8000 GitHub - Leovita/IoTML: Predictive maintenance using machine learning to analyze sensor data from machines. The project involves data preprocessing, feature extraction, class balancing with SMOTE, and model training with BalancedRandomForest to predict machine health and prevent failures.
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content
/ IoTML Public

Predictive maintenance using machine learning to analyze sensor data from machines. The project involves data preprocessing, feature extraction, class balancing with SMOTE, and model training with BalancedRandomForest to predict machine health and prevent failures.

License

Notifications You must be signed in to change notification settings

Leovita/IoTML

Repository files navigation

Dataset utlizzato:

https://www.kaggle.com/code/shawkyelgendy/pump-sensor-data-timeseriesanalysis/input

  • in aggiunta -> AI generated BROKEN sensors dataset per trainare il modello per via della scarsita' dei dati "corrotti" (solo 8 nel df originale).

Per addestrare il modello: python script.py --train

Per fare previsioni su un file CSV senza etichette: python script.py --predict --input path/to/unlabeled_data.csv --output preds/predictions.csv

Per entrambe le operazioni: python script.py --train --predict --input path/to/unlabeled_data.csv

About

Predictive maintenance using machine learning to analyze sensor data from machines. The project involves data preprocessing, feature extraction, class balancing with SMOTE, and model training with BalancedRandomForest to predict machine health and prevent failures.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0