8000 GitHub - TDL77/RecSys_course: Course on recommender systems conducted at the Faculty of Computer Science, National Research University - Higher School of Economics. Academic year 2022-2023.
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Course on recommender systems conducted at the Faculty of Computer Science, National Research University - Higher School of Economics. Academic year 2022-2023.

Notifications You must be signed in to change notification settings

TDL77/RecSys_course

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RecSys course

The course on recommender systems conducted in National Research University - Higher School of Economics (Moscow, Russia). Academic year 2023 / Курс по рекомендательным системам, который проводится в Национальном исследовательском университете Высшей школе Экономики (Москва). Академический год 2023.

Useful Links

  • Wiki page of this course.
  • The code materials for each seminars can be found in the corresponding folders /seminar*.
  • To download any folder please use this link.
  • Любые вопросы можно задавать в чат с технической поддержкойTG1
  • Table with grades

The most important section

The final grade is calculated as follows:

0.3 * Home Assignment + 0.15 * Article Summary + 0.25 * Weekly Quizzes + 0.3 * Exam

where Home Assignments - 1 home assignments in Jupyter Notebook (max 10 points). Article Summary - конспект/презентация статьи из предложенного списка с критическим анализом (без выступления на семинаре) (max 10 баллов). Weekly Quizzes - 6 квизов по мотивам материалов семинаров, которые сдаются перед началом следующего занятия в Google Forms (ариф.среднее за все квизы, max 10 баллов за каждый). Exam - письменный экзамен в формате решения case-study построения рекомендательной системы для бизнеса (max 10 баллов).

Course Outline / Big plan for small victories

Week 1

Seminar 1-2

  • Examples of RecSys models in production.
  • Formalization of the ranking (recommender systems) task (2 popular types of tasks, 2 types of data sets).
  • Ranking functions (BPR, WARP, RankNET, LambdaRank).
  • Metrics for the quality estimation (Hitrate, Precision@k, Recall@k, MAP@k, NDCG@k).
  • Taxonomy of RecSys approaches ([MF, FM, CF & other general], Content-based [including knowledge graph based, GB for ranking], Context-based, Sequential and session-based models, RL-based models, Hybrid [including two-level cascade]) approaches.
  • Recommended sources on RecSys
  • Hands-on example on the MovieLens dataset: movie recommender system.
  • Basic baselines

Week 2

Seminar 3 - 4

  • Item-based and user-based similarity, similarity metrics.
  • Matrix Factorization (SVD et al.)
  • Collaborative Filtering (ALS and iALS, HALS, NeuralCF)

Week 3

Seminar 5

  • Content-based recommender models
  • DSSM for RecSys
  • Hybrid recommenders taxonomy
  • LightFM (hybrid content model), Lightfm library

Seminar 6

  • Gradient boosting for ranking task
  • Example of cascade recommender model (using gradient boosting on the second level)
  • Important preprocessing steps
  • Cross-validation types

Week 4

Seminar 7

  • Sequential models
  • Next-basket and next-item prediction tasks

Seminar 8

  • Context-aware recommender systems
  • Time-aware и time-dependent models

Week 5

Seminars 9 - 10

  • Autoencoders and Variational autoencoders for RecSys (VAE, Mult-VAE, Multi-VAE, Rec-VAE)

Week 6

Seminar 11

  • Graph-based recommender systems overview
  • Inductive learning (out-of-sample users, cold start problem)
  • GNN, GCN, GraphSage -> PinSage, GAT
  • Explainability & interpretability of recommender systems
  • Knowledge-based graph recommenders

Week 7

Seminar 15 & Seminar 16

  • Vanilla Production-ready RecSys service.

Contributors

License

All content created for this course is licensed under the MIT License. The materials are published in the public domain.

About

Course on recommender systems conducted at the Faculty of Computer Science, National Research University - Higher School of Economics. Academic year 2022-2023.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 98.0%
  • Python 2.0%
0