8000 GitHub - DYAKOOO/pi-zero-pytorch: Implementation of π₀, the robotic foundation model architecture proposed by Physical Intelligence
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Implementation of π₀, the robotic foundation model architecture proposed by Physical Intelligence

License

Notifications You must be signed in to change notification settings

DYAKOOO/pi-zero-pytorch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

59 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pi-zero-pytorch (wip)

Implementation of π₀ the robotic foundation model architecture proposed by Physical Intelligence

Summary of this work would be that it is a simplified Transfusion (Zhou et al.) with influence from Stable Diffusion 3 (Esser et al.), mainly the adoption of flow matching instead of diffusion for policy generation, as well as the separation of parameters (Joint Attention from mmDIT). They build on top of a pretrained vision language model in the PaLI configuration with prefixed visual tokens from a ViT to Gemma 2B

Install

$ pip install pi-zero-pytorch

Usage

import torch
from pi_zero_pytorch import π0

model = π0(
    dim = 512,
    dim_action_input = 6,
    dim_joint_state = 12,
    num_tokens = 20_000
)

vision = torch.randn(1, 1024, 512)
commands = torch.randint(0, 20_000, (1, 1024))
joint_state = torch.randn(1, 12)
actions = torch.randn(1, 32, 6)

loss, _ = model(vision, commands, joint_state, actions)
loss.backward()

# after much training

sampled_actions = model(vision, commands, joint_state, trajectory_length = 32) # (1, 32, 6)

Citation

@misc{Black2024,
    author  = {Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi, James Tanner, Quan Vuong, Anna Walling, Haohuan Wang, Ury Zhilinsky},
    url     = {https://www.physicalintelligence.company/download/pi0.pdf}
}
@inproceedings{Zhou2024ValueRL,
    title   = {Value Residual Learning For Alleviating Attention Concentration In Transformers},
    author  = {Zhanchao Zhou and Tianyi Wu and Zhiyun Jiang and Zhenzhong Lan},
    year    = {2024},
    url     = {https://api.semanticscholar.org/CorpusID:273532030}
}
@inproceedings{Yao2024FasterDiTTF,
    title   = {FasterDiT: Towards Faster Diffusion Transformers Training without Architecture Modification},
    author  = {Jingfeng Yao and Wang Cheng and Wenyu Liu and Xinggang Wang},
    year    = {2024},
    url     = {https://api.semanticscholar.org/CorpusID:273346237}
}

dear alice

About

Implementation of π₀, the robotic foundation model architecture proposed by Physical Intelligence

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%
0