8000 GitHub - Nawap1/Video_Summarizer: 🎧💡 EchoSummarize: A YouTube video summarizer using the Phi-3.5-mini LLM, providing fast and accurate summaries of video transcripts.
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

🎧💡 EchoSummarize: A YouTube video summarizer using the Phi-3.5-mini LLM, providing fast and accurate summaries of video transcripts.

Notifications You must be signed in to change notification settings

Nawap1/Video_Summarizer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YouTube Summarizer

This project utilizes the lightweight LLM 'Phi-3.5-mini' to summarize YouTube videos. We employ a 4-bit quantized version of the model to optimize performance while maintaining accuracy. The app transcribes audio from YouTube videos using Whisper (or uses existing subtitles if available) and then generates a summary using the Phi-3 model.

Table of Contents

Features

  • Transcribe YouTube video audio using Whisper
  • Use existing subtitles if available
  • Summarize transcribed text using Phi-3 model
  • User-friendly web interface

Prerequisites

Before you begin, ensure you have the following installed:

  • Python 3.8+
  • Node.js and npm
  • Git

Setup

1. Clone the Repository

git clone https://github.com/....................

2. Download the Quantized Model

  • Navigate to this link and download the Phi-3.5-mini-instruct-Q4_K_L.gguf model.
  • Create a directory /Model in the project root and place the downloaded quantized model inside.

3. Install Ollama

  • Download Ollama from here.
  • Install Ollama following the provided instructions.

4. Prepare the Model

  • Copy the downloaded model file into the project directory.
  • Create a file named Modelfile in the same directory and paste the following content:
FROM Phi-3.5-mini-instruct-Q4_K_L.gguf
SYSTEM You are a helpful AI assistant specialized in summarizing YouTube transcripts.
# Adjust model parameters
PARAMETER temperature 0.7
PARAMETER top_k 40
PARAMETER top_p 0.95

5. Create the Ollama Model

Open a terminal and run the following command:

ollama create quantphi -f Modelfile

6. Install Python Dependencies

pip install -r requirements.txt

Running the API

  1. Navigate to the API directory:
cd api
  1. Start the API:
python api.py

The API should now be running on http://localhost:5000.

Hosting the YouTube Summarizer App

  1. Navigate to the app directory:
cd app
  1. Install frontend dependencies:
npm install
  1. Run the app:
npm run dev

The app should now be accessible at http://localhost:3000.

Usage

  1. Open your web browser and go to http://localhost:3000.
  2. Paste a YouTube video URL into the input field.
  3. Click the "Summarize" button.
  4. Wait for the app to process the video and generate a summary.
  5. Read the generated summary of the YouTube video content.

Demo

A demo video showcasing the app's functionality is available below. In the demo, a YouTube video link (https://www.youtube.com/watch?v=NiKtZgImdlY) is pasted into the app, and after a brief processing time, a summary of the video content is generated.

This is the demo video.

Video.summarization.mp4

About

🎧💡 EchoSummarize: A YouTube video summarizer using the Phi-3.5-mini LLM, providing fast and accurate summaries of video transcripts.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  
0