@inproceedings{fonseca-cohen-2024-large-language,
title = "Can Large Language Model Summarizers Adapt to Diverse Scientific Communication Goals?",
author = "Fonseca, Marcio and
Cohen, Shay",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.508/",
doi = "10.18653/v1/2024.findings-acl.508",
pages = "8599--8618",
abstract = "In this work, we investigate the controllability of large language models (LLMs) on scientific summarization tasks. We identify key stylistic and content coverage factors that characterize different types of summaries such as paper reviews, abstracts, and lay summaries. By controlling stylistic features, we find that non-fine-tuned LLMs outperform humans in the MuP review generation task, both in terms of similarity to reference summaries and human preferences. Also, we show that we can improve the controllability of LLMs with keyword-based classifier-free guidance (CFG) while achieving lexical overlap comparable to strong fine-tuned baselines on arXiv and PubMed. However, our results also indicate that LLMs cannot consistently generate long summaries with more than 8 sentences. Furthermore, these models exhibit limited capacity to produce highly abstractive lay summaries. Although LLMs demonstrate strong generic summarization competency, sophisticated content control without costly fine-tuning remains an open problem for domain-specific applications."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fonseca-cohen-2024-large-language">
<titleInfo>
<title>Can Large Language Model Summarizers Adapt to Diverse Scientific Communication Goals?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marcio</namePart>
<namePart type="family">Fonseca</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shay</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this work, we investigate the controllability of large language models (LLMs) on scientific summarization tasks. We identify key stylistic and content coverage factors that characterize different types of summaries such as paper reviews, abstracts, and lay summaries. By controlling stylistic features, we find that non-fine-tuned LLMs outperform humans in the MuP review generation task, both in terms of similarity to reference summaries and human preferences. Also, we show that we can improve the controllability of LLMs with keyword-based classifier-free guidance (CFG) while achieving lexical overlap comparable to strong fine-tuned baselines on arXiv and PubMed. However, our results also indicate that LLMs cannot consistently generate long summaries with more than 8 sentences. Furthermore, these models exhibit limited capacity to produce highly abstractive lay summaries. Although LLMs demonstrate strong generic summarization competency, sophisticated content control without costly fine-tuning remains an open problem for domain-specific applications.</abstract>
<identifier type="citekey">fonseca-cohen-2024-large-language</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.508</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.508/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>8599</start>
<end>8618</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Can Large Language Model Summarizers Adapt to Diverse Scientific Communication Goals?
%A Fonseca, Marcio
%A Cohen, Shay
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F fonseca-cohen-2024-large-language
%X In this work, we investigate the controllability of large language models (LLMs) on scientific summarization tasks. We identify key stylistic and content coverage factors that characterize different types of summaries such as paper reviews, abstracts, and lay summaries. By controlling stylistic features, we find that non-fine-tuned LLMs outperform humans in the MuP review generation task, both in terms of similarity to reference summaries and human preferences. Also, we show that we can improve the controllability of LLMs with keyword-based classifier-free guidance (CFG) while achieving lexical overlap comparable to strong fine-tuned baselines on arXiv and PubMed. However, our results also indicate that LLMs cannot consistently generate long summaries with more than 8 sentences. Furthermore, these models exhibit limited capacity to produce highly abstractive lay summaries. Although LLMs demonstrate strong generic summarization competency, sophisticated content control without costly fine-tuning remains an open problem for domain-specific applications.
%R 10.18653/v1/2024.findings-acl.508
%U https://aclanthology.org/2024.findings-acl.508/
%U https://doi.org/10.18653/v1/2024.findings-acl.508
%P 8599-8618
Markdown (Informal)
[Can Large Language Model Summarizers Adapt to Diverse Scientific Communication Goals?](https://aclanthology.org/2024.findings-acl.508/) (Fonseca & Cohen, Findings 2024)
ACL