@article{rashkin-etal-2023-measuring,
title = "Measuring Attribution in Natural Language Generation Models",
author = "Rashkin, Hannah and
Nikolaev, Vitaly and
Lamm, Matthew and
Aroyo, Lora and
Collins, Michael and
Das, Dipanjan and
Petrov, Slav and
Tomar, Gaurav Singh and
Turc, Iulia and
Reitter, David",
journal = "Computational Linguistics",
volume = "49",
number = "4",
month = dec,
year = "2023",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/2023.cl-4.2/",
doi = "10.1162/coli_a_00486",
pages = "777--840",
abstract = "Large neural models have brought a new challenge to natural language generation (NLG): It has become imperative to ensure the safety and reliability of the output of models that generate freely. To this end, we present an evaluation framework, Attributable to Identified Sources (AIS), stipulating that NLG output pertaining to the external world is to be verified against an independent, provided source. We define AIS and a two-stage annotation pipeline for allowing annotators to evaluate model output according to annotation guidelines. We successfully validate this approach on generation datasets spanning three tasks (two conversational QA datasets, a summarization dataset, and a table-to-text dataset). We provide full annotation guidelines in the appendices and publicly release the annotated data at https://github.com/google-research-datasets/AIS."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rashkin-etal-2023-measuring">
<titleInfo>
<title>Measuring Attribution in Natural Language Generation Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hannah</namePart>
<namePart type="family">Rashkin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vitaly</namePart>
<namePart type="family">Nikolaev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Lamm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lora</namePart>
<namePart type="family">Aroyo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Collins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dipanjan</namePart>
<namePart type="family">Das</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Slav</namePart>
<namePart type="family">Petrov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gaurav</namePart>
<namePart type="given">Singh</namePart>
<namePart type="family">Tomar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iulia</namePart>
<namePart type="family">Turc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Reitter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>Large neural models have brought a new challenge to natural language generation (NLG): It has become imperative to ensure the safety and reliability of the output of models that generate freely. To this end, we present an evaluation framework, Attributable to Identified Sources (AIS), stipulating that NLG output pertaining to the external world is to be verified against an independent, provided source. We define AIS and a two-stage annotation pipeline for allowing annotators to evaluate model output according to annotation guidelines. We successfully validate this approach on generation datasets spanning three tasks (two conversational QA datasets, a summarization dataset, and a table-to-text dataset). We provide full annotation guidelines in the appendices and publicly release the annotated data at https://github.com/google-research-datasets/AIS.</abstract>
<identifier type="citekey">rashkin-etal-2023-measuring</identifier>
<identifier type="doi">10.1162/coli_a_00486</identifier>
<location>
<url>https://aclanthology.org/2023.cl-4.2/</url>
</location>
<part>
<date>2023-12</date>
<detail type="volume"><number>49</number></detail>
<detail type="issue"><number>4</number></detail>
<extent unit="page">
<start>777</start>
<end>840</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Measuring Attribution in Natural Language Generation Models
%A Rashkin, Hannah
%A Nikolaev, Vitaly
%A Lamm, Matthew
%A Aroyo, Lora
%A Collins, Michael
%A Das, Dipanjan
%A Petrov, Slav
%A Tomar, Gaurav Singh
%A Turc, Iulia
%A Reitter, David
%J Computational Linguistics
%D 2023
%8 December
%V 49
%N 4
%I MIT Press
%C Cambridge, MA
%F rashkin-etal-2023-measuring
%X Large neural models have brought a new challenge to natural language generation (NLG): It has become imperative to ensure the safety and reliability of the output of models that generate freely. To this end, we present an evaluation framework, Attributable to Identified Sources (AIS), stipulating that NLG output pertaining to the external world is to be verified against an independent, provided source. We define AIS and a two-stage annotation pipeline for allowing annotators to evaluate model output according to annotation guidelines. We successfully validate this approach on generation datasets spanning three tasks (two conversational QA datasets, a summarization dataset, and a table-to-text dataset). We provide full annotation guidelines in the appendices and publicly release the annotated data at https://github.com/google-research-datasets/AIS.
%R 10.1162/coli_a_00486
%U https://aclanthology.org/2023.cl-4.2/
%U https://doi.org/10.1162/coli_a_00486
%P 777-840
Markdown (Informal)
[Measuring Attribution in Natural Language Generation Models](https://aclanthology.org/2023.cl-4.2/) (Rashkin et al., CL 2023)
ACL
- Hannah Rashkin, Vitaly Nikolaev, Matthew Lamm, Lora Aroyo, Michael Collins, Dipanjan Das, Slav Petrov, Gaurav Singh Tomar, Iulia Turc, and David Reitter. 2023. Measuring Attribution in Natural Language Generation Models. Computational Linguistics, 49(4):777–840.