-
The University of Manchester
- Manchester, UK
- https://research.manchester.ac.uk/en/persons/le.xing
- in/le-xing-96b806172
- @Xingle9
Popular repositories Loading
-
3D-Printed-EEG-arrays-headsets
3D-Printed-EEG-arrays-headsets Public3D printed EEG electrodes, electrode arrays, and EEG headsets via flexible printing filaments
-
-
Dive-Into-Deep-Learning-PyTorch-PDF
Dive-Into-Deep-Learning-PyTorch-PDF PublicForked from wzy6642/Dive-Into-Deep-Learning-PyTorch-PDF
本项目对中文版《动手学深度学习》中的代码进行了PyTorch实现并整理为PDF版本供下载
Jupyter Notebook
-
3D-printed-directly-conductive-EEG-electrode-models
3D-printed-directly-conductive-EEG-electrode-models PublicForked from Non-Invasive-Bioelectronics-Lab/3D-printed-directly-conductive-EEG-electrode-models
3D printed directly conductive and flexible EEG electrode models
-
Autoencoder
Autoencoder PublicForked from Non-Invasive-Bioelectronics-Lab/Autoencoder
Autoencoder Deep Learning model for EEG artifact removal in Android smartphone
Python
-
smartphone-FastICA-demo
smartphone-FastICA-demo PublicForked from Non-Invasive-Bioelectronics-Lab/smartphone-FastICA-demo
This is an Android Studio Project which implements the FastICA decomposition algorithm in smartphones
If the problem persists, check the GitHub status page or contact support.