TimeKAN is a Pytorch implementation of integrating Kolmogorov-Arnold Networks (KAN) for temporal data with recurrent neural network architectures (Currently LSTM and GRU). It is still in an experimental stage, the implementation suffer from exploding gradients and vanishing gradients problems but with careful training it can perform well specifically on non-linear/complex temporal data.
Inspired by:
Full documentation can be found here.
In tKANLSTM
, KAN layers replace the output gate, computing tKANGRU
, they form the candidate hidden state, $\tilde{h}t = \tanh(\text{KAN}(W_x x_t + W_h (r_t \odot h{t-1}))$. The layer basis functions can be Fourier series, Chebyshev polynomials, or splines.
Animation of tKANLSTM learning a Mackay Glass signal:
ex.mp4
Here's how it can perform on Rossler system signal:
The table below compares TimeKAN (using tKANLSTM
and
spline
as basic functions) and a standard bidirectional
LSTM on three chaotic datasets available in
timekan.utils.datasets
. Metrics include Mean Absolute
Error (MAE) and training time (seconds) until convergence.
Dataset | Model | MAE | Training Time (s) |
---|---|---|---|
Mackey-Glass | LSTM | 0.0893 | 0.3346 |
TimeKAN | 0.0822 | 9.8755 | |
Lorenz | LSTM | 0.9410 | 1.1331 |
TimeKAN | 0.7485 | 7.9437 | |
Rössler | LSTM | 0.3332 | 1.3951 |
TimeKAN | 0.2657 | 12.4172 |
Install TimeKAN via pip:
pip install timekan
Alternatively, clone the repository and install locally:
git clone https://github.com/SamerMakni/timekan.git
cd timekan
pip install .
Requirements: Python >= 3.9, PyTorch >= 2.4.0
Here’s a simple example training a TKANLSTM on Mackey-Glass data:
import torch
import torch.nn as nn
from timekan.models.tkan_lstm import tKANLSTM
from timekan.utils.datasets import mackey_glass
class RecurrentKAN(nn.Module):
def __init__(self, input_dim, hidden_dim):
super().__init__()
self.tkan = tKANLSTM(
input_dim=input_dim,
hidden_dim=hidden_dim,
return_sequences=False,
bidirectional=True,
kan_type='fourier',
sub_kan_configs={'gridsize': 50, 'addbias': True}
)
self.regressor = nn.Linear(hidden_dim * 2, 1)
def forward(self, x):
features = self.tkan(x)
return self.regressor(features).squeeze(-1)
x_train, y_train, x_test, y_test = mackey_glass()
model = RecurrentKAN(input_dim=1, hidden_dim=16)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
for epoch in range(10):
model.train()
optimizer.zero_grad()
outputs = model(x_train)
loss = criterion(outputs, y_train)
loss.backward()
optimizer.step()
print(f"Epoch {epoch + 1}/10, Training MSE: {loss.item():.4f}")
model.eval()
with torch.no_grad():
test_outputs = model(x_test)
test_mse = criterion(test_outputs, y_test).item()
print(f"Test MSE: {test_mse:.4f}")