8000 GitHub - 0xzeny/Pipe: A Python library to use infix notation in Python
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

0xzeny/Pipe

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pipe — Infix programming toolkit

PyPI Monthly downloads Supported Python Version GitHub Workflow Status

Module enabling a sh like infix syntax (using pipes).

Introduction

As an example, here is the solution for the 2nd Euler Project exercise:

Find the sum of all the even-valued terms in Fibonacci which do not exceed four million.

Given fib a generator of Fibonacci numbers:

sum(fib() | where(lambda x: x % 2 == 0) | take_while(lambda x: x < 4000000))

Each pipes is lazy evalatated, can be aliased, and partially initialized, so it could be rewritten as:

is_even = where(lambda x: x % 2 == 0)
sum(fib() | is_even | take_while(lambda x: x < 4000000)

Installing

To install the library, you can just run the following command:

# Linux/macOS
python3 -m pip install pipe

# Windows
py -3 -m pip install pipe

Using

The basic syntax is to use a Pipe like in a shell:

>>> from itertools import count
>>> from pipe import select, take
>>> sum(count() | select(lambda x: x ** 2) | take(10))
285

Some pipes take an argument:

>>> from pipe import where
>>> sum([1, 2, 3, 4] | where(lambda x: x % 2 == 0))
6

Some do not need one:

>>> from pipe import traverse
>>> for i in [1, [2, 3], 4] | traverse:
...     print(i)
1
2
3
4

In which case it's allowed to use the calling parenthesis:

>>> from pipe import traverse
>>> for i in [1, [2, 3], 4] | traverse():
...     print(i)
1
2
3
4

Constructing your own

You can construct your pipes using the Pipe class like:

from pipe import Pipe
square = Pipe(lambda iterable: (x ** 2 for x in iterable))
map = Pipe(lambda iterable, fct: builtins.map(fct, iterable)

As you can see it's often very short to write, and with a bit of luck the function you're wrapping already takes an iterable as the first argument, making the wrapping straight forward:

>>> from collections import deque
>>> from pipe import Pipe
>>> end = Pipe(deque)

and that's it itrable | end(3) is deque(iterable, 3):

>>> list(range(100) | end(3))
[97, 98, 99]

In case it gets more complicated one can use Pipe as a decorator to a function taking an iterable as the first argument, and any other optional arguments after:

>>> from statistics import mean

>>> @Pipe
... def running_average(iterable, width):
...     items = deque(maxlen=width)
...     for item in iterable:
...         items.append(item)
...         yield mean(items)

>>> list(range(20) | running_average(width=2))
[0, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5]
>>> list(range(20) | running_average(width=10))
[0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 14.5]

Partial Pipes

A pipe can be parametrized without being evaluated:

>>> running_average_of_two = running_average(2)
>>> list(range(20) | running_average_of_two)
[0, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5]

For multi-argument pipes then can be partially initialized, you can think of curying:

some_iterable | some_pipe(1, 2, 3)

is strictly equivalent to:

some_iterable | some_pipe(1)(2)(3)

So it can be used to specialize pipes, first a dummy example:

>>> @Pipe
... def addmul(iterable, to_add, to_mul):
...     """Computes (x + to_add) * to_mul to every items of the input."""
...     for i in iterable:
...         yield (i + to_add) * to_mul

>>> mul = addmul(0)  # This partially initialize addmul with to_add=0
>>> list(range(10) | mul(10))
[0, 10, 20, 30, 40, 50, 60, 70, 80, 90]

Which also works with keyword arguments:

>>> add = addmul(to_mul=1)  # This partially initialize addmul with `to_mul=1`
>>> list(range(10) | add(10))
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

But now for something interesting:

>>> import re
>>> @Pipe
... def grep(iterable, pattern, flags=0):
...     for line in iterable:
...         if re.match(pattern, line, flags=flags):
...             yield line
...
>>> lines = ["Hello", "hello", "World", "world"]
>>> for line in lines | grep("H"):
...     print(line)
Hello

Now let's reuse it in two ways, first with a pattern:

>>> lowercase_only = grep("[a-z]+$")
>>> for line in lines | lowercase_only:
...     print(line)
hello
world

Or now with a flag:

>>> igrep = grep(flags=re.IGNORECASE)
>>> for line in lines | igrep("hello"):
...    print(line)
...
Hello
hello

Deprecations of pipe 1.x

In pipe 1.x a lot of functions were returning iterables and a lot other functions were returning non-iterables, causing confusion. The one returning non-iterables could only be used as the last function of a pipe expression, so they are in fact useless:

range(100) | where(lambda x: x % 2 == 0) | add

can be rewritten with no less readability as:

sum(range(100) | where(lambda x: x % 2 == 0))

so all pipes returning non-iterables are now deprecated and were removed in pipe 2.0.

What should I do?

Oh, you just upgraded pipe, got an exception, and landed here? You have three solutions:

  1. Stop using closing-pipes, replace ...|...|...|...|as_list to list(...|...|...|), that's it, it's even shorter.

  2. If "closing pipes" are not an issue for you, and you really like them, just reimplement the few you really need, it often take a very few lines of code, or copy them from here.

  3. If you still rely on a lot of them and are in a hurry, just pip install pipe<2.

And start testing your project using the Python Development Mode so you catch those warnings before they bite you.

But I like them, pleassssse, reintroduce them!

This has already been discussed in #74.

An @Pipe is often easily implemented in a 1 to 3 lines of code function, and the pipe module does not aim at giving all possibilities, it aims at giving the Pipe decorator.

So if you need more pipes, closing pipes, weird pipes, you-name-it, feel free to implement them on your project, and consider the already-implemented ones as examples on how to do it.

See the Constructing your own paragraph below.

Existing Pipes in this module

Alphabetical list of available pipes; when several names are listed for a given pipe, these are aliases.

chain

Chain a sequence of iterables:

>>> from pipe import chain
>>> list([[1, 2], [3, 4], [5]] | chain)
[1, 2, 3, 4, 5]

Warning : chain only unfold iterable containing ONLY iterables:

[1, 2, [3]] | chain

Gives a TypeError: chain argument #1 must support iteration Consider using traverse.

chain_with(other)

Like itertools.chain, yields elements of the given iterable, hen yields elements of its parameters

>>> from pipe import chain_with
>>> list((1, 2, 3) | chain_with([4, 5], [6]))
[1, 2, 3, 4, 5, 6]

dedup(key=None)

Deduplicate values, using the given key function if provided.

>>> from pipe import dedup
>>> list([-1, 0, 0, 0, 1, 2, 3] | dedup)
[-1, 0, 1, 2, 3]
>>> list([-1, 0, 0, 0, 1, 2, 3] | dedup(key=abs))
[-1, 0, 2, 3]

enumerate(start=0)

The builtin enumerate() as a Pipe:

>>> from pipe import enumerate
>>> list(['apple', 'banana', 'citron'] | enumerate)
[(0, 'apple'), (1, 'banana'), (2, 'citron')]
>>> list(['car', 'truck', 'motorcycle', 'bus', 'train'] | enumerate(start=6))
[(6, 'car'), (7, 'truck'), (8, 'motorcycle'), (9, 'bus'), (10, 'train')]

filter(predicate)

Alias for where(predicate), see where(predicate).

groupby(key=N 57A6 one)

Like itertools.groupby(sorted(iterable, key = keyfunc), keyfunc)

>>> from pipe import groupby, map
>>> items = range(10)
>>> ' / '.join(items | groupby(lambda x: "Odd" if x % 2 else "Even")
...                  | select(lambda x: "{}: {}".format(x[0], ', '.join(x[1] | map(str)))))
'Even: 0, 2, 4, 6, 8 / Odd: 1, 3, 5, 7, 9'

islice()

Just the itertools.islice function as a Pipe:

>>> from pipe import islice
>>> list((1, 2, 3, 4, 5, 6, 7, 8, 9) | islice(2, 8, 2))
[3, 5, 7]

izip()

Just the itertools.izip function as a Pipe:

>>> from pipe import izip
>>> list(range(0, 10) | izip(range(1, 11)))
[(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10)]

map(), select()

Apply a conversion expression given as parameter to each element of the given iterable

>>> list([1, 2, 3] | map(lambda x: x * x))
[1, 4, 9]

>>> list([1, 2, 3] | select(lambda x: x * x))
[1, 4, 9]

netcat

The netcat Pipe sends and receive bytes over TCP:

data = [
    b"HEAD / HTTP/1.0\r\n",
    b"Host: python.org\r\n",
    b"\r\n",
]
for packet in data | netcat("python.org", 80):
    print(packet.decode("UTF-8"))

Gives:

HTTP/1.1 301 Moved Permanently
Content-length: 0
Location: https://python.org/
Connection: close

permutations(r=None)

Returns all possible permutations:

>>> from pipe import permutations
>>> for item in 'ABC' | permutations(2):
...     print(item)
('A', 'B')
('A', 'C')
('B', 'A')
('B', 'C')
('C', 'A')
('C', 'B')
>>> for item in range(3) | permutations:
...     print(item)
(0, 1, 2)
(0, 2, 1)
(1, 0, 2)
(1, 2, 0)
(2, 0, 1)
(2, 1, 0)

reverse

Like Python's built-in reversed function.

>>> from pipe import reverse
>>> list([1, 2, 3] | reverse)
[3, 2, 1]

select(fct)

Alias for map(fct), see map(fct).

skip()

Skips the given quantity of elements from the given iterable, then yields

>>> from pipe import skip
>>> list((1, 2, 3, 4, 5) | skip(2))
[3, 4, 5]

skip_while(predicate)

Like itertools.dropwhile, skips elements of the given iterable while the predicate is true, then yields others:

>>> from pipe import skip_while
>>> list([1, 2, 3, 4] | skip_while(lambda x: x < 3))
[3, 4]

sort(key=None, reverse=False)