8000 GitHub - Our-Stars/GraFpKa
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Our-Stars/GraFpKa

Repository files navigation

GraFpKa

A graph neural network-based interpretable platform for small molecule pKa prediction.

Workflow

Overview

  • input\: Input data, including the training dataset, external validation set, and ionizable site file.
  • model\: The GraFpKa model.
  • results\:Used to store prediction results.
  • temp\: A temporary folder for storing temporary data.
  • visualization\: Visualization results, used to store the results of interpretability analysis.

Environment Installation

  • The project provides an environment file env_GraFpKa.yml. You can install the environment by running the following command:
    conda env create -f env_GraFpKa.yml

  • After that, activate the environment with:
    conda activate env_GraFpKa

Training

  • If you need to train the model:
    • You can run the following command for pretraining:
      python pretraining.py
    • Then, run the following command for fine-tuning:
      python fine_tuning.py

pKa Prediction

General Command Format

    python predicting.py [--s SMILES...] [--i INPUT_FILE] [--o OUTPUT_FILE]

Parameter explanation:

    --s SMILES...: Input multiple SMILES strings directly via the command line. (Mutually exclusive with --i).
    --i INPUT_FILE: Provide a CSV file containing SMILES strings (one SMILES per line, no header). (Mutually exclusive with --s).
    --o OUTPUT_FILE: Optional. Specify the output CSV file path for saving pKa predictions. If not provided, the default output path is results/predictions.csv.

Examples:

Predicting pKa values with SMILES input directly:
    python predicting.py --s "CC(=O)OC1=CC=CC=C1C(=O)O" "Cc1ccccc1NN=C(C#N)C#N" "COc1cccc(S(N)(=O)=O)c1"
Predicting pKa values with a CSV input file:
    python predicting.py --i input/input_example.csv --o results/predictions.csv

Interpretability Analysis

General Command Format:

    python interpretability.py [--s SMILES...] [--i INPUT_FILE] [--o OUTPUT_DIR] [--t THRESHOLD]

Parameter explanation:

    --s SMILES...: Input multiple SMILES strings directly via the command line. (Mutually exclusive with --i).
    --i INPUT_FILE: Provide a CSV file containing SMILES strings (one SMILES per line, no header). (Mutually exclusive with --s).
    --o OUTPUT_FILE: Optional. Specify the output directory to save interpretability analysis images. The directory must end with /. If not provided, the default output path is visualization/.
    --t THRESHOLD: Optional.Specify the threshold for the color bar in the interpretability analysis. Default is -1 for automatic thresholding.

Examples:

Performing interpretability analysis with SMILES input directly:
    python interpretability.py --s "CC(=O)OC1=CC=CC=C1C(=O)O" "Cc1ccccc1NN=C(C#N)C#N" "COc1cccc(S(N)(=O)=O)c1" --t -1
Performing interpretability analysis with a CSV input file:
    python interpretability.py --i input/input_example.csv --o visualization/

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0