[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Polyhedral group

Geometric polyhedral group From Wikipedia, the free encyclopedia

In geometry, the polyhedral group is any of the symmetry groups of the Platonic solids.

More information , [n,3], (*n32) ...
Selected point groups in three dimensions

Involutional symmetry
Cs, (*)
[ ] =

Cyclic symmetry
Cnv, (*nn)
[n] =

Dihedral symmetry
Dnh, (*n22)
[n,2] =
Polyhedral group, [n,3], (*n32)

Tetrahedral symmetry
Td, (*332)
[3,3] =

Octahedral symmetry
Oh, (*432)
[4,3] =

Icosahedral symmetry
Ih, (*532)
[5,3] =
Close

Groups

Summarize
Perspective

There are three polyhedral groups:

  • The tetrahedral group of order 12, rotational symmetry group of the regular tetrahedron. It is isomorphic to A4.
    • The conjugacy classes of T are:
      • identity
      • 4 × rotation by 120°, order 3, cw
      • 4 × rotation by 120°, order 3, ccw
      • 3 × rotation by 180°, order 2
  • The octahedral group of order 24, rotational symmetry group of the cube and the regular octahedron. It is isomorphic to S4.
    • The conjugacy classes of O are:
      • identity
      • 6 × rotation by ±90° around vertices, order 4
      • 8 × rotation by ±120° around triangle centers, order 3
      • 3 × rotation by 180° around vertices, order 2
      • 6 × rotation by 180° around midpoints of edges, order 2
  • The icosahedral group of order 60, rotational symmetry group of the regular dodecahedron and the regular icosahedron. It is isomorphic to A5.
    • The conjugacy classes of I are:
      • identity
      • 12 × rotation by ±72°, order 5
      • 12 × rotation by ±144°, order 5
      • 20 × rotation by ±120°, order 3
      • 15 × rotation by 180°, order 2

These symmetries double to 24, 48, 120 respectively for the full reflectional groups. The reflection symmetries have 6, 9, and 15 mirrors respectively. The octahedral symmetry, [4,3] can be seen as the union of 6 tetrahedral symmetry [3,3] mirrors, and 3 mirrors of dihedral symmetry Dih2, [2,2]. Pyritohedral symmetry is another doubling of tetrahedral symmetry.

The conjugacy classes of full tetrahedral symmetry, TdS4, are:

  • identity
  • 8 × rotation by 120°
  • 3 × rotation by 180°
  • 6 × reflection in a plane through two rotation axes
  • 6 × rotoreflection by 90°

The conjugacy classes of pyritohedral symmetry, Th, include those of T, with the two classes of 4 combined, and each with inversion:

  • identity
  • 8 × rotation by 120°
  • 3 × rotation by 180°
  • inversion
  • 8 × rotoreflection by 60°
  • 3 × reflection in a plane

The conjugacy classes of the full octahedral group, OhS4 × C2, are:

  • inversion
  • 6 × rotoreflection by 90°
  • 8 × rotoreflection by 60°
  • 3 × reflection in a plane perpendicular to a 4-fold axis
  • 6 × reflection in a plane perpendicular to a 2-fold axis

The conjugacy classes of full icosahedral symmetry, IhA5 × C2, include also each with inversion:

  • inversion
  • 12 × rotoreflection by 108°, order 10
  • 12 × rotoreflection by 36°, order 10
  • 20 × rotoreflection by 60°, order 6
  • 15 × reflection, order 2

Chiral polyhedral groups

More information Name (Orb.), Coxeternotation ...
Chiral polyhedral groups
Name
(Orb.)
Coxeter
notation
Order Abstract
structure
Rotation
points
#valence
Diagrams
Orthogonal Stereographic
T
(332)

[3,3]+
12A443
32
Thumb Thumb Thumb Thumb
Th
(3*2)


[4,3+]
24A4 × C243
3*2
Thumb Thumb Thumb Thumb
O
(432)

[4,3]+
24S434
43
62
Thumb Thumb Thumb Thumb
I
(532)

[5,3]+
60A565
103
152
Thumb Thumb Thumb Thumb
Close

Full polyhedral groups

More information Coxeternotation, Order ...
Full polyhedral groups
Weyl
Schoe.
(Orb.)
Coxeter
notation
Order Abstract
structure
Coxeter
number

(h)
Mirrors
(m)
Mirror diagrams
Orthogonal Stereographic
A3
Td
(*332)


[3,3]
24S446ThumbThumbThumbThumb
B3
Oh
(*432)


[4,3]
48S4 × C283
>6
ThumbThumbThumbThumb
H3
Ih
(*532)


[5,3]
120A5 × C21015ThumbThumbThumbThumb
Close

See also

References

  • Weisstein, Eric W. "PolyhedralGroup". MathWorld.
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.