Efficient, flat, and richly-annotated JavaScript AST manipulation for code transformation, analysis, and more.
For comments and suggestions feel free to open an issue or find me on Twitter/X - @ctrl__esc
Requires Node 18 or newer.
npm install flast
git clone git@github.com:PerimeterX/flast.git
cd flast
npm install
- Code to AST: Parse JavaScript code into a flat, richly annotated AST.
- AST to Code: Generate code from any AST node, supporting round-trip transformations.
- Flat AST (
generateFlatAST
): All nodes are in a single array, allowing direct access and efficient traversal without recursive tree-walking. - Type Map:
ast[0].typeMap
provides fast lookup of all nodes by type. - Scopes:
ast[0].allScopes
gives direct access to all lexical scopes.
Each node in the flat AST includes:
src
: The original code for this node.parentNode
andchildNodes
: Easy navigation and context.parentKey
: The property name this node occupies in its parent.declNode
: For variables, a reference to their declaration node.references
: For declarations, a list of all reference nodes.lineage
: Traceable ancestry of scopes for each node.nodeId
: Unique identifier for each node.scope
,scopeId
, and more for advanced analysis.
- Delete nodes: Mark nodes for removal and apply changes safely.
- Replace nodes: Mark nodes for replacement, with all changes validated and applied in a single pass.
- applyIteratively: Apply a series of transformation functions (using Arborist) to the AST/code, iterating until no further changes are made. Automatically reverts changes that break the code.
- logger: Simple log utility that can be controlled downstream and used for debugging or custom output.
- treeModifier: (Deprecated) Simple wrapper for AST iteration.
Tip: For best performance, always iterate over only the relevant node types using
ast[0].typeMap
. For example, to process all identifiers and variable declarations:const relevantNodes = [ ...ast[0].typeMap.Identifier, ...ast[0].typeMap.VariableDeclarator, ]; for (let i = 0; i < relevantNodes.length; i++) { const n = relevantNodes[i]; // ... process n ... }Only iterate over the entire AST as a last resort.
import {Arborist} from 'flast';
const replacements = {'Hello': 'General', 'there!': 'Kenobi'};
const arb = new Arborist(`console.log('Hello' + ' ' + 'there!');`);
// This is equivalent to:
// const ast = generateFlatAST(`console.log('Hello' + ' ' + 'there!');`);
// const arb = new Arborist(ast);
// Since the Arborist accepts either code as a string or a flat AST object.
for (let i = 0; i < arb.ast.length; i++) {
const n = arb.ast[i];
if (n.type === 'Literal' && replacements[n.value]) {
arb.markNode(n, {
type: 'Literal',
value: replacements[n.value],
raw: `'${replacements[n.value]}'`,
});
}
}
arb.applyChanges();
console.log(arb.script); // console.log('General' + ' ' + 'Kenobi');
Replace constant numeric expressions with their computed value.
import {applyIteratively} from 'flast';
function simplifyNumericExpressions(arb) {
const binaryNodes = arb.ast[0].typeMap.BinaryExpression || [];
for (let i = 0; i < binaryNodes.length; i++) {
const n = binaryNodes[i];
if (n.left.type === 'Literal' && typeof n.left.value === 'number' &&
n.right.type === 'Literal' && typeof n.right.value === 'number') {
let result;
switch (n.operator) {
case '+': result = n.left.value + n.right.value; break;
case '-': result = n.left.value - n.right.value; break;
case '*': result = n.left.value * n.right.value; break;
case '/': result = n.left.value / n.right.value; break;
default: continue;
}
arb.markNode(n, {type: 'Literal', value: result, raw: String(result)});
}
}
return arb;
}
const script = 'let x = 5 * 3 + 1;';
const result = applyIteratively(script, [simplifyNumericExpressions]);
console.log(result); // let x = 16;
import {applyIteratively} from 'flast';
function arrowToFunction(arb) {
const arrowNodes = arb.ast[0].typeMap.ArrowFunctionExpression || [];
for (let i = 0; i < arrowNodes.length; i++) {
const n = arrowNodes[i];
arb.markNode(n, {
type: 'FunctionExpression',
id: null,
params: n.params,
body: n.body.type === 'BlockStatement' ? n.body : {type: 'BlockStatement', body: [{ type: 'ReturnStatement', argument: n.body }] },
generator: false,
async: n.async,
expression: false,
});
}
return arb;
}
const script = 'const f = (a, b) => a + b;';
const result = applyIteratively(script, [arrowToFunction]);
console.log(result);
/*
const f = function(a, b) {
return a + b;
};
*/
Suppose you want to double any numeric literal that has a comment // double
attached:
import {applyIteratively} from 'flast';
function doubleLiteralsWithComment(arb) {
const literalNodes = arb.ast[0].typeMap.Literal || [];
for (let i = 0; i < literalNodes.length; i++) {
const n = literalNodes[i];
if (
typeof n.value === 'number' &&
n.leadingComments &&
n.leadingComments.some(c => c.value.includes('double'))
) {
arb.markNode(n, { type: 'Literal', value: n.value * 2, raw: String(n.value * 2) });
}
}
return arb;
}
const script = 'const x = /* double */ 21;';
const result = applyIteratively(script, [doubleLiteralsWithComment], 1); // Last argument is the maximum number of iterations allowed.
console.log(result); // const x = /* double */ 42;
Replace all references to a 8000 variable that is a proxy for another variable.
import {applyIteratively} from 'flast';
function replaceProxyVars(arb) {
const declarators = arb.ast[0].typeMap.VariableDeclarator || [];
for (let i = 0; i < declarators.length; i++) {
const n = declarators[i];
if (n.init && n.init.type === 'Identifier' && n.id && n.id.name) {
// Replace all references to this variable with the variable it proxies
const refs = n.references || [];
for (let j = 0; j < refs.length; j++) {
const ref = refs[j];
arb.markNode(ref, {
type: 'Identifier',
name: n.init.name,
});
}
}
}
return arb;
}
const script = 'var a = b; var b = 42; console.log(a);';
const result = applyIteratively(script, [replaceProxyVars]);
console.log(result); // var a = b; var b = 42; console.log(b);
- Obfuscation-Detector: Uses flAST to analyze and detect unique obfuscation in JavaScript code.
- REstringer: Uses flAST for advanced code transformation and analysis.
You can directly mutate nodes in the flat AST (e.g., changing properties, adding or removing nodes). However, for safety and script validity, it's best to use the Arborist for all structural changes. The Arborist verifies your changes and prevents breaking the code, ensuring that the resulting AST remains valid and that all node information is updated correctly.
- Direct mutation is possible, but should be used with caution.
- Recommended: Use the Arborist's
markNode
method for all node deletions and replacements.
To contribute to this project see our contribution guide