8000 GitHub - WUMUXIAN/darknet: Convolutional Neural Networks
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

WUMUXIAN/darknet

 
 

Darknet Logo

Darknet

Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation.

For more information see the Darknet project website.

For questions or issues please use the Google Group.

Train VOC dataset with YOLOv3.

Make the directory to hold all the training data.

mkdir -p voc_training/backup
cd voc_training

Download and extract the dataset

wget https://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar
wget https://pjreddie.com/media/files/VOCtrainval_06-Nov-2007.tar
wget https://pjreddie.com/media/files/VOCtest_06-Nov-2007.tar
tar xf VOCtrainval_11-May-2012.tar
tar xf VOCtrainval_06-Nov-2007.tar
tar xf VOCtest_06-Nov-2007.tar

Generate the YOLO consumable labels

python ../scripts/voc_label.py

Download the pre-trained conv weights

wget https://pjreddie.com/media/files/yolov2.weights
../darknet partial ../cfg/yolov2-voc.cfg yolov2.weights yolov2.conv.20 20

Generate the anchors before training

python ../scripts/gen_anchors.py -filelist train.txt -output_dir generated_anchors/voc -num_clusters 5

Update the configuration files

cd ..
cp cfg/yolov2-voc.cfg cfg/yolov2-voc-test.cfg

Make sure the bath size and subdivisions are set properly in cfg/yolov2-voc.cfg

Training
batch=64
subdivisions=8

Copy the anchors generated in the last steps and replace the anchors in cfg/yolov2-voc.cfg and cfg/yolov2-voc-test.cfg

anchors =  copy from "generated_anchors/voc/anchors5.txt"

Make sure the path are correctly set in the cfg/voc.data

classes= 20
train  = voc_training/train.txt
valid  = voc_training/2007_test.txt
names = data/voc.names
backup = voc_training/backup

Train the model

mkdir voc_training/log
./darknet detector train cfg/voc.data cfg/yolov2-voc.cfg voc_training/yolov2.conv.20 >> voc_training/log/voc.log

Releases

No releases published

Packages

No packages published

Languages

  • C 88.1%
  • Cuda 7.6%
  • Python 3.5%
  • Other 0.8%
0