8000 GitHub - PengLiang-cn/SeqTR: SeqTR: A Simple yet Universal Network for Visual Grounding
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

PengLiang-cn/SeqTR

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SeqTR

overview

This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling for visual grounding tasks under a novel point prediction paradigm.

Installation

Prerequisites

pip install -r requirements.txt
wget https://github.com/explosion/spacy-models/releases/download/en_vectors_web_lg-2.1.0/en_vectors_web_lg-2.1.0.tar.gz -O en_vectors_web_lg-2.1.0.tar.gz
pip install en_vectors_web_lg-2.1.0.tar.gz

Then install SeqTR package in editable mode:

pip install -e .

Data Preparation

  1. Download our preprocessed json files including the merged dataset for pre-training, and DarkNet-53 model weights trained on MS-COCO object detection task.
  2. Download the train2014 images from mscoco or from Joseph Redmon's mscoco mirror, of which the download speed is faster than the official website.
  3. Download original Flickr30K images, ReferItGame images, and Visual Genome images.

The project structure should look like the following:

| -- SeqTR
     | -- data
        | -- annotations
            | -- flickr30k
                | -- instances.json
                | -- ix_to_token.pkl
                | -- token_to_ix.pkl
                | -- word_emb.npz
            | -- referitgame-berkeley
            | -- refcoco-unc
            | -- refcocoplus-unc
            | -- refcocog-umd
            | -- refcocog-google
            | -- pretraining-vg 
        | -- weights
            | -- darknet.weights
            | -- yolov3.weights
        | -- images
            | -- mscoco
                | -- train2014
                    | -- COCO_train2014_000000000072.jpg
                    | -- ...
            | -- saiaprtc12
                | -- 25.jpg
                | -- ...
            | -- flickr30k
                | -- 36979.jpg
                | -- ...
            | -- visual-genome
                | -- 2412112.jpg
                | -- ...
     | -- configs
     | -- seqtr
     | -- tools
     | -- teaser

Note that the darknet.weights excludes val/test images of RefCOCO/+/g datasets while yolov3.weights does not.

Training

Phrase Localization and Referring Expression Comprehension

We train SeqTR to perform grouning at bounding box level on a single V100 GPU. The following script performs the training:

python tools/train.py configs/seqtr/detection/seqtr_det_[DATASET_NAME].py --cfg-options ema=True

[DATASET_NAME] is one of "flickr30k", "referitgame-berkeley", "refcoco-unc", "refcocoplus-unc", "refcocog-umd", and "refcocog-google".

Referring Expression Segmentation

To train SeqTR to generate the target sequence of ground-truth mask, which is then assembled into the predicted mask by connecting the points, run the following script:

python tools/train.py configs/seqtr/segmentation/seqtr_mask_[DATASET_NAME].py --cfg-options ema=True

Note that instead of sampling 18 points and does not shuffle the sequence for RefCOCO dataset, for RefCOCO+ and RefCOCOg, we uniformly sample 12 points on the mask contour and randomly shffle the sequence with 20% percentage. Therefore, to execute the training on RefCOCO+/g datasets, modify num_ray at line 1 to 18 and model.head.shuffle_fraction to 0.2 at line 35, in configs/seqtr/segmentation/seqtr_mask_darknet.py.

Evaluation

python tools/test.py [PATH_TO_CONFIG_FILE] --load-from [PATH_TO_CHECKPOINT_FILE]

Pre-training + fine-tuning

We train SeqTR on 8 V100 GPUs while disabling Large Scale Jittering (LSJ) and Exponential Moving Average (EMA):

bash tools/dist_train.sh configs/seqtr/detection/seqtr_det_pretraining-vg.py 8

Models

RefCOCORefCOCO+RefCOCOg
valtestAtestBmodelvaltestAtestBmodelval-gval-uval-umodel
SeqTR on REC81.2385.0076.0868.8275.3758.78-71.3571.58
SeqTR* on REC83.7286.5181.2471.4576.2664.8871.5074.8674.21
SeqTR pre-trained+finetuned on REC87.0090.1583.5978.6984.5171.87-82.6983.37
SeqTR on RES67.2669.7964.1254.1458.9348.19-55.6755.64
SeqTR* denotes that its visual encoder is initialized with yolov3.weights, while the visual encoder of the rest are initialized with darknet.weights.

Contributing

Our codes are highly modularized and flexible to be extended to new architectures,. For instance, one can register new components such as head, fusion to promote your research ideas, or register new data augmentation techniques just as in mmdetection library. Feel free to play :-).

Citation

@article{zhu2022seqtr,
  title={SeqTR: A Simple yet Universal Network for Visual Grounding},
  author={Zhu, ChaoYang and Zhou, YiYi and Shen, YunHang and Luo, Gen and Pan, XingJia and Lin, MingBao and Chen, Chao and Cao, LiuJuan and Sun, XiaoShuai and Ji, RongRong},
  journal={arXiv preprint arXiv:2203.16265},
  year={2022}
}

Acknowledgement

Our code is built upon the open-sourced mmcv and mmdetection libraries.

About

SeqTR: A Simple yet Universal Network for Visual Grounding

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.7%
  • Shell 0.3%
0