Jiadong Tang · Yu Gao · Dianyi Yang · Liqi Yan · Yufeng Yue · Yi Yang
CVPR 2025 Highlight
Paper | Project page | Dataset
- Clone DroneSplat and download pre-trained model.
git clone --recursive https://github.com/BITyia/DroneSplat.git
cd DroneSplat
git submodule update --init --recursive
mkdir -p checkpoints/
wget https://download.europe.naverlabs.com/ComputerVision/DUSt3R/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth -P checkpoints/
wget https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_large.pt -P checkpoints/
- Create the environment.
conda create -n dronesplat python=3.11
conda activate dronesplat
pip install torch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 --index-url https://download.pytorch.org/whl/cu121
pip install -r requirements.txt
pip install submodules/simple-knn
pip install submodules/diff-gaussian-rasterization
- Build SAM2 Model
cd submodules/sam2
pip install -e .
cd ..
- Optional (if you want to use DUSt3R).
# DUST3R relies on RoPE positional embeddings for which you can compile some cuda kernels for faster runtime.
cd submodules/dust3r/croco/models/curope/
python setup.py build_ext --inplace
We provide two scenes of DroneSplat dataset for evaluation.
In addition, we also conduct experiments on NeRF On-the-go and UrbanScene3D.
python seg_all_instances.py --image_dir data/Simingshan
You can try adjusting different parameters in the SAM2AutomaticMaskGenerator to achieve better segmentation results. Here are the segmentation results of the image named "2411006_18_002.jpg" using different parameters.
Run the following command to train on Simingshan.
python train.py -s data/Simingshan -m output/Simingshan --scene Simingshan --iter 7000 --use_masks
Run the following script to render train and test images:
python render.py -s data/Simingshan -m output/Simingshan --iter 7000
Run the following script to render a video:
python render_video.py -s data/Simingshan -m output/Simingshan --iter 7000 --n_views 600 --fps 30
python metrics.py --rendering output/Simingshan/render_test --gt data/Simingshan/images --output output/Simingshan/metrics.json
This project is built on top of open-source code. We thank the open-source research community and credit our use of parts of 3D Guassian Splatting, DUSt3R, and InstantSplat.