8000 GitHub - DeepCV/multi-human-pose: Training code for the SPPE and SSTN of our RMPE framework
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

DeepCV/multi-human-pose

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 

Repository files navigation

RMPE: Regional Multi-person Pose Estimation(SPPE+SSTN part)

This repository includes Torch code for training our SPPE+SSTN model presented in our arXiv paper.

Contents

  1. Installation
  2. Preparation
  3. Evaluate
  4. Train
  5. Acknowledgements

Installation

To run this code, the following must be installed:

To install STN module, do

git clone https://github.com/Fang-Haoshu/stnbhwd.git
cd stnbhwd && luarocks make stnbhwd-scm-1.rockspec

After all the installation is done, get the code. We will call the directory that you cloned this repo into $SPPE_ROOT

git clone https://github.com/Fang-Haoshu/multi-human-pose.git
cd multi-human-pose

Preparation

For evaluation only

  1. Download pre-trained SPPE+SSTN model( 79DD Google drive|Baidu cloud). By default, we assume the models are stored in $SPPE_ROOT/predict/model/.

For training

  1. Download stacked hourglass networks. By default, we assume the model is stored in $SPPE_ROOT/train/.

  2. Download MPII images and COCO14 training set. By default, we assume the images are stored in /data/MPII_COCO14/images/.

Evaluate

You will need to generate bounding box first. Here we have already generated the bounding box in $SPPE_ROOT/predict/annot/mpii-test0.09/. To generate it yourself, please follow the guidlines in the main repo.

cd $SPPE_ROOT/predict
# make a soft link to the images then test
ln -s /data/MPII_COCO14/images/ data/images
# get the predicted results
th main.lua predict-test

You can also use the following command to visualize the single person pose results.

  qlua main.lua demo

Train

We finetune our model based on the pre-trained stacked-hourglass model.

cd $SPPE_ROOT/train/src
ln -s /data/MPII_COCO14/images ../data/mpii/images
# First finetune the model using DPG
th main.lua -expID finetune -addDPG
th main.lua -expID finetune -addDPG -continue -LR 0.5e-4 -nEpochs 10
# Then add parallel SPPE and SSTN on the finetuned model
# It should reach a final mAP of 80.*
th main.lua -expID final_model -loadModel '../exp/mpii/finetune/final_model.t7' -LR 0.5e-4 -addParallelSPPE -addSTN -addDPG
th main.lua -expID final_model -continue -Npochs 8 -LR 0.1e-4 -addParallelSPPE -addSTN -addDPG

Acknowledgements

Thanks to Wei Liu, Alejandro Newell, Pfister, T., Kaichun Mo, Maxime Oquab for contributing their codes. Thanks to the authors of Caffe and Torch7!

About

Training code for the SPPE and SSTN of our RMPE framework

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Lua 45.6%
  • Python 22.4%
  • CMake 8.5%
  • C 7.4%
  • Cuda 6.5%
  • Makefile 4.7%
  • Other 4.9%
0