10000 GitHub - Abbey4799/HAUSER: Code and data for the paper "HAUSER: Towards Holistic and Automatic Evaluation of Simile Generation" (ACL 2023)
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Code and data for the paper "HAUSER: Towards Holistic and Automatic Evaluation of Simile Generation" (ACL 2023)

Notifications You must be signed in to change notification settings

Abbey4799/HAUSER

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HAUSER

Code and data for the paper "HAUSER: Towards Holistic and Automatic Evaluation of Simile Generation" (ACL 2023)

Install Dependencies

conda create -n hauser python=3.6.13
conda activate hauser
pip install -r requirements.txt

Install the necessary dependencies for simile component extraction.

cd HAUSER/dependency
bash install.sh
python test_syntax.py

If test_syntax.py runs successfully, it proves that the dependency installation is successful.

Cache the necessary pre-trained models

cd HAUSER/dependency
python test_models.py

Download the Million-scale Simile Knowledge Base MAPS-KB from Google Drive.

Put the file MAPS-KB.csv into the folder [HAUSER/dependency].

HAUSER

Data

First, we finetune a pre-trained sequence-to-sequence model, BART, based on the simile generation datasets from MAPS-KB. Then, we generate five simile candidates for 2500 literal sentences in the test set. The data is in HAUSER/data/simile_candidates_raw.json.

Three annotators labeled 150 data samples, which can be found in HAUSER/data/human_annotated.csv. The annotations follow this format:

  • label1, label2, label3: represent annotations from the three annotators
  • Dimension suffixes:
    • _q: quality score
    • _c: creativity score
    • _i: informativeness score

Metric

You can get the relevance_score, logic_consistency_score, sentiment_consistency_score, creativity_score and informativeness_scoreusing the following script score.sh:

cd HAUSER
python code/score.py

You can reimplement the correlation analysis in code/calculate_correlation.py.

Citation

@article{he2023hauser,
  title={HAUSER: Towards Holistic and Automatic Evaluation of Simile Generation},
  author={He, Qianyu and Zhang, Yikai and Liang, Jiaqing and Huang, Yuncheng and Xiao, Yanghua and Chen, Yunwen},
  journal={arXiv preprint arXiv:2306.07554},
  year={2023}
}

About

Code and data for the paper "HAUSER: Towards Holistic and Automatic Evaluation of Simile Generation" (ACL 2023)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0