8000 GitHub - SamerMakni/timekan: Python library designed to integrate Kolmogorov Arnold Networks with recurrent mechanisms.
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

SamerMakni/timekan

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyPI - Version PyPI - License PyPI - Python Version PyPI - Downloads

TimeKAN

TimeKAN is a Pytorch implementation of integrating Kolmogorov-Arnold Networks (KAN) for temporal data with recurrent neural network architectures (Currently LSTM and GRU). It is still in an experimental stage, the implementation suffer from exploding gradients and vanishing gradients problems but with careful training it can perform well specifically on non-linear/complex temporal data.

Inspired by:

Full documentation can be found here.

image

In tKANLSTM, KAN layers replace the output gate, computing $o_t = \sigma(\text{KAN}(W_x x_t + W_h h_{t-1}))$. In tKANGRU, they form the candidate hidden state, $\tilde{h}t = \tanh(\text{KAN}(W_x x_t + W_h (r_t \odot h{t-1}))$. The layer basis functions can be Fourier series, Chebyshev polynomials, or splines.

Animation of tKANLSTM learning a Mackay Glass signal:

ex.mp4

Here's how it can perform on Rossler system signal:

image

The table below compares TimeKAN (using tKANLSTM and spline as basic functions) and a standard bidirectional LSTM on three chaotic datasets available in timekan.utils.datasets. Metrics include Mean Absolute Error (MAE) and training time (seconds) until convergence.

Dataset Model MAE Training Time (s)
Mackey-Glass LSTM 0.0893 0.3346
TimeKAN 0.0822 9.8755
Lorenz LSTM 0.9410 1.1331
TimeKAN 0.7485 7.9437
Rössler LSTM 0.3332 1.3951
TimeKAN 0.2657 12.4172

Installation

Install TimeKAN via pip:

pip install timekan

Alternatively, clone the repository and install locally:

git clone https://github.com/SamerMakni/timekan.git
cd timekan
pip install .

Requirements: Python >= 3.9, PyTorch >= 2.4.0

Usage

Here’s a simple example training a TKANLSTM on Mackey-Glass data:

import torch
import torch.nn as nn
from timekan.models.tkan_lstm import tKANLSTM
from timekan.utils.datasets import mackey_glass

class RecurrentKAN(nn.Module):
    def __init__(self, input_dim, hidden_dim):
        super().__init__()
        self.tkan = tKANLSTM(
            input_dim=input_dim,
            hidden_dim=hidden_dim,
            return_sequences=False,
            bidirectional=True,
            kan_type='fourier',
            sub_kan_configs={'gridsize': 50, 'addbias': True}
        )
        self.regressor = nn.Linear(hidden_dim * 2, 1)

    def forward(self, x):
        features = self.tkan(x)
        return self.regressor(features).squeeze(-1)

x_train, y_train, x_test, y_test = mackey_glass()

model = RecurrentKAN(input_dim=1, hidden_dim=16)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

for epoch in range(10):
    model.train()
    optimizer.zero_grad()
    outputs = model(x_train)
    loss = criterion(outputs, y_train)
    loss.backward()
    optimizer.step()
    print(f"Epoch {epoch + 1}/10, Training MSE: {loss.item():.4f}")

model.eval()
with torch.no_grad():
    test_outputs = model(x_test)
    test_mse = criterion(test_outputs, y_test).item()
    print(f"Test MSE: {test_mse:.4f}")

About

Python library designed to integrate Kolmogorov Arnold Networks with recurrent mechanisms.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0