@inproceedings{chen-etal-2021-neurallog,
title = "{N}eural{L}og: Natural Language Inference with Joint Neural and Logical Reasoning",
author = "Chen, Zeming and
Gao, Qiyue and
Moss, Lawrence S.",
editor = "Ku, Lun-Wei and
Nastase, Vivi and
Vuli{\'c}, Ivan",
booktitle = "Proceedings of *SEM 2021: The Tenth Joint Conference on Lexical and Computational Semantics",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.starsem-1.7/",
doi = "10.18653/v1/2021.starsem-1.7",
pages = "78--88",
abstract = "Deep learning (DL) based language models achieve high performance on various benchmarks for Natural Language Inference (NLI). And at this time, symbolic approaches to NLI are receiving less attention. Both approaches (symbolic and DL) have their advantages and weaknesses. However, currently, no method combines them in a system to solve the task of NLI. To merge symbolic and deep learning methods, we propose an inference framework called NeuralLog, which utilizes both a monotonicity-based logical inference engine and a neural network language model for phrase alignment. Our framework models the NLI task as a classic search problem and uses the beam search algorithm to search for optimal inference paths. Experiments show that our joint logic and neural inference system improves accuracy on the NLI task and can achieve state-of-art accuracy on the SICK and MED datasets."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2021-neurallog">
<titleInfo>
<title>NeuralLog: Natural Language Inference with Joint Neural and Logical Reasoning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zeming</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qiyue</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lawrence</namePart>
<namePart type="given">S</namePart>
<namePart type="family">Moss</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of *SEM 2021: The Tenth Joint Conference on Lexical and Computational Semantics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivi</namePart>
<namePart type="family">Nastase</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Vulić</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Deep learning (DL) based language models achieve high performance on various benchmarks for Natural Language Inference (NLI). And at this time, symbolic approaches to NLI are receiving less attention. Both approaches (symbolic and DL) have their advantages and weaknesses. However, currently, no method combines them in a system to solve the task of NLI. To merge symbolic and deep learning methods, we propose an inference framework called NeuralLog, which utilizes both a monotonicity-based logical inference engine and a neural network language model for phrase alignment. Our framework models the NLI task as a classic search problem and uses the beam search algorithm to search for optimal inference paths. Experiments show that our joint logic and neural inference system improves accuracy on the NLI task and can achieve state-of-art accuracy on the SICK and MED datasets.</abstract>
<identifier type="citekey">chen-etal-2021-neurallog</identifier>
<identifier type="doi">10.18653/v1/2021.starsem-1.7</identifier>
<location>
<url>https://aclanthology.org/2021.starsem-1.7/</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>78</start>
<end>88</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NeuralLog: Natural Language Inference with Joint Neural and Logical Reasoning
%A Chen, Zeming
%A Gao, Qiyue
%A Moss, Lawrence S.
%Y Ku, Lun-Wei
%Y Nastase, Vivi
%Y Vulić, Ivan
%S Proceedings of *SEM 2021: The Tenth Joint Conference on Lexical and Computational Semantics
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F chen-etal-2021-neurallog
%X Deep learning (DL) based language models achieve high performance on various benchmarks for Natural Language Inference (NLI). And at this time, symbolic approaches to NLI are receiving less attention. Both approaches (symbolic and DL) have their advantages and weaknesses. However, currently, no method combines them in a system to solve the task of NLI. To merge symbolic and deep learning methods, we propose an inference framework called NeuralLog, which utilizes both a monotonicity-based logical inference engine and a neural network language model for phrase alignment. Our framework models the NLI task as a classic search problem and uses the beam search algorithm to search for optimal inference paths. Experiments show that our joint logic and neural inference system improves accuracy on the NLI task and can achieve state-of-art accuracy on the SICK and MED datasets.
%R 10.18653/v1/2021.starsem-1.7
%U https://aclanthology.org/2021.starsem-1.7/
%U https://doi.org/10.18653/v1/2021.starsem-1.7
%P 78-88
Markdown (Informal)
[NeuralLog: Natural Language Inference with Joint Neural and Logical Reasoning](https://aclanthology.org/2021.starsem-1.7/) (Chen et al., *SEM 2021)
ACL