@inproceedings{lee-etal-2022-searching,
title = "Searching for {PET}s: Using Distributional and Sentiment-Based Methods to Find Potentially Euphemistic Terms",
author = "Lee, Patrick and
Gavidia, Martha and
Feldman, Anna and
Peng, Jing",
editor = "Pyatkin, Valentina and
Fried, Daniel and
Anthonio, Talita",
booktitle = "Proceedings of the Second Workshop on Understanding Implicit and Underspecified Language",
month = jul,
year = "2022",
address = "Seattle, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.unimplicit-1.4/",
doi = "10.18653/v1/2022.unimplicit-1.4",
pages = "22--32",
abstract = "This paper presents a linguistically driven proof of concept for finding potentially euphemistic terms, or PETs. Acknowledging that PETs tend to be commonly used expressions for a certain range of sensitive topics, we make use of distri- butional similarities to select and filter phrase candidates from a sentence and rank them using a set of simple sentiment-based metrics. We present the results of our approach tested on a corpus of sentences containing euphemisms, demonstrating its efficacy for detecting single and multi-word PETs from a broad range of topics. We also discuss future potential for sentiment-based methods on this task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lee-etal-2022-searching">
<titleInfo>
<title>Searching for PETs: Using Distributional and Sentiment-Based Methods to Find Potentially Euphemistic Terms</title>
</titleInfo>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Gavidia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Feldman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Understanding Implicit and Underspecified Language</title>
</titleInfo>
<name type="personal">
<namePart type="given">Valentina</namePart>
<namePart type="family">Pyatkin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Fried</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Talita</namePart>
<namePart type="family">Anthonio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents a linguistically driven proof of concept for finding potentially euphemistic terms, or PETs. Acknowledging that PETs tend to be commonly used expressions for a certain range of sensitive topics, we make use of distri- butional similarities to select and filter phrase candidates from a sentence and rank them using a set of simple sentiment-based metrics. We present the results of our approach tested on a corpus of sentences containing euphemisms, demonstrating its efficacy for detecting single and multi-word PETs from a broad range of topics. We also discuss future potential for sentiment-based methods on this task.</abstract>
<identifier type="citekey">lee-etal-2022-searching</identifier>
<identifier type="doi">10.18653/v1/2022.unimplicit-1.4</identifier>
<location>
<url>https://aclanthology.org/2022.unimplicit-1.4/</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>22</start>
<end>32</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Searching for PETs: Using Distributional and Sentiment-Based Methods to Find Potentially Euphemistic Terms
%A Lee, Patrick
%A Gavidia, Martha
%A Feldman, Anna
%A Peng, Jing
%Y Pyatkin, Valentina
%Y Fried, Daniel
%Y Anthonio, Talita
%S Proceedings of the Second Workshop on Understanding Implicit and Underspecified Language
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, USA
%F lee-etal-2022-searching
%X This paper presents a linguistically driven proof of concept for finding potentially euphemistic terms, or PETs. Acknowledging that PETs tend to be commonly used expressions for a certain range of sensitive topics, we make use of distri- butional similarities to select and filter phrase candidates from a sentence and rank them using a set of simple sentiment-based metrics. We present the results of our approach tested on a corpus of sentences containing euphemisms, demonstrating its efficacy for detecting single and multi-word PETs from a broad range of topics. We also discuss future potential for sentiment-based methods on this task.
%R 10.18653/v1/2022.unimplicit-1.4
%U https://aclanthology.org/2022.unimplicit-1.4/
%U https://doi.org/10.18653/v1/2022.unimplicit-1.4
%P 22-32
Markdown (Informal)
[Searching for PETs: Using Distributional and Sentiment-Based Methods to Find Potentially Euphemistic Terms](https://aclanthology.org/2022.unimplicit-1.4/) (Lee et al., unimplicit 2022)
ACL