8000 GitHub - HGKim-andb/AUE8088
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

HGKim-andb/AUE8088

 
 

Repository files navigation

HYU-AUE8088, Understanding and Utilizing Deep Learning

Project. Multispectral Pedestrian Detection

Important Files

├── README.md
├── requirements.txt
├── datasets
│   └── kaist-rgbt/ (see below explanation)
├── data
│   ├── ...
│   └── kaist-rgbt.yaml
├── models
│   ├── ...
│   ├── common.py
│   ├── yolo.py
│   ├── yolo5n_kaist-rgbt.yaml
│   └── yolo5s_kaist-rgbt.yaml
├── utils
│   ├── ...
│   ├── eval
│   │   ├── coco.py
│   │   ├── cocoeval.py
│   │   └── kaisteval.py
│   ├── dataloaders.py
│   └── loss.py
├── detect.py
├── debug_kaist.ipynb
├── val.py
└── train_simple.py

Preparation (One time setting)

  • (Recommended) Set W&B environment variables Plase find API Keys from https://wandb.ai/settings

    $ echo "export WANDB_API_KEY={YOUR_WANDB_API_KEY}" >> ~/.bashrc
    $ echo "export WANDB_ENTITY={USER_NAME}" >> ~/.bashrc
    $ echo "export WANDB_DIR={YOUR_WANDB_LOG_DIR}" >> ~/.bashrc
    $ source ~/.bashrc
    

    Please refer this webpage for more details: https://docs.wandb.ai/ko/guides/track/environment-variables/

  • Prepare dataset (5.8GB, multispectral(visible + lwir) images with bbox labels)

    $ wget http://ircv-nas.hanyang.ac.kr:9088/downloads/kaist-rgbt-aue8088.tar
    $ tar xvf kaist-rgbt-aue8088.tar
  • Clone base code repository (replace ircvlab to YOUR_GITHUB_ACCOUNT if you forked the repository)

    $ git clone https://github.com/ircvlab/aue8088
    $ cd aue8088
  • Create python virtual environment

    $ python3 -m venv venv/aue8088
    $ source venv/aue8088/bin/activate
  • Check whether the virtual environment set properly : The result should end with venv/aue8088/bin/python.

    $ which python
  • [!] Create a symbolic link for kaist-rgbt dataset

    • Assume the below folder structure

      ├── kaist-rgbt
      ├── aue8088
      │   ├── data/
      │   ├── models/
      │   ├── train_simple.py
      │   ├── ...
      │   └── README.md (this file)
    • Use below commands

      $ mkdir datasets
      $ ln -s $(realpath ../kaist-rgbt) datasets/kaist-rgbt
      $
  • Install required packages

    $ pip install -r requirements.txt

Train

  • Command
    $ python train_simple.py \
      --img 640 \
      --batch-size 16 \
      --epochs 20 \
      --data data/kaist-rgbt.yaml \
      --cfg models/yolov5n_kaist-rgbt.yaml \
      --weights yolov5n.pt \
      --workers 16 \
      --name yolov5n-rgbt \
      --entity $WANDB_ENTITY \
      --rgbt \
      --single-cls

Evaluation (eval.ai server)

  • On your labtop, go to the website: http://166.104.168.170:8888/ (Open: 5/23)
    • Only available in Hanyang internal network
    • If you're not in campus, please use VPN (https://vpn.hanyang.ac.kr)
      • It takes a day (or two) to get the permission from IT department.
  • Sign up
  • Send a message to me via LMS (then, I'll manually verify your account.)
  • Go to All Challenges - Multispectral Pedestrian Detection Challenge - Submit
  • Upload your predictions on test-all-20.txt
    • If you run train_simple.py with the default setting, predictions on test-all-20.txt will be generated: runs/train/*/epoch*_predictions.json
    • You can download this file onto your computer.
    • Note: if size of the prediction file is too large (about > 30MB), evaluation on the server could be failed.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.6%
  • Dockerfile 0.4%
0