1ap9x3NfiJ3Xf5HYCowkdRI4uk0pHOBw4CXgKMj4te1x0fEYklXAd+qbDu/sssLki4Hdm60Js+szFql/39HczvgWWAt4Ac120aTmkdMkbR67YGSVgIOAR7q4PyfBh5vtBjPrMxaqfY7ms3WWN/AGyQtrjz/JvBX4MWIODdvW5z6RvAKcHbuLXi1pG8Ae/P+5d45ks4kXfK9A3yu3i+UNAkYB3yp0ZfimZWZ7R8RoyqPC/P22XX2faGmCeosYL3K82MjYhQwFNgHuFbSUmsPSdofOB3YMyLmNVqkw8rM2lOvM/P6uTVXmzG831L+/QMj3ouI+0j3uT7Ttl3SHsCFpJv6XboGdliZWVesBRwraUVJBwIfBW6rt6OkTwCbke9L5Z6ElwOfj4ipXf3FvmdlZjdLWlJ5fhdwYzv7/h74MDAPeBmYEBGvVcYnSzo7/zwXOCkibs/PvwuMBG6rTM7ui4g9GynSYWU2gNVrUlpxSc2+l1S2LfNZrIjYqZPf1fDHFOrxZaCZFcFhZWZFcFiZWREcVmZWBN9gt/fNneEuN33JvRq7xGFlyRYTWl2BWYccVpaMm5Qe1nc8i+0S37MysyI4rMysCA4rMyuC71mVrLsrTfpdKCuQZ1Yl6/8rTZo1jWdWpevOSpN+F8oK5JmVmRXBYWU2gHXUN1DSupIulPRi3v6spEskfSSPj5UUNcdOz2OHS1qSty2QNF3SPj2p1ZeBZrZvRNxd3SBpDeDB/NiB1NFmJHAAsBvwZGX3URFRbTjR5ncRsb2kQaS2XldJ2iAi5nenSIeVWSv13+9jfg1YABwaEe/lbfOBi7t6ooh4T9JlwAWkVUYf7k5BDiuzVunf38ccD1xfCapukzQYmERq7zWru+dxWJm1Sl98H7P7fQNHk9ZQB0DSZ4FLgcGky7vPVPafV1lT/dSIODP//HFJ84FVgcXA30fEK915GeAb7GZWv2/ga8C6bTtExE25H+DXgJVqjh9dOfbMyvaH8jGrATeR7n11m8PKzOr5NbB/vjneIxHxNvBPwKGSPtbd8ziszKyes0gzosskbaxkOLB1d06W23VdBHyvuwU5rMzs5prPSl2f27p/HFgE3A+8BTwKDAeO6ubvORvYq7adfKN8g91sAOuob2BEvAgc0cH4TKDuHfyaHoNt2+YAQ7peZeKZlZkVwWFlZkVwWJlZERxWZlYEh5WZFcFhZWZFcFiZWREcVmZWBIeVmRXBYWVmRXBYmVkRHFZmVgSHlZkVwasulKS2XbzbwNsA4plVSdwu3pos9w0cX2f7CElnS3o+r3H1dH4+ut5xkr4g6Q1JO/ZWrQ6r0rS1i590q2dV1iskrURa1nhzYA9gBPBJ0rrs29bZfyLwc2DviLi3t+ryZeBA1X/71VnrHQaMAXbO66cDvAL8S+2Okr4M/BDYPSKm9WZRDquBqH/3q7PWGw/8qhJU7TkK2B7YNSKm93ZRDquBqC/61Vn/0FjfwFprAI80sN9uwG+APrmR6ntWZlZrqZ6BHfgKsAlwkSpdTnuLw8rMat0N7C5p1U72ewXYldS89LzeLsphZWYrShra9gAuA2YD10n6iKRBktaQdKKkvaoH5g44uwB7SPppbxbpsDKz24B3Ko/vkm6yPwncBSwApgKjgd/XHhwRs0mBNUHSab1VpG+wmw1gHfUNBI7Lj06Pi4jngA2bVFZdnlmZWREcVmZWBIeVmRXBYWVmRXBYmVkRHFZmVgSHlZkVwWFlZkVwWJlZERxWZlYEh5WZFcFhZWZFcFiZWREcVmZWBIeV2QCW+/+9k3sDviHpVkkb5rFLJL2bx16XdJekj9Q5xz352CE126vHtz0O6m6tDisz2zcihpHWXX8ZOLcydkYeWx94AfjX6oGSxpKWNQ7gs3XOfUZEDKs8ru5ukV58r3Tu/2dNEhGLJF0LnF1n7B1J1wC/rBk6DHiItILoxDrjTeOwKpn7/1kTSVoFOIgUPrVjqwJfBJ6uGToMOIsUVg9JWjsiXu6N+hxWJXP/P+tMY30Db5C0GBhG6lize2XseEnHkFrIzwL2axuQtD2wEXBNRMyT9AxwMPDTOscDLI6I0d19Kb5nZWb7R8QoYAhwDHCvpHXy2Jl5bCypmcSmleMmAndGxLz8/Iq8rerMiBiVH90OKvDMysyyiFgCTJH0C1Jb+OrY85K+Cvy7pFvy5v8FDJY0Nz8fAoyStFVvtJNvWlhd8fvnufHRF5p1Oqtn7n5cPebGVldhy6ncVfmzwGrAE8A+1fGIuEvSi8CXSZeLS4AtgHcru11Duo/1jWbX17SwuvHRF/jjSwvYbN0RzTqlmfWNmyUtIX38YBYwMSIeb6cj/I9JN9SfAi6OiOerg5ImA+dIOqHZRTb1MnCzdUdw9ZGfaOYpreriU1tdgS1nOuobGBGH19l2NdDuZ6Ui4hrS7ApgmeN7wjfYzawIDiszK4LDysyK4LAysyI4rMysCA4rMyuCw8rMiuCwMrMiOKzMrAgOKzMrgsPKzIrgsDKzIjiszKwIDiszK4LDysyWIWkzSdNyP8A3JN0tabPK+BBJF0h6OfcUvFnS+r1Zk8PKzOp5EZgArA6MBm4CrqqMfxX4BLAlsB4wn6X7DTad12C3jk27GGZc2+oqrJdImgn8AjiU1OT0BuCoiJhPCqC25Y6XAB+qHPoB4I62tluSriKtINp23p8BnwNGAv8DHBcR9/WkVs+srGMzrk2NVG15dgip/dbGwCbASW0DkuYDi0izph9WjvlX4FOS1sv9Bg8Bbq+MPwxsTZqZXQH8UtLQnhTpmZV1bp0tYNKtra7CuqOxvoGTI2I2gKQfkILpJICIGJUbnE4krc/e5ingeVJL+SXADFIbL/Jx/1HZ9yeSTiK18ep21xvPrMxsduXnWaR7UP9fRCwELgAulbRW3nw+MBRYA1gVmEJlZiXpG5KekPRmnp2NJN376jaHlZltWPl5DOnmeq1BwCpA2zt+WwGXRMTrEfEX0mxsW0mjJe0AnEDqK7habpL6JtDQNK89DiszO1rSBpJWB04Erpa0m6SPSRosaQTp5vkbpH6CkO5JHSZppKQVgX8CXszdmYcDi4FXgRUkfY/Ufr5HHFZmdgVwJ/BsfpwKjAKuJM2IniG9E7hHRCzKxxxPuvH+P6RQ2gs4II/dQbokfIp0WbmIpS81u8U32M3s4Yg4rWbbL/Ojroh4jfQOYL2xJcAR+dHmjJ4W6ZmVmRXBYWVmRfBloNkA1lH7+P7GMyszK4JnVqWZOwMu3rsPf99jsM6Wfff7zNrhsCrJFhNaXYFZyzisSjJuUnr0pb6cxZl1wPeszKwIDiszK4LDysyK4LAysyI4rMysCA4rMyuCw8rMiuCwMhvgJB2cewS+LeklSbdL2l7SKZL+Kumt/HhK0mRJ61aO3UnSnMrzlSRNkfSApBGSJkp6RNICSXMknSGpW5/vdFiZDWCSvg6cTepcszZpWePzgP3yLldHxHBSl5oDgHWAR6qBVTnXENJa7KOAz0TEAtJSyMeR1l/fDtiVtHBflzmszAYoSSOB7wNHR8SUiFgYEX+NiJsj4pvVffP2x4GDSCuDfqPmXKsANwMrAnvnJhNExPkRcV9EvBsRLwCXA5/qTr3+uo11rq+/PG195ROkDjXXN3pARCyRdCOpz2CbIaRljN8EDswNJNrzaeDxbtTqsLJO+MvTy7M1gHkRsbiLx71IuixsM5wUfF/sKKgkTQLGAV/qaqHgsLLOtOLL09Y8HTc5fQ0YLWmFLgbW+sDrlefzgGNJfQXfjog7ag+QtD9wOjA+d8DpMt+zMhu4fkfqPLN/owdIGgTsC9xX3R4RU4B/BK6VtHPNMXsAFwL7RsSM7hbrmZXZABURb+aefj+XtJjUjuuvwHhgZ+DPbfvm3oAfAk4hvSN4Vp3zXSlpJeBGSXtGxAOSdiHdVD8gIqb2pF7PrMwGsIg4C/g6cBLpXb7ZwDHADXmXgyS9DcwHbiJdOv5dRNTr2kxE/DvpncJbJW0LfJfUOv62/DmutyXdXu/YznhmZTbARcTlpNlPrQdJM6mOjr0H2KBm24Wkyz5IM7Sm8MzKzIrgsDKzIjiszKwIDiszK4LDysyK4LAysyI4rMysCA4rMyuCw8rMiuCwMrMiOKzMrAgOKzMrgsPKzIrgsDKzIjiszKwIDiszW0ZuVnqtpJmSQtJONeM7S/qNpDclzaxz/Ng8/mdJT0oa39OaHFZm1p77gb8H5tYZWwj8G/DNOmMAVwL/Teqg8x3S2uxr9qSYpq4U+seXFnDQL37XzFOaWS/Ks6JfAIcC65KWMz4qIhaROjUjaUntcXk99an1ZkySNgH+ltSV+R3gOknHAZ8HLpC0MWkl0a2AAO4gNVqd31GtTZtZ7bf1+my27ohmnc7M+s4hpKalGwObkNZj74nNgWcj4q3Ktul5O4CA04D1gI8CG9LJ8snQxJnVwduN4eDtxjTrdGbWBNd8paHdJkfEbABJPwDOpWeBNYzUnbnqTVK/QSLiaeDpvP1VSWcBJ3d2UjeMMLPZlZ9nkWY8PfE2UHuZNQJ4C0DSWsA5wA6kbs6DgDc6O6lvsJvZhpWfx5Daw/fE48AHJQ2vbNsqb4d0CRjAlhExgnQTv8PW0eCwMjM4WtIGklYHTgSuBpA0RNLQvM9KkoZKUh4blMdWTE81NDc4JSKeAh4FTs7bDwC2BK7L5xpOmn3Nl7Q+7b+juBSHlZldQerG/Gx+nJq3/wl4h3Sv6Y7880Z57NP5+W2k2dg7+RxtvgCMI13enQ5MiIhX89j/Ib1b+CZwKzClkSJ9z8rMHo6I02o3RsTY9g7IzU3bvXSLiJnATu2MPQ78Xc3mn3RWpGdWZlYEh5WZFcGXgWYDWEeXev2NZ1ZmVgSHlZkVQRHR/qD0KukTrSUaDcxrdRE9VPprcP2tt2lEDO98t/6vw3tWEdGjJR1aSdK0iBjX6jp6ovTX4PpbT9K0VtfQLL4MNLMiOKzMrAjLc1j931YX0ASlvwbX33rLw2sAOrnBbmbWXyzPMyszW444rMysCMWHlaQ9JP1J0tOSvlVnfKSkmyVNl/S4pEmtqLM9ndWf99lJ0qO5/nv7usbONPIa8n7bSFoiaUJf1teZBv4NHSLpsfx4UNJWraizPQ3UL0nn5PHHJP1tK+rssYgo9gEMBp4BPgisRFqUfrOafU4EfpR/XhN4HVip1bV3of5RwB+BMfn5Wq2uu6uvobLff5LWP5rQ6rq7+HfwSWC1/POewO9bXXcX698LuJ20pMvH+1P9XXmUPrPaFng6Ip6NiHeBq4D9avYJYHhe4XAYKawW922Z7Wqk/oOBKRHxPEBEvNLHNXamkdcA8M+klSKLqz8iHoyItjXCHwI26OMaO9LIn/9+wKWRPASMkrRuXxfaU6WH1fosvdj9nLytajKp3c+LwAzgqxHxXt+U16lG6t8EWE3SPZIekXRYn1XXmE5fQ1669gDggj6sq1GN/B1UHUGapfQXjdTf1dfYL5W+REy9lQprP4uxO2k96F1IfdHuknRfRCzo5doa0Uj9K5BWVdwVWBn4naSHIq1z3R808hrOBk6IiCV5Ce/+pJH6047SzqSw2r5XK+qaRupv+DX2Z6WH1RyW7syxAct25pgEnB7p4v1pSc8BHwGm9k2JHWqk/jnAvIhYCCyU9FtSp5D+ElaNvIZxwFU5qEYDe0laHBE39EmFHWukfiRtCVwE7BkRr/VRbY1o9N9Qp6+x32v1TbMe3lxcgbTA/Qd4/+bi5jX7nA+ckn9eG3gBGN3q2rtQ/0eBX+d9VwH+APxNq2vvymuo2f8S+tcN9kb+DsaQmnJ+stX1drP+vVn6BvvUVtfdnUfRM6uIWCzpGFLnjcHAv0XE45K+kscvAP4FuETSDNJf1gkR0S+W/Wik/oh4QtKvgMeA94CLIuIPrat6aQ3+HfRbDdb/PWAN4Lw8O1wc/WQ1hgbrv430juDTwJ9JVxvF8ddtzKwIpb8baGYDhMPKzIrgsDKzIjiszKwIDiszK4LDqiB5xYK21RemS/q6pEF5bJykczo4dqykg/uuWrPm8kcXCiLp7YgYln9eC7gCeCAiTm7g2J2A4yNin14t0qyXeGZVqEirL3wZOCavV7STpFsAJO2YZ2CPSvpvScOB04Ed8rav5ZnWfZL+Kz8+mY/dKX9p+lpJT0q6PK9Y0bYe1YN5VjdV0nBJgyX9WNLDea2kI1v1Z2LLt6I/wT7QRcSz+TJwrZqh44GjI+IBScOARcC3qMysJK0C7BYRiyR9GLiS9B0+gI8Bm5O+P/YA8ClJU4GrgYMi4mFJI4B3SF/sfTMitpE0BHhA0p0R8VxvvnYbeBxW5av3jfoHgLMkXU5aC2tOndUOVgQmS9oaWEJaiqbN1IiYAyDpUWAs8CbwUkQ8DBB51QpJnwG2rKz+ORL4MOCwsqZyWBVM0gdJQfMK6QvPAETE6ZJuJX0f7CFJ4+sc/jXgZdIKDoNIs682f6n8vIT070TUX1ZEwD9HxB09eClmnfI9q0JJWpO0mN3kqHmXRNLGETEjIn4ETCMtifMWMLyy20jSTOk94FDSl2A78iSwnqRt8u8YLmkF0hdoj5K0Yt6+iaRVe/4KzZbmmVVZVs6XZSuSlma+DDirzn7H5YXilpDWb7+dtGLDYknTScu0nAdcJ+lA4DfAwo5+cUS8K+kg4FxJK5PuV40nrfE0FvivfCP+VWD/Hr1Kszr80QUzK4IvA82sCA4rMyuCw8rMiuCwMrMiOKzMrAgOKzMrgsPKzIrw/wDFWnc6VAVBqAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1655,7 +1655,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAU4AAAEeCAYAAADl3fyeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACIqElEQVR4nOydd3gUxRvHP+8lARKSkEBIoVfpVRRFhBB6V1HpKhZs2HuvPxv2hqBSVFBAEJDeq6AgNdQktIT0nlCTu/n9sZvk7nJJLuROAffzPPfkbnfmndmZ3TfTdr6ilMLAwMDAwHlM/3YGDAwMDC43DMdpYGBgUE4Mx2lgYGBQTgzHaWBgYFBODMdpYGBgUE4Mx2lgYGBQTgzHWQFE5C4R2VzK+WUicqcb0m0gIkpEPF1t+3JHRJqJyC4RyRGRR92YTj0RyRURj4uMnysijfTv00Xk7QrkxS33mUHJGA+eG1FK9f+38/Af5FlgvVKqgzsTUUqdBHwrEP+i4zqwVXifichdwL1Kqa6usm9QHKPFafCv4+KWc31g/yWQD7cjGsYz/C9wxRa6iNQVkfkikiIiaSLypX7cJCIvi8gJEUkWkR9EpJp+rqALPE5EYkUkQ0QeEJFrRGSviGQW2LFNSr4QkSwROSQiPa1OrBeRe/Xvd4nIZhH5ULd7TESsWwrVROR7EUkQkVMi8nZBN1BEPPR4qSJyFBhYxrUfF5Fn9Dyf1u2G6F26HBFZLSKBVuGvE5E/9OvbIyLhVufGichBPd5REbnf6lyQiCzW46WLyKaCB1kvxyZWYQu7oyISLiJxIvKciCQC0/R6eV5EYvT6miMi1fXwVUTkJ/14pohsF5EQB9e9FugBfKl3ha/Sy/UH/T44odd9QR7vEpEtIvKJiKQDrzuwea2I7BCRbBFJEpGP7e4VT6u6flsvx1wR+V1EaojITD3udhFpYGXXpnysjgfqZZqi3yeLRaSO1fn1IvI/EdkCnAEaFdxnItIC+Aa4Xs9Dpn7vJonVPwURGSYiux3ePAbOoZS64j6AB7AH+ASoClQBuurn7gaigUZoXa35wI/6uQaAQrv5qgB9gHPAAiAYqA0kA9318HcB+cATgBcwHMgCquvn16N1mwrC5gH36fl7EIgHRD+/AJis5zcY+Au4Xz/3AHAIqAtUB9bp+fQs4fqPA9uAEKs87wQ6AJWBtcBretjaQBowAO0faW/9d039/ECgMSBAd7SHtaN+7l29rLz0z41W16OAJlZ5mg68rX8P18vtfT0/3sDjep7r6McmAz/r4e8Hfgd89LK7GvAv4doLy1z//QOwEPDT6/cIcI9d/T2CNmzl7cDeVmCs/t0XuM7uXvG0SjdaL6tqwAE9rV667R+AaVZ2C8vHrmxqAMP0a/UD5gIL7K7vJNBKt+tF8ftss901HAD6W/3+DXjq335OL+fPv54Bt1wUXA+k4MCxAGuAh6x+N0NzaJ5WD0Ntq/NpwHCr3/OAx/Xvd2Hl/PRjf1k9aPY3dLRVOB89rVA0B3fe+sEFRgLr9O9rgQeszvWhbMc52i7Pk6x+P1LwMALPof/jsDq/ArizBNsLgMf072+iOaUmDsKV5TgvAFWszh8Eelr9DrOql7uBP4C2TtS9dZl76OXa0ur8/WhjoAV1crIMexuBN4Agu+MF94q143zJ6vxHwDKr34OB3Y7Kx7psHKTfHsiwu743S7nmuyjuOJ8DZurfq6P98wv7J5/JK+1zpXbV6wInlFL5Ds7VAk5Y/T6B9nBad/2SrL6fdfDbemD/lNLvSCt7tUrIV2LBF6XUGf2rL9q4nBeQoHevMtFaXMFWeY61S6MsnL2G+sBtBenqaXdFc1yISH8R2aZ3xTPRWqZBetyJaK2slXo3/nkn8lVAilLqnNXv+sBvVnk4CJjR6uVHNGf+i4jEi8gHIuLlRBpBQCWK13dtq9+xlM49wFXAIb27PaiUsOW5bxwiIj4iMlkfVshGc9wBYjt7X1ae7fkJGCwivsDtwCalVEI5bRhYcaU6zlignjge7I9He0gLqIfWXUtyENYZaouI2NmLL6eNWLSWUZBSKkD/+CulWunnE9D+GVin4Spi0VqcAVafqkqp90SkMlpr9UMgRCkVACxF67ajlMpRSj2llGqE1qJ6UorGeM+gtaoLCLVL135brli07qR1PqoopU4ppfKUUm8opVoCXYBBwB1OXFsqWqvVvr5PlZIP20wqFaWUGon2T+x94FcRqepE2hfLU2i9oM5KKX+gm37c+h4rLc/FzimlTqENOdwMjEX7R2RQAa5Ux/kXmrN5T0Sq6pMLN+jnfgaeEJGG+n/gd4DZJbROnSEYeFREvETkNqAFmnNxGv2//0rgIxHx1ydKGotIdz3IHD2NOqJN6pSnZVcWBa2RvqJNQlXRJ2/qoLXWKqMNe+SLNpnVpyCiiAwSkSb6P45stBaiWT+9Gxil2+yHNj5aGt8A/xOR+rrtmiIyVP/eQ0Ta6K2ubDRnaC7ZlIZSyoxWdv8TET/d9pP6NTuFiIwRkZpKKQuQqR8uM+0K4IfWOs0UbXLstXLGTwLqiEglu+M/oC3VaoM2xmlQAa5Ix6k/MIOBJmgD6XFoEzcAU9H+424EjqFN/jxSgeT+BJqitW7+B9yqlEq7CDt3oDmqA0AG8Ct6dxn4Fq2rugdtkmd+BfJrg1IqFhgKvIjmIGOBZwCTUioHeBTN+WQAo4BFVtGbAquBXLQWzddKqfX6ucfQ6iATGI02Nloan+m2V4pIDtpEUWf9XChaeWSjdeE34LzzewQ4DRwFNgOz0O4BZ+kH7BeRXD2PI+yGGFzNp2iTZaloZbC8nPHXoi3HShSRVKvjv6EPhyilTrsgn/9pCmZADQwMrnBEJAZtpcbqfzsvlztXZIvTwMDAFhEZhjb+ufbfzsuVgOE4DQyucERkPTAJeFgfq70sEZGpor20ElnCeRGRz0UkWrSXPzq6Ky+G4zQwuMJRSoUrpYKVUiv+7bxUkOloY84l0R9t3L0pMB7tn4VbMByngYHBZYFSaiOQXkqQocAPSmMb2vrXsFLCXzSG4zQwMLhSqI3tywFx2L7s4DIuq91grLEkXuXW5QAd/x5edqAKEPKye/9nHbnb3632Teel7EAVRNy84CPfx70JeJx1bxm5u3yin3mywhdQnufUIyzqfrQudgFTlFJTypGco/y6pZQuW8dpYGBw6WPB+bko3UmWx1HaE4ftG3Z1KP9bfE5hdNUNDAzcRp4yO/1xAYuAO/TZ9euALHe9k2+0OA0MDNxGeVqcZSEiP6PtrBUkInFor6N6ASilvkF71XkA2sYzZ4BxLkvcDsNxGhgYuA2zC99M1DdbKe28Ah52WYKlYDhOAwMDt2Fxz9zMv47hOA0MDNyG2XCcRYiIGdhndegXff9GT7RdwW9D25EGYK5S6n8lxLsJbSfthWi713gDi5VST19Mvhzx0nuwfitUD4Tfp5c/fpeaTXi25UBMIvwW+zfTYjYVC9OpegOeaTkAT5MHGRdOc+82bfOdpT2e5HT+BSzKQr6yMHrLNw7T6NSlCQ880x8Pk7BswU7mTLNVHK7bIIgn37iJJs3DmPHlGn798Y/CczOWPM7Z0xewWCyYzRYeGV18UrJbvQa81q0HJhFmH4jkm7//sjnfuXYdpgy8ibjsLACWx0TxxfZtALzfsy8RDRqRdvYM/WbNcJj/bg0a8EpEOB5iYva+fUz+a7vDcG1CQ5g3aiSPLl7C8iNRAIy7uiO3t2kNwOGUVJ5dvoILZtuJgm4NGvByT83+nL2l2/919Ege+93OftvWKAWHU1N5bllx+93rNeDVrj3wMGnlM2mnbflcV6sOUwbcRFxOUfl8vmMbYb5+fNyzHzV9qmJB8fP+vUzbu+uKK5+KYLQ4bTmrlGrv4PjbaFuAtVFKnRMRP7SNWUuMpwtYbVJKDRIRb2CXiPymlNpykXmz4ab+MOoWeP6d8sc1IbzQajAP/DmdpHPZzOz6ABuSDnE0N6UwjJ9nFV5oPZiH//qBxHNZBFay3eP2vm1Tycw7Y2+6KA2T8PDzA3nhwR9ITcrmi5nj2bbhMCePFqWRnXWWSe8vpUuPFg5tPDt+OtmZjtMwifBmeE/GLviVxNwcFg4fzeqj0URn2L6AsT0+jnsXLygWf97BSH7Yu4uPejtWOjaJ8HqvCO6cO4/EnBx+GzOaNTExRKelFwv3XLcb2XS8aDP2EF9f7uzYgb7TZnA+P5/PBw9kcPNmzNt/wNZ+7wjunKPZnz+2ZPvPOrB/R8cO9LOyP6h5M+bb2X+zW0/GLNLKZ9Fto1l1zEH5JMRxzxLb8sm3WHh7ywb2pyZT1cuL328fw6bYEzZxL/fyqSh5V+juay5bjiQiPmhCZI8U7Feo7xD+urM2lFJn0TbAddlq/2vaQYDfxcVtHVCH2DNpnDqbQb4ysyJ+H+Ehts6rf+22rE08QOI5rTWScaF8Wx02a12b+Nh0Ek9lkJ9vZv2KSK4Pb24TJivjNEcOxJOfX/6WQLuQUE5kZhKbnUWexcLvRw7Tu1ExccUS+Sv+FJnnSt5+sl1oKCcyMonN0uwvPnSIXo0bFwt3R4f2LD8SRdoZWwfvKSaqeHriIYK3pxdJubbl1y7M1v6SQ4fo1cSB/Y7tWRHlwL6pyH4VLy+ST9vabx8cyoksq/KJOkyfhs6VT8qZ0+xPTQbgdF4eMRnphFa1vdku9/KpKGaU05/LiYt1nN4istvqMxx902B981tn4hXbhVrf3bwp2ibD/zrBVfxJPJtV+DvpXBbBVWwfjPpVa+Dv5c13193NrK4PMKh2+8JzCpjU+U5mdX2AYXU7OUyjRrA/KUlFaaQmZRFUsxyeXsE7X4/ly5n30/+Wq4udDq3qS0JuUZUk5uYQ6ltc+qZjaC2WjhzLtCG30LR6DaeTD/HzJSHH2n4uIX62+Q/x9aVP06bM2rPX5nhSbi7f7djBpvH3svXB+8k5f57NJ04Ui2tjPyeXEN8S7O92YH/7Djbefy9bH9LtHy9uP96qfBJycwip6rh8lg0fy/RBjsunjp8/LYOC2Z1ku2zwci+fimJWzn8uJ1zWVReRtna/x6HtAl4D6KLvNF5SF/9GEdmLprXynlIq0UGYfxxn3t/yEBMtqtVi/J/TqGLy4ocbxrM3M5aTp9O4649vSTmfQ2ClqnzT+S6OnU5hZ7rtjVnRd8SeGPc96Sk5VAusynvf3EHs8VQidxalYSuHpNu3S2B/cjJdZ3zLmbw8wus3ZPLAoUT86Nwm6Q7fybNL4OUe4XywcRMWu+P+lSvTq0ljwr/9nuzz5/ly8CCGtmjBwoMHS7Wv7Ero5YhwPthQsv0eUzT7XwwZxNCWLVh4wNq+g/Kx+x2ZkswNPxSVz5T+Q+kxs6h8fLy8mNRvCG9uXkdu3gWbuJd7+VSUy3YPuzJw5ax6NJpAmp/eRZ8GTNP3zvMoI27BGOdVwGZ9jHO3fSARGY/+LuukD4IZP7aaC7NfnKRz2YR6F6URUqUaKedyioXJvHCGc+Y8zpnz+Dv9OM38Qjl5Oo2U81rYjAunWZd4gNYBdYo5ztTkbGqGFKURFFKNtJTSGu22pOthszJOs2XtQZq3qm3jOBNycwizaoGE+vqRdDrXxob1w77+xDHeMvUksIo3GefOlpl+Yk4uYX7W9n1JyrW13yY0hM8GDQAg0Nub8EYNMVsseJpMxGZlk35WS2dFVBQda4fZOIbEXDv7fr4k29lvHRLCp4Ot7DdsSL7FgpfJRJy9/VphNo4hMTeHWlblE+brR3IZ5fN2t6Ly8TSZ+KbfEBYcOciKo9FXXPlUFLPjfx2XPS4b49Tlbr8HvhSRKgC6uJa9aFRpNo4A76LpQDs6P0Up1Ukp1cndThNgf9Yp6lWtQS3vADzFg7612rAh6ZBNmPVJh+hQvT4eYqKKyYs2AXU4mptCFQ8vfDy0S6/i4cX1NZsQnVNcSPPw/nhq16tOSK0APD09CO/bmm3rDxUL54jKVbzw9qlU+P3q6xtzPCbZJszepEQaBARQx98fL5OJwVc1Y/WxGJswQT5FYpTtQkIREaecJsDexEQaBAZQp5pmf1Dz5qyJOWoTJvzb7+muf5YfieLV1WtYFR1DfHYO7cNCqeKp/f/uUr8eMXaTGnsTEqlvZX9g8+asiba13+Pb7wmfon2WH4nitdVrWB0dQ3xODu1rWdmvV6/YpMme5EQaVAugjp9ePk2bseq4bfnUtC6fYNvyeb9HH6Iz0vh+z99XZPlUlDwlTn8uJy62xektIrutfi9XSj0PvAS8BUTqgltngRmU70X7b4CnRaShUurYReavkKfegL92Q2YWhN8KE8bBrQOdi2tWFt6LXMyka+/EJCYWxu0kJjeZW+tdA8CvJ7dzLDeFP1KimHPjwygUv538m5jcZGp7B/Jxp1GANsC/LH4vf6QUb5FYzBa+en8p73w9FpPJxMqFuzhxNIWBt2pjokt+3UFgDV++mDken6qVUUpx0+jrGD/sK/wDfHjt4xEAeHiYWLdsHzv+sE3DrBSvbVjLD0OGYTKZmHsgkqj0NEa11kZWZkXuZUCTqxjduh1mZeFcfj6PLl9SGP+zvgO5rnYdAqt488e48Xz65x/MORBpY/+NNeuYPmwYJpPw675IotLSGNlOs/+z3bidNXsSE1l+JIpFY8dgVhb2JyXzy959NmHMSvHG6nVMu3UYHiZhbnnsJ2j2F94xBrPFwoHkZGY7sP/qJq18PMTEnINa+YxupdmfuX8v/RtfxZjW7TBbtPJ5ZKVWPp3CajOseSsOpqawdPhYAD7Ytpn1J47Z2L+cy6eiXKktzstWrM3YVq50jG3lysbYVq50XLGt3J6TdZ3OZbt6sZeNlzXeHDIwMHAbV2qL03CcBgYGbsN8he5caThOAwMDt2G5zCZ9nMVwnAYGBm7jgiprJeLlieE4DQwM3IbF6KobGBgYlA9jcsjAwMCgnJiV0eI0MDAwKBcWo8V5aeHuBeo7r57tVvt997Rzq32f+C5ute/p3BuZFaJSlntXeJsrXd6tIbP3v52DsrmgLlsXUypX5lUZGBhcEhiTQwYGBgblxGys4zQwMDAoH8abQwYGBgblxGLMqhsYGBiUD6PFaWBgYFBO8v7rr1yWpKXuINx64Gml1A6743cBE4FTgBdwELhDKXVGRJ4E7gXygRTgbqWUU6pR/4TueWk4rdte6UbE/yXAA3V2LvBnsSAPfTaOa/t35PyZ80wc9xXRu7QNcTv1bc9Dn47D5GFi2fdrmP3+AgAat2vAY5Puo1KVSpjzzXz+8Hcc3h5Nx15t+XTCKLw8PMgzm/lo6Sb+PBoLQNer6vP8oHA8TCbmbY/kuw2ONbhb1wlh1oMjePrnpayMjCq1DLo0r89zt4RjEhO/bYtk6hpbm+GtG/HwgC5YlMJsVkz8bT27jsVTPziQD+4cUBiuTo1qfL1sKzM32GqTX9+6AU+NCsdkMrFw4z5mLLW1361DYx64uQtKKfLNFj7+eT17orS9s1+5uw9d2zUiI/sMI175wXH+W9Xn6du1MvltcyTTV9ja796uEQ8N0fNvUXw4ez27Y+Kp5OnBd0/fTiVPDzw8TKzZGcU3v2/95+27ufwrgrEAvmShtUJ0qYzSmK2UmqCHnQUMB6YBu4BOuhN9EPhAP1cq/4TueVk4p9tuQvxfQ2WMA3MiUmMe9Vqc4uTBuMIQ1/bvQO0mYdx11SO06NyUR7++j0evfxGTycQjX97Dc33eIjUunS//epeti3Zw8mAc970/hh/fnMv25bu5tn8H7nt/DE9HvE5WajYPz1hISs5pmoTUYMq4W4h471tMIrw0JIL7vp9PUnYOsx8exbqDMcQkF9fgfrJfV7ZElf2/yyTCi7dGcP+k+SRl5jDryVGsj4zhaFKRzT+PxLI+8icAmoYFMfGugdz07gxOJGcwfOLMQjur3riPtXuji9l/dmwEEz6cR1J6DjNeHc3G3TEciy+yv/3ASTbu0uQumtQJ4t2HBnHbi9MBWLx5P3PW7OaNe/uVmP/nRkbw0KfzScrI4acXRrFhbwzHEors/3Uolg179PzXDuK98QMZ9toMLuSbuf+TXzl7Pg9Pk4nvn72dLZHH2Hcs8R+1787yryhX6gL4Cv87EJHjIvKqiGwGbtMPjxGRP0QkUkSudRDHE6gKZAAopdbpmkUA24A6zqT9T+iel4VTuu1ebcF8AsyxQB7q3BK6DLWVC75+6DWs/nEDAAf/jMI3oCrVQwNodm0T4qMTSTyWTH5ePutnbymMq5TCx1/Tw6lazYe0+AwAYnYfJyVHu87opDQqe3ng5eFBm7qhxKZlEpeRRZ7ZwtI9h+nRorgG9+gu7VkVGU16btn/UFrXDyU2NZNTaVnkmy0s33WY8Da2Ns9eyCv87l3Zq5gKI0Dnq+oSm5pFQoatUF2rRqHEJmdyKkWzv+qvQ3TvYGf/vJ19K1WDXUdOkZ1bsi5864ahxCVncipVs79ix2HC25Vu31qlsuCcp4cJTw9TMQVRt9t3c/lXFLMyOf25nChPi9NeZ+hdpVTB6zXnlFJdAUTkAaCqUqqLiHQDpgKt9XDDRaQrEAYcAX53kM49wDJnMuRI97xNgK3PrV+1Bp7iwXfX3Y2PZyVmHdvG4lPaZRTonisU807sYF6szeiC6zCFgNlK8dicSFDtVjZBgmpVJzk2rfB3alwaQbWrE1S7Oilx1sfTad65KQCTnpjOu8tfZvxETa/osRteKpZ0n9ZNORifQp7ZTIi/LwlZRQ9GUnYubeuG2oQP9q9Kz5ZNuPu7X2ldp3eZlxZczZdEq4ctOTOXNvVDi4WLaNOYRwd1pbqvDxO+XVDsfL+OzVi+s7hIXc1AX5LSrfKcnkvrxmHFwoV3bMLDt3Yl0M+HJz79rcx8F9oPsMt/Ri6tGxbPf4/2jZlwc1eq+/nw2JdF+TeJMPOlUdStGcCcDXuIPG6rbO1u++4u/4piTA6V3lW3fz/xZwCl1EYR8ReRgIJwSqkJool9fwU8AxSOk4rIGKAT0N2ZDP0TuueuwZG2uW1OS9I/d3C4MO6gB/sw6cnpbJ7/J91uu56nvnuQ5/q8VRiucXANnujXlfFT55eYM/t8PD8onI+XF9fgLgmHdeAg7tp9MazdF0PHRrV5uH8X7p80r/Ccp4eJ7q0a89nvWy7a/vqd0azfGU2Hq2rzwM1dePjDeQ5iOpl/By2ydbtjWLc7ho5Na/PgkC48+Klm36IUI9+eia93ZT56cDCNa9UgJr7oH92/Yt+F5V9RrtSNjF3178C+/2tfcza/lVazvwPdCo6JSC80lcwhSqnzjhIRkfEiskNEdqQt3+m07vkfKVGcM+eRmXemUPcccKh77hYsieBh1QrwCCUt3nZcMeVUGsF1axT+DqpTg7T4dFLi0qlZx/p49cK4fe4IZ/N8bZJp49ytNLu2SWG4EH9fPh87mBfnriA2XWuVJ2XnElbNzyZMcrZt1bWqHcKHIwew8tm76dO6KS8PjSCiZfHufAFJWbmEBhbZDA4obtOanUdPUTeoGgFVqxQe69qiAYfikh0ODSRn5BJS3SrP1X1JzcwtFq6AXUdOUTs4gGq+VUoMY2M/0y7/gb6kZJaS/6hT1Klpm3+A3LPn+ftIHF1aNfhH7bu7/CtKnvJ0+nM54a529HAAvVuepZTKchCmKxCjh+sATEZzmskOwgK2uuo1+nX8R3TPXULePvBoAB51AC+kykC2LrIdFti6aAe9xmoN7Radm3I66wzpiZkc3h5N7aZhhDYIxtPLk/DhNxTGTYtPp233lgB0iGjNqSitG1e1mg+T7rqJT5dvZteJImXmyLhE6gUFUjvQHy8PEwPaNWPdQVsN7r4Tp9LnA+2zMjKKtxeuZe0BW51xa/af1G1W98fTw0S/Ds3YEGlrs25Q0T+35nWC8fLwIPN00bhj/47NWVZCN/HAsUTqBQdQK0iz3/va5mzcZWu/TnBA4fdm9YPx8vQgq5RxTZv8H0+kbnAgtWpo9vt2asaGPXb5r2mV/7pF+Q/w9cbXuzIAlb086Ny8HscT0/9Z+24u/4piRpz+XE5UZIyzQEvdERki8gfgD9xtdbxgjNMExAF36ccnAr7AXL3LelIpNaSsDP0Tuudl4ZxuuxmV/SYS+D3acqRfOXEgjkH3a2OIiyev4q+lO+k8oAMzor7g/JkLfHj3V4Cmu/7lI9/z7vKXMHmYWDFtHScOaLPxH4+fzEOfjsPD08SFc3l8ev9kAIZO6EfdGgE8ENGZByI6A3Df1Pmknz7L/xatZcrdt2jLt3bsJyY5jduv1TS45/xVsgZ3SZgtinfnrWXSA7dgMgkL/txPTGIat3XRbM79Yy+92jVlcKeW5FnMnM/L59kZRbrtVbw8ua5ZPd6as7pE+x/MXMfnT2m64Ys2RXI0Po1bwjX789fvJaJTUwZ2aUG+2cK5C/m8OGlxYfy37x/A1c3rEODrzeKP7mPKgq0s2hRpY//9X9by1WNa/hdt2c/RhDSGddPsz9u4l4iOTRl0XUvyzVr+n/9Wy3/NalV5466+eJgEEWHV30fYtO8Y1vwT9t1Z/hXlSn1z6LLVVW+/5BW3Ztzt28rVcu+2cvHPGdvKlYW50uXVyrHH3dvK7fn0iQoX0LsHBjhdiS+0XHrZVMiV+e/AwMDgksCiTE5/ykJE+onIYRGJFpFivV0RqSYiv4vIHhHZLyLj3HJRGK9cGhgYuBFXvXKpv1zzFdAbbZhvu4gsUkodsAr2MHBAKTVYRGoCh0VkplLqgksyYYXhOA0MDNyGCxe2XwtEK6WOAojIL8BQwNpxKsBPX+7oC6SjvcbtcgzHaWBg4DZcuI6zNhBr9TsO6GwX5ktgERAP+AHDlVIWV2XAGmOM08DAwG2YMTn9sV6nrX/GW5ly5n2XvsBuoBbQHvhSRPzdcV1Gi9PAwMBtlKfFqZSaAkwp4XQcUNfqdx20lqU144D39BdsokXkGNAc+MvpTDiJ0eI0MDBwGxZMTn/KYDvQVEQaikglYARat9yak0BPABEJAZoBR3EDRovTwMDAbeRZXNM2U0rli8gEYAXgAUxVSu3XNxVCKfUN8BYwXUT2oXXtn1NKpbokA3Zcto4z5GX3NpbdrXu+In6PW+0PvLr4DjmuxBJWo+xAFeR8kHtXeHufdPQmsAvJcLN9k5s7jJ9W3IQr3xxSSi0Fltod+8bqezzQx2UJlsJl6zgNDAwufS63d9CdxXCcBgYGbuNK3VbOcJwGBgZu40rd5MNwnAYGBm7jStUcMhyngYGB28iz/MflgQ0MDAzKizHGaWBgYFBOjK66Hfpi1MeBxkDNgoWmItIcTSu9I/CSUupDqzj9gM/QFrB+p5R6z95ueenUpQkPPNMfD5OwbMFO5kzbbHO+boMgnnzjJpo0D2PGl2v49cc/Cs/NWPI4Z09fwGKxULmKF0pRaOeXxw/YJ8VDn43j2v4dOX/mPBPHfUX0Lm037k592/PQp+MweZhY9v0aZr+/AIDG7Rrw2KT7qFSlEuZ8M58//B2Ht0fTsVdbpMZrgBeQh8r5AC5sc3h9L70H67dC9UD4fbrz5XJ1eAseeHMYJpOJ5T9vZe5Xq4qFeeDNYVwT0YrzZy/w0RM/ERMZR+3GwbwwqWgbw7B6Nfjxw6Us+G49AEPGdWPwuG6YEf7cEsX3n6+i0/VNeODpfniYTFodzLCrg/pBPPnaUK0Ovl7Lrz9Z1cGixzl75jwWs8JstvDIHcXfuLv26oZMeLAnHiYTS5bvYdacP23O9+rRkpG3a/s9nD2bxydfrCDmWAo1g/x48ZmBVA/0xaIUi5fuZt7Cv4uXVdemPPDCIEweJpb/up253220OV+nYU2e/N8wmrSsxYzPVjJPv8eCQqvx9Lu3ERjki1KKZXO2s1C/tqu7NuWBZwdoNmdtYe6XDsr/rdu4pqde/o//SMy+WK38v7mnqPzr1+DHiUtY8O26wmPDHujJva/dQvyxFACX1e/oJ/vTb1QXstILNZ0GYLdusrwYLc7ibAEWA+vtjqcDjwI3WR90cj+9cmEyCQ8/P5AXHvyB1KRsvpg5nm0bDnPyaEphmOyss0x6fylderRwaOPZ8dPJzT7L9wsetbHzR4s6nDwYVxju2v4dqN0kjLuueoQWnZvy6Nf38ej1L2IymXjky3t4rs9bpMal8+Vf77J10Q5OHozjvvfH8OObc9m+fDfX9u/Afe+P4emI18lKzUZlPACWZPBsigRORaXc6DB/N/WHUbfA8++Uq2R4+H+38eLIr0hNyOSzpc/w58p9nIwqkpa9JqIltRoGc0/XN2nesQET3h3OE4M/4lRMMhP6vF9Yvj/+/TZ/LNMW67ft0pTr+rbloV7vcb5GNaoFVtXq4LkBvPDwj1rZ/XAf2zYe5uQxqzrIPsukD5fRJby54zq4fwbZWY6Fwkwm4bGHe/P0i7NJSc3hm8/vZMu2aE6cLFJ6TEjM4rFnZpGbe55rOzXiqcf68dDjP2K2WPj623VERSfh7V2JKV/cyY5dx23imkzCwy8P4cV7p5KalM1nsx/iz3WHOBlTJH2Vk3WGb975net7trTJmznfwrcfLCXmYDzePpX4/NcJ7NoaTdyxFM3mbZ9p5b/sWa38j1iXfytqNarJPV1e18r/vRE8MXCiVv693y0q/13vFJY/QFCtADp0b05+vpl3H5zG8UPxLqtfgAXfrmPe5LUALDv1RYWcJly5s+plXpWINBCRQyIyQ0T2isivIuKjlNqllDpuH14playU2g7k2Z0q3E9P31i0YD89ROQ+Edmu79w8T0R8nMl8s9a1iY9NJ/FUBvn5ZtaviOR6u4czK+M0Rw7Ek59vLpedLkM72YS5fug1rP5xAwAH/4zCN6Aq1UMDaHZtE+KjE0k8lkx+Xj7rZ28pjKuUwsdfu5Sq1XxIi88AIGb3cc1pAuRHgVRCa30W55p2EODn8FTJeLUl/ngqiSfTyM8zs2Hh31zXt41NkOv6tmHNr9reB4d2Hse3mjeBwbYbybTv2oyEE6kkn9LyPfCOrsz5ahV5F7QtDrMyTtOslV3ZrYzk+u7NbOwU1UH5d/hq3iyMUwmZJCRmkZ9vYe2Gg9xwfVObMPsPniI3VxNGPXDoFDWDtAJLTz9NVLQmwHf27AVOxKYRVMO2MK9qU4f4k2kkxmVoZbVsL9dF2P6TzUo/zZHIU8Xyn5GaQ8xBbZ+Js2cuEHs0mRrB/kU2bcq/rU3c6/q1Zc1creV8aOdxfP0dlP+NzUg4nkJyXJFA2/1v3Mraedsx55lJjkt3af26g3xlcvpzOeFsbpsBU5RSbYFs4KGLSMvRfnq19e/zlVLXKKXaAQeBe+wjO6JGsD8pSUWvtaUmZRFUsxxeRsE7X4/lubeHUcW7yHGlJmURVNv2lcKgWtVJji1qqaTGpRFUuzpBtauTEmd9PL0w7qQnpjP+g7HMPDGJ8RPv4PsXZxbPQ+W+kHeQ4v9nKoAphJT4oochNSGTGqEBNkFqhAaQahcmKLSaTZjuQzuyYUFR17Z2o2BaX9uYT35/iomT7+KqlrX0OsguspOcTVBwOXbyUop3vhrLlz+Op//NVxc7XbOGHykpRfZTUnOoWcO3RHMD+7bjrx3F93UIDfGnaeMQDh623VAnKKQaKYlW91BiFjXKk3+d4FoBNG5Ri8N7Y4vbdFj+1UiNz7QJExRmG6b70E425d+5TxtSEzO5cDYPi9liE9cV9QsweFw3vl71PE98NAogsOwrLx2LEqc/lxPOOs5YpVSBWv1PaNK+5aW0/fRai8gm/eX80UArhwas9uuLS/3bqQ36SuOJcd8zYdRkfp66iXqNatK6Y/0iO3Yidrr6pm1aChwcLow76ME+THpyOqPrP8ikJ6fz1HcP2gb0bIL4PYPKfqUcuXYGh5myDVHC9RRmzcuDzn3asGnxrsJjHh4mfKt588Tgj/ju81W89O5tjuugHAKAT9wzlQljJvPSozMZcts1tO5Q3zZA2ZdSSPu29RjQty2Tv19vc9y7ihdvvHwzX05ew5kzdioKLnheq/hU4uXPRjP53SWcOX2+hDvdmfIvCuPp5UHnvm3Y9PtOACp7ezHisX78+MHiCtgv+u6ofpf8sJm7u7zBw33eJz05G+AjBymVi/+647S/VS9GfrC0/fSmAxOUUm2AN4AqDjNhpateJ+hqUpOzqRlS9F80KKQaaSk5TmcoXQ978mgyudnnaN6qdpGdeFv96pRTaQTXLWqFBtWpQVp8Oilx6dSsY328emHcPneEs3m+1h3bOHcrza5tUmTQFIIEfIXKehbM1g1xF2BJpGatosZCUFgAaVYtc4DUhAyCSgnTqUdLYvbFkpmaYxUnky36eNjh/aewKMXZMxeoGVLUQgsK9i9fHej2szJOs2X9ocI6KCAlNYeaNYvs1wzyI7Vo8qKQRg1r8szj/XjpjXlk5xRphnt4mHjjlZtZve4Am7YcKRYvNTGLmlYtsaDQaqQlZxcLVxIeniZe/nQU6xbv5o/V+x3bdFj+mQTVCrANY9VK7RTRyqb8w+rXJLReDb5e8yIPvn0bVXwq88WKZwms6eey+s1MzcFiUdpE18w/QBteqxD/dcdZT0Su17+PBDaXFrgESttPzw9IEBEvtBanUxzeH0/tetUJqRWAp6cH4X1bs239IafiVq7ihbdPJQCOxyQTFOxPVuaZQjtbF+2wCb910Q56je0OQIvOTTmddYb0xEwOb4+mdtMwQhsE4+nlSfjwGwrjpsWn07a7NqHQIaI1p/TB+6rVfJDAb1E5H0HeTmcv13ny9lGrYU1C6tbA08uD7kOvZtvKfTZBtq2MpOet2nPRvGMDTmefI8PKYYTfdDXr7bpxW1fspf0NVwFQu14NvDw92PnXUWrXrVFUB31as23jYaeyaV0Hlat4cXXnxhy3mpQBOHw4gTq1AgkNqYanp4mI7i34Y1u0TZjgmn689crNvDNxCXF243XPPtGfkyfTmDt/u8M8HIk8Ra36QYTUDtTKqn9btq076FT+AR5/6xZij6bw24wthccKbVqX/wq78l+xl563aSsBmndswOmcs8XL/7eie/D4oXhGtnmeu659lbFXv4zZYuHNu78lJ/OMy+rXegy0S/92AJFUkCvVcTo7q34QuFNEJgNRwCQReRR4FggF9orIUqXUvSISCuwA/AGLiDwOtFRKZTvaT0+3/wrwJ3AC2IfmSMvEYrbw1ftLeefrsZhMJlYu3MWJoykMvFWbnFny6w4Ca/jyxczx+FStjFKKm0Zfx/hhX+Ef4MNrH48AtFbJhpWRjLjnRkbd112zcyCOQff3BmDx5FX8tXQnnQd0YEbUF5w/c4EP7/6qMA9fPvI97y5/CZOHiRXT1nHigDYb//H4yTz06Tg8PE1cOJfHp/dPBmDohH7gUQ/xfRh8HwZAZYwDi20rF+CpN+Cv3ZCZBeG3woRxcOvAskrGzKSX5/L2rIfwMAkrZ2/j5JFEBoy9AYClP25h+5r9XBPRkqlbXuXc2Tw+efKnwtiVq3jRoVtzPn/uFxurK3/ZxhMfjWbSmhfIQ5j4+gKtDiYu5Z0vxmLyEFYu0utgmF4H8/Q6+MGqDkZex/jb9TqYOLywDtat2MeOrbZO0WxRfPb1Kib+73ZMJmHZyn0cP5HKkAHtAVi0dDd3jr4Bfz9vnpig1ZfZbOH+R3+gTava9O3VmphjyXz31V0AfDt9I39uLxoDtZgtTPrfIt7+dpxWVr/9zcnoZAYM15zO0tl/ERjky+dzHsbHtzIWi+KmsTdw/+BPadgslF5DO3LscAJfzp8AwIxPV7J94xHN5s8P4+FhYuUvWzl5JIEBd2gjXEt/2KyVf89WTN36OufOXuCTJ6zK31sv/2d/dli7FrOFnIzTvDj5bgRcVr/3vDyURi3rgFIkaRNSTzjMQDm4UtdxSlnjUSLSAFislGr9j+TISfp2eO1ihgucxrLnoldJOYX79+Ps61b7xn6cTnCZ78e57NQXFfZ6vdc/4fRzuir8k8vGyxpvDhkYGLiNy60L7ixlOk59reYl1do0MDC4PPjPOk4DAwODi0VdoY7z8lqub2BgcFlhQZz+/NOIyCARuSgfaDhOAwMDt3GJL0caAUSJyAci4ngzixIwuuoGBgZuw+wieWB3oJQaIyL+aGvTp4mIQtvZ7WelVKlvcVy6V2VgYHDZo5Q4/fl38qeygXlomw6FATcDO0XkkdLiXbYtziN3l38jhvLgE9/FrfbdrXu+5O8VbrXf+Nf73WofQHm5daku4lvebafKaT8lyK32CTlXdph/mUt5Vl1EhgDj0PYU/hG4VimVrO/OdhD4oqS4l63jNDAwuPQpx34v/wa3Ap8opWx2rlZKnRGRu0uLaHTVDQwM3MalPKsOJNg7TRF5H0Aptaa0iIbjNDAwcBtmi8npz79AbwfH+jsT0eiqGxgYuI1LsasuIg+ibcbeWET2Wp3yQ5MEKhPDcRoYGLiNS/TNoVnAMuBd4Hmr4zlKqeJblDnAcJwGBgZu4xJ1nEopdVxEHrY/ISLVnXGehuM0MDBwG5focqRZwCDgbzQ1C+tMKqBRWQZc6jhFJFcp5at/H4Cmod4TuBu4D0gBqqJtVvxygTSwiKxHW3x6DrgA3KeU2u1Mmt3qNeC1bj0wiTD7QCTf/P2XzfnOteswZeBNxGVreyMuj4nii+2ahvn7PfsS0aARaWfP0G/WDKeusetV9Xl+UDgeJhPztkfy3QbHO4u3rhPCrAdH8PTPS1kZGVXMxisbR7lP8zzfgvi2ReVOLPN6Lla33Zpu9Rrw2o1WdbDTQR0MsKqDo1odhPn68VGvftT0qYpFKX7ev5fpe3cVs9+9bgNe7RKBhwizD+1j0m5b+9eF1WVK35uIy9HtH4vi851bC8+bRPj9ljEkns7lnuW/Fc9/WCNe69QLk5iYHb2bbw7Yatx3Dq7HlO7DiMvV7cce5otIbSjsrmadGNGkPQL8Er2HaYcd3w826dVvwKvdwzGZTMyJ3Mc3O2zjdK5ThymDhxKrl9eK6Gi++HObI1OF+X+1Y29MIsyJ2cM3B7fanO8cXI8pN95K7GndXuxhvtiviTjcddU1DG/cHhGYHbPbqfyXh0txjFMpNUg0UabuSqmTF2PDLS1OEemJtni0j1LqpC4c9YlS6kP9/HBgrYi0UUoVCHCPVkrtEJFxwEQcz3jZYBLhzfCejF3wK4m5OSwcPprVR6OJzrBtaW+Pj+PexQuKxZ93MJIf9u7io95OTaRhEuGlIRHc9/18krJzmP3wKNYdjCEmOb1YuCf7dWVL1IkSbbwy6FO3aZ7nXchnyS7nHoCL0223vZ43u/dk7EK9Dm4fzepjDuogoXgd5Fss/G/LBvanJFPVy4vfh49hc+wJm7gmEd68oRdjlswl8XQOi24Zw6rjMURnptnaT4xz6BQBxrXuSHRGOr6VKjnO/zV9GLv2FxLPZLOw312sjosiOtvOfkoc966fa3PsqmpBjGjSnpuWTyfPYmZ6j+Gsi4/meE7JcrsmEd7oEcEd8+eRmJvDgpGjWX00huh0u/I6dYp7Fy1wbMTe3tV9uWPdzySezWZBn3GsPhVFdHaqXf5juXejff5rMrxxe25eOU3Lf/gI1p2K5niu6+SCLZfoK5dKKSUivwHFpVWdwOVXJSI3At8CA5VSMY7CKKVmAyuBUQ5Ob6VINrhU2oWEciIzk9jsLPIsFn4/cpjejZqUHVHnr/hTZJ5z/u2LNnVDiU3LJC4jizyzhaV7DtOjReNi4UZ3ac+qyGjSc8+UaMPdmueOZDgccVG67Va0CwnlRJZVHUQ5XwcpZ06zP0XTGDqdl0d0ejqhdm/ztA8O5UR2BrE5uv3oQ/RpULzMSyK0qi8R9Rvxy6G9Ds+3q1GLEzkZxOZmavZPHKR33aucst2kWhC7U09xzpyPWSn+So6lbxlx24XaltfiI4fo3dj56ylmr3otTuRmEHtay//ikwfoXadp2RGBxv412J1WlP8/k0/Sp26zi86LI1Q5Pv8C20TkmouJ6GrHWRlYCNyklCpLNW0n0NzB8X7AAmcSC63qS0Ju0bv4ibk5hPoW19zuGFqLpSPHMm3ILTStfvGSDyH+viRkFaWXlJ1LSDXb9IL9q9KzZRNm/+n4QbW34Q7N8w9+fRQ8bZ2xuwit6ktCjl0dVC2hDkaMZdpgx3VQ28+fljWD2Z2YYHM8xMePeKs6TjidS0jV4p6+Y0gtlt16B9P7D6NpYJH9V7tE8O62jSV2GUO9fUk4UyRilngmh1BvB/aDarN0wN1M63E7Tatpr1Iezkzh2uB6BFTypoqHJ+G1GhPmU/qrwPbllZDj+Ho6hIWxZPRYpt50c6n3bKiPn03+E87kEOIg/x2CarOk3z1M7T6cpv5a/o9kpXBtzbrlyn95ucTfVe8BbBWRGBHZKyL77JYnlYiru+p5wB/APcBjZYS1L6mZIlIVTcito8MIIuOB8QA1ht+KNCn+393+AdmfnEzXGd9yJi+P8PoNmTxwKBE/TnXiUpzDXrPp+UHhfLx8E5byDO5cpCb2tHd/LzxmrXl+Vfv6fLrwU1RqT+fzcJGIgzc+7K+8WB0MGErET0V14OPlxaT+Q3hr0zpy82x1zx3q1tulEJmaxA0zp3AmP4/wug2Z0vcmevzyPRH1tPHryNQkrgurW9wQJZS1nf396Yl0XfCVZr9WYyZ3G0bE75OJyU7jmwNb+bHnCM7kX+BgZhL5FovDdIoSLPt69icnc+PU77TyatCQyYOHEDFjWul2bezZsj89kRsX6fkPa8zkbrcSsfgbYrLTmHxwGz/0GMmZ/AscykjGXFb+y4sLm5Ii0g9t3sQD+E4p9Z6DMOHAp4AXkKqU6l6KSefG6Bzg6hanBbgduEZEXiwjbAe0F+kLGA00RJvx+spRBGtddb8briMhN4cwq65dqK8fSadtNbdz8y5wJi8PgPUnjuFlMhFY5eJEwJKycwmrVpReiL8vydmnbcK0qh3ChyMHsPLZu+nTuikvD40gomXjEm24Q/P8yO4TgAIpsuEuEk7nEOZ38XXgaTIxqf8QFh45yIqjtgqXAImnc6hlVcdhVX1JdmQ/X7cfW2S/U2htetVvzOZR9/FFr0F0qVWPTyIG2Ob/TI5NKyvUx4+ks3b2863sx8do9itr+Z8Ts5fBy6YxfNVMMs+fK3V8EyAxN9emvML8HFzPBavyOn4MTw8TgVWqOLZnl/8wHz+Sz9ruiGaT/4QYPMVEYCU9/0f3MGTFVEas+YnMC2c5nuPcEI+zuKrFKSIeaH6hP9ASGCkiLe3CBABfA0OUUq2A20rPmzqhlDoBnKWcowYuH+NUSp1Bm+ofLSL3OAojIsOAPsDPdnHzgJeB65zZWHRvUiINAgKo4++Pl8nE4KuasfqY7bBqkI9P4fd2IaGICBnnzpb3sgCIjEukXlAgtQP98fIwMaBdM9YdPGoTpu/EqfT5QPusjIzi7YVrWXsgppgNt2qeN6oJ4gXKdYP8JbE3KZEG1QKo46fXQdMy6iDYtg7ej+hDdHoa3++2vZ4C9iQn0qBaIHX8qmn2mzRn1Qlb+zW9rezXDEXQ7H/w1yaunzmZrrO+5ZHVi/kj/iRPrF1qm/+0eBr4BVKnqm6/fgtWx9muggiqUrXIfo0wLf/ntfzXqKylXcvHn351m7HoROnqqHsTbe/ZQVc1Z3WM7T1kXV5tQ0IxIWSUMBa/N902/4PqtSw1/22rh2ESIeNC8fz3rdu8zPyXF4tFnP6UwbVAtFLqqFLqAto2cEPtwowC5hfMlCulkkszKCJDRCQKOAZsAI6jLYwvE7fMqiul0vVm9UYRKZjee0JExqAtR4oEIqxm1K3jnhWRj4Cn0br8JWJWitc2rOWHIcMwmUzMPRBJVHoao1q3BWBW5F4GNLmK0a3bYVYWzuXn8+jyJYXxP+s7kOtq1yGwijd/jBvPp3/+wZwDkSWnZ1H8b9Faptx9CyYRftuxn5jkNG6/Vktvzl9lD48U2HCn5nl+nhmV9VyZeYGL1W23uh6leG3jWn4YOgyTWNVBK70O9u9lQGO7Olih1UGnsNrc0rwVh1JTWDJ8LAATt21m/YljNvZf3byGHwYMw0NMzDm8j6iMNEa3aAfAzIN76N+oGWNaFtl/ZM3i8uV/xyp+iBiBSYS5MXuJykplVNMOWv6jdjGgXnNGN+2g2Tfn8+jmhYXxJ3W7hYDK3uRbzLy6fQXZF0qfbDQrxevr1jHj5mFaevv18mqjl9e+vfRvehWj27bFbFFaeS1bUrq9HSuZET5CK/+je4jKTmVUEz3/0bvoX7c5o5t2xGzR8//HgsL4X3cdVpj/13asIDvPxVvVuW7ssjYQa/U7DuhsF+YqwEtf3ugHfKaU+qEUm28B1wGrlVIdRKQH2qbGZVKmrvqlSsMvPnJrxn3i3buMot4PR8sOVAGM/TjLRnzz3Gs/pbJb7bt7P86jI1+ssNdr9PM7TlfisVEv3Y8+h6EzRSk1BUBEbgP6KqXu1X+PRds/s3DDYRH5EuiEtnbcG22FzkCl1BFH6YnIDqVUJxHZA3RQSllE5C+l1LVl5dV4c8jAwMB9lGuOVE0BppRwOg6wnuGrA8Q7CJOqlDoNnBaRjUA7wKHjBDJFxBfYiDY5nQzkO5PXS3N1qoGBwRWBC5cjbQeaikhDEamEJrS2yC7MQuBGEfHUd3HvjO0EtD1D0SaGngCWAzHAYGeuy2hxGhgYuA8XjbYopfJFZAKwAm050lSl1H4ReUA//41S6qCILAf2oq3w+U4pVeKkhd4yLcC5d651DMdpYGDgNlTZs+XO21JqKbDU7tg3dr8nor2yXSIikoNjly6aCVXmWwCG4zQwMHAjl97uSEqpCqv0GY7TwMDAfVyCi3ZExF8plS0i1R2dN/bjNDAw+He5BB0nl9p+nAYGBgY2XIIbGSulBul/G16sjcvWcZrOu7dCPC/urUynsYRd/C5NzuDuBeoxt052q32Ath896Fb7Z0PcuxrP/5h779EsHL+/filxqb9fIyJtgQZY+UKl1Pyy4l22jtPAwOAywIWz6q5GRKYCbYH9aMuXQOuqG47TwMDg30Mu7RbndUqplmUHK47x5pCBgYH7uLS3gN9qvzWdsxgtTgMDA/dxCU4OWTEDzXkmAucpWgDftqyIhuM0MDBwH5d2V30qMBZNdbdcW98bjtPAwMB9uFiJw8WcVErZbxTiFBftOEXEjOapBTADE5RSf4hIA7QdSQ4DlYAdwD367u6IiCeQCHyrlHrByt56NG31goVAbyulfi0rH90aNOCViHA8xMTsffuY/JdjWdw2oSHMGzWSRxcvYfkRbYfscVd35PY2rQE4nJLKs8tXcMFstonXpXl9nrslHJOY+G1bJFPX2NoPb92Ihwd0waIUZrNi4m/r2XUsnvrBgXxwZ5FMQ50a1fh62VZmbiiuG97p+iY88HQ/PEwmli3YyZwZm23O160fxJOvDaVJ8zBmfL2WX3/6o/DcjEWPc/bMeSxmhdls4ZE7iu/K5W7d89JwhW77Dc3q8/wQXcv+r0i+X2dbBz1aNeKRvkV18N6i9ew6ru04NqZrB4Z1bo0g/PrnPn7aXDz/br+HWtbnmVs1HfUFWyKZtsruHmrbiAcHdUEV3EPz1rM7Rsv/kjfv5vS5PCzKgtmsGP3BrDLLy9W67RXi0u6qHxKRWcDvaF11wP3Lkc4qpdoDiEhf4F2gQBgpRinVXtcJWYWmQzRTP9cHzaneLiIvKtudlEcrpXY4mwGTCK/3iuDOufNIzMnhtzGjWRMTQ3RacZ3z57rdyKbjRTrnIb6+3NmxA32nzeB8fj6fDx7I4ObNmLf/gE28F2+N4P5J80nKzGHWk6NYHxnD0aQi+38eiWV9pLZDe9OwICbeNZCb3p3BieQMhk+cWWhn1Rv3sXZvcU0dk0l4+LkBvPDwj6QmZfPFD/exbeNhTh4r2hw/O/sskz5cRpdwR6Kg8Oz9M8jOKi5FXJC2O3XPy8IVuu0v3xzBfVPmk5iVw+xHR7FufwxHrbTst0XFsm6/VgdXhQXx4ZiBDJk4gyYhNRjWuTUjP/+ZPLOZb+69hY2HjnEyNdPGvrvvoedvj+DBL7R7aOazo9iwL4ajiVb30OFY1u/V76FaQbx/z0Bueatos57xn80l87Rzmxa7Wre9olzis+reaA6zj9Uxp5YjuWpW3R8oJnCjlDIDf2Grkz4STanuJNq29RdNu9BQTmRkEpula1QfOkQvBxrVd3Roz/IjUaSdsXUunmKiiqcnHiJ4e3qRlGsrvNa6fiixqZmcSssi32xh+a7DhLextX/2QtEu4t6VvYopFgJ0vqousalZJGTkFDvXrFVt4mPTSTyVQX6+mfUrI7m+u622dVbGaY4ciCc/v/z9HnfrnpdFRXXb29QL5WRqJnHpWh0s232YiFal1EElr8JV141CqrP3RALn8vIxWxQ7jsbRs7Xttbv9HmoQSmxK0T204u/DhLe1y//5su8hZ3G1bnuFuYRn1ZVS4xx87nYmbkVanN4ishuogtbFjrAPICJV0DYTfUz/7Y22rf39QACaE91qFWWmiBR01XsqpdJKy0CIn72mdy7twsJsw/j60qdpU8bMmUvb0NDC40m5uXy3Ywebxt/Lufx8Nh8/weYTJ2ziBlfzJdHK2SVn5tKmfij2RLRpzKODulLd14cJ3y4odr5fx2Ys3+lYZr5GsD8pSUVCbKnJ2TRvXae0y7ZFKd75aiwoxZL5f7PsN1vRM0e65+1DwuytFOqeJ50+zTtbNhCVblv0Jemeu5tgf18SM6207LNyaVOveB30bN2Yx/p3pYavDw9NXQBAdGIaj/a7gWo+VTifl8+NzRuwPzbJJp7b76EAX5Ks7qGkzFxaNyie/x7tGvPIkK5U9/Ph0UkLCo8rBV9PuAUFzNu8j/lb9hWLa40j3fb2ocXru0C3Pel0Lu9u3Fisvq9kRORZpdQHIvIFDly2UurRsmy4qqt+PfCDiLTWzzXWnWpT4FelVIGK2SBgnVLqjIjMA14RkSf0limUs6vucPTE7h2vl3uE88HG4jrn/pUr06tJY8K//Z7s8+f5cvAghrZowcKDRRtGO7LvSKNp7b4Y1u6LoWOj2jzcvwv3T5pXeM7Tw0T3Vo357PctTl9DeXSgnrhnKumpOVQLrMp7X40l9ngqkbuKHl536567G4e66g7KZ01kDGsiY7i6YW0m9O3CfVPmcTQ5nanrtvPtfbdw5kIeR+JTMVvsNOwdJerCe8ghDvK/bk8M6/bE0LFJbR4a1IUHvtDuoXEfzyYl6zSBvt5888gwjielszP6VMm2/wHd9vJwiXbVCyrIaV9jj0tm1ZVSW0UkCKipHyoY4wwD1ovIEH32aiRwg4gc18PVAHoAq51JR0TGo4s5BQ27lcSwMDtNb1+Scm01qtuEhvDZIG2SJtDbm/BGDTFbLHiaTMRmZZN+VmvgroiKomPtMJubPikrl9DAIvvBAcV11K3ZefQUdYOqEVC1SuGYVNcWDTgUl0x6ruMxyNTkbGqGFO2bGhTsT1pK8S59SaTr2upZGafZsv4QzVvVtnGczuqeF7D+xDHe6t6TwCreZJw7W6buubtJysol1KqvH1LNl5RS6uDvY6eoW6MaAT5VyDxzjvnb9zN/+34AHut3A4lZtmWbmJPr1nsoOTOXEKt7KCTAl5SsUu6h6FPUsbqHCsJm5J5l7Z5oWtUPLdVxOqvbXsD648d4MyKCwCpVSpQgrhCX4CuXSqnf9b+FA8kiYgJ8lVLZJUa0wiVjnCLSHG07e5v2vlIqAXgeeEFE/IGuQD2lVAOlVAPgYZyU49TtTVFKdVJKdfK/7npNozowgDrVdI3q5s1ZY6dRHf7t93TXP8uPRPHq6jWsio4hPjuH9mGhVPHU/nd0qV+PGLsJgf0ndR316v54epjo16EZGyJt7dcNqlb4vXmdYLw8PGwG8vt3bM6yErrpAIcPxFO7bg1CagXg6elBeJ/WbNt42KnyqFzFC2+fSoXfr+7cmOMxtlLS7tY9dzeRsUVa9p4eJvq3b8a6A3Z1UKOoDlrU1uvgjFYH1at6AxAa4EfPNk1Yttu2bN1+D51IpF5wILVqaPnve3Uz1u+zy39Nq3uobjBento9VKWSJz6VvQCoUsmT61vUJyYhldJwtW57hbmExzhFZJaI+ItIVeAAcFhEnnEmrivGOEHrINyplDJL8b7VAuB1tHHOtUqp81bnFgIfiMhF6aialeKNNeuYPmwYJpPw675IotLSGNlOW/j/856Sdc73JCay/EgUi8aOwaws7E9K5pe9tuNHZovi3XlrmfTALZhMwoI/9xOTmMZtXTT7c//YS692TRncqSV5FjPn8/J5dkaRBnYVL0+ua1aPt+aU3KC2mC18NXEp73wxFpOHsHLRLk4cTWHgsE4ALJm3g8Aavnzxw3h8qlZGKcVNI69j/O1f4R/gw2sThwPg4WFi3Yp97Nhq2yp0t+55WVRYt92ieGfBWibfdwseJuG3v/YTk5TG7dfpWvbb9tK7TVOGXN2SfIuZc3n5PP1TUR18csdgAqpWId9s4X+/rSX77Hlb+//APfT+nLV8/bB2Dy3cup+jCWnc2lWz/+vmvfRs35RBnVuSbzZz/kI+z03V8l/Dryofj9e0wzw8TCzbfog/DtiOoRYrLxfrtleUS7SrXkBLfUPj0WiSHM+h7dFZqvQGXMa66o0//NitGfeNc28XI3RzllvtH7mrwuoApXJlbCvn3nvf7dvKNXVv/o8+/mSFL6DxR84/pzFPVTy98iAi+4H2aBsbf6mU2iAie5RS7cqKa2zyYWBg4D4u4a46MBk4DlQFNopIfcCpMU7jlUsDAwO3cSl31ZVSnwOfF/wWkZNok9VlYjhOAwMD93EJzqqXhP4WY74zYQ3HaWBg4DYu5RZnRTAcp4GBgfu4Qh2nMTlkYGDgNkQ5//nH8ybiIyKviMi3+u+mIjLImbiG4zQwMHAfl/as+jS03ZGu13/HAW87E9FwnAYGBm5DLM5//gUaK6U+APIAlFJnKWH7Ansu2zFOdzftK2W5N4HzQd5uta+83Jt/dy9OB9j71CS32m/+vXuvIbccm1xdDJXTL58Z60uUC/qObQpARBpjtaFxaVy2jtPAwOAy4NKeHHoNWA7UFZGZwA3AXc5ENByngYGB27iUlyMppVaJyE60DdUFeEwpVfouKjrGGKeBgYH7uIQnh0TkBuCcUmoJ2sbqL+qvXZaJ4TgNDAzcxyXsOIFJwBkRaQc8A5wAfnAmouE4DQwM3MYlPquer79mORT4XCn1GeDUtmLGGKeBgYHbuJTHOIEcEXkBGAN001V5vZyJeFGOU0RCgU+Ba9Cm748DjwN7gENoAm45wFcF29OLyF1AJ6XUBH2b+mloeuyPAHOAxvrv35VSzzubl24NGvByT00Te87e0jWxfx09ksd+t9PEbtsapeBwairPLSuuiX196wY8NUrTqF64cR8zltra79ahMQ/crGli55stfPzzevZEaZrYr9zdh67tGpGRfYYRr5TcA7j26oZMeLAnHiYTS5bvYdacP23O9+rRkpG3dwbg7Nk8PvliBTHHUqgZ5MeLzwykeqAvFqVYvHQ38xYW36m9e90GvNolAg8RZh/ax6Tdtrrq14XVZUrfm4jL0XXVj0Xx+c4iDT2TCL/fMobE07ncs/y3YvbdrXteFhXVbr+xUX1e6qPdQ3N3RzJlawn3UFgIc+4aweO/LWXFIe0eWvvw3Zy+oOme51sUw6YW1z2/sVF9Xu6llc+c3ZFM2Vay/bl3jODxBUtZfliz71e5Mu8M6E3TmjVAKZ5fuordp2wF87o2qc+LA8IxiYlfd0by3SbH9lvXCuGX8SN4cs5SVh6IItTfl/eG9SPI1welYM6Offy4rfzlXyoudJwi0g9NIdcD+E4p9V4J4a4BtgHDlVK/lmJyODAKuEcplSgi9XBiE2O4CMcp2hbvvwEzlFIj9GPtgRA0raEO+rFGwHwRMSmlptnF/wbNs49Dc7IfKqXWiUglYI2I9FdKLSsrLyYRXu8dwZ1zNE3s+WNL1sR+1oEm9h0dO9DPShN7UPNmzLfTxH52bAQTPpxHUnoOM14dzcbdMRyLL7K//cBJNu7SpCia1Ani3YcGcduL0wFYvHk/c9bs5o17+5V8DSbhsYd78/SLs0lJzeGbz+9ky7ZoTpwsUiFJSMzisWdmkZt7nms7NeKpx/rx0OM/YrZY+PrbdURFJ+HtXYkpX9zJjl3HbeKaRHjzhl6MWTKXxNM5LLplDKuOxxCdaatquD0xzqFTBBjXuiPRGen4VqrksA7cqXvuDBXRbjeJ8Fq/CMbNmk9idg7z7h7FmqgYYlKL30NPR3Rl89HiO7Df8dNcMs46lp4wifB6nwju+kW3f9co1kY5vkefCe/KpmO29l/uHc7Go8d55LfFeJlMVPHyKhbvlUER3DNjPknZOcy5fxTrDsUQk1Lc/lN9urIlusi+2aL4YPlGDiQk41PJi3kPjOaPmBPF4lYIFzlOvTX4FdAb7Q2f7SKySCl1wEG494EVZWZNqUTgY6vfJ3HjGGcPIE8p9Y1VgruBWLtMHQWeBOylNj9DE2m7QyllUUqdUUqt0+NcAHYCTi0dbhdmq4m95NAhejVxoIndsT0rohxoYpuKNLGreHmRfNpWRKtVo1BikzM5laJpYq/66xDdO5ShiW21o/6uI6fIzi1dy6V5szBOJWSSkJhFfr6FtRsOcsP1TW3C7D94itxcbV3ugUOnqBmkDcOkp58mKlqTuz179gInYtMIqmE7RNM+OJQT2RnE5ui66tGH6NPAeZ3t0Kq+RNRvxC+HHEtIuFv33Bkqot3etlYoJ9Izic3U76EDh+l1VfHyGdupPSsPRZN22rHoXqn2M6zsHzxMTwf27+jUnhWHo0m3su9bqRLX1K3N3D2RAORZLOSct12f3bZOKCfTM4nLyCLPbGHpvsNENC9uf8x17Vl1wDb/KbmnOZCgaVSduZBHTEo6If6+5bq+snDhu+rXAtFKqaO6n/gFbWzSnkeAeUCyg3O2eRO5TkS2i0iuiFwQEbOIOCXNcDGOszWaLocz7ASaW/0eBVwNjFBKFdv3TkQCgMHAGmeMh/jaaWLn5BLi61csTJ+mTZm12/bBT8rN5bvtO9h4/71sfeh+cs6fZ/Nx2//2NQN9SUq30sROz6VmYPEnNLxjE+a+cxefPH4zb01d6UzWi9Ko4UdKStGm0ympOdSsUfLNO7BvO/7acbTY8dAQf5o2DuHg4Xib4yE+fsTnWulsn84lpGrxa+gYUotlt97B9P7DaBpYo/D4q10ieHfbRkeKtoBj3fPgasXz37N1YxY9cydf330Tr8xdBWi651c3qkM1nypU8fLkxuYNCHUQ152E+PmSaH0PZecS4udrF6YqvZs14eedxf95KGDqqFuYf/cohndoU+x8qK8vCdl296i9fd+q9L6qCT/vsrVfN6Aa6WfO8v7APiwcN5r/9e+Ft5dtJzHYz9dGuTMpO7eY8wv2q0qvFk34ZXvJ+km1AvxpEVaTPXGJJYa5KMoxqy4i40Vkh9VnvJWl2tg2zuL0Y4WISG3gZrQerTN8iSYWGQV4A/eitWrLxN2TQ/bvhBU40msBG6FxEfEEfkab3SruGZwwDsU1pF+OCOeDDSVrYveYomlifzFkEENbtmDhgfLrqq/fGc36ndF0uKo2D9zchYc/nOcgpvMXUZKTat+2HgP6tuWRp36yOe5dxYs3Xr6ZLyev4cwZW91zh7rkdmUUmZrEDTOncCY/j/C6DZnS9yZ6/PI9EfUakXb2DJGpSVwXVtdx9t2se+5unKnjF3uHM3Ft8XsIYOSM2STnnqa6jzfTRw0jJjWdHbFW8r1OlM9LvcKZuK64fQ+TiVahwby1ah174hN5uVc4919/DZ9uLBp/dqb8X+gfzkcrHecfwKeSF5+PGMR7yzZw+vwFh2EulvLMliulpgBTSjLlKIrd70+B50oQjSwpzWgR8VBKmYFpIvKHM/EuxnHuB251MmwHisTfQZs4ehWYIyJ9lVL7rc5NAaKUUp+WZMxaV73mLbeSWMtOV93Pl2Q7TezWISF8OthKE7thQ/ItFrxMJuLsNbFrhdk4zuSMXEKqW2liV/clNdPWvjW7jpyidnAA1XyrkFVGF72AlNQcatYs0lWvGeRHanrxNBo1rMkzj/fjuVfmkp1TZNvDw8Qbr9zM6nUH2LTlSLF4iadzqGXVCg+r6kBn21pXPfYYb5tMBFbxplNobXrVb0yPeg2p7OGJr1clPokYwBNrlxaGd7fuubtJzMkl1Poe8vclOdc2/63DQvjkZv0e8vGmexNNV331kZjCsOlnzrLqcDRta4XaOM7EnFzC/O3vUQf2h1rZb6zdo7vjE0jMzmFPvNYKXH4oivuv72QTNyk7l9BqVuXv70tyjp392iF8dJtmP8DHm25NtfyvORSDp8nEZyMG8fveQ6w6aKuQ6hJc938wDrD+710HiLcL0wn4RXeaQcAAEclXSi0oweYZfV5lt4h8ACSg6Q+VycU4zrXAOyJyn1KqYB+7awAf60Ai0gD4EPjC+rhS6g8ReQBYIiLdlFInReRtoBpaU7lErP8jNZn4sdqbkEh9XRM7KSeXgc2b8+TipTZxenz7feH39/v3ZV3MUVZHx9AuLJT2tTRN7HP5+XSpV499iUk2cQ8cS6RecAC1gvxJzsil97XNeWWyrf06wQHEJWcC0Ky+pontrNMEOHw4gTq1AgkNqUZqWg4R3Vvw9vu/24QJrunHW6/czDsTlxB3KsPm3LNP9OfkyTTmznc8k7onOZEG1QKp41eNpNM5DG7SnEfX2MrB1vT2IeWsNvbVrmYogqar/sFfm/jgr02ANvN+X7tONk4TbHXPk7Jz6d++Gc/Osp3Xq1ujGrFp2tCRI93z9NNnC3XPx3z5i9Nl5wr2xSfSoHpg0T3UshlPLrDNf8+vphZ+f29QH9ZFH2P1kRi8vTwxiXD6Qh7eXp7c0Kg+X23aVtx+oJX9Fs14cpGt/YhJRfbfH6jbj9ImHBNycmlYPZBj6Rlc36Au0XaTVvtOJVK/eiC1A/xJzsllQJtmPDPX1n7vT4rsv3NzH9YfPsaaQ5r9t2/qzdGUdGb8sbO8RecULlyOtB1oKiINgVPACLShv0KUUg0L0xWZDiwuxWkCjEUbrpwAPIHmmIc5k5lyO06llBKRm4FPReR54BxFy5Eai8guipYjfWE9o25lY7GI1ASWi0h/4CW01uhO/b/Fl0qp78rKi1kp3li9jmm3DsPDJMwtjyZ2gqaJvfCOMZgtFg4kJzPbgSb2BzPX8flTmv1FmyI5Gp/GLeGa/fnr9xLRqSkDu7Qg32zh3IV8Xpy0uDD+2/cP4OrmdQjw9WbxR/cxZcFWFm2KLJbGZ1+vYuL/bsdkEpat3MfxE6kMGdAegEVLd3Pn6Bvw9/PmiQm9tThmC/c/+gNtWtWmb6/WxBxL5ruv7gLg2+kb+XN70UiHWSle3byGHwYM05ZsHd5HVEYao1u0A2DmwT30b9SMMS2LdNUfWbMYZ3G37rkzVES73awUb65Yy/cjtfz/umc/0alpjOio5f8XB+OaBQRVrcpXt+q65yYTv+8/xCa7WXezUryxai1TR9yChwi/7tXsj+yg36O7SrYP8NbKdXw0pD9eHiZiM7N4fontGLrZonh7yVq+u0PTbZ+/cz/RKWkM76TZn72jZPsd69ViaPuWHE5MYf6DowH4dPUWNkYdLzVP5cJFjlMplS8iE9Bmyz2AqUqp/XojDOvJ6nLYLKisc8Ab5Yl72eqqN5noXl31wANlh6kIVRPyyg5UAY7f7OFW+77R7rUPl/+2csrN7+V5nnWv/YNvPlHhfevaPPmJ08/pvo8rnl550N9Vfx2oj1UjUinVqKy4xptDBgYGbuMSf3Poe7Qu+t9oL984jeE4DQwM3MYl7jiznHnRxhGG4zQwMHAfl7bjXCciE4H5WO38rpQqc6bMcJwGBgbu49J2nJ31v9ZrvBQQUVZEw3EaGBi4jUu5q66U6nGxcQ3HaWBg4D4uQccpImOUUj+JyJOOziulPnZ03BrDcRoYGLiNf2mD4rIoeDvI0dYwTrl6w3EaGBi4jUu0q74EQClVbNG7iAx2xsBl6zjzfdxbI+ZK7l297H3Sqd2rLhrxvch91pzkbIj7VVfcvUD90D3uXWDfbJp7838u+NJsztlwaTrONfpeGcetD4rIOOBl4HeHsawwNIcMDAzcx6Up1vYEsEpECje+1SU0ngS6O2Pgsm1xGhgYXPpcil11pdRSETkPLBORm9A2F7oG6KaUyig1so7R4jQwMHAfl2aLE6XUGuAuYD3QCOjprNMEo8VpYGDgRuQf3pjaGUQkB81VC1AZ6Akk63poSinlX1p8MByngYGBG7lEu+oVnjk1HKeBgYH7uAQdpytwi+MUkVylVDHVLRG5A3gWrYksaJuRfmi1W/OvIlIdTaztc0ebINvTvV4DXu3aAw+TMPtAJJN22mmG16rDlAFWmuExUXy+Yxthvn583LMfNX2qYkHx8/69TNtbXFO6S6v6PH27pon92+ZIpq+w3Wm9e7tGPDRE1wy3KD6cvZ7dMfFU8vTgu6dvp5KnBx4eJtbsjOKb37cWsw9wddemPPDCIEweJpb/up253220OV+nYU2e/N8wmrSsxYzPVjJv2mYAgkKr8fS7txEY5ItSimVztrPwp+KSKd3CGvFap16YxMTs6N18c8B2l/LOwfWY0n0Ycbl6GcUe5otITRLqrmadGNGkPQL8Er2HaYeL7zTfrUEDXonQdMln7ytd237eqJE8uthO275NawAOp6Ty7PLi2vbu1j0vC1fotrtTV71bvQa8dmMPTKI9A9/YPQOda+vPQLZev0ej+GK79gx81Et/BpT2DEx38AxUhEuxxekK/rEWp77T++NAH6VUvIhUQdu63jpMNbQdnqc44zRNIrzZrSdjFv1KYm4Oi24bzapj0URn2MoLbE+I454lC2yO5VssvL1lA/tTk6nq5cXvt49hU+wJm7gmEZ4bGcFDn84nKSOHn14YxYa9MRxLKArz16FYNuzRxNOa1g7ivfEDGfbaDC7km7n/k185ez4PT5OJ75+9nS2Rx9h3zFZF0GQSHn55CC/eO5XUpGw+m/0Qf647xMmYInXTnKwzfPPO71zfs6VNXHO+hW8/WErMwXi8fSrx+a8T2LU12iauSYQ3r+nD2LW/kHgmm4X97mJ1XBTR2Xa66ilx3Lt+rs2xq6oFMaJJe25aPp08i5npPYazLj6a4zkZNvZf7xXBnXM1bfvfxpSsbf+cA237Ozt2oK+Vtv3g5s2YZ6dt707dc2eoqG67u3XV3+zek7ELtWdg4e2jWV3CM3Dv4gU2x/ItFv63ZQP7U/RnYPgYNts9AxXmCnWc/+Ss+gvA00qpeACl1LkCzSIdX2AZMEsp5dTK5PbBoZzIyiQ2W9cMjzpMn4bO6XKnnDnN/lTNwZzOyyMmI51QO9nc1g1DiUvO5FSqphm+YsdhwtuVrqtuLVFZcM7Tw4Snh8mheuVVbeoQfzKNxLgM8vPMbFi2l+siWtiEyUo/zZHIU+Tn2y54zkjNIeagpld19swFYo8mUyPYdly7XY1anMjJIDY3UyujEwfpXfcqZ4qIJtWC2J16inPmfMxK8VdyLH3t4rYLtdW2X3zoEL0aO9AN79Ce5UccaNtLkba9t6cXSXZCZu7WPXeGCuu2u1FXvV1I8Wegd6NyPAMpRc9AdHo6oS5+cUIszn8uJ/5Jx1mWHvvHwGal1CfOGgzx9bXVDM/NIaRqcV3ujqG1WDZ8LNMH3ULT6jWKna/j50/LoGB2J9l2gWoG+JKYUWQ/OSOX4IDi9nu0b8y8N+7kswk38cYPqwqPm0T4+eXRrP7wfv48eJLI48U1q4NCqpGSWPQWUWpiVjHn5wzBtQJo3KIWh/fG2hwP9fYl4UyRbnvimRxCvR3oqgfVZumAu5nW43aaVgsC4HBmCtcG1yOgkjdVPDwJr9WYMB/bvIX42Wnb5+YS4mdrv1Dbfo8DbfsdO9g0/l62Pqhr25+wbXG5W/fc3bhbVz20qn355xBawjOwdMRYpg12/AzU9vOnZc1gdicmFDtXEUQ5/7mcuJQmh9YCQ0XkQ6VUcpmhAXEgtWxf/pEpydzww7ecycsjvH5DpvQfSo+ZRap/Pl5eTOo3hDc3r7ORydXsF8dekxxg3e4Y1u2OoWPT2jw4pAsPfqrpqluUYuTbM/H1rsxHDw6mca0axMTbdpEdJlJOqvhU4uXPRjP53SWcOW3bInGkL21/DfvTE+m64CtNV71WYyZ3G0bE75OJyU7jmwNb+bHnCM7kX+BgZhL5FtumgcPs2zWtX+4RzgcbS9a2D/9W07b/cvAghrZowcKD5dO2r5Duubtxt666E8/A/uRkus4oegYmDxhKxE92z0D/Iby1qfgzUGEuU02zsvgnHed+4Go0B+mIX4DNwFIR6aGUKiawba2rXn3ErSSGhNlqhvv6la4ZfuIYb3frSWAVbzLOncXTZOKbfkNYcOQgK44W15ROzswlNLDIfnCgLymZJWuG74w6RZ2a1QioWoXM00Vjarlnz/P3kTi6tGpQzHGmJmZRM7Ra4e+g0GqkJWfjLB6eJl7+dBTrFu/mj9X7i51POJNj00oM9fEj6axdGeVblVF8DG9d04fAyt5knD/LnJi9zInRWkJPt+tO4hnbaknMybXVtvf1JclO275NaAifDbLStm+k6Xp7mkzE2mvb1w6zcZzu1j13N+7WVU84nWNX/n4klfEMvNXd9hmY1H8IC0t4BirK5daSdJZ/sqv+LvCBiIQCiEhlEXnUOoBS6lO0GfXfdKF47M5PUUp1Ukp18ut6na4ZHkAdP3+8TCYGN23GquMxNnFq+hTJvbcLDkVE0wwHeL9HH6Iz0vh+j+MRhP3HE6kbHEitGv54epjo26kZG/YctQlTt2aR02teV9cMP32OAF9vfL0rA1DZy4POzetxPLH4oPuRyFPUqh9ESO1APL086N6/LdvWHSwWriQef+sWYo+m8NuMLQ7P702Lp4FfIHWqVtPKqH4LVsdF2YQJqlK18Hu7GmFaGZ3XyqhGZa38avn4069uMxadsJX/3JuYSANd297LZGJQ8+asibEto/Bvv6e7/ll+JIpXV69hVXQM8dk5tA/TtO0ButSvR4zdpIm17rmXycTAls1Yc8TWfs+vphKhf1YcjOL15WsLdc+rVtImUwp0z6NSUp0qV1dhravuZTIxsEUz1kTZ5j9i0lR66J8Vh6J4fcVaVkfFkHr6TKGuOuBQV31vUvFnYPUx22cgqLRnIKIP0elpfL+7tFG0CnCJvjlUUdzV4vQRkTir3x8rpT4WkRBgdcEKfWCqfUSl1HMiMg34UURGKqVKHDY2K8Wrm9bywxBdM/xgJFHpaYxupWlKz9y/l/6Nr2JM63aYLbpm+EpN07tTWG2GNW/FwdQUlg7XJvc/2LaZ9SeOFdm3KN7/ZS1fPaZpVi/asp+jCWkM66bZn7dxLxEdmzLoupbkm82cz8vn+W81+zWrVeWNu/riYRJEhFV/H2HTvmPYYzFbmPS/Rbz97Tg8TMLK3/7mZHQyA4ZfC8DS2X8RGOTL53Mexse3MhaL4qaxN3D/4E9p2CyUXkM7cuxwAl/OnwDAjE9Xsn3jEZsyem3HKn6IGIFJhLkxe4nKSmVU0w4AzIraxYB6zRndtIOmq27O59HNCwvjT+p2CwGVvcm3mHl1+wqyL9jOTpuV4o0165g+bBgmk/BrebTtEzVt+0Vjx2BWFvYnJfOLvba9m3XPnaGiuu1u1VVXitc2ruWHocMwiYm5B7RnYJT+DMzav5cBja9idOt2Wv3m5/PoiqJn4JbmrTiUmsIS/RmYaPcMVJTLbdLHWS5bXfUGX33k1oxX3+vexnjIphS32j/0knu3lTMlVHarfQCP8+6V2b7ct5XL93OvVzo24akKV8ANtzn/nG6ZW/H0/ikupckhAwODK43LtGFWFobjNDAwcBtX6uSQ4TgNDAzch+E4DQwMDMqH0eI0MDAwKCeX4n6crsBwnAYGBu7jyvSbhuM0MDBwH0ZX3cDAwKC8GF31SwuPs5fNWlnHZLhZVz0lyK32/Y+5v/xz67jXvrsXqB8e594F9te84t78u4Qr029evo7TwMDg0sfoqhsYGBiUkyt1Vt3QVTcwMHAfLtwdSUT6ichhEYkWkecdnB8tInv1zx8i0s51F2KL0eI0MDBwG+Kid9VFxAP4CugNxAHbRWSRUsp6n8NjQHelVIaucTYF6OySDNhhOE4DAwP34boNnK4FopVSRwFE5BdgKFDoOJVS1hKv2wC3TS8aXXUDAwO3IUo5/xEZLyI7rD7jrUzVBqwFteL0YyVxD5r4o1twaYtTRBTwk1JqrP7bE0gA/lRKDRKRu4CJgLV2wZ3ADP17PSBL/6QqpXqVlaa7Nb3doavepVV9nn9mlKajPmsLc79chT0PvHUb1/RsxfmzF/jo8R+J2RdL7cbBvPDNPYVhwurX4MeJS1jw7brCY8Me6Mm9r93C1d98Tca54pK43eo34NXu4ZhMJuZE7uObHbbX07lOHaYMHkqsrsG9IjqaL/7cVsyOTRm1rM8zt2o2F2yJZNoqW5vhbRvx4KAuKKUwmxUT52llBLDkzbs5fU7TPTebFaM/KK577m5dcnfbL4uK6rZf36o+T4/Q8r9gUyTTlxe/Rx+8Sb9HzYqPZq9nd3Q8IYG+vHl3P2pU88Gi4LeN+/h5jWt11cuzHEkpNQWte+0IxxJgjgKK9EBznF2dT718uLqrfhpoLSLeSqmzaOMR9gIvs5VSE+yOtQcQkenAYqXUr84k9k9oertaV33/8SSeGxnBK4M+JjUhk8+WPcufK/dx8kiRAuY1Ea2o1agm93R5neYdGzDhvRE8MXAip2KSmdD7XS1vJuHHXe/wx7I9hfGCagXQoXtzkuIc62KbRHijRwR3zJ9HYm4OC0aOZvXRGKLT7TS4T53i3kULnKkCTCI8f3sED34xn6TMHGY+O4oN+2I4aiUT8ufhWNbv1cuoVhDv3zOQW96aUXh+/GdzbTSa7O27W5fcnfadoaK67c+PiuChT7R79MeXRrFhj4N79A2t/JvUDuL9+wcy7NUZmC2KT+Zu5NDJZHwqe/HTK6PZduCETdyK4sJZ9TigrtXvOkB8sfRE2gLfAf2VUmn2512FO7rqy4ACYYGRwM9uSANwv6a3O3TVC2wmnkzTdNQX/s11fdva2LyuX1vWzP0TgEM7j+Pr702gnWRw+xubkXA8hWQrJ3n/G7fy/VsLStw8tl2orQb34iOH6O2gvMpD6wahxKZkcipNL6O/DxPetvQycqQUWhLu1iV3t31nqIhue6uGevnr9+jK7YcJb+9c+admnebQSU1Q9sz5PI4lpDuUv64QSjn/KZ3tQFMRaajrkY0AFlkHEJF6wHxgrFLqiAMbLsMdk0O/AK+KyGKgLZqu0I1W54eLiHUT+nq9dVpuHGl6twsLsw2ja3qPmTOXtqGhhcetNb3P5eez+fiJYprejnTVWzcMxZ4e7Rsz4eauVPfz4bEvFxQeN4kw86VR1K0ZwJwNe4g8nkjPjk1tbKYmZNKsQwMbezVCq5Ean2kTJigsgAwr9cvuQzuxYUGRwFbnPm1ITczk2IGSFRztNbgTcnJpHxpWLFyHsDCWjB5L0ulc3t24kaj0kv9xBwf4kmR1PUmZubRu4KCM2jXmkSFaGT06aUHhcaXg6wm3oIB5m/cxf4ut5pAjXfJ2tWztF+iSj531K23Dehcet9Ylbx5ck8jEJN5evZ6zefn/mH13ExzgS1K6VfmXdI920O7RQH8fHvt8QbHzYTX8aV63JpHHEoudqwiu0hxSSuWLyARgBeABTFVK7ReRB/Tz3wCvAjWAr3VZ7HylVKeSbFYEl7c4lVJ7gQZorc2lDoLMVkq1t/pclNME12l6d/lmCj5eXgxt0aJM+yXpqg97bQZPTVrEg0O6FB4v0FXv9/x3tGoQSuNaNZzKs0MtdKswnl4edO7bhk2/7wSgsrcXIx7rx48fLHZkvdQLKqaxnpzMjVO/Y+DMH/lh924mDx5Suk1HOGg9rNsTwy1vzeDJKYt4aFBRGY37eDaj3p/FhK9+Y3i3dnRsYjfe7wJd8lm79jJ02kzO5uVz//XX/LP23YyDW8XxPborhmGvzuCprxbx4NAuNue8K3sx8cFBfDh7A6fPuUFX3TUtTpRSS5VSVymlGiul/qcf+0Z3miil7lVKBVr5Frc4TXDfcqRFwIdAONp/AJdgraseNOxWEsPC3Krp7Q5d9T0x8TY2g8ICSEuyfW89NSGToFoBtmESi8J0imhFzL5YMlO1lkZY/ZqE1qvB12teLAz/+6gx3PTLLFKthicSc2010MP8fIvr0F+w0uA+fow3IyIIrFLF4URTQRmFWF1PSIAvKVmllFH0KeoEFZVRQdiM3LOs3RNNq/qh7IwuajW7W5fc3fbdTVJGLiHVrco/0JfUUu7RXVGnqBNcjQDfKmTmnsPTw8TEBwex7M9DrNvlel31K/VddXctR5oKvKmU2ldmyHJgravuf931btf0doeueoHNkLo1NB31oVezbYVtMW1bsZeet2nrdpt3bMDpnLM23fTwm65m/W87Cn8fPxTPyDbPc9e1r3LXta+SmpDJ4Fk/2ThN0DXQAwKo46+X11XNWW1XXtYa3G1DQjEhJTpNgP0nEqlnXUZXN2P9vjLKyFMroyqVPPGprE2mVKnkyfUt6hOTYKt77m5dcnfbdzcHCu7RIK38+1xT/B6tY13+9fR7NFer01fu7M2xhHRmrtrplvyJxeL053LCLS1OpVQc8FkJp+3HOB+yW7jqNG7X9HaTrvr7v6zl7Z8fxsPDxMpftnLySAID7tCKZOkPm9m+Zj/X9GzF1K2vc+7sBT554qfCPFX29qJDt+Z8/mz559zMSvH6unXMuHmYprG+X9fgbqNrcO/bS/+mVzG6bVvMFqVpcC9bUrpNi+L9OWv5+mGtjBZu1cro1q6azV8376Vn+6YM6qyX0YV8npuq2azhV5WPx+u65x4mlm0/xB8HbMeZ/wldcnfad4YK6bZbFB/MWsuXj2v5X7hlP0fj0xjWXb9HN+yl59VNGXh9Ufm/MEUr//ZNajHo+pZExaUw69XRAHw1fwtbIo+X+xpK5PLyh05z2eqqN/7wY7dmvFqUe7dNC1nkhm6RFYefq9hseVm4u3zA/dvKuZvLfVu5v799osKV3PeaN5x+Tldsf+2y2SvSeOXSwMDAfVymDbOyMByngYGB+zAcp4GBgUE5uULHOA3HaWBg4DYut9lyZzEcp4GBgfswuuoGBgYG5cRwnAYGBgbl5MrsqRuO08DAwH24SjrjUuOydZzulh01e7vXPiY3b74fUvJrkq4giyputQ9QOd2966HPBbu3OeTuBerb33LvAnt4ouImDMdpYGBgUE7MV2Zf3XCcBgYG7sNocRoYGBiUE8NxGhgYGJQT12kOXVIYjtPAwMB9KGOM08DAwKB8GJNDBgYGBuXEGON0DhH5HuiEJoN1BLhLKZUrItWAn4B6erofKqWmVTS9bg0a8HLPcDzExJy9+5j813aH4dqEhvDr6JE89vsSlh+JAmDc1R25vW1rlILDqak8t2wFF8xmm3hdmtfnuVvCMYmJ37ZFMnWNrf3w1o14eEAXLEphNism/raeXcfiqR8cyAd3DigMV6dGNb5etpWZG3bRpXl9Xto4CpPJxPKftzL3q1XF8vvAm8O4JqIV589e4KMnfiImMo7ajYN5YdK4wjBh9Wrw44dLWfDdekY/2Z9+o7qQla5pCP0vZQvrE2K0MgprxKsde2MSYU7MHr45uNUmrc7B9Zhy463EntZ0jVbEHuaL/ZsBuOuqaxjeuD0iMDtmN9MOOy7fwvqo34BXu4djMpmYE7mPb3bYhu9cpw5TBg8lNltPKzqaL/7cVqrNrk3q8+IArQ5+3RnJd5sc56F1rRB+GT+CJ+csZeWBKEL9fXlvWD+CfH1QCubs2MeP23YVz3O9Brx2Yw9MIsw+EMk3O/+yzXPtOkwZcBNxep6XH43ii+3bCPP146Ne/ajpUxWLUvy8fy/T9xa3f32r+jw9IhwPk4kFmyKZvtw2/93bNeLBm4ruoY9mr2d3dDwhgb68eXc/alTzwaLgt437+HlNcftl8dJ7sH4rVA+E36eXO3rFMByn0zyhlMoGEJGPgQnAe8DDwAGl1GARqQkcFpGZSqmLltUzifB67wjunDOPxJwc5o8dzZqYGKLttINMIjzb7UY2HS+SZQjx9eWOjh3oN20G5/Pz+XzwQAY1b8b8/Qds4r14awT3T5pPUmYOs54cxfrIGI4mFdn/80gs6yM1aYumYUFMvGsgN707gxPJGQyfOLPQzqo37mPt3uhCm68M/pTUhEw+W/oMf67cx8moIlnWayJaUqthMPd0fZPmHRsw4d3hPDH4I07FJDOhz/uaTZPw499v88eyPYXxFny7jnmT1wJw+MOwwrTfuLovd6z7mcSz2SzoM47Vp6KIzrbV9tmeEsu9G+faHLuqWk2GN27PzSunkWcxMz18BOtORXM8N6PE+nijRwR3zJ9HYm4OC0aOZvXRGKLTbetj+6lT3LtogUMbjmy+MiiCe2bMJyk7hzn3j2LdoRhiUorX8VN9urIluqiOzRbFB8s3ciAhGZ9KXsx7YDR/xJywiWsS4c3uPRm78FcSc3NYePtoVh+LJjrDLs8Jcdy72DbP+RYL/9uygf0pyVT18uL34WPYHHvCJq5JhOdHRfDQJ/NJysjhx5dGsWFPDMcSisL8dSiWDW9o91CT2kG8f/9Ahr06A7NF8cncjRw6mYxPZS9+emU02w6csInrDDf1h1G3wPPvlCuaa7hCHedFv74iIg1E5JCIzBCRvSLyq4j4WDlNAbwp0rlTgJ9+3BdIB/L1sAtE5G8R2a8rWTpFu7BQTmRkEpuVRZ7FwpJDh+jVpLhkxB0d27MiKoo0O/EyT5OJKp6eeIhQxcuL5NN26ob1Q4lNzeRUWhb5ZgvLdx0mvI2t/bMX8gq/e1f2cijN2vmqusSmZpGQkVNoM/FkGvl5ZjYs/Jvr+raxCX9d3zas+VVr9RzaeRzfat4EBvvbhGnftRkJJ1JJPuXYiRWWUfVanMjNIPZ0JnkWC4tPHqB3naalximgsX8Ndqed4pw5H7NS/Jl8kj51m5WcVmgoJ7Iyic3W6mPxkUP0blwxCY+2dUI5mZ5JXEYWeWYLS/cdJqJ5cZtjrmvPqgPRpJ0uquOU3NMcSEgG4MyFPGJS0gnx97XNc4htnn+POkzvRk2cylvKmdPsT9Hsn87LIzo9nVBfP5swrRqGEpuSyalU7R5auf0w4e3t7qHzju+h1KzTHDqp5/98HscS0gkOsM2/M1zTDgL8yg7nFiwW5z+XERV9768ZMEUp1RbIBh4CEJFpQCLQHPhCD/sl0AKIB/YBjylVOOV2t1LqarQu/qMi4pSkcIivLwk5OYW/E3NyCbG7cUN8fenTtCmzdtuKbiXl5vLd9h1svP9etj50Pznnz7P5uK1QWHA1XxIziuwnZ+YSUq34jRvRpjELXriTL++7idd+Lt7t7texGct3HnJoMzUhkxqhATbha4QGkBqfYRMmKLSaTZjuQzuyYcHfNscGj+vG16ue54mPRuHvpb0SGerjR8KZIoXMhDM5hHgXf4o6BNVmSb97mNp9OE39gwA4kpXCtTXrElDJmyoenoTXakyYj3+xuAWEVrWtj4ScXEKqOkgrLIwlo8cy9aabaVq99KoO9vMlMavIZlJ2bjHnF+xXlV4tmvDL9pKF1WoF+NMirCZ74hJtjtvnOTE3h9Cqxeu4Y2gtlo4Yy7TBtzjMc20/f1rWDGZ3YoJt3gJ8SUq3yn9GLjUdOL8eHRoz7807+ezRm3hjevF7KKyGP83r1iTyWGKxc5c0LtRVv5SoqOOMVUpt0b//BHQFUEqNA2oBB4Hh+vm+wG79eHvgSxEpeAofFZE9wDagLuCwSSQi40Vkh4jsyN62FUdvMtu3+F6OCOeDDZuw2FWMf+XK9GrSmB5TvqfLpCn4eHkxtGUL2/Qc2XdQwWv3xXDTuzN4/PtFPNy/i805Tw8T3Vs1ZuXuqBJt2t80WqO85CCeXh507tOGTYuLxruW/LCZu7u8wcN93ic9OZuXOvZ0lJJmy+73/vREblz0FQOXf88PR3YwudutAMRkpzH54DZ+6DGS6eEjOJSRjLm0loGDi7Ovj/3Jydw49TsGzvyRH3bvZvLgISXbAxwURbE6eKF/OB+tLF7HBfhU8uLzEYN4b9kGTp+3HRkSB5kuVj7JyXSd8S0DfvmRGXt3MXnAUFv7Xl5M6j+EtzatIzfPzr4TZQKwblcMw16dwVNfLeLBobb3kHdlLyY+OIgPZ2/g9LmLHtn6dzBbnP9cRlR0jNP+Dij8rZQyi8hs4BlgGjAOeE9pd320iBwDmouID9ALuF4pdUZE1oPjHSSUUlOAKQBNJn6sEnNzCfMratGE+vmSnJtrE6d1SAifDtYmaQK9vQlv2JB8iwUvk4m4rGzSz54FYEVUFB1rhbHwwMHCuElZuYQGFtkPDvAlOdu2O2/NzqOnqBtUjYCqVcg8rW2y0bVFAw7FJZOee8ahzaCwANKSsmzspCZkEFQrsMQwnXq0JGZfLJmpRS0Z6+/LZv7Bi3dMACDxTI5NKzHMx4/ks0VhAXLzix7G9QkxvCl9CazkTcaFs8w5uoc5R7Vx1KfbdifxjG1ca+zrI8zPl+TTtvWRe8EqrePHeDMigsAqVUrUbk/KziW0WpHNEH9fknPshlRqh/DRbVodB/h4061pQ8wWC2sOxeBpMvHZiEH8vvcQqw4WVxZNOJ1jew/5+pFkn2crZ7j+xDHe6t6TwCreZJw7i6fJxKT+Q1h45CArjha3n5SRS0h1q/wH+pKaWfI9tCvqFHWCqxHgW4XM3HN4epiY+OAglv15iHW73KuM6g7UFbqOs6Itznoicr3+fSSwWUSaQOEY52DgkH7+JNBTPxeC1s0/ClQDMnSn2Ry4ztnE9yYkUj8wgDrV/PEymRjYvDlroo/ahOnx7feET9E+y49E8drqNayOjiE+J4f2tUKp4qn97+hSr16xSaX9JxOpFxRI7er+eHqY6NehGRsibe3XDSrqQjevE4yXh0eh0wTo37E5y3YeKmYzpG4NPL086D70arattNVz37Yykp63XqvZ7NiA09nnyEgu6m6H33Q16+266dZjoF36t+NIVopWRunxNPALpE7VaniZTAyq15LVcVE2cYOqVC383rZ6GCYRMi5o/1BqVPYBoJaPP33rNmfRiQOUxN7ERBoEBFDHX6uPQVc1Z3WMbXkF+fgUpRUSigkp0WkC7DuVSP3qgdQO8MfLw8SANs1Yd8jWZu9PptJL/6w8EMWbi9ey5pC2ouDtm3pzNCWdGX/sdJznpEQaVAugjp+W58FNm7H6WEyJeW4XHIqIkHFOK5/3I/oQnZ7G97tt66OAA8cTqRscSK0g7R7qc00zNuyxzX+dmlb3UD39HsrVyuSVO3tzLCGdmasc5/+Sx6Kc/1xGVLTFeRC4U0QmA1HAJGCV3gUXYA9QsLfWW8B0Edmnn3tOKZUqIsuBB0RkL3AYrbvuFGaleGP1OqbdOgwPkzB3XyRRaWmMbNcWgJ/3lDzmtSchkeVHolh4xxjMFgsHkpOZvdfWgZktinfnrWXSA7dgMgkL/txPTGIat3XR7M/9Yy+92jVlcKeW5FnMnM/L59kZSwrjV/Hy5Lpm9XhrzupiNt+e9RAeJmHl7G2cPJLIgLE3ALD0xy1sX7OfayJaMnXLq5w7m8cnT/5UGL9yFS86dGvO58/9YpPXe14eSqOWdUApkuLSeWznqsIyen3HSmaEj8AkJuYe3UNUdiqjmnQAYFb0LvrXbc7oph0xWyycM+fz6B8LCu1+3XUYAZW9ybeYeW3HCrLzSnZyZqV4fd06Ztw8DJMIc/dHEpWexqg2WnnN2reX/k2vYnTbtpgtinP5+Ty6bEmJ9grK6+0la/nuDq0O5u/cT3RKGsM7aTZn7yi5jjvWq8XQ9i05nJjC/AdHA/Dp6i1sjDpuk+fXNq7lh6HDtPI5oOe5lZ7n/XsZ0PgqRrduh1lZtDyv0PLcKaw2tzRvxaHUFJYMHwvAxG2bWX/imE3+P5i1li8fvwUPERZu2c/R+DSGddfsz9uwl55XN2Xg9S3JN5s5fyGfF6Zo9ts3qcWg61sSFZfCrFe1/H81fwtbIovy7wxPvQF/7YbMLAi/FSaMg1sHlsvExXOZjV06izgas3MqokgDYLFSqrVLc+QkTSZ+7NYaqXrKvXtB1pp7tOxAFaBgOZLbSDL24yyL6nvcu+equ/fjNIUeqXAF9Kt2t9PP6fKsqe6tcBdivDlkYGDgPq7QFudFO06l1HHgX2ltGhgYXB4ouzfxrhSMFqeBgYH7uMwmfZzFcJwGBgbu4wpdjmQ4TgMDA7ehjBangYGBQTkxWpwGBgYG5eNKnRxCKfWf+ADjDftXrv0r4Roud/v/pY97V+heWji9XZ1h/7K0/0+kYdg3ACr+rrqBgYHBfw7DcRoYGBiUk/+S45xi2L+i7f8TaRj2DYAKbPJhYGBg8F/lv9TiNDAwMHAJhuM0MDAwKCeG4zQwMDAoJ/85xyki9f/tPBgYGFzeXLGOU0SuF5FbRSRY/91WRGYBm//lrDmNiFQRkYdF5GsRmVrwcWN6zUTkWxfYucXqe2BpYSuQRl8RuUdXIrA+freL7N9ZwnEvEfnZBfZXVtRGOdIKFJFrRaRbweefSvtK5Yp0nCIyEZgKDAOWiMhrwCrgT0qQHi6n/boi8ouIbBKRF0XEy+rcgorat+JHIBRNWnkDUAcoWWbSSfR/IitFJFJE3haREBGZB6wBSlZjc56Xrb6vcYE9G0TkHeAloA2wRkQesTo9wUXJPCYiNm/aiEhVYClwxgX2a7rARpmIyL3ARmAF8Ib+9/V/Iu0rmSt1k4+BQAel1Dm9xRMPtFVKRZURz1mmAvPQhOXuATaIyGClVBrgyqGAJkqp20RkqFJqht5iXuECu9+iCettBfoBO4FZwGilVMlqbM4jJXx3FYPR6jdfRF4HZolII6XUEy5MrxewXESqKKU+F5GaaE5zjVLqeRfYr2bdMrdHKTXfBWkAPAZcA2xTSvXQlWTfcJHt/yxXquM8W+AAlFIZInLYhU4ToKZS6hv9+yMiMgbYKCJDKK41XxHy9L+ZItIaSAQauMBuZaXUdP37YRF5GnheKeWqrWy8RaQDWo+miv690KEppSqqdeuplMrXbWWKyGBgiojMBSpV0Da63XQR6QUsE5FawFBgklLqc1fYR5PFHoRjR68AVznOc3oDAhGprJQ6JCLNXGT7P8uV6jgbi8giq98NrH8rpYZU0L6X3hIpcM4/iUgiWmuwaulRy8UUvcX8CrAI8NW/VxR7Z5YLtBURAZc4tgTgY/17otV30JxCRAXtx4hId6XUBgDd4d8jIm+jDc9UGKvW4BS0/K8B4gqOu6BFeEIp5ZLx2DKIE5EAYAGadHcGWg/MoAJckW8OiUj30s4XPHAVsP8EsNPeju6MPlBK9a6IfXcjIutKOa2UUhV1bKWl7aWUyis7ZKk2fNDyedbBuXpKqZMVsa/bmVbKaVVRpyciu5RSHSpi4yLS7I7W0l2ulLrwT6Z9pXGlOk6XPDz/JvpY1FCgNlorLR5YqJQ69K9m7CLQW7I9gFHAYKVUSAXtfaeUutfB8TpoTuGSV18VkbZKqb3698pKqfNW565TSm1zQRqFQxoi4gs0B44qpdIravu/zhU5q47WLQFAny12KfoyoTtFZIhoPCcii0XkMxEJcoH954Bf0LrSfwHb9e+/iIgrJiYQkRoi8oiIfKV/JohIdVfYtkqjs4h8BpxAG2rYhPbwVhRPEflJRArvXxFpodv/0AX2EZEnReQeB8cfEZHHXZDEdKvvW+3OfV1R4yJyF5AkIkdEpD+wF3gf2CMiIytq/7/OldriLOwGuaNLJCJz0CZuqgKBQCTwO9AVaK+UGlRB+0eAVvZdWhGpBOxXSlVoSZXuZNaijcnuQnPKHYDeQERFW7Ui8j/gduAk8DPwG7BDKdWwInat7AswGa3sRwCdgdnAA0qpJS5KIxLoaN+lFZHKwHalVNsK2i/xHnXFPSsi+9Ba+X7AHrRVCDEiEgKsqmj+/+tcqZNDqoTvrqKlUqq1iHgCcUqpgjHV5SKyxwX2LUAttJaaNWH6uYryFvCYUmqO9UERGQb8j4pPsIwHDqMteVqsz+q6rB6U9t9+vN6aXY+2BOw2V3Rv7ZIpNg6olDpfMIlWUfslfHf0+2IwK6VSgVQRyVVKxQAopZJck/3/Nleq42wnItloLSlv/Tv6b6WU8q+g/QtohvJFxH6G0hVLeh5HW9gdBcTqx+oBTXDNAu82Sqlb7Q8qpeaJtri8ooQCfYCRwKf6ZJS39ZhbRRCRL9CciwAt0dahjhKRUQBKqUcrmoaeTohSKsn+mCtsA3VE5HO0ayj4jv67tgvsnxSRd9FanIdE5CO0JU690FY9GFSAK9JxKqU83JyEW296pdRyEbkKuFa3J0AcWhfRFY759EWecwo9j8vQ1kBWQVuv6AOcEpE1SqlRFUxiRwnfXclEtLfOnkJzzABXAx8AH7nA/jNW3+2vwRXXNAZ4GMgCnkd7++wFtOGTu1xg/z/NFTnGaY+I1AYKnGl8RVs9UsJ7zAUopWZUxH4ZafsqpXIraCMO27WVhaeAx5VSdStiv5R0/YBHlVL/c4d9V6NPqjwPtEZr4e4H3lNKLftXM2bwr3NFOk4ReQHwUkq9qf8+ifaf1wuYoZR618Xp+aMNAVT4PXIn0jqplKpXQRuvlXZeKVWhV/JExANtcqg22vKgSBEZBLwIeLtisk7/5/UYUPAWzEHgc6XUDxW17UTajyulPq2gjUWlna/oSxr6WtcJaA7/C2A42tj1IeDNiv7z/a9zpTrOncCNSqnT+u9dSqkO+gO9QSnV1UXpdAKmoY0jCZAJ3K2U+ruCdp8s6RTwklKqQsuGRKSOUiquhHODlVK/V9D+dKAu2lKqzmiTXNejvda5oCK2dft3AE8AT6J1owXoiNa9/szdztNF/7xS0Mavf0bbfMZmxsYFL2nM0e17o/1zOQjMQXvPP1QpNbYi9v/rXLGOUynV0er3XQXvZovI30qpq12Uzl7gYaXUJv13V+BrFyxVOYfmBBwNKTyhlAqooP3DQF+l1HG74+OAl5VSjStoPxJtUxWLPsaZirZhSWJF7FrZ3waMcJD/BsAvSqnrXJFOKenHVnQ4Q/8n3httAq0tsAT4WSm13wVZRER2K6Xa6ysAEoAwpZTSf+8xliNVjCtycgjwFatX+6ycZmWgojPq1uQUOE09nc0i4oru+k5ggaOWq2jbhFWUJ9DeWx6g9M1P9OGNUUCpr6s6yQWllAVAX4p0xFVOU8ff3mnqaR3Xh03cTYVbG/oE2nK0JWyV0RzoehF5Uyn1RUXtW6WjRGSpvoSr4PeV11r6h7lSHeevwGQRmaCUOgOFeyl+qZ+rECJS0Jr9S0Qmo3W3FNo40vqK2gfGAWklnOtUUeNKqaUich5t1vsm4F60rce6KaUyKmofaK63xkHrgjbWfxcsB6toa6fYO+pOnnMa/R+gIwcjaN1fV6RRGW0LxJFou159jut2RdpRMJGorN6rF5HGuGBP1/86V2pX3QNtIfe9FC0irwd8j9YVreis+r+2SYYr0YcWFgB/ALcr1+zFiZQhT6KUsl/YX177Z4BoR6eARkopV+5Q5RZEZAbabP0ytOGFSDelUwV4CO2tNoWmgDDJVXX9X+WKdJwFiIg32qJxgGjlYDedCtg2Abfav33jbkRkilJqfNkhS7VR0JoSoDLa66NmXPeCgKM0g4A05YIbTkSaAiEUvRxQQH205WaOnOolhYhYKFoza10mLq0DfZIoB/hJPzQSCFBK3e4K+/9VrshNPkTkWQDdUTZXSu0rcJouejMGfQzPVTINNohI9RI+NYABFbWvlPJTSvnrfysppapa/a7wAysi14nIehGZLyId9MmiSLRNJ/pV1D7wCZCtlDph/UGTtPjEBfbdjlLKpJd3QV34u7IOrGimlLpHKbVO/4ynaAmXwUVyRbY4rWfVHcyw2/yuYDqvoI2pzcbqjRtVwW27RMSMNsRgvUSloIVYWynlkl3O3YWI7EBbs1kNbSPg/kqpbaJtlfdzRddxikikKmHrOBHZp5RqUxH7VxL60rBvlP4ev4h0Bu5USj30r2bsMudKnRwqTfPGlTscFAy6P2x1TAGNKmj3KNBTOdhTVETsu6eXIp5KqZUA+izxNgClyTa4wn6VUs65ZOLmCqIzcIf+EghoY/0HRds9yRUTdf9JrlTH6e6dZzRDLtomzQGfom2Z5mgz5g/clKYrsd7ByX5c2RXlv11E7lNK2UgZi7Z/ZoVePrgCccXQiIEdV2pX3YzWdS5YOlIg5ypAFaWUV0lxnbT/rFLqA/37bUqpuVbn3lFKvVgR+1a2LssZ0X+g/EPQ9vi8QJGj7IQm1Hazi9eMGhgU44p0nO7mHxxDNWZES0FEeqAt6QFtg+e1/2Z+DP47XKlddXfzT42hNlNKtbP6vU5cs1HyFYFSat3/27djFAphIAigk/ufy9rS6/xCEW2EDUbl894Bkm4gO5skVzu1MMRfriM94JEZapK5tbb/u94a0enG84EOnuodRs/wDvcsWXfuTo1o1vJFIwovEZwfNvrrItBHcAIUmXECFAlOgCLBCVAkOAGKBCdA0Q9chjHCUNiapwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAU4AAAEeCAYAAADl3fyeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAACIqElEQVR4nOydd3gUxRvHP+8lARKSkEBIoVfpVRRFhBB6V1HpKhZs2HuvPxv2hqBSVFBAEJDeq6AgNdQktIT0nlCTu/n9sZvk7nJJLuROAffzPPfkbnfmndmZ3TfTdr6ilMLAwMDAwHlM/3YGDAwMDC43DMdpYGBgUE4Mx2lgYGBQTgzHaWBgYFBODMdpYGBgUE4Mx2lgYGBQTgzHWQFE5C4R2VzK+WUicqcb0m0gIkpEPF1t+3JHRJqJyC4RyRGRR92YTj0RyRURj4uMnysijfTv00Xk7QrkxS33mUHJGA+eG1FK9f+38/Af5FlgvVKqgzsTUUqdBHwrEP+i4zqwVXifichdwL1Kqa6usm9QHKPFafCv4+KWc31g/yWQD7cjGsYz/C9wxRa6iNQVkfkikiIiaSLypX7cJCIvi8gJEUkWkR9EpJp+rqALPE5EYkUkQ0QeEJFrRGSviGQW2LFNSr4QkSwROSQiPa1OrBeRe/Xvd4nIZhH5ULd7TESsWwrVROR7EUkQkVMi8nZBN1BEPPR4qSJyFBhYxrUfF5Fn9Dyf1u2G6F26HBFZLSKBVuGvE5E/9OvbIyLhVufGichBPd5REbnf6lyQiCzW46WLyKaCB1kvxyZWYQu7oyISLiJxIvKciCQC0/R6eV5EYvT6miMi1fXwVUTkJ/14pohsF5EQB9e9FugBfKl3ha/Sy/UH/T44odd9QR7vEpEtIvKJiKQDrzuwea2I7BCRbBFJEpGP7e4VT6u6flsvx1wR+V1EaojITD3udhFpYGXXpnysjgfqZZqi3yeLRaSO1fn1IvI/EdkCnAEaFdxnItIC+Aa4Xs9Dpn7vJonVPwURGSYiux3ePAbOoZS64j6AB7AH+ASoClQBuurn7gaigUZoXa35wI/6uQaAQrv5qgB9gHPAAiAYqA0kA9318HcB+cATgBcwHMgCquvn16N1mwrC5gH36fl7EIgHRD+/AJis5zcY+Au4Xz/3AHAIqAtUB9bp+fQs4fqPA9uAEKs87wQ6AJWBtcBretjaQBowAO0faW/9d039/ECgMSBAd7SHtaN+7l29rLz0z41W16OAJlZ5mg68rX8P18vtfT0/3sDjep7r6McmAz/r4e8Hfgd89LK7GvAv4doLy1z//QOwEPDT6/cIcI9d/T2CNmzl7cDeVmCs/t0XuM7uXvG0SjdaL6tqwAE9rV667R+AaVZ2C8vHrmxqAMP0a/UD5gIL7K7vJNBKt+tF8ftss901HAD6W/3+DXjq335OL+fPv54Bt1wUXA+k4MCxAGuAh6x+N0NzaJ5WD0Ntq/NpwHCr3/OAx/Xvd2Hl/PRjf1k9aPY3dLRVOB89rVA0B3fe+sEFRgLr9O9rgQeszvWhbMc52i7Pk6x+P1LwMALPof/jsDq/ArizBNsLgMf072+iOaUmDsKV5TgvAFWszh8Eelr9DrOql7uBP4C2TtS9dZl76OXa0ur8/WhjoAV1crIMexuBN4Agu+MF94q143zJ6vxHwDKr34OB3Y7Kx7psHKTfHsiwu743S7nmuyjuOJ8DZurfq6P98wv7J5/JK+1zpXbV6wInlFL5Ds7VAk5Y/T6B9nBad/2SrL6fdfDbemD/lNLvSCt7tUrIV2LBF6XUGf2rL9q4nBeQoHevMtFaXMFWeY61S6MsnL2G+sBtBenqaXdFc1yISH8R2aZ3xTPRWqZBetyJaK2slXo3/nkn8lVAilLqnNXv+sBvVnk4CJjR6uVHNGf+i4jEi8gHIuLlRBpBQCWK13dtq9+xlM49wFXAIb27PaiUsOW5bxwiIj4iMlkfVshGc9wBYjt7X1ae7fkJGCwivsDtwCalVEI5bRhYcaU6zlignjge7I9He0gLqIfWXUtyENYZaouI2NmLL6eNWLSWUZBSKkD/+CulWunnE9D+GVin4Spi0VqcAVafqkqp90SkMlpr9UMgRCkVACxF67ajlMpRSj2llGqE1qJ6UorGeM+gtaoLCLVL135brli07qR1PqoopU4ppfKUUm8opVoCXYBBwB1OXFsqWqvVvr5PlZIP20wqFaWUGon2T+x94FcRqepE2hfLU2i9oM5KKX+gm37c+h4rLc/FzimlTqENOdwMjEX7R2RQAa5Ux/kXmrN5T0Sq6pMLN+jnfgaeEJGG+n/gd4DZJbROnSEYeFREvETkNqAFmnNxGv2//0rgIxHx1ydKGotIdz3IHD2NOqJN6pSnZVcWBa2RvqJNQlXRJ2/qoLXWKqMNe+SLNpnVpyCiiAwSkSb6P45stBaiWT+9Gxil2+yHNj5aGt8A/xOR+rrtmiIyVP/eQ0Ta6K2ubDRnaC7ZlIZSyoxWdv8TET/d9pP6NTuFiIwRkZpKKQuQqR8uM+0K4IfWOs0UbXLstXLGTwLqiEglu+M/oC3VaoM2xmlQAa5Ix6k/MIOBJmgD6XFoEzcAU9H+424EjqFN/jxSgeT+BJqitW7+B9yqlEq7CDt3oDmqA0AG8Ct6dxn4Fq2rugdtkmd+BfJrg1IqFhgKvIjmIGOBZwCTUioHeBTN+WQAo4BFVtGbAquBXLQWzddKqfX6ucfQ6iATGI02Nloan+m2V4pIDtpEUWf9XChaeWSjdeE34LzzewQ4DRwFNgOz0O4BZ+kH7BeRXD2PI+yGGFzNp2iTZaloZbC8nPHXoi3HShSRVKvjv6EPhyilTrsgn/9pCmZADQwMrnBEJAZtpcbqfzsvlztXZIvTwMDAFhEZhjb+ufbfzsuVgOE4DQyucERkPTAJeFgfq70sEZGpor20ElnCeRGRz0UkWrSXPzq6Ky+G4zQwuMJRSoUrpYKVUiv+7bxUkOloY84l0R9t3L0pMB7tn4VbMByngYHBZYFSaiOQXkqQocAPSmMb2vrXsFLCXzSG4zQwMLhSqI3tywFx2L7s4DIuq91grLEkXuXW5QAd/x5edqAKEPKye/9nHbnb3632Teel7EAVRNy84CPfx70JeJx1bxm5u3yin3mywhdQnufUIyzqfrQudgFTlFJTypGco/y6pZQuW8dpYGBw6WPB+bko3UmWx1HaE4ftG3Z1KP9bfE5hdNUNDAzcRp4yO/1xAYuAO/TZ9euALHe9k2+0OA0MDNxGeVqcZSEiP6PtrBUkInFor6N6ASilvkF71XkA2sYzZ4BxLkvcDsNxGhgYuA2zC99M1DdbKe28Ah52WYKlYDhOAwMDt2Fxz9zMv47hOA0MDNyG2XCcRYiIGdhndegXff9GT7RdwW9D25EGYK5S6n8lxLsJbSfthWi713gDi5VST19Mvhzx0nuwfitUD4Tfp5c/fpeaTXi25UBMIvwW+zfTYjYVC9OpegOeaTkAT5MHGRdOc+82bfOdpT2e5HT+BSzKQr6yMHrLNw7T6NSlCQ880x8Pk7BswU7mTLNVHK7bIIgn37iJJs3DmPHlGn798Y/CczOWPM7Z0xewWCyYzRYeGV18UrJbvQa81q0HJhFmH4jkm7//sjnfuXYdpgy8ibjsLACWx0TxxfZtALzfsy8RDRqRdvYM/WbNcJj/bg0a8EpEOB5iYva+fUz+a7vDcG1CQ5g3aiSPLl7C8iNRAIy7uiO3t2kNwOGUVJ5dvoILZtuJgm4NGvByT83+nL2l2/919Ege+93OftvWKAWHU1N5bllx+93rNeDVrj3wMGnlM2mnbflcV6sOUwbcRFxOUfl8vmMbYb5+fNyzHzV9qmJB8fP+vUzbu+uKK5+KYLQ4bTmrlGrv4PjbaFuAtVFKnRMRP7SNWUuMpwtYbVJKDRIRb2CXiPymlNpykXmz4ab+MOoWeP6d8sc1IbzQajAP/DmdpHPZzOz6ABuSDnE0N6UwjJ9nFV5oPZiH//qBxHNZBFay3eP2vm1Tycw7Y2+6KA2T8PDzA3nhwR9ITcrmi5nj2bbhMCePFqWRnXWWSe8vpUuPFg5tPDt+OtmZjtMwifBmeE/GLviVxNwcFg4fzeqj0URn2L6AsT0+jnsXLygWf97BSH7Yu4uPejtWOjaJ8HqvCO6cO4/EnBx+GzOaNTExRKelFwv3XLcb2XS8aDP2EF9f7uzYgb7TZnA+P5/PBw9kcPNmzNt/wNZ+7wjunKPZnz+2ZPvPOrB/R8cO9LOyP6h5M+bb2X+zW0/GLNLKZ9Fto1l1zEH5JMRxzxLb8sm3WHh7ywb2pyZT1cuL328fw6bYEzZxL/fyqSh5V+juay5bjiQiPmhCZI8U7Feo7xD+urM2lFJn0TbAddlq/2vaQYDfxcVtHVCH2DNpnDqbQb4ysyJ+H+Ehts6rf+22rE08QOI5rTWScaF8Wx02a12b+Nh0Ek9lkJ9vZv2KSK4Pb24TJivjNEcOxJOfX/6WQLuQUE5kZhKbnUWexcLvRw7Tu1ExccUS+Sv+FJnnSt5+sl1oKCcyMonN0uwvPnSIXo0bFwt3R4f2LD8SRdoZWwfvKSaqeHriIYK3pxdJubbl1y7M1v6SQ4fo1cSB/Y7tWRHlwL6pyH4VLy+ST9vabx8cyoksq/KJOkyfhs6VT8qZ0+xPTQbgdF4eMRnphFa1vdku9/KpKGaU05/LiYt1nN4istvqMxx902B981tn4hXbhVrf3bwp2ibD/zrBVfxJPJtV+DvpXBbBVWwfjPpVa+Dv5c13193NrK4PMKh2+8JzCpjU+U5mdX2AYXU7OUyjRrA/KUlFaaQmZRFUsxyeXsE7X4/ly5n30/+Wq4udDq3qS0JuUZUk5uYQ6ltc+qZjaC2WjhzLtCG30LR6DaeTD/HzJSHH2n4uIX62+Q/x9aVP06bM2rPX5nhSbi7f7djBpvH3svXB+8k5f57NJ04Ui2tjPyeXEN8S7O92YH/7Djbefy9bH9LtHy9uP96qfBJycwip6rh8lg0fy/RBjsunjp8/LYOC2Z1ku2zwci+fimJWzn8uJ1zWVReRtna/x6HtAl4D6KLvNF5SF/9GEdmLprXynlIq0UGYfxxn3t/yEBMtqtVi/J/TqGLy4ocbxrM3M5aTp9O4649vSTmfQ2ClqnzT+S6OnU5hZ7rtjVnRd8SeGPc96Sk5VAusynvf3EHs8VQidxalYSuHpNu3S2B/cjJdZ3zLmbw8wus3ZPLAoUT86Nwm6Q7fybNL4OUe4XywcRMWu+P+lSvTq0ljwr/9nuzz5/ly8CCGtmjBwoMHS7Wv7Ero5YhwPthQsv0eUzT7XwwZxNCWLVh4wNq+g/Kx+x2ZkswNPxSVz5T+Q+kxs6h8fLy8mNRvCG9uXkdu3gWbuJd7+VSUy3YPuzJw5ax6NJpAmp/eRZ8GTNP3zvMoI27BGOdVwGZ9jHO3fSARGY/+LuukD4IZP7aaC7NfnKRz2YR6F6URUqUaKedyioXJvHCGc+Y8zpnz+Dv9OM38Qjl5Oo2U81rYjAunWZd4gNYBdYo5ztTkbGqGFKURFFKNtJTSGu22pOthszJOs2XtQZq3qm3jOBNycwizaoGE+vqRdDrXxob1w77+xDHeMvUksIo3GefOlpl+Yk4uYX7W9n1JyrW13yY0hM8GDQAg0Nub8EYNMVsseJpMxGZlk35WS2dFVBQda4fZOIbEXDv7fr4k29lvHRLCp4Ot7DdsSL7FgpfJRJy9/VphNo4hMTeHWlblE+brR3IZ5fN2t6Ly8TSZ+KbfEBYcOciKo9FXXPlUFLPjfx2XPS4b49Tlbr8HvhSRKgC6uJa9aFRpNo4A76LpQDs6P0Up1Ukp1cndThNgf9Yp6lWtQS3vADzFg7612rAh6ZBNmPVJh+hQvT4eYqKKyYs2AXU4mptCFQ8vfDy0S6/i4cX1NZsQnVNcSPPw/nhq16tOSK0APD09CO/bmm3rDxUL54jKVbzw9qlU+P3q6xtzPCbZJszepEQaBARQx98fL5OJwVc1Y/WxGJswQT5FYpTtQkIREaecJsDexEQaBAZQp5pmf1Dz5qyJOWoTJvzb7+muf5YfieLV1WtYFR1DfHYO7cNCqeKp/f/uUr8eMXaTGnsTEqlvZX9g8+asiba13+Pb7wmfon2WH4nitdVrWB0dQ3xODu1rWdmvV6/YpMme5EQaVAugjp9ePk2bseq4bfnUtC6fYNvyeb9HH6Iz0vh+z99XZPlUlDwlTn8uJy62xektIrutfi9XSj0PvAS8BUTqgltngRmU70X7b4CnRaShUurYReavkKfegL92Q2YWhN8KE8bBrQOdi2tWFt6LXMyka+/EJCYWxu0kJjeZW+tdA8CvJ7dzLDeFP1KimHPjwygUv538m5jcZGp7B/Jxp1GANsC/LH4vf6QUb5FYzBa+en8p73w9FpPJxMqFuzhxNIWBt2pjokt+3UFgDV++mDken6qVUUpx0+jrGD/sK/wDfHjt4xEAeHiYWLdsHzv+sE3DrBSvbVjLD0OGYTKZmHsgkqj0NEa11kZWZkXuZUCTqxjduh1mZeFcfj6PLl9SGP+zvgO5rnYdAqt488e48Xz65x/MORBpY/+NNeuYPmwYJpPw675IotLSGNlOs/+z3bidNXsSE1l+JIpFY8dgVhb2JyXzy959NmHMSvHG6nVMu3UYHiZhbnnsJ2j2F94xBrPFwoHkZGY7sP/qJq18PMTEnINa+YxupdmfuX8v/RtfxZjW7TBbtPJ5ZKVWPp3CajOseSsOpqawdPhYAD7Ytpn1J47Z2L+cy6eiXKktzstWrM3YVq50jG3lysbYVq50XLGt3J6TdZ3OZbt6sZeNlzXeHDIwMHAbV2qL03CcBgYGbsN8he5caThOAwMDt2G5zCZ9nMVwnAYGBm7jgiprJeLlieE4DQwM3IbF6KobGBgYlA9jcsjAwMCgnJiV0eI0MDAwKBcWo8V5aeHuBeo7r57tVvt997Rzq32f+C5ute/p3BuZFaJSlntXeJsrXd6tIbP3v52DsrmgLlsXUypX5lUZGBhcEhiTQwYGBgblxGys4zQwMDAoH8abQwYGBgblxGLMqhsYGBiUD6PFaWBgYFBO8v7rr1yWpKXuINx64Gml1A6743cBE4FTgBdwELhDKXVGRJ4E7gXygRTgbqWUU6pR/4TueWk4rdte6UbE/yXAA3V2LvBnsSAPfTaOa/t35PyZ80wc9xXRu7QNcTv1bc9Dn47D5GFi2fdrmP3+AgAat2vAY5Puo1KVSpjzzXz+8Hcc3h5Nx15t+XTCKLw8PMgzm/lo6Sb+PBoLQNer6vP8oHA8TCbmbY/kuw2ONbhb1wlh1oMjePrnpayMjCq1DLo0r89zt4RjEhO/bYtk6hpbm+GtG/HwgC5YlMJsVkz8bT27jsVTPziQD+4cUBiuTo1qfL1sKzM32GqTX9+6AU+NCsdkMrFw4z5mLLW1361DYx64uQtKKfLNFj7+eT17orS9s1+5uw9d2zUiI/sMI175wXH+W9Xn6du1MvltcyTTV9ja796uEQ8N0fNvUXw4ez27Y+Kp5OnBd0/fTiVPDzw8TKzZGcU3v2/95+27ufwrgrEAvmShtUJ0qYzSmK2UmqCHnQUMB6YBu4BOuhN9EPhAP1cq/4TueVk4p9tuQvxfQ2WMA3MiUmMe9Vqc4uTBuMIQ1/bvQO0mYdx11SO06NyUR7++j0evfxGTycQjX97Dc33eIjUunS//epeti3Zw8mAc970/hh/fnMv25bu5tn8H7nt/DE9HvE5WajYPz1hISs5pmoTUYMq4W4h471tMIrw0JIL7vp9PUnYOsx8exbqDMcQkF9fgfrJfV7ZElf2/yyTCi7dGcP+k+SRl5jDryVGsj4zhaFKRzT+PxLI+8icAmoYFMfGugdz07gxOJGcwfOLMQjur3riPtXuji9l/dmwEEz6cR1J6DjNeHc3G3TEciy+yv/3ASTbu0uQumtQJ4t2HBnHbi9MBWLx5P3PW7OaNe/uVmP/nRkbw0KfzScrI4acXRrFhbwzHEors/3Uolg179PzXDuK98QMZ9toMLuSbuf+TXzl7Pg9Pk4nvn72dLZHH2Hcs8R+1787yryhX6gL4Cv87EJHjIvKqiGwGbtMPjxGRP0QkUkSudRDHE6gKZAAopdbpmkUA24A6zqT9T+iel4VTuu1ebcF8AsyxQB7q3BK6DLWVC75+6DWs/nEDAAf/jMI3oCrVQwNodm0T4qMTSTyWTH5ePutnbymMq5TCx1/Tw6lazYe0+AwAYnYfJyVHu87opDQqe3ng5eFBm7qhxKZlEpeRRZ7ZwtI9h+nRorgG9+gu7VkVGU16btn/UFrXDyU2NZNTaVnkmy0s33WY8Da2Ns9eyCv87l3Zq5gKI0Dnq+oSm5pFQoatUF2rRqHEJmdyKkWzv+qvQ3TvYGf/vJ19K1WDXUdOkZ1bsi5864ahxCVncipVs79ix2HC25Vu31qlsuCcp4cJTw9TMQVRt9t3c/lXFLMyOf25nChPi9NeZ+hdpVTB6zXnlFJdAUTkAaCqUqqLiHQDpgKt9XDDRaQrEAYcAX53kM49wDJnMuRI97xNgK3PrV+1Bp7iwXfX3Y2PZyVmHdvG4lPaZRTonisU807sYF6szeiC6zCFgNlK8dicSFDtVjZBgmpVJzk2rfB3alwaQbWrE1S7Oilx1sfTad65KQCTnpjOu8tfZvxETa/osRteKpZ0n9ZNORifQp7ZTIi/LwlZRQ9GUnYubeuG2oQP9q9Kz5ZNuPu7X2ldp3eZlxZczZdEq4ctOTOXNvVDi4WLaNOYRwd1pbqvDxO+XVDsfL+OzVi+s7hIXc1AX5LSrfKcnkvrxmHFwoV3bMLDt3Yl0M+HJz79rcx8F9oPsMt/Ri6tGxbPf4/2jZlwc1eq+/nw2JdF+TeJMPOlUdStGcCcDXuIPG6rbO1u++4u/4piTA6V3lW3fz/xZwCl1EYR8ReRgIJwSqkJool9fwU8AxSOk4rIGKAT0N2ZDP0TuueuwZG2uW1OS9I/d3C4MO6gB/sw6cnpbJ7/J91uu56nvnuQ5/q8VRiucXANnujXlfFT55eYM/t8PD8onI+XF9fgLgmHdeAg7tp9MazdF0PHRrV5uH8X7p80r/Ccp4eJ7q0a89nvWy7a/vqd0azfGU2Hq2rzwM1dePjDeQ5iOpl/By2ydbtjWLc7ho5Na/PgkC48+Klm36IUI9+eia93ZT56cDCNa9UgJr7oH92/Yt+F5V9RrtSNjF3178C+/2tfcza/lVazvwPdCo6JSC80lcwhSqnzjhIRkfEiskNEdqQt3+m07vkfKVGcM+eRmXemUPcccKh77hYsieBh1QrwCCUt3nZcMeVUGsF1axT+DqpTg7T4dFLi0qlZx/p49cK4fe4IZ/N8bZJp49ytNLu2SWG4EH9fPh87mBfnriA2XWuVJ2XnElbNzyZMcrZt1bWqHcKHIwew8tm76dO6KS8PjSCiZfHufAFJWbmEBhbZDA4obtOanUdPUTeoGgFVqxQe69qiAYfikh0ODSRn5BJS3SrP1X1JzcwtFq6AXUdOUTs4gGq+VUoMY2M/0y7/gb6kZJaS/6hT1Klpm3+A3LPn+ftIHF1aNfhH7bu7/CtKnvJ0+nM54a529HAAvVuepZTKchCmKxCjh+sATEZzmskOwgK2uuo1+nX8R3TPXULePvBoAB51AC+kykC2LrIdFti6aAe9xmoN7Radm3I66wzpiZkc3h5N7aZhhDYIxtPLk/DhNxTGTYtPp233lgB0iGjNqSitG1e1mg+T7rqJT5dvZteJImXmyLhE6gUFUjvQHy8PEwPaNWPdQVsN7r4Tp9LnA+2zMjKKtxeuZe0BW51xa/af1G1W98fTw0S/Ds3YEGlrs25Q0T+35nWC8fLwIPN00bhj/47NWVZCN/HAsUTqBQdQK0iz3/va5mzcZWu/TnBA4fdm9YPx8vQgq5RxTZv8H0+kbnAgtWpo9vt2asaGPXb5r2mV/7pF+Q/w9cbXuzIAlb086Ny8HscT0/9Z+24u/4piRpz+XE5UZIyzQEvdERki8gfgD9xtdbxgjNMExAF36ccnAr7AXL3LelIpNaSsDP0Tuudl4ZxuuxmV/SYS+D3acqRfOXEgjkH3a2OIiyev4q+lO+k8oAMzor7g/JkLfHj3V4Cmu/7lI9/z7vKXMHmYWDFtHScOaLPxH4+fzEOfjsPD08SFc3l8ev9kAIZO6EfdGgE8ENGZByI6A3Df1Pmknz7L/xatZcrdt2jLt3bsJyY5jduv1TS45/xVsgZ3SZgtinfnrWXSA7dgMgkL/txPTGIat3XRbM79Yy+92jVlcKeW5FnMnM/L59kZRbrtVbw8ua5ZPd6as7pE+x/MXMfnT2m64Ys2RXI0Po1bwjX789fvJaJTUwZ2aUG+2cK5C/m8OGlxYfy37x/A1c3rEODrzeKP7mPKgq0s2hRpY//9X9by1WNa/hdt2c/RhDSGddPsz9u4l4iOTRl0XUvyzVr+n/9Wy3/NalV5466+eJgEEWHV30fYtO8Y1vwT9t1Z/hXlSn1z6LLVVW+/5BW3Ztzt28rVcu+2cvHPGdvKlYW50uXVyrHH3dvK7fn0iQoX0LsHBjhdiS+0XHrZVMiV+e/AwMDgksCiTE5/ykJE+onIYRGJFpFivV0RqSYiv4vIHhHZLyLj3HJRGK9cGhgYuBFXvXKpv1zzFdAbbZhvu4gsUkodsAr2MHBAKTVYRGoCh0VkplLqgksyYYXhOA0MDNyGCxe2XwtEK6WOAojIL8BQwNpxKsBPX+7oC6SjvcbtcgzHaWBg4DZcuI6zNhBr9TsO6GwX5ktgERAP+AHDlVIWV2XAGmOM08DAwG2YMTn9sV6nrX/GW5ly5n2XvsBuoBbQHvhSRPzdcV1Gi9PAwMBtlKfFqZSaAkwp4XQcUNfqdx20lqU144D39BdsokXkGNAc+MvpTDiJ0eI0MDBwGxZMTn/KYDvQVEQaikglYARat9yak0BPABEJAZoBR3EDRovTwMDAbeRZXNM2U0rli8gEYAXgAUxVSu3XNxVCKfUN8BYwXUT2oXXtn1NKpbokA3Zcto4z5GX3NpbdrXu+In6PW+0PvLr4DjmuxBJWo+xAFeR8kHtXeHufdPQmsAvJcLN9k5s7jJ9W3IQr3xxSSi0Fltod+8bqezzQx2UJlsJl6zgNDAwufS63d9CdxXCcBgYGbuNK3VbOcJwGBgZu40rd5MNwnAYGBm7jStUcMhyngYGB28iz/MflgQ0MDAzKizHGaWBgYFBOjK66Hfpi1MeBxkDNgoWmItIcTSu9I/CSUupDqzj9gM/QFrB+p5R6z95ueenUpQkPPNMfD5OwbMFO5kzbbHO+boMgnnzjJpo0D2PGl2v49cc/Cs/NWPI4Z09fwGKxULmKF0pRaOeXxw/YJ8VDn43j2v4dOX/mPBPHfUX0Lm037k592/PQp+MweZhY9v0aZr+/AIDG7Rrw2KT7qFSlEuZ8M58//B2Ht0fTsVdbpMZrgBeQh8r5AC5sc3h9L70H67dC9UD4fbrz5XJ1eAseeHMYJpOJ5T9vZe5Xq4qFeeDNYVwT0YrzZy/w0RM/ERMZR+3GwbwwqWgbw7B6Nfjxw6Us+G49AEPGdWPwuG6YEf7cEsX3n6+i0/VNeODpfniYTFodzLCrg/pBPPnaUK0Ovl7Lrz9Z1cGixzl75jwWs8JstvDIHcXfuLv26oZMeLAnHiYTS5bvYdacP23O9+rRkpG3a/s9nD2bxydfrCDmWAo1g/x48ZmBVA/0xaIUi5fuZt7Cv4uXVdemPPDCIEweJpb/up253220OV+nYU2e/N8wmrSsxYzPVjJPv8eCQqvx9Lu3ERjki1KKZXO2s1C/tqu7NuWBZwdoNmdtYe6XDsr/rdu4pqde/o//SMy+WK38v7mnqPzr1+DHiUtY8O26wmPDHujJva/dQvyxFACX1e/oJ/vTb1QXstILNZ0GYLdusrwYLc7ibAEWA+vtjqcDjwI3WR90cj+9cmEyCQ8/P5AXHvyB1KRsvpg5nm0bDnPyaEphmOyss0x6fylderRwaOPZ8dPJzT7L9wsetbHzR4s6nDwYVxju2v4dqN0kjLuueoQWnZvy6Nf38ej1L2IymXjky3t4rs9bpMal8+Vf77J10Q5OHozjvvfH8OObc9m+fDfX9u/Afe+P4emI18lKzUZlPACWZPBsigRORaXc6DB/N/WHUbfA8++Uq2R4+H+38eLIr0hNyOSzpc/w58p9nIwqkpa9JqIltRoGc0/XN2nesQET3h3OE4M/4lRMMhP6vF9Yvj/+/TZ/LNMW67ft0pTr+rbloV7vcb5GNaoFVtXq4LkBvPDwj1rZ/XAf2zYe5uQxqzrIPsukD5fRJby54zq4fwbZWY6Fwkwm4bGHe/P0i7NJSc3hm8/vZMu2aE6cLFJ6TEjM4rFnZpGbe55rOzXiqcf68dDjP2K2WPj623VERSfh7V2JKV/cyY5dx23imkzCwy8P4cV7p5KalM1nsx/iz3WHOBlTJH2Vk3WGb975net7trTJmznfwrcfLCXmYDzePpX4/NcJ7NoaTdyxFM3mbZ9p5b/sWa38j1iXfytqNarJPV1e18r/vRE8MXCiVv693y0q/13vFJY/QFCtADp0b05+vpl3H5zG8UPxLqtfgAXfrmPe5LUALDv1RYWcJly5s+plXpWINBCRQyIyQ0T2isivIuKjlNqllDpuH14playU2g7k2Z0q3E9P31i0YD89ROQ+Edmu79w8T0R8nMl8s9a1iY9NJ/FUBvn5ZtaviOR6u4czK+M0Rw7Ek59vLpedLkM72YS5fug1rP5xAwAH/4zCN6Aq1UMDaHZtE+KjE0k8lkx+Xj7rZ28pjKuUwsdfu5Sq1XxIi88AIGb3cc1pAuRHgVRCa30W55p2EODn8FTJeLUl/ngqiSfTyM8zs2Hh31zXt41NkOv6tmHNr9reB4d2Hse3mjeBwbYbybTv2oyEE6kkn9LyPfCOrsz5ahV5F7QtDrMyTtOslV3ZrYzk+u7NbOwU1UH5d/hq3iyMUwmZJCRmkZ9vYe2Gg9xwfVObMPsPniI3VxNGPXDoFDWDtAJLTz9NVLQmwHf27AVOxKYRVMO2MK9qU4f4k2kkxmVoZbVsL9dF2P6TzUo/zZHIU8Xyn5GaQ8xBbZ+Js2cuEHs0mRrB/kU2bcq/rU3c6/q1Zc1creV8aOdxfP0dlP+NzUg4nkJyXJFA2/1v3Mraedsx55lJjkt3af26g3xlcvpzOeFsbpsBU5RSbYFs4KGLSMvRfnq19e/zlVLXKKXaAQeBe+wjO6JGsD8pSUWvtaUmZRFUsxxeRsE7X4/lubeHUcW7yHGlJmURVNv2lcKgWtVJji1qqaTGpRFUuzpBtauTEmd9PL0w7qQnpjP+g7HMPDGJ8RPv4PsXZxbPQ+W+kHeQ4v9nKoAphJT4oochNSGTGqEBNkFqhAaQahcmKLSaTZjuQzuyYUFR17Z2o2BaX9uYT35/iomT7+KqlrX0OsguspOcTVBwOXbyUop3vhrLlz+Op//NVxc7XbOGHykpRfZTUnOoWcO3RHMD+7bjrx3F93UIDfGnaeMQDh623VAnKKQaKYlW91BiFjXKk3+d4FoBNG5Ri8N7Y4vbdFj+1UiNz7QJExRmG6b70E425d+5TxtSEzO5cDYPi9liE9cV9QsweFw3vl71PE98NAogsOwrLx2LEqc/lxPOOs5YpVSBWv1PaNK+5aW0/fRai8gm/eX80UArhwas9uuLS/3bqQ36SuOJcd8zYdRkfp66iXqNatK6Y/0iO3Yidrr6pm1aChwcLow76ME+THpyOqPrP8ikJ6fz1HcP2gb0bIL4PYPKfqUcuXYGh5myDVHC9RRmzcuDzn3asGnxrsJjHh4mfKt588Tgj/ju81W89O5tjuugHAKAT9wzlQljJvPSozMZcts1tO5Q3zZA2ZdSSPu29RjQty2Tv19vc9y7ihdvvHwzX05ew5kzdioKLnheq/hU4uXPRjP53SWcOX2+hDvdmfIvCuPp5UHnvm3Y9PtOACp7ezHisX78+MHiCtgv+u6ofpf8sJm7u7zBw33eJz05G+AjBymVi/+647S/VS9GfrC0/fSmAxOUUm2AN4AqDjNhpateJ+hqUpOzqRlS9F80KKQaaSk5TmcoXQ978mgyudnnaN6qdpGdeFv96pRTaQTXLWqFBtWpQVp8Oilx6dSsY328emHcPneEs3m+1h3bOHcrza5tUmTQFIIEfIXKehbM1g1xF2BJpGatosZCUFgAaVYtc4DUhAyCSgnTqUdLYvbFkpmaYxUnky36eNjh/aewKMXZMxeoGVLUQgsK9i9fHej2szJOs2X9ocI6KCAlNYeaNYvs1wzyI7Vo8qKQRg1r8szj/XjpjXlk5xRphnt4mHjjlZtZve4Am7YcKRYvNTGLmlYtsaDQaqQlZxcLVxIeniZe/nQU6xbv5o/V+x3bdFj+mQTVCrANY9VK7RTRyqb8w+rXJLReDb5e8yIPvn0bVXwq88WKZwms6eey+s1MzcFiUdpE18w/QBteqxD/dcdZT0Su17+PBDaXFrgESttPzw9IEBEvtBanUxzeH0/tetUJqRWAp6cH4X1bs239IafiVq7ihbdPJQCOxyQTFOxPVuaZQjtbF+2wCb910Q56je0OQIvOTTmddYb0xEwOb4+mdtMwQhsE4+nlSfjwGwrjpsWn07a7NqHQIaI1p/TB+6rVfJDAb1E5H0HeTmcv13ny9lGrYU1C6tbA08uD7kOvZtvKfTZBtq2MpOet2nPRvGMDTmefI8PKYYTfdDXr7bpxW1fspf0NVwFQu14NvDw92PnXUWrXrVFUB31as23jYaeyaV0Hlat4cXXnxhy3mpQBOHw4gTq1AgkNqYanp4mI7i34Y1u0TZjgmn689crNvDNxCXF243XPPtGfkyfTmDt/u8M8HIk8Ra36QYTUDtTKqn9btq076FT+AR5/6xZij6bw24wthccKbVqX/wq78l+xl563aSsBmndswOmcs8XL/7eie/D4oXhGtnmeu659lbFXv4zZYuHNu78lJ/OMy+rXegy0S/92AJFUkCvVcTo7q34QuFNEJgNRwCQReRR4FggF9orIUqXUvSISCuwA/AGLiDwOtFRKZTvaT0+3/wrwJ3AC2IfmSMvEYrbw1ftLeefrsZhMJlYu3MWJoykMvFWbnFny6w4Ca/jyxczx+FStjFKKm0Zfx/hhX+Ef4MNrH48AtFbJhpWRjLjnRkbd112zcyCOQff3BmDx5FX8tXQnnQd0YEbUF5w/c4EP7/6qMA9fPvI97y5/CZOHiRXT1nHigDYb//H4yTz06Tg8PE1cOJfHp/dPBmDohH7gUQ/xfRh8HwZAZYwDi20rF+CpN+Cv3ZCZBeG3woRxcOvAskrGzKSX5/L2rIfwMAkrZ2/j5JFEBoy9AYClP25h+5r9XBPRkqlbXuXc2Tw+efKnwtiVq3jRoVtzPn/uFxurK3/ZxhMfjWbSmhfIQ5j4+gKtDiYu5Z0vxmLyEFYu0utgmF4H8/Q6+MGqDkZex/jb9TqYOLywDtat2MeOrbZO0WxRfPb1Kib+73ZMJmHZyn0cP5HKkAHtAVi0dDd3jr4Bfz9vnpig1ZfZbOH+R3+gTava9O3VmphjyXz31V0AfDt9I39uLxoDtZgtTPrfIt7+dpxWVr/9zcnoZAYM15zO0tl/ERjky+dzHsbHtzIWi+KmsTdw/+BPadgslF5DO3LscAJfzp8AwIxPV7J94xHN5s8P4+FhYuUvWzl5JIEBd2gjXEt/2KyVf89WTN36OufOXuCTJ6zK31sv/2d/dli7FrOFnIzTvDj5bgRcVr/3vDyURi3rgFIkaRNSTzjMQDm4UtdxSlnjUSLSAFislGr9j+TISfp2eO1ihgucxrLnoldJOYX79+Ps61b7xn6cTnCZ78e57NQXFfZ6vdc/4fRzuir8k8vGyxpvDhkYGLiNy60L7ixlOk59reYl1do0MDC4PPjPOk4DAwODi0VdoY7z8lqub2BgcFlhQZz+/NOIyCARuSgfaDhOAwMDt3GJL0caAUSJyAci4ngzixIwuuoGBgZuw+wieWB3oJQaIyL+aGvTp4mIQtvZ7WelVKlvcVy6V2VgYHDZo5Q4/fl38qeygXlomw6FATcDO0XkkdLiXbYtziN3l38jhvLgE9/FrfbdrXu+5O8VbrXf+Nf73WofQHm5daku4lvebafKaT8lyK32CTlXdph/mUt5Vl1EhgDj0PYU/hG4VimVrO/OdhD4oqS4l63jNDAwuPQpx34v/wa3Ap8opWx2rlZKnRGRu0uLaHTVDQwM3MalPKsOJNg7TRF5H0Aptaa0iIbjNDAwcBtmi8npz79AbwfH+jsT0eiqGxgYuI1LsasuIg+ibcbeWET2Wp3yQ5MEKhPDcRoYGLiNS/TNoVnAMuBd4Hmr4zlKqeJblDnAcJwGBgZu4xJ1nEopdVxEHrY/ISLVnXGehuM0MDBwG5focqRZwCDgbzQ1C+tMKqBRWQZc6jhFJFcp5at/H4Cmod4TuBu4D0gBqqJtVvxygTSwiKxHW3x6DrgA3KeU2u1Mmt3qNeC1bj0wiTD7QCTf/P2XzfnOteswZeBNxGVreyMuj4nii+2ahvn7PfsS0aARaWfP0G/WDKeusetV9Xl+UDgeJhPztkfy3QbHO4u3rhPCrAdH8PTPS1kZGVXMxisbR7lP8zzfgvi2ReVOLPN6Lla33Zpu9Rrw2o1WdbDTQR0MsKqDo1odhPn68VGvftT0qYpFKX7ev5fpe3cVs9+9bgNe7RKBhwizD+1j0m5b+9eF1WVK35uIy9HtH4vi851bC8+bRPj9ljEkns7lnuW/Fc9/WCNe69QLk5iYHb2bbw7Yatx3Dq7HlO7DiMvV7cce5otIbSjsrmadGNGkPQL8Er2HaYcd3w826dVvwKvdwzGZTMyJ3Mc3O2zjdK5ThymDhxKrl9eK6Gi++HObI1OF+X+1Y29MIsyJ2cM3B7fanO8cXI8pN95K7GndXuxhvtiviTjcddU1DG/cHhGYHbPbqfyXh0txjFMpNUg0UabuSqmTF2PDLS1OEemJtni0j1LqpC4c9YlS6kP9/HBgrYi0UUoVCHCPVkrtEJFxwEQcz3jZYBLhzfCejF3wK4m5OSwcPprVR6OJzrBtaW+Pj+PexQuKxZ93MJIf9u7io95OTaRhEuGlIRHc9/18krJzmP3wKNYdjCEmOb1YuCf7dWVL1IkSbbwy6FO3aZ7nXchnyS7nHoCL0223vZ43u/dk7EK9Dm4fzepjDuogoXgd5Fss/G/LBvanJFPVy4vfh49hc+wJm7gmEd68oRdjlswl8XQOi24Zw6rjMURnptnaT4xz6BQBxrXuSHRGOr6VKjnO/zV9GLv2FxLPZLOw312sjosiOtvOfkoc966fa3PsqmpBjGjSnpuWTyfPYmZ6j+Gsi4/meE7JcrsmEd7oEcEd8+eRmJvDgpGjWX00huh0u/I6dYp7Fy1wbMTe3tV9uWPdzySezWZBn3GsPhVFdHaqXf5juXejff5rMrxxe25eOU3Lf/gI1p2K5niu6+SCLZfoK5dKKSUivwHFpVWdwOVXJSI3At8CA5VSMY7CKKVmAyuBUQ5Ob6VINrhU2oWEciIzk9jsLPIsFn4/cpjejZqUHVHnr/hTZJ5z/u2LNnVDiU3LJC4jizyzhaV7DtOjReNi4UZ3ac+qyGjSc8+UaMPdmueOZDgccVG67Va0CwnlRJZVHUQ5XwcpZ06zP0XTGDqdl0d0ejqhdm/ztA8O5UR2BrE5uv3oQ/RpULzMSyK0qi8R9Rvxy6G9Ds+3q1GLEzkZxOZmavZPHKR33aucst2kWhC7U09xzpyPWSn+So6lbxlx24XaltfiI4fo3dj56ylmr3otTuRmEHtay//ikwfoXadp2RGBxv412J1WlP8/k0/Sp26zi86LI1Q5Pv8C20TkmouJ6GrHWRlYCNyklCpLNW0n0NzB8X7AAmcSC63qS0Ju0bv4ibk5hPoW19zuGFqLpSPHMm3ILTStfvGSDyH+viRkFaWXlJ1LSDXb9IL9q9KzZRNm/+n4QbW34Q7N8w9+fRQ8bZ2xuwit6ktCjl0dVC2hDkaMZdpgx3VQ28+fljWD2Z2YYHM8xMePeKs6TjidS0jV4p6+Y0gtlt16B9P7D6NpYJH9V7tE8O62jSV2GUO9fUk4UyRilngmh1BvB/aDarN0wN1M63E7Tatpr1Iezkzh2uB6BFTypoqHJ+G1GhPmU/qrwPbllZDj+Ho6hIWxZPRYpt50c6n3bKiPn03+E87kEOIg/x2CarOk3z1M7T6cpv5a/o9kpXBtzbrlyn95ucTfVe8BbBWRGBHZKyL77JYnlYiru+p5wB/APcBjZYS1L6mZIlIVTcito8MIIuOB8QA1ht+KNCn+393+AdmfnEzXGd9yJi+P8PoNmTxwKBE/TnXiUpzDXrPp+UHhfLx8E5byDO5cpCb2tHd/LzxmrXl+Vfv6fLrwU1RqT+fzcJGIgzc+7K+8WB0MGErET0V14OPlxaT+Q3hr0zpy82x1zx3q1tulEJmaxA0zp3AmP4/wug2Z0vcmevzyPRH1tPHryNQkrgurW9wQJZS1nf396Yl0XfCVZr9WYyZ3G0bE75OJyU7jmwNb+bHnCM7kX+BgZhL5FovDdIoSLPt69icnc+PU77TyatCQyYOHEDFjWul2bezZsj89kRsX6fkPa8zkbrcSsfgbYrLTmHxwGz/0GMmZ/AscykjGXFb+y4sLm5Ii0g9t3sQD+E4p9Z6DMOHAp4AXkKqU6l6KSefG6Bzg6hanBbgduEZEXiwjbAe0F+kLGA00RJvx+spRBGtddb8briMhN4cwq65dqK8fSadtNbdz8y5wJi8PgPUnjuFlMhFY5eJEwJKycwmrVpReiL8vydmnbcK0qh3ChyMHsPLZu+nTuikvD40gomXjEm24Q/P8yO4TgAIpsuEuEk7nEOZ38XXgaTIxqf8QFh45yIqjtgqXAImnc6hlVcdhVX1JdmQ/X7cfW2S/U2htetVvzOZR9/FFr0F0qVWPTyIG2Ob/TI5NKyvUx4+ks3b2863sx8do9itr+Z8Ts5fBy6YxfNVMMs+fK3V8EyAxN9emvML8HFzPBavyOn4MTw8TgVWqOLZnl/8wHz+Sz9ruiGaT/4QYPMVEYCU9/0f3MGTFVEas+YnMC2c5nuPcEI+zuKrFKSIeaH6hP9ASGCkiLe3CBABfA0OUUq2A20rPmzqhlDoBnKWcowYuH+NUSp1Bm+ofLSL3OAojIsOAPsDPdnHzgJeB65zZWHRvUiINAgKo4++Pl8nE4KuasfqY7bBqkI9P4fd2IaGICBnnzpb3sgCIjEukXlAgtQP98fIwMaBdM9YdPGoTpu/EqfT5QPusjIzi7YVrWXsgppgNt2qeN6oJ4gXKdYP8JbE3KZEG1QKo46fXQdMy6iDYtg7ej+hDdHoa3++2vZ4C9iQn0qBaIHX8qmn2mzRn1Qlb+zW9rezXDEXQ7H/w1yaunzmZrrO+5ZHVi/kj/iRPrF1qm/+0eBr4BVKnqm6/fgtWx9muggiqUrXIfo0wLf/ntfzXqKylXcvHn351m7HoROnqqHsTbe/ZQVc1Z3WM7T1kXV5tQ0IxIWSUMBa/N902/4PqtSw1/22rh2ESIeNC8fz3rdu8zPyXF4tFnP6UwbVAtFLqqFLqAto2cEPtwowC5hfMlCulkkszKCJDRCQKOAZsAI6jLYwvE7fMqiul0vVm9UYRKZjee0JExqAtR4oEIqxm1K3jnhWRj4Cn0br8JWJWitc2rOWHIcMwmUzMPRBJVHoao1q3BWBW5F4GNLmK0a3bYVYWzuXn8+jyJYXxP+s7kOtq1yGwijd/jBvPp3/+wZwDkSWnZ1H8b9Faptx9CyYRftuxn5jkNG6/Vktvzl9lD48U2HCn5nl+nhmV9VyZeYGL1W23uh6leG3jWn4YOgyTWNVBK70O9u9lQGO7Olih1UGnsNrc0rwVh1JTWDJ8LAATt21m/YljNvZf3byGHwYMw0NMzDm8j6iMNEa3aAfAzIN76N+oGWNaFtl/ZM3i8uV/xyp+iBiBSYS5MXuJykplVNMOWv6jdjGgXnNGN+2g2Tfn8+jmhYXxJ3W7hYDK3uRbzLy6fQXZF0qfbDQrxevr1jHj5mFaevv18mqjl9e+vfRvehWj27bFbFFaeS1bUrq9HSuZET5CK/+je4jKTmVUEz3/0bvoX7c5o5t2xGzR8//HgsL4X3cdVpj/13asIDvPxVvVuW7ssjYQa/U7DuhsF+YqwEtf3ugHfKaU+qEUm28B1wGrlVIdRKQH2qbGZVKmrvqlSsMvPnJrxn3i3buMot4PR8sOVAGM/TjLRnzz3Gs/pbJb7bt7P86jI1+ssNdr9PM7TlfisVEv3Y8+h6EzRSk1BUBEbgP6KqXu1X+PRds/s3DDYRH5EuiEtnbcG22FzkCl1BFH6YnIDqVUJxHZA3RQSllE5C+l1LVl5dV4c8jAwMB9lGuOVE0BppRwOg6wnuGrA8Q7CJOqlDoNnBaRjUA7wKHjBDJFxBfYiDY5nQzkO5PXS3N1qoGBwRWBC5cjbQeaikhDEamEJrS2yC7MQuBGEfHUd3HvjO0EtD1D0SaGngCWAzHAYGeuy2hxGhgYuA8XjbYopfJFZAKwAm050lSl1H4ReUA//41S6qCILAf2oq3w+U4pVeKkhd4yLcC5d651DMdpYGDgNlTZs+XO21JqKbDU7tg3dr8nor2yXSIikoNjly6aCVXmWwCG4zQwMHAjl97uSEqpCqv0GY7TwMDAfVyCi3ZExF8plS0i1R2dN/bjNDAw+He5BB0nl9p+nAYGBgY2XIIbGSulBul/G16sjcvWcZrOu7dCPC/urUynsYRd/C5NzuDuBeoxt052q32Ath896Fb7Z0PcuxrP/5h779EsHL+/filxqb9fIyJtgQZY+UKl1Pyy4l22jtPAwOAywIWz6q5GRKYCbYH9aMuXQOuqG47TwMDg30Mu7RbndUqplmUHK47x5pCBgYH7uLS3gN9qvzWdsxgtTgMDA/dxCU4OWTEDzXkmAucpWgDftqyIhuM0MDBwH5d2V30qMBZNdbdcW98bjtPAwMB9uFiJw8WcVErZbxTiFBftOEXEjOapBTADE5RSf4hIA7QdSQ4DlYAdwD367u6IiCeQCHyrlHrByt56NG31goVAbyulfi0rH90aNOCViHA8xMTsffuY/JdjWdw2oSHMGzWSRxcvYfkRbYfscVd35PY2rQE4nJLKs8tXcMFstonXpXl9nrslHJOY+G1bJFPX2NoPb92Ihwd0waIUZrNi4m/r2XUsnvrBgXxwZ5FMQ50a1fh62VZmbiiuG97p+iY88HQ/PEwmli3YyZwZm23O160fxJOvDaVJ8zBmfL2WX3/6o/DcjEWPc/bMeSxmhdls4ZE7iu/K5W7d89JwhW77Dc3q8/wQXcv+r0i+X2dbBz1aNeKRvkV18N6i9ew6ru04NqZrB4Z1bo0g/PrnPn7aXDz/br+HWtbnmVs1HfUFWyKZtsruHmrbiAcHdUEV3EPz1rM7Rsv/kjfv5vS5PCzKgtmsGP3BrDLLy9W67RXi0u6qHxKRWcDvaF11wP3Lkc4qpdoDiEhf4F2gQBgpRinVXtcJWYWmQzRTP9cHzaneLiIvKtudlEcrpXY4mwGTCK/3iuDOufNIzMnhtzGjWRMTQ3RacZ3z57rdyKbjRTrnIb6+3NmxA32nzeB8fj6fDx7I4ObNmLf/gE28F2+N4P5J80nKzGHWk6NYHxnD0aQi+38eiWV9pLZDe9OwICbeNZCb3p3BieQMhk+cWWhn1Rv3sXZvcU0dk0l4+LkBvPDwj6QmZfPFD/exbeNhTh4r2hw/O/sskz5cRpdwR6Kg8Oz9M8jOKi5FXJC2O3XPy8IVuu0v3xzBfVPmk5iVw+xHR7FufwxHrbTst0XFsm6/VgdXhQXx4ZiBDJk4gyYhNRjWuTUjP/+ZPLOZb+69hY2HjnEyNdPGvrvvoedvj+DBL7R7aOazo9iwL4ajiVb30OFY1u/V76FaQbx/z0Bueatos57xn80l87Rzmxa7Wre9olzis+reaA6zj9Uxp5YjuWpW3R8oJnCjlDIDf2Grkz4STanuJNq29RdNu9BQTmRkEpula1QfOkQvBxrVd3Roz/IjUaSdsXUunmKiiqcnHiJ4e3qRlGsrvNa6fiixqZmcSssi32xh+a7DhLextX/2QtEu4t6VvYopFgJ0vqousalZJGTkFDvXrFVt4mPTSTyVQX6+mfUrI7m+u622dVbGaY4ciCc/v/z9HnfrnpdFRXXb29QL5WRqJnHpWh0s232YiFal1EElr8JV141CqrP3RALn8vIxWxQ7jsbRs7Xttbv9HmoQSmxK0T204u/DhLe1y//5su8hZ3G1bnuFuYRn1ZVS4xx87nYmbkVanN4ishuogtbFjrAPICJV0DYTfUz/7Y22rf39QACaE91qFWWmiBR01XsqpdJKy0CIn72mdy7twsJsw/j60qdpU8bMmUvb0NDC40m5uXy3Ywebxt/Lufx8Nh8/weYTJ2ziBlfzJdHK2SVn5tKmfij2RLRpzKODulLd14cJ3y4odr5fx2Ys3+lYZr5GsD8pSUVCbKnJ2TRvXae0y7ZFKd75aiwoxZL5f7PsN1vRM0e65+1DwuytFOqeJ50+zTtbNhCVblv0Jemeu5tgf18SM6207LNyaVOveB30bN2Yx/p3pYavDw9NXQBAdGIaj/a7gWo+VTifl8+NzRuwPzbJJp7b76EAX5Ks7qGkzFxaNyie/x7tGvPIkK5U9/Ph0UkLCo8rBV9PuAUFzNu8j/lb9hWLa40j3fb2ocXru0C3Pel0Lu9u3Fisvq9kRORZpdQHIvIFDly2UurRsmy4qqt+PfCDiLTWzzXWnWpT4FelVIGK2SBgnVLqjIjMA14RkSf0limUs6vucPTE7h2vl3uE88HG4jrn/pUr06tJY8K//Z7s8+f5cvAghrZowcKDRRtGO7LvSKNp7b4Y1u6LoWOj2jzcvwv3T5pXeM7Tw0T3Vo357PctTl9DeXSgnrhnKumpOVQLrMp7X40l9ngqkbuKHl536567G4e66g7KZ01kDGsiY7i6YW0m9O3CfVPmcTQ5nanrtvPtfbdw5kIeR+JTMVvsNOwdJerCe8ghDvK/bk8M6/bE0LFJbR4a1IUHvtDuoXEfzyYl6zSBvt5888gwjielszP6VMm2/wHd9vJwiXbVCyrIaV9jj0tm1ZVSW0UkCKipHyoY4wwD1ovIEH32aiRwg4gc18PVAHoAq51JR0TGo4s5BQ27lcSwMDtNb1+Scm01qtuEhvDZIG2SJtDbm/BGDTFbLHiaTMRmZZN+VmvgroiKomPtMJubPikrl9DAIvvBAcV11K3ZefQUdYOqEVC1SuGYVNcWDTgUl0x6ruMxyNTkbGqGFO2bGhTsT1pK8S59SaTr2upZGafZsv4QzVvVtnGczuqeF7D+xDHe6t6TwCreZJw7W6buubtJysol1KqvH1LNl5RS6uDvY6eoW6MaAT5VyDxzjvnb9zN/+34AHut3A4lZtmWbmJPr1nsoOTOXEKt7KCTAl5SsUu6h6FPUsbqHCsJm5J5l7Z5oWtUPLdVxOqvbXsD648d4MyKCwCpVSpQgrhCX4CuXSqnf9b+FA8kiYgJ8lVLZJUa0wiVjnCLSHG07e5v2vlIqAXgeeEFE/IGuQD2lVAOlVAPgYZyU49TtTVFKdVJKdfK/7npNozowgDrVdI3q5s1ZY6dRHf7t93TXP8uPRPHq6jWsio4hPjuH9mGhVPHU/nd0qV+PGLsJgf0ndR316v54epjo16EZGyJt7dcNqlb4vXmdYLw8PGwG8vt3bM6yErrpAIcPxFO7bg1CagXg6elBeJ/WbNt42KnyqFzFC2+fSoXfr+7cmOMxtlLS7tY9dzeRsUVa9p4eJvq3b8a6A3Z1UKOoDlrU1uvgjFYH1at6AxAa4EfPNk1Yttu2bN1+D51IpF5wILVqaPnve3Uz1u+zy39Nq3uobjBento9VKWSJz6VvQCoUsmT61vUJyYhldJwtW57hbmExzhFZJaI+ItIVeAAcFhEnnEmrivGOEHrINyplDJL8b7VAuB1tHHOtUqp81bnFgIfiMhF6aialeKNNeuYPmwYJpPw675IotLSGNlOW/j/856Sdc73JCay/EgUi8aOwaws7E9K5pe9tuNHZovi3XlrmfTALZhMwoI/9xOTmMZtXTT7c//YS692TRncqSV5FjPn8/J5dkaRBnYVL0+ua1aPt+aU3KC2mC18NXEp73wxFpOHsHLRLk4cTWHgsE4ALJm3g8Aavnzxw3h8qlZGKcVNI69j/O1f4R/gw2sThwPg4WFi3Yp97Nhq2yp0t+55WVRYt92ieGfBWibfdwseJuG3v/YTk5TG7dfpWvbb9tK7TVOGXN2SfIuZc3n5PP1TUR18csdgAqpWId9s4X+/rSX77Hlb+//APfT+nLV8/bB2Dy3cup+jCWnc2lWz/+vmvfRs35RBnVuSbzZz/kI+z03V8l/Dryofj9e0wzw8TCzbfog/DtiOoRYrLxfrtleUS7SrXkBLfUPj0WiSHM+h7dFZqvQGXMa66o0//NitGfeNc28XI3RzllvtH7mrwuoApXJlbCvn3nvf7dvKNXVv/o8+/mSFL6DxR84/pzFPVTy98iAi+4H2aBsbf6mU2iAie5RS7cqKa2zyYWBg4D4u4a46MBk4DlQFNopIfcCpMU7jlUsDAwO3cSl31ZVSnwOfF/wWkZNok9VlYjhOAwMD93EJzqqXhP4WY74zYQ3HaWBg4DYu5RZnRTAcp4GBgfu4Qh2nMTlkYGDgNkQ5//nH8ybiIyKviMi3+u+mIjLImbiG4zQwMHAfl/as+jS03ZGu13/HAW87E9FwnAYGBm5DLM5//gUaK6U+APIAlFJnKWH7Ansu2zFOdzftK2W5N4HzQd5uta+83Jt/dy9OB9j71CS32m/+vXuvIbccm1xdDJXTL58Z60uUC/qObQpARBpjtaFxaVy2jtPAwOAy4NKeHHoNWA7UFZGZwA3AXc5ENByngYGB27iUlyMppVaJyE60DdUFeEwpVfouKjrGGKeBgYH7uIQnh0TkBuCcUmoJ2sbqL+qvXZaJ4TgNDAzcxyXsOIFJwBkRaQc8A5wAfnAmouE4DQwM3MYlPquer79mORT4XCn1GeDUtmLGGKeBgYHbuJTHOIEcEXkBGAN001V5vZyJeFGOU0RCgU+Ba9Cm748DjwN7gENoAm45wFcF29OLyF1AJ6XUBH2b+mloeuyPAHOAxvrv35VSzzubl24NGvByT00Te87e0jWxfx09ksd+t9PEbtsapeBwairPLSuuiX196wY8NUrTqF64cR8zltra79ahMQ/crGli55stfPzzevZEaZrYr9zdh67tGpGRfYYRr5TcA7j26oZMeLAnHiYTS5bvYdacP23O9+rRkpG3dwbg7Nk8PvliBTHHUqgZ5MeLzwykeqAvFqVYvHQ38xYW36m9e90GvNolAg8RZh/ax6Tdtrrq14XVZUrfm4jL0XXVj0Xx+c4iDT2TCL/fMobE07ncs/y3YvbdrXteFhXVbr+xUX1e6qPdQ3N3RzJlawn3UFgIc+4aweO/LWXFIe0eWvvw3Zy+oOme51sUw6YW1z2/sVF9Xu6llc+c3ZFM2Vay/bl3jODxBUtZfliz71e5Mu8M6E3TmjVAKZ5fuordp2wF87o2qc+LA8IxiYlfd0by3SbH9lvXCuGX8SN4cs5SVh6IItTfl/eG9SPI1welYM6Offy4rfzlXyoudJwi0g9NIdcD+E4p9V4J4a4BtgHDlVK/lmJyODAKuEcplSgi9XBiE2O4CMcp2hbvvwEzlFIj9GPtgRA0raEO+rFGwHwRMSmlptnF/wbNs49Dc7IfKqXWiUglYI2I9FdKLSsrLyYRXu8dwZ1zNE3s+WNL1sR+1oEm9h0dO9DPShN7UPNmzLfTxH52bAQTPpxHUnoOM14dzcbdMRyLL7K//cBJNu7SpCia1Ani3YcGcduL0wFYvHk/c9bs5o17+5V8DSbhsYd78/SLs0lJzeGbz+9ky7ZoTpwsUiFJSMzisWdmkZt7nms7NeKpx/rx0OM/YrZY+PrbdURFJ+HtXYkpX9zJjl3HbeKaRHjzhl6MWTKXxNM5LLplDKuOxxCdaatquD0xzqFTBBjXuiPRGen4VqrksA7cqXvuDBXRbjeJ8Fq/CMbNmk9idg7z7h7FmqgYYlKL30NPR3Rl89HiO7Df8dNcMs46lp4wifB6nwju+kW3f9co1kY5vkefCe/KpmO29l/uHc7Go8d55LfFeJlMVPHyKhbvlUER3DNjPknZOcy5fxTrDsUQk1Lc/lN9urIlusi+2aL4YPlGDiQk41PJi3kPjOaPmBPF4lYIFzlOvTX4FdAb7Q2f7SKySCl1wEG494EVZWZNqUTgY6vfJ3HjGGcPIE8p9Y1VgruBWLtMHQWeBOylNj9DE2m7QyllUUqdUUqt0+NcAHYCTi0dbhdmq4m95NAhejVxoIndsT0rohxoYpuKNLGreHmRfNpWRKtVo1BikzM5laJpYq/66xDdO5ShiW21o/6uI6fIzi1dy6V5szBOJWSSkJhFfr6FtRsOcsP1TW3C7D94itxcbV3ugUOnqBmkDcOkp58mKlqTuz179gInYtMIqmE7RNM+OJQT2RnE5ui66tGH6NPAeZ3t0Kq+RNRvxC+HHEtIuFv33Bkqot3etlYoJ9Izic3U76EDh+l1VfHyGdupPSsPRZN22rHoXqn2M6zsHzxMTwf27+jUnhWHo0m3su9bqRLX1K3N3D2RAORZLOSct12f3bZOKCfTM4nLyCLPbGHpvsNENC9uf8x17Vl1wDb/KbmnOZCgaVSduZBHTEo6If6+5bq+snDhu+rXAtFKqaO6n/gFbWzSnkeAeUCyg3O2eRO5TkS2i0iuiFwQEbOIOCXNcDGOszWaLocz7ASaW/0eBVwNjFBKFdv3TkQCgMHAGmeMh/jaaWLn5BLi61csTJ+mTZm12/bBT8rN5bvtO9h4/71sfeh+cs6fZ/Nx2//2NQN9SUq30sROz6VmYPEnNLxjE+a+cxefPH4zb01d6UzWi9Ko4UdKStGm0ympOdSsUfLNO7BvO/7acbTY8dAQf5o2DuHg4Xib4yE+fsTnWulsn84lpGrxa+gYUotlt97B9P7DaBpYo/D4q10ieHfbRkeKtoBj3fPgasXz37N1YxY9cydf330Tr8xdBWi651c3qkM1nypU8fLkxuYNCHUQ152E+PmSaH0PZecS4udrF6YqvZs14eedxf95KGDqqFuYf/cohndoU+x8qK8vCdl296i9fd+q9L6qCT/vsrVfN6Aa6WfO8v7APiwcN5r/9e+Ft5dtJzHYz9dGuTMpO7eY8wv2q0qvFk34ZXvJ+km1AvxpEVaTPXGJJYa5KMoxqy4i40Vkh9VnvJWl2tg2zuL0Y4WISG3gZrQerTN8iSYWGQV4A/eitWrLxN2TQ/bvhBU40msBG6FxEfEEfkab3SruGZwwDsU1pF+OCOeDDSVrYveYomlifzFkEENbtmDhgfLrqq/fGc36ndF0uKo2D9zchYc/nOcgpvMXUZKTat+2HgP6tuWRp36yOe5dxYs3Xr6ZLyev4cwZW91zh7rkdmUUmZrEDTOncCY/j/C6DZnS9yZ6/PI9EfUakXb2DJGpSVwXVtdx9t2se+5unKnjF3uHM3Ft8XsIYOSM2STnnqa6jzfTRw0jJjWdHbFW8r1OlM9LvcKZuK64fQ+TiVahwby1ah174hN5uVc4919/DZ9uLBp/dqb8X+gfzkcrHecfwKeSF5+PGMR7yzZw+vwFh2EulvLMliulpgBTSjLlKIrd70+B50oQjSwpzWgR8VBKmYFpIvKHM/EuxnHuB251MmwHisTfQZs4ehWYIyJ9lVL7rc5NAaKUUp+WZMxaV73mLbeSWMtOV93Pl2Q7TezWISF8OthKE7thQ/ItFrxMJuLsNbFrhdk4zuSMXEKqW2liV/clNdPWvjW7jpyidnAA1XyrkFVGF72AlNQcatYs0lWvGeRHanrxNBo1rMkzj/fjuVfmkp1TZNvDw8Qbr9zM6nUH2LTlSLF4iadzqGXVCg+r6kBn21pXPfYYb5tMBFbxplNobXrVb0yPeg2p7OGJr1clPokYwBNrlxaGd7fuubtJzMkl1Poe8vclOdc2/63DQvjkZv0e8vGmexNNV331kZjCsOlnzrLqcDRta4XaOM7EnFzC/O3vUQf2h1rZb6zdo7vjE0jMzmFPvNYKXH4oivuv72QTNyk7l9BqVuXv70tyjp392iF8dJtmP8DHm25NtfyvORSDp8nEZyMG8fveQ6w6aKuQ6hJc938wDrD+710HiLcL0wn4RXeaQcAAEclXSi0oweYZfV5lt4h8ACSg6Q+VycU4zrXAOyJyn1KqYB+7awAf60Ai0gD4EPjC+rhS6g8ReQBYIiLdlFInReRtoBpaU7lErP8jNZn4sdqbkEh9XRM7KSeXgc2b8+TipTZxenz7feH39/v3ZV3MUVZHx9AuLJT2tTRN7HP5+XSpV499iUk2cQ8cS6RecAC1gvxJzsil97XNeWWyrf06wQHEJWcC0Ky+pontrNMEOHw4gTq1AgkNqUZqWg4R3Vvw9vu/24QJrunHW6/czDsTlxB3KsPm3LNP9OfkyTTmznc8k7onOZEG1QKp41eNpNM5DG7SnEfX2MrB1vT2IeWsNvbVrmYogqar/sFfm/jgr02ANvN+X7tONk4TbHXPk7Jz6d++Gc/Osp3Xq1ujGrFp2tCRI93z9NNnC3XPx3z5i9Nl5wr2xSfSoHpg0T3UshlPLrDNf8+vphZ+f29QH9ZFH2P1kRi8vTwxiXD6Qh7eXp7c0Kg+X23aVtx+oJX9Fs14cpGt/YhJRfbfH6jbj9ImHBNycmlYPZBj6Rlc36Au0XaTVvtOJVK/eiC1A/xJzsllQJtmPDPX1n7vT4rsv3NzH9YfPsaaQ5r9t2/qzdGUdGb8sbO8RecULlyOtB1oKiINgVPACLShv0KUUg0L0xWZDiwuxWkCjEUbrpwAPIHmmIc5k5lyO06llBKRm4FPReR54BxFy5Eai8guipYjfWE9o25lY7GI1ASWi0h/4CW01uhO/b/Fl0qp78rKi1kp3li9jmm3DsPDJMwtjyZ2gqaJvfCOMZgtFg4kJzPbgSb2BzPX8flTmv1FmyI5Gp/GLeGa/fnr9xLRqSkDu7Qg32zh3IV8Xpy0uDD+2/cP4OrmdQjw9WbxR/cxZcFWFm2KLJbGZ1+vYuL/bsdkEpat3MfxE6kMGdAegEVLd3Pn6Bvw9/PmiQm9tThmC/c/+gNtWtWmb6/WxBxL5ruv7gLg2+kb+XN70UiHWSle3byGHwYM05ZsHd5HVEYao1u0A2DmwT30b9SMMS2LdNUfWbMYZ3G37rkzVES73awUb65Yy/cjtfz/umc/0alpjOio5f8XB+OaBQRVrcpXt+q65yYTv+8/xCa7WXezUryxai1TR9yChwi/7tXsj+yg36O7SrYP8NbKdXw0pD9eHiZiM7N4fontGLrZonh7yVq+u0PTbZ+/cz/RKWkM76TZn72jZPsd69ViaPuWHE5MYf6DowH4dPUWNkYdLzVP5cJFjlMplS8iE9Bmyz2AqUqp/XojDOvJ6nLYLKisc8Ab5Yl72eqqN5noXl31wANlh6kIVRPyyg5UAY7f7OFW+77R7rUPl/+2csrN7+V5nnWv/YNvPlHhfevaPPmJ08/pvo8rnl550N9Vfx2oj1UjUinVqKy4xptDBgYGbuMSf3Poe7Qu+t9oL984jeE4DQwM3MYl7jiznHnRxhGG4zQwMHAfl7bjXCciE4H5WO38rpQqc6bMcJwGBgbu49J2nJ31v9ZrvBQQUVZEw3EaGBi4jUu5q66U6nGxcQ3HaWBg4D4uQccpImOUUj+JyJOOziulPnZ03BrDcRoYGLiNf2mD4rIoeDvI0dYwTrl6w3EaGBi4jUu0q74EQClVbNG7iAx2xsBl6zjzfdxbI+ZK7l297H3Sqd2rLhrxvch91pzkbIj7VVfcvUD90D3uXWDfbJp7838u+NJsztlwaTrONfpeGcetD4rIOOBl4HeHsawwNIcMDAzcx6Up1vYEsEpECje+1SU0ngS6O2Pgsm1xGhgYXPpcil11pdRSETkPLBORm9A2F7oG6KaUyig1so7R4jQwMHAfl2aLE6XUGuAuYD3QCOjprNMEo8VpYGDgRuQf3pjaGUQkB81VC1AZ6Akk63poSinlX1p8MByngYGBG7lEu+oVnjk1HKeBgYH7uAQdpytwi+MUkVylVDHVLRG5A3gWrYksaJuRfmi1W/OvIlIdTaztc0ebINvTvV4DXu3aAw+TMPtAJJN22mmG16rDlAFWmuExUXy+Yxthvn583LMfNX2qYkHx8/69TNtbXFO6S6v6PH27pon92+ZIpq+w3Wm9e7tGPDRE1wy3KD6cvZ7dMfFU8vTgu6dvp5KnBx4eJtbsjOKb37cWsw9wddemPPDCIEweJpb/up253220OV+nYU2e/N8wmrSsxYzPVjJv2mYAgkKr8fS7txEY5ItSimVztrPwp+KSKd3CGvFap16YxMTs6N18c8B2l/LOwfWY0n0Ycbl6GcUe5otITRLqrmadGNGkPQL8Er2HaYeL7zTfrUEDXonQdMln7ytd237eqJE8uthO275NawAOp6Ty7PLi2vbu1j0vC1fotrtTV71bvQa8dmMPTKI9A9/YPQOda+vPQLZev0ej+GK79gx81Et/BpT2DEx38AxUhEuxxekK/rEWp77T++NAH6VUvIhUQdu63jpMNbQdnqc44zRNIrzZrSdjFv1KYm4Oi24bzapj0URn2MoLbE+I454lC2yO5VssvL1lA/tTk6nq5cXvt49hU+wJm7gmEZ4bGcFDn84nKSOHn14YxYa9MRxLKArz16FYNuzRxNOa1g7ivfEDGfbaDC7km7n/k185ez4PT5OJ75+9nS2Rx9h3zFZF0GQSHn55CC/eO5XUpGw+m/0Qf647xMmYInXTnKwzfPPO71zfs6VNXHO+hW8/WErMwXi8fSrx+a8T2LU12iauSYQ3r+nD2LW/kHgmm4X97mJ1XBTR2Xa66ilx3Lt+rs2xq6oFMaJJe25aPp08i5npPYazLj6a4zkZNvZf7xXBnXM1bfvfxpSsbf+cA237Ozt2oK+Vtv3g5s2YZ6dt707dc2eoqG67u3XV3+zek7ELtWdg4e2jWV3CM3Dv4gU2x/ItFv63ZQP7U/RnYPgYNts9AxXmCnWc/+Ss+gvA00qpeACl1LkCzSIdX2AZMEsp5dTK5PbBoZzIyiQ2W9cMjzpMn4bO6XKnnDnN/lTNwZzOyyMmI51QO9nc1g1DiUvO5FSqphm+YsdhwtuVrqtuLVFZcM7Tw4Snh8mheuVVbeoQfzKNxLgM8vPMbFi2l+siWtiEyUo/zZHIU+Tn2y54zkjNIeagpld19swFYo8mUyPYdly7XY1anMjJIDY3UyujEwfpXfcqZ4qIJtWC2J16inPmfMxK8VdyLH3t4rYLtdW2X3zoEL0aO9AN79Ce5UccaNtLkba9t6cXSXZCZu7WPXeGCuu2u1FXvV1I8Wegd6NyPAMpRc9AdHo6oS5+cUIszn8uJ/5Jx1mWHvvHwGal1CfOGgzx9bXVDM/NIaRqcV3ujqG1WDZ8LNMH3ULT6jWKna/j50/LoGB2J9l2gWoG+JKYUWQ/OSOX4IDi9nu0b8y8N+7kswk38cYPqwqPm0T4+eXRrP7wfv48eJLI48U1q4NCqpGSWPQWUWpiVjHn5wzBtQJo3KIWh/fG2hwP9fYl4UyRbnvimRxCvR3oqgfVZumAu5nW43aaVgsC4HBmCtcG1yOgkjdVPDwJr9WYMB/bvIX42Wnb5+YS4mdrv1Dbfo8DbfsdO9g0/l62Pqhr25+wbXG5W/fc3bhbVz20qn355xBawjOwdMRYpg12/AzU9vOnZc1gdicmFDtXEUQ5/7mcuJQmh9YCQ0XkQ6VUcpmhAXEgtWxf/pEpydzww7ecycsjvH5DpvQfSo+ZRap/Pl5eTOo3hDc3r7ORydXsF8dekxxg3e4Y1u2OoWPT2jw4pAsPfqrpqluUYuTbM/H1rsxHDw6mca0axMTbdpEdJlJOqvhU4uXPRjP53SWcOW3bInGkL21/DfvTE+m64CtNV71WYyZ3G0bE75OJyU7jmwNb+bHnCM7kX+BgZhL5FtumgcPs2zWtX+4RzgcbS9a2D/9W07b/cvAghrZowcKD5dO2r5Duubtxt666E8/A/uRkus4oegYmDxhKxE92z0D/Iby1qfgzUGEuU02zsvgnHed+4Go0B+mIX4DNwFIR6aGUKiawba2rXn3ErSSGhNlqhvv6la4ZfuIYb3frSWAVbzLOncXTZOKbfkNYcOQgK44W15ROzswlNLDIfnCgLymZJWuG74w6RZ2a1QioWoXM00Vjarlnz/P3kTi6tGpQzHGmJmZRM7Ra4e+g0GqkJWfjLB6eJl7+dBTrFu/mj9X7i51POJNj00oM9fEj6axdGeVblVF8DG9d04fAyt5knD/LnJi9zInRWkJPt+tO4hnbaknMybXVtvf1JclO275NaAifDbLStm+k6Xp7mkzE2mvb1w6zcZzu1j13N+7WVU84nWNX/n4klfEMvNXd9hmY1H8IC0t4BirK5daSdJZ/sqv+LvCBiIQCiEhlEXnUOoBS6lO0GfXfdKF47M5PUUp1Ukp18ut6na4ZHkAdP3+8TCYGN23GquMxNnFq+hTJvbcLDkVE0wwHeL9HH6Iz0vh+j+MRhP3HE6kbHEitGv54epjo26kZG/YctQlTt2aR02teV9cMP32OAF9vfL0rA1DZy4POzetxPLH4oPuRyFPUqh9ESO1APL086N6/LdvWHSwWriQef+sWYo+m8NuMLQ7P702Lp4FfIHWqVtPKqH4LVsdF2YQJqlK18Hu7GmFaGZ3XyqhGZa38avn4069uMxadsJX/3JuYSANd297LZGJQ8+asibEto/Bvv6e7/ll+JIpXV69hVXQM8dk5tA/TtO0ButSvR4zdpIm17rmXycTAls1Yc8TWfs+vphKhf1YcjOL15WsLdc+rVtImUwp0z6NSUp0qV1dhravuZTIxsEUz1kTZ5j9i0lR66J8Vh6J4fcVaVkfFkHr6TKGuOuBQV31vUvFnYPUx22cgqLRnIKIP0elpfL+7tFG0CnCJvjlUUdzV4vQRkTir3x8rpT4WkRBgdcEKfWCqfUSl1HMiMg34UURGKqVKHDY2K8Wrm9bywxBdM/xgJFHpaYxupWlKz9y/l/6Nr2JM63aYLbpm+EpN07tTWG2GNW/FwdQUlg7XJvc/2LaZ9SeOFdm3KN7/ZS1fPaZpVi/asp+jCWkM66bZn7dxLxEdmzLoupbkm82cz8vn+W81+zWrVeWNu/riYRJEhFV/H2HTvmPYYzFbmPS/Rbz97Tg8TMLK3/7mZHQyA4ZfC8DS2X8RGOTL53Mexse3MhaL4qaxN3D/4E9p2CyUXkM7cuxwAl/OnwDAjE9Xsn3jEZsyem3HKn6IGIFJhLkxe4nKSmVU0w4AzIraxYB6zRndtIOmq27O59HNCwvjT+p2CwGVvcm3mHl1+wqyL9jOTpuV4o0165g+bBgmk/BrebTtEzVt+0Vjx2BWFvYnJfOLvba9m3XPnaGiuu1u1VVXitc2ruWHocMwiYm5B7RnYJT+DMzav5cBja9idOt2Wv3m5/PoiqJn4JbmrTiUmsIS/RmYaPcMVJTLbdLHWS5bXfUGX33k1oxX3+vexnjIphS32j/0knu3lTMlVHarfQCP8+6V2b7ct5XL93OvVzo24akKV8ANtzn/nG6ZW/H0/ikupckhAwODK43LtGFWFobjNDAwcBtX6uSQ4TgNDAzch+E4DQwMDMqH0eI0MDAwKCeX4n6crsBwnAYGBu7jyvSbhuM0MDBwH0ZX3cDAwKC8GF31SwuPs5fNWlnHZLhZVz0lyK32/Y+5v/xz67jXvrsXqB8e594F9te84t78u4Qr029evo7TwMDg0sfoqhsYGBiUkyt1Vt3QVTcwMHAfLtwdSUT6ichhEYkWkecdnB8tInv1zx8i0s51F2KL0eI0MDBwG+Kid9VFxAP4CugNxAHbRWSRUsp6n8NjQHelVIaucTYF6OySDNhhOE4DAwP34boNnK4FopVSRwFE5BdgKFDoOJVS1hKv2wC3TS8aXXUDAwO3IUo5/xEZLyI7rD7jrUzVBqwFteL0YyVxD5r4o1twaYtTRBTwk1JqrP7bE0gA/lRKDRKRu4CJgLV2wZ3ADP17PSBL/6QqpXqVlaa7Nb3doavepVV9nn9mlKajPmsLc79chT0PvHUb1/RsxfmzF/jo8R+J2RdL7cbBvPDNPYVhwurX4MeJS1jw7brCY8Me6Mm9r93C1d98Tca54pK43eo34NXu4ZhMJuZE7uObHbbX07lOHaYMHkqsrsG9IjqaL/7cVsyOTRm1rM8zt2o2F2yJZNoqW5vhbRvx4KAuKKUwmxUT52llBLDkzbs5fU7TPTebFaM/KK577m5dcnfbL4uK6rZf36o+T4/Q8r9gUyTTlxe/Rx+8Sb9HzYqPZq9nd3Q8IYG+vHl3P2pU88Gi4LeN+/h5jWt11cuzHEkpNQWte+0IxxJgjgKK9EBznF2dT718uLqrfhpoLSLeSqmzaOMR9gIvs5VSE+yOtQcQkenAYqXUr84k9k9oertaV33/8SSeGxnBK4M+JjUhk8+WPcufK/dx8kiRAuY1Ea2o1agm93R5neYdGzDhvRE8MXAip2KSmdD7XS1vJuHHXe/wx7I9hfGCagXQoXtzkuIc62KbRHijRwR3zJ9HYm4OC0aOZvXRGKLT7TS4T53i3kULnKkCTCI8f3sED34xn6TMHGY+O4oN+2I4aiUT8ufhWNbv1cuoVhDv3zOQW96aUXh+/GdzbTSa7O27W5fcnfadoaK67c+PiuChT7R79MeXRrFhj4N79A2t/JvUDuL9+wcy7NUZmC2KT+Zu5NDJZHwqe/HTK6PZduCETdyK4sJZ9TigrtXvOkB8sfRE2gLfAf2VUmn2512FO7rqy4ACYYGRwM9uSANwv6a3O3TVC2wmnkzTdNQX/s11fdva2LyuX1vWzP0TgEM7j+Pr702gnWRw+xubkXA8hWQrJ3n/G7fy/VsLStw8tl2orQb34iOH6O2gvMpD6wahxKZkcipNL6O/DxPetvQycqQUWhLu1iV3t31nqIhue6uGevnr9+jK7YcJb+9c+admnebQSU1Q9sz5PI4lpDuUv64QSjn/KZ3tQFMRaajrkY0AFlkHEJF6wHxgrFLqiAMbLsMdk0O/AK+KyGKgLZqu0I1W54eLiHUT+nq9dVpuHGl6twsLsw2ja3qPmTOXtqGhhcetNb3P5eez+fiJYprejnTVWzcMxZ4e7Rsz4eauVPfz4bEvFxQeN4kw86VR1K0ZwJwNe4g8nkjPjk1tbKYmZNKsQwMbezVCq5Ean2kTJigsgAwr9cvuQzuxYUGRwFbnPm1ITczk2IGSFRztNbgTcnJpHxpWLFyHsDCWjB5L0ulc3t24kaj0kv9xBwf4kmR1PUmZubRu4KCM2jXmkSFaGT06aUHhcaXg6wm3oIB5m/cxf4ut5pAjXfJ2tWztF+iSj531K23Dehcet9Ylbx5ck8jEJN5evZ6zefn/mH13ExzgS1K6VfmXdI920O7RQH8fHvt8QbHzYTX8aV63JpHHEoudqwiu0hxSSuWLyARgBeABTFVK7ReRB/Tz3wCvAjWAr3VZ7HylVKeSbFYEl7c4lVJ7gQZorc2lDoLMVkq1t/pclNME12l6d/lmCj5eXgxt0aJM+yXpqg97bQZPTVrEg0O6FB4v0FXv9/x3tGoQSuNaNZzKs0MtdKswnl4edO7bhk2/7wSgsrcXIx7rx48fLHZkvdQLKqaxnpzMjVO/Y+DMH/lh924mDx5Suk1HOGg9rNsTwy1vzeDJKYt4aFBRGY37eDaj3p/FhK9+Y3i3dnRsYjfe7wJd8lm79jJ02kzO5uVz//XX/LP23YyDW8XxPborhmGvzuCprxbx4NAuNue8K3sx8cFBfDh7A6fPuUFX3TUtTpRSS5VSVymlGiul/qcf+0Z3miil7lVKBVr5Frc4TXDfcqRFwIdAONp/AJdgraseNOxWEsPC3Krp7Q5d9T0x8TY2g8ICSEuyfW89NSGToFoBtmESi8J0imhFzL5YMlO1lkZY/ZqE1qvB12teLAz/+6gx3PTLLFKthicSc2010MP8fIvr0F+w0uA+fow3IyIIrFLF4URTQRmFWF1PSIAvKVmllFH0KeoEFZVRQdiM3LOs3RNNq/qh7IwuajW7W5fc3fbdTVJGLiHVrco/0JfUUu7RXVGnqBNcjQDfKmTmnsPTw8TEBwex7M9DrNvlel31K/VddXctR5oKvKmU2ldmyHJgravuf931btf0doeueoHNkLo1NB31oVezbYVtMW1bsZeet2nrdpt3bMDpnLM23fTwm65m/W87Cn8fPxTPyDbPc9e1r3LXta+SmpDJ4Fk/2ThN0DXQAwKo46+X11XNWW1XXtYa3G1DQjEhJTpNgP0nEqlnXUZXN2P9vjLKyFMroyqVPPGprE2mVKnkyfUt6hOTYKt77m5dcnfbdzcHCu7RIK38+1xT/B6tY13+9fR7NFer01fu7M2xhHRmrtrplvyJxeL053LCLS1OpVQc8FkJp+3HOB+yW7jqNG7X9HaTrvr7v6zl7Z8fxsPDxMpftnLySAID7tCKZOkPm9m+Zj/X9GzF1K2vc+7sBT554qfCPFX29qJDt+Z8/mz559zMSvH6unXMuHmYprG+X9fgbqNrcO/bS/+mVzG6bVvMFqVpcC9bUrpNi+L9OWv5+mGtjBZu1cro1q6azV8376Vn+6YM6qyX0YV8npuq2azhV5WPx+u65x4mlm0/xB8HbMeZ/wldcnfad4YK6bZbFB/MWsuXj2v5X7hlP0fj0xjWXb9HN+yl59VNGXh9Ufm/MEUr//ZNajHo+pZExaUw69XRAHw1fwtbIo+X+xpK5PLyh05z2eqqN/7wY7dmvFqUe7dNC1nkhm6RFYefq9hseVm4u3zA/dvKuZvLfVu5v799osKV3PeaN5x+Tldsf+2y2SvSeOXSwMDAfVymDbOyMByngYGB+zAcp4GBgUE5uULHOA3HaWBg4DYut9lyZzEcp4GBgfswuuoGBgYG5cRwnAYGBgbl5MrsqRuO08DAwH24SjrjUuOydZzulh01e7vXPiY3b74fUvJrkq4giyputQ9QOd2966HPBbu3OeTuBerb33LvAnt4ouImDMdpYGBgUE7MV2Zf3XCcBgYG7sNocRoYGBiUE8NxGhgYGJQT12kOXVIYjtPAwMB9KGOM08DAwKB8GJNDBgYGBuXEGON0DhH5HuiEJoN1BLhLKZUrItWAn4B6erofKqWmVTS9bg0a8HLPcDzExJy9+5j813aH4dqEhvDr6JE89vsSlh+JAmDc1R25vW1rlILDqak8t2wFF8xmm3hdmtfnuVvCMYmJ37ZFMnWNrf3w1o14eEAXLEphNism/raeXcfiqR8cyAd3DigMV6dGNb5etpWZG3bRpXl9Xto4CpPJxPKftzL3q1XF8vvAm8O4JqIV589e4KMnfiImMo7ajYN5YdK4wjBh9Wrw44dLWfDdekY/2Z9+o7qQla5pCP0vZQvrE2K0MgprxKsde2MSYU7MHr45uNUmrc7B9Zhy463EntZ0jVbEHuaL/ZsBuOuqaxjeuD0iMDtmN9MOOy7fwvqo34BXu4djMpmYE7mPb3bYhu9cpw5TBg8lNltPKzqaL/7cVqrNrk3q8+IArQ5+3RnJd5sc56F1rRB+GT+CJ+csZeWBKEL9fXlvWD+CfH1QCubs2MeP23YVz3O9Brx2Yw9MIsw+EMk3O/+yzXPtOkwZcBNxep6XH43ii+3bCPP146Ne/ajpUxWLUvy8fy/T9xa3f32r+jw9IhwPk4kFmyKZvtw2/93bNeLBm4ruoY9mr2d3dDwhgb68eXc/alTzwaLgt437+HlNcftl8dJ7sH4rVA+E36eXO3rFMByn0zyhlMoGEJGPgQnAe8DDwAGl1GARqQkcFpGZSqmLltUzifB67wjunDOPxJwc5o8dzZqYGKLttINMIjzb7UY2HS+SZQjx9eWOjh3oN20G5/Pz+XzwQAY1b8b8/Qds4r14awT3T5pPUmYOs54cxfrIGI4mFdn/80gs6yM1aYumYUFMvGsgN707gxPJGQyfOLPQzqo37mPt3uhCm68M/pTUhEw+W/oMf67cx8moIlnWayJaUqthMPd0fZPmHRsw4d3hPDH4I07FJDOhz/uaTZPw499v88eyPYXxFny7jnmT1wJw+MOwwrTfuLovd6z7mcSz2SzoM47Vp6KIzrbV9tmeEsu9G+faHLuqWk2GN27PzSunkWcxMz18BOtORXM8N6PE+nijRwR3zJ9HYm4OC0aOZvXRGKLTbetj+6lT3LtogUMbjmy+MiiCe2bMJyk7hzn3j2LdoRhiUorX8VN9urIluqiOzRbFB8s3ciAhGZ9KXsx7YDR/xJywiWsS4c3uPRm78FcSc3NYePtoVh+LJjrDLs8Jcdy72DbP+RYL/9uygf0pyVT18uL34WPYHHvCJq5JhOdHRfDQJ/NJysjhx5dGsWFPDMcSisL8dSiWDW9o91CT2kG8f/9Ahr06A7NF8cncjRw6mYxPZS9+emU02w6csInrDDf1h1G3wPPvlCuaa7hCHedFv74iIg1E5JCIzBCRvSLyq4j4WDlNAbwp0rlTgJ9+3BdIB/L1sAtE5G8R2a8rWTpFu7BQTmRkEpuVRZ7FwpJDh+jVpLhkxB0d27MiKoo0O/EyT5OJKp6eeIhQxcuL5NN26ob1Q4lNzeRUWhb5ZgvLdx0mvI2t/bMX8gq/e1f2cijN2vmqusSmZpGQkVNoM/FkGvl5ZjYs/Jvr+raxCX9d3zas+VVr9RzaeRzfat4EBvvbhGnftRkJJ1JJPuXYiRWWUfVanMjNIPZ0JnkWC4tPHqB3naalximgsX8Ndqed4pw5H7NS/Jl8kj51m5WcVmgoJ7Iyic3W6mPxkUP0blwxCY+2dUI5mZ5JXEYWeWYLS/cdJqJ5cZtjrmvPqgPRpJ0uquOU3NMcSEgG4MyFPGJS0gnx97XNc4htnn+POkzvRk2cylvKmdPsT9Hsn87LIzo9nVBfP5swrRqGEpuSyalU7R5auf0w4e3t7qHzju+h1KzTHDqp5/98HscS0gkOsM2/M1zTDgL8yg7nFiwW5z+XERV9768ZMEUp1RbIBh4CEJFpQCLQHPhCD/sl0AKIB/YBjylVOOV2t1LqarQu/qMi4pSkcIivLwk5OYW/E3NyCbG7cUN8fenTtCmzdtuKbiXl5vLd9h1svP9etj50Pznnz7P5uK1QWHA1XxIziuwnZ+YSUq34jRvRpjELXriTL++7idd+Lt7t7texGct3HnJoMzUhkxqhATbha4QGkBqfYRMmKLSaTZjuQzuyYcHfNscGj+vG16ue54mPRuHvpb0SGerjR8KZIoXMhDM5hHgXf4o6BNVmSb97mNp9OE39gwA4kpXCtTXrElDJmyoenoTXakyYj3+xuAWEVrWtj4ScXEKqOkgrLIwlo8cy9aabaVq99KoO9vMlMavIZlJ2bjHnF+xXlV4tmvDL9pKF1WoF+NMirCZ74hJtjtvnOTE3h9Cqxeu4Y2gtlo4Yy7TBtzjMc20/f1rWDGZ3YoJt3gJ8SUq3yn9GLjUdOL8eHRoz7807+ezRm3hjevF7KKyGP83r1iTyWGKxc5c0LtRVv5SoqOOMVUpt0b//BHQFUEqNA2oBB4Hh+vm+wG79eHvgSxEpeAofFZE9wDagLuCwSSQi40Vkh4jsyN62FUdvMtu3+F6OCOeDDZuw2FWMf+XK9GrSmB5TvqfLpCn4eHkxtGUL2/Qc2XdQwWv3xXDTuzN4/PtFPNy/i805Tw8T3Vs1ZuXuqBJt2t80WqO85CCeXh507tOGTYuLxruW/LCZu7u8wcN93ic9OZuXOvZ0lJJmy+73/vREblz0FQOXf88PR3YwudutAMRkpzH54DZ+6DGS6eEjOJSRjLm0loGDi7Ovj/3Jydw49TsGzvyRH3bvZvLgISXbAxwURbE6eKF/OB+tLF7HBfhU8uLzEYN4b9kGTp+3HRkSB5kuVj7JyXSd8S0DfvmRGXt3MXnAUFv7Xl5M6j+EtzatIzfPzr4TZQKwblcMw16dwVNfLeLBobb3kHdlLyY+OIgPZ2/g9LmLHtn6dzBbnP9cRlR0jNP+Dij8rZQyi8hs4BlgGjAOeE9pd320iBwDmouID9ALuF4pdUZE1oPjHSSUUlOAKQBNJn6sEnNzCfMratGE+vmSnJtrE6d1SAifDtYmaQK9vQlv2JB8iwUvk4m4rGzSz54FYEVUFB1rhbHwwMHCuElZuYQGFtkPDvAlOdu2O2/NzqOnqBtUjYCqVcg8rW2y0bVFAw7FJZOee8ahzaCwANKSsmzspCZkEFQrsMQwnXq0JGZfLJmpRS0Z6+/LZv7Bi3dMACDxTI5NKzHMx4/ks0VhAXLzix7G9QkxvCl9CazkTcaFs8w5uoc5R7Vx1KfbdifxjG1ca+zrI8zPl+TTtvWRe8EqrePHeDMigsAqVUrUbk/KziW0WpHNEH9fknPshlRqh/DRbVodB/h4061pQ8wWC2sOxeBpMvHZiEH8vvcQqw4WVxZNOJ1jew/5+pFkn2crZ7j+xDHe6t6TwCreZJw7i6fJxKT+Q1h45CArjha3n5SRS0h1q/wH+pKaWfI9tCvqFHWCqxHgW4XM3HN4epiY+OAglv15iHW73KuM6g7UFbqOs6Itznoicr3+fSSwWUSaQOEY52DgkH7+JNBTPxeC1s0/ClQDMnSn2Ry4ztnE9yYkUj8wgDrV/PEymRjYvDlroo/ahOnx7feET9E+y49E8drqNayOjiE+J4f2tUKp4qn97+hSr16xSaX9JxOpFxRI7er+eHqY6NehGRsibe3XDSrqQjevE4yXh0eh0wTo37E5y3YeKmYzpG4NPL086D70arattNVz37Yykp63XqvZ7NiA09nnyEgu6m6H33Q16+266dZjoF36t+NIVopWRunxNPALpE7VaniZTAyq15LVcVE2cYOqVC383rZ6GCYRMi5o/1BqVPYBoJaPP33rNmfRiQOUxN7ERBoEBFDHX6uPQVc1Z3WMbXkF+fgUpRUSigkp0WkC7DuVSP3qgdQO8MfLw8SANs1Yd8jWZu9PptJL/6w8EMWbi9ey5pC2ouDtm3pzNCWdGX/sdJznpEQaVAugjp+W58FNm7H6WEyJeW4XHIqIkHFOK5/3I/oQnZ7G97tt66OAA8cTqRscSK0g7R7qc00zNuyxzX+dmlb3UD39HsrVyuSVO3tzLCGdmasc5/+Sx6Kc/1xGVLTFeRC4U0QmA1HAJGCV3gUXYA9QsLfWW8B0Edmnn3tOKZUqIsuBB0RkL3AYrbvuFGaleGP1OqbdOgwPkzB3XyRRaWmMbNcWgJ/3lDzmtSchkeVHolh4xxjMFgsHkpOZvdfWgZktinfnrWXSA7dgMgkL/txPTGIat3XR7M/9Yy+92jVlcKeW5FnMnM/L59kZSwrjV/Hy5Lpm9XhrzupiNt+e9RAeJmHl7G2cPJLIgLE3ALD0xy1sX7OfayJaMnXLq5w7m8cnT/5UGL9yFS86dGvO58/9YpPXe14eSqOWdUApkuLSeWznqsIyen3HSmaEj8AkJuYe3UNUdiqjmnQAYFb0LvrXbc7oph0xWyycM+fz6B8LCu1+3XUYAZW9ybeYeW3HCrLzSnZyZqV4fd06Ztw8DJMIc/dHEpWexqg2WnnN2reX/k2vYnTbtpgtinP5+Ty6bEmJ9grK6+0la/nuDq0O5u/cT3RKGsM7aTZn7yi5jjvWq8XQ9i05nJjC/AdHA/Dp6i1sjDpuk+fXNq7lh6HDtPI5oOe5lZ7n/XsZ0PgqRrduh1lZtDyv0PLcKaw2tzRvxaHUFJYMHwvAxG2bWX/imE3+P5i1li8fvwUPERZu2c/R+DSGddfsz9uwl55XN2Xg9S3JN5s5fyGfF6Zo9ts3qcWg61sSFZfCrFe1/H81fwtbIovy7wxPvQF/7YbMLAi/FSaMg1sHlsvExXOZjV06izgas3MqokgDYLFSqrVLc+QkTSZ+7NYaqXrKvXtB1pp7tOxAFaBgOZLbSDL24yyL6nvcu+equ/fjNIUeqXAF9Kt2t9PP6fKsqe6tcBdivDlkYGDgPq7QFudFO06l1HHgX2ltGhgYXB4ouzfxrhSMFqeBgYH7uMwmfZzFcJwGBgbu4wpdjmQ4TgMDA7ehjBangYGBQTkxWpwGBgYG5eNKnRxCKfWf+ADjDftXrv0r4Roud/v/pY97V+heWji9XZ1h/7K0/0+kYdg3ACr+rrqBgYHBfw7DcRoYGBiUk/+S45xi2L+i7f8TaRj2DYAKbPJhYGBg8F/lv9TiNDAwMHAJhuM0MDAwKCeG4zQwMDAoJ/85xyki9f/tPBgYGFzeXLGOU0SuF5FbRSRY/91WRGYBm//lrDmNiFQRkYdF5GsRmVrwcWN6zUTkWxfYucXqe2BpYSuQRl8RuUdXIrA+freL7N9ZwnEvEfnZBfZXVtRGOdIKFJFrRaRbweefSvtK5Yp0nCIyEZgKDAOWiMhrwCrgT0qQHi6n/boi8ouIbBKRF0XEy+rcgorat+JHIBRNWnkDUAcoWWbSSfR/IitFJFJE3haREBGZB6wBSlZjc56Xrb6vcYE9G0TkHeAloA2wRkQesTo9wUXJPCYiNm/aiEhVYClwxgX2a7rARpmIyL3ARmAF8Ib+9/V/Iu0rmSt1k4+BQAel1Dm9xRMPtFVKRZURz1mmAvPQhOXuATaIyGClVBrgyqGAJkqp20RkqFJqht5iXuECu9+iCettBfoBO4FZwGilVMlqbM4jJXx3FYPR6jdfRF4HZolII6XUEy5MrxewXESqKKU+F5GaaE5zjVLqeRfYr2bdMrdHKTXfBWkAPAZcA2xTSvXQlWTfcJHt/yxXquM8W+AAlFIZInLYhU4ToKZS6hv9+yMiMgbYKCJDKK41XxHy9L+ZItIaSAQauMBuZaXUdP37YRF5GnheKeWqrWy8RaQDWo+miv690KEppSqqdeuplMrXbWWKyGBgiojMBSpV0Da63XQR6QUsE5FawFBgklLqc1fYR5PFHoRjR68AVznOc3oDAhGprJQ6JCLNXGT7P8uV6jgbi8giq98NrH8rpYZU0L6X3hIpcM4/iUgiWmuwaulRy8UUvcX8CrAI8NW/VxR7Z5YLtBURAZc4tgTgY/17otV30JxCRAXtx4hId6XUBgDd4d8jIm+jDc9UGKvW4BS0/K8B4gqOu6BFeEIp5ZLx2DKIE5EAYAGadHcGWg/MoAJckW8OiUj30s4XPHAVsP8EsNPeju6MPlBK9a6IfXcjIutKOa2UUhV1bKWl7aWUyis7ZKk2fNDyedbBuXpKqZMVsa/bmVbKaVVRpyciu5RSHSpi4yLS7I7W0l2ulLrwT6Z9pXGlOk6XPDz/JvpY1FCgNlorLR5YqJQ69K9m7CLQW7I9gFHAYKVUSAXtfaeUutfB8TpoTuGSV18VkbZKqb3698pKqfNW565TSm1zQRqFQxoi4gs0B44qpdIravu/zhU5q47WLQFAny12KfoyoTtFZIhoPCcii0XkMxEJcoH954Bf0LrSfwHb9e+/iIgrJiYQkRoi8oiIfKV/JohIdVfYtkqjs4h8BpxAG2rYhPbwVhRPEflJRArvXxFpodv/0AX2EZEnReQeB8cfEZHHXZDEdKvvW+3OfV1R4yJyF5AkIkdEpD+wF3gf2CMiIytq/7/OldriLOwGuaNLJCJz0CZuqgKBQCTwO9AVaK+UGlRB+0eAVvZdWhGpBOxXSlVoSZXuZNaijcnuQnPKHYDeQERFW7Ui8j/gduAk8DPwG7BDKdWwInat7AswGa3sRwCdgdnAA0qpJS5KIxLoaN+lFZHKwHalVNsK2i/xHnXFPSsi+9Ba+X7AHrRVCDEiEgKsqmj+/+tcqZNDqoTvrqKlUqq1iHgCcUqpgjHV5SKyxwX2LUAttJaaNWH6uYryFvCYUmqO9UERGQb8j4pPsIwHDqMteVqsz+q6rB6U9t9+vN6aXY+2BOw2V3Rv7ZIpNg6olDpfMIlWUfslfHf0+2IwK6VSgVQRyVVKxQAopZJck/3/Nleq42wnItloLSlv/Tv6b6WU8q+g/QtohvJFxH6G0hVLeh5HW9gdBcTqx+oBTXDNAu82Sqlb7Q8qpeaJtri8ooQCfYCRwKf6ZJS39ZhbRRCRL9CciwAt0dahjhKRUQBKqUcrmoaeTohSKsn+mCtsA3VE5HO0ayj4jv67tgvsnxSRd9FanIdE5CO0JU690FY9GFSAK9JxKqU83JyEW296pdRyEbkKuFa3J0AcWhfRFY759EWecwo9j8vQ1kBWQVuv6AOcEpE1SqlRFUxiRwnfXclEtLfOnkJzzABXAx8AH7nA/jNW3+2vwRXXNAZ4GMgCnkd7++wFtOGTu1xg/z/NFTnGaY+I1AYKnGl8RVs9UsJ7zAUopWZUxH4ZafsqpXIraCMO27WVhaeAx5VSdStiv5R0/YBHlVL/c4d9V6NPqjwPtEZr4e4H3lNKLftXM2bwr3NFOk4ReQHwUkq9qf8+ifaf1wuYoZR618Xp+aMNAVT4PXIn0jqplKpXQRuvlXZeKVWhV/JExANtcqg22vKgSBEZBLwIeLtisk7/5/UYUPAWzEHgc6XUDxW17UTajyulPq2gjUWlna/oSxr6WtcJaA7/C2A42tj1IeDNiv7z/a9zpTrOncCNSqnT+u9dSqkO+gO9QSnV1UXpdAKmoY0jCZAJ3K2U+ruCdp8s6RTwklKqQsuGRKSOUiquhHODlVK/V9D+dKAu2lKqzmiTXNejvda5oCK2dft3AE8AT6J1owXoiNa9/szdztNF/7xS0Mavf0bbfMZmxsYFL2nM0e17o/1zOQjMQXvPP1QpNbYi9v/rXLGOUynV0er3XQXvZovI30qpq12Uzl7gYaXUJv13V+BrFyxVOYfmBBwNKTyhlAqooP3DQF+l1HG74+OAl5VSjStoPxJtUxWLPsaZirZhSWJF7FrZ3waMcJD/BsAvSqnrXJFOKenHVnQ4Q/8n3httAq0tsAT4WSm13wVZRER2K6Xa6ysAEoAwpZTSf+8xliNVjCtycgjwFatX+6ycZmWgojPq1uQUOE09nc0i4oru+k5ggaOWq2jbhFWUJ9DeWx6g9M1P9OGNUUCpr6s6yQWllAVAX4p0xFVOU8ff3mnqaR3Xh03cTYVbG/oE2nK0JWyV0RzoehF5Uyn1RUXtW6WjRGSpvoSr4PeV11r6h7lSHeevwGQRmaCUOgOFeyl+qZ+rECJS0Jr9S0Qmo3W3FNo40vqK2gfGAWklnOtUUeNKqaUich5t1vsm4F60rce6KaUyKmofaK63xkHrgjbWfxcsB6toa6fYO+pOnnMa/R+gIwcjaN1fV6RRGW0LxJFou159jut2RdpRMJGorN6rF5HGuGBP1/86V2pX3QNtIfe9FC0irwd8j9YVreis+r+2SYYr0YcWFgB/ALcr1+zFiZQhT6KUsl/YX177Z4BoR6eARkopV+5Q5RZEZAbabP0ytOGFSDelUwV4CO2tNoWmgDDJVXX9X+WKdJwFiIg32qJxgGjlYDedCtg2Abfav33jbkRkilJqfNkhS7VR0JoSoDLa66NmXPeCgKM0g4A05YIbTkSaAiEUvRxQQH205WaOnOolhYhYKFoza10mLq0DfZIoB/hJPzQSCFBK3e4K+/9VrshNPkTkWQDdUTZXSu0rcJouejMGfQzPVTINNohI9RI+NYABFbWvlPJTSvnrfysppapa/a7wAysi14nIehGZLyId9MmiSLRNJ/pV1D7wCZCtlDph/UGTtPjEBfbdjlLKpJd3QV34u7IOrGimlLpHKbVO/4ynaAmXwUVyRbY4rWfVHcyw2/yuYDqvoI2pzcbqjRtVwW27RMSMNsRgvUSloIVYWynlkl3O3YWI7EBbs1kNbSPg/kqpbaJtlfdzRddxikikKmHrOBHZp5RqUxH7VxL60rBvlP4ev4h0Bu5USj30r2bsMudKnRwqTfPGlTscFAy6P2x1TAGNKmj3KNBTOdhTVETsu6eXIp5KqZUA+izxNgClyTa4wn6VUs65ZOLmCqIzcIf+EghoY/0HRds9yRUTdf9JrlTH6e6dZzRDLtomzQGfom2Z5mgz5g/clKYrsd7ByX5c2RXlv11E7lNK2UgZi7Z/ZoVePrgCccXQiIEdV2pX3YzWdS5YOlIg5ypAFaWUV0lxnbT/rFLqA/37bUqpuVbn3lFKvVgR+1a2LssZ0X+g/EPQ9vi8QJGj7IQm1Hazi9eMGhgU44p0nO7mHxxDNWZES0FEeqAt6QFtg+e1/2Z+DP47XKlddXfzT42hNlNKtbP6vU5cs1HyFYFSat3/27djFAphIAigk/ufy9rS6/xCEW2EDUbl894Bkm4gO5skVzu1MMRfriM94JEZapK5tbb/u94a0enG84EOnuodRs/wDvcsWXfuTo1o1vJFIwovEZwfNvrrItBHcAIUmXECFAlOgCLBCVAkOAGKBCdA0Q9chjHCUNiapwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1864,7 +1864,9 @@ "# the combined distance matrix will contain NaN values\n", "# Remove the missing kinases (and NaN values) from the matrix\n", "# before plotting the dendrogram\n", - "combined_distance_matrix = combined_distance_matrix.dropna(axis=0, how=\"all\").dropna(axis=1, how=\"all\")\n", + "combined_distance_matrix = combined_distance_matrix.dropna(axis=0, how=\"all\").dropna(\n", + " axis=1, how=\"all\"\n", + ")\n", "combined_distance_matrix" ] }, From 7743308b4dbbf21d87ffb560849f93952378122e Mon Sep 17 00:00:00 2001 From: dominiquesydow Date: Sat, 4 Jun 2022 13:05:21 +0100 Subject: [PATCH 17/17] Fix broken link [skip ci] --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 104bd0e7..98c93a6e 100644 --- a/README.md +++ b/README.md @@ -192,7 +192,7 @@ It will help measure the impact of the TeachOpenCADD platform and future funding - Web services clients: [`pypdb`](https://github.com/williamgilpin/pypdb), [`chembl_webresource_client`](https://github.com/chembl/chembl_webresource_client), - [`requests`](https://docs.python-requests.org/en/master/), + [`requests`](https://requests.readthedocs.io/en/latest/), [`bravado`](https://bravado.readthedocs.io/en/stable/), [`beautifulsoup4`](https://www.crummy.com/software/BeautifulSoup/bs4/doc/) - Utilities: