8000 GitHub - Neelik/REdORank: Python implementation of the AdaRank algorithm
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Neelik/REdORank

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AdaRank

This is a python implementation of the AdaRank algorithm (Xu and Li, 2007) with early stopping.

The structure of the code follows closely to the scikit-learn style, but still there are some differences in the estimator/metrics API (e.g. fit() method takes three arguments X, y, and qid rather than just two).

Four ranking metrics are implemented: P@k, AP, DCG@k, and nDCG@k (in both trec_eval and Burges et al. versions).

Dependencies

  • numpy
  • scikit-learn

Usage

The following code will run AdaRank for 100 iterations optimizing for NDCG@10. When no improvement is made within the previous 10 iterations, the algorithm will stop.

from adarank import AdaRank
from metrics import NDCGScorer

scorer = NDCGScorer(k=10)
model = AdaRank(max_iter=100, estop=10, scorer=scorer).fit(X, y, qid)
pred = model.predict(X_test, qid_test)
print scorer(y_test, pred, qid_test).mean()

See test.py for more advanced examples.

References

Burges et al. Learning to rank using gradient descent. In Proceedings of ICML '05, pages 89–96. ACM, 2005.

Xu and Li. AdaRank: a boosting algorithm for information retrieval. In Proceedings of SIGIR '07, pages 391–398. ACM, 2007.

About

Python implementation of the AdaRank algorithm

Resources

Readme < 4824 /div>

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%
0