8000 GitHub - Srijan-Ratrey/Fashion-Detector: Smart Tagging & Vibe Classification Engine for Fashion Videos πŸ§₯πŸ’…πŸ»πŸ‘”
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Srijan-Ratrey/Fashion-Detector

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

1 Commit
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🎬 Fashion AI Pipeline - Flickd Hackathon

Smart Tagging & Vibe Classification Engine for Fashion Videos

A complete AI pipeline that processes fashion videos to detect clothing items, match them to product catalogs, and classify aesthetic vibes. Built for the Flickd AI Hackathon.

🎯 What It Does

  • πŸ‘— Fashion Detection: Uses YOLOv8 to identify clothing items, accessories, and fashion elements
  • πŸ›οΈ Product Matching: Employs CLIP + FAISS for similarity matching against product catalogs
  • 🎭 Vibe Classification: NLP-based classification of fashion aesthetics (Clean Girl, Coquette, Streetcore, etc.)
  • ⚑ High Performance: Processes videos in ~1-2 seconds with 100% success rate

πŸš€ Quick Demo

# Process all videos with optimized pipeline
python fashion_ai_pipeline.py

# Test specific video
python test_specific_video.py

Sample 8000 Output:

{
  "video_id": "2025-05-28_13-40-09_UTC",
  "vibes": ["Clean Girl"],
  "products": [
    {
      "type": "top",
      "color": "brown",
      "matched_product_id": 16050,
      "match_type": "similar", 
      "confidence": 0.793
    }
  ]
}

πŸ“Š Performance Results

Metric Result
Processing Speed ~1.3s per video
Fashion Detections 20-24 items per video
Product Matches 10 high-quality matches per video
Vibe Classification 85%+ accuracy on test videos
Success Rate 100% (6/6 videos processed)

πŸ—οΈ Architecture

πŸ“ Project Structure
β”œβ”€β”€ πŸš€ fashion_ai_pipeline.py      # Main optimized pipeline
β”œβ”€β”€ πŸ“Ή test_specific_video.py      # Individual video testing
β”œβ”€β”€ πŸ“‚ src/
β”‚   β”œβ”€β”€ fashion_detector.py        # YOLOv8 fashion detection
β”‚   β”œβ”€β”€ product_matcher.py         # CLIP + FAISS matching
β”‚   β”œβ”€β”€ vibe_classifier.py         # NLP vibe classification
β”‚   └── utils.py                   # Helper functions
β”œβ”€β”€ πŸ“‚ data/
β”‚   β”œβ”€β”€ videos/                    # Input fashion videos
β”‚   β”œβ”€β”€ images.csv                 # Product catalog (11K+ items)
β”‚   └── vibeslist.json             # Supported vibes
β”œβ”€β”€ πŸ“‚ outputs/                    # Generated results
└── πŸ“‹ requirements.txt            # Dependencies

πŸ› οΈ Installation

Prerequisites

  • Python 3.8+
  • 4GB+ RAM
  • Internet connection (for downloading models)

Setup

# Clone the repository
git clone https://github.com/yourusername/fashion-ai-pipeline.git
cd fashion-ai-pipeline

# Create virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt

# Download YOLOv8 model (automatically downloads on first use)
python -c "from ultralytics import YOLO; YOLO('yolov8n.pt')"

# Run the pipeline
export KMP_DUPLICATE_LIB_OK=TRUE  # For macOS
python fashion_ai_pipeline.py

🎯 Core Components

1. Fashion Detector (src/fashion_detector.py)

  • Model: YOLOv8n for object detection
  • Confidence: Optimized threshold (0.25) for better detection
  • Output: Bounding boxes, clothing types, colors

2. Product Matcher (src/product_matcher.py)

  • Embeddings: CLIP ViT-B/32 for image similarity
  • Search: FAISS index for fast matching
  • Catalog: 1500+ optimized product subset
  • Threshold: 0.35 similarity for meaningful matches

3. Vibe Classifier (src/vibe_classifier.py)

  • Method: Keyword-based NLP classification
  • Vibes: Clean Girl, Coquette, Cottagecore, Streetcore, Y2K, Boho, Party Glam
  • Input: Video captions, hashtags, descriptions

πŸ“± Supported Fashion Vibes

Vibe Keywords Example
Clean Girl minimal, natural, linen, cotton, breezy "easy-breezy cotton vest"
Coquette pink, bow, lace, feminine, soft "cute pink dress with bows"
Streetcore urban, edgy, oversized, graphic "oversized streetwear look"
Cottagecore floral, vintage, rustic, prairie "vintage floral cottage dress"
Y2K metallic, futuristic, 2000s "shiny metallic y2k top"
Boho flowing, earthy, bohemian, layered "flowing boho maxi dress"
Party Glam sparkle, sequin, elegant, formal "sequin party dress"

πŸ§ͺ Testing

# Test with different videos
python test_specific_video.py

# Run individual components
python -c "from src.fashion_detector import FashionDetector; detector = FashionDetector()"

πŸ“ˆ Results Analysis

Video Processing Summary:

  • βœ… 2025-05-31_14-01-37_UTC: 16 detections β†’ 32 matches β†’ "Streetcore"
  • βœ… 2025-05-28_13-42-32_UTC: 32 detections β†’ 64 matches
  • βœ… 2025-06-02_11-31-19_UTC: 16 detections β†’ 32 matches β†’ "Clean Girl"
  • βœ… 2025-05-27_13-46-16_UTC: 20 detections β†’ 40 matches β†’ "Clean Girl"
  • βœ… 2025-05-28_13-40-09_UTC: 24 detections β†’ 48 matches β†’ "Clean Girl"

πŸ”§ Configuration

Key parameters in fashion_ai_pipeline.py:

  • catalog_size: Number of products to use (default: 1500)
  • confidence_threshold: Detection confidence (default: 0.25)
  • min_confidence: Matching threshold (default: 0.35)
  • num_frames: Keyframes per video (default: 5)

πŸŽͺ Demo Examples

Input Video

  • Text: "GRWM in this easy-breezy cotton vest + skirt set β€” made in linen, made for summer! #LinenSet #SummerOutfit"

Output

{
  "video_id": "2025-05-28_13-40-09_UTC",
  "vibes": ["Clean Girl"], 
  "products": [
    {
      "type": "top",
      "color": "brown",
      "matched_product_id": 16050,
      "match_type": "similar",
      "confidence": 0.793
    }
  ]
}

🀝 Contributing

This project was built for the Flickd AI Hackathon. Contributions welcome!

  1. Fork the repository
  2. Create feature branch: git checkout -b feature/amazing-feature
  3. Commit changes: git commit -m 'Add amazing feature'
  4. Push to branch: git push origin feature/amazing-feature
  5. Open Pull Request

πŸ“„ License

MIT License - see LICENSE file for details.

πŸ† Competition Details

Built for the Flickd AI Hackathon - Smart Tagging & Vibe Classification Engine

Competition Requirements:

  • βœ… YOLOv8 fashion detection
  • βœ… CLIP + FAISS product matching
  • βœ… NLP vibe classification
  • βœ… Structured JSON output
  • βœ… Processing speed optimization

🎬 Ready to revolutionize fashion video analysis! πŸš€

About

Smart Tagging & Vibe Classification Engine for Fashion Videos πŸ§₯πŸ’…πŸ»πŸ‘”

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0