8000 GitHub - XiaorongLi-95/VDFD: PyTorch implementation of our TPAMI paper "Variational Data-Free Knowledge Distillation for Continual Learning"
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

PyTorch implementation of our TPAMI paper "Variational Data-Free Knowledge Distillation for Continual Learning"

License

Notifications You must be signed in to change notification settings

XiaorongLi-95/VDFD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 

Repository files navigation

VDFD

PyTorch implementation of our TPAMI paper "Variational Data-Free Knowledge Distillation for Continual Learning"

Title: Variational Data-Free Knowledge Distillation for Continual Learning

Authors: Xiaorong Li, Shipeng Wang, Jian Sun, Zongben Xu

Email: lixiaorong@stu.xjtu.edu.cn, lixiaorongxjtu@gmail.com

Usage

Task-incremental setting

  • VDFD (w/o SSL)
cd classification/task_incremental
sh scripts/vdfd.sh
  • VDFD
cd classification/task_incremental
sh scripts_ssl/vdfd.sh

Prepare Dataset

For 5-Dataset, you can download this dataset at here.

Class-incremental setting

  • VDFD (w/o SSL)
cd classification/class_incremental
sh scripts/vdfd.sh
  • VDFD
cd classification/class_incremental
sh scripts_ssl/vdfd.sh

Domain-incremental setting

cd segmentation
sh scripts/vdfd.sh

Requirements

Task-incremental setting & Class-incremental setting

Python (3.6)

PyTorch (1.8.0)

timm

tensorboardX

tqdm

Domain-incremental setting

Python (3.6)

Pytorch (1.8.1+cu102)

torchvision (0.9.1+cu102)

tensorboardX (1.8)

apex (0.1)

inplace-abn (1.0.7)

Citation

@ARTICLE{Li_2023_tpami,
  author={Li, Xiaorong and Wang, Shipeng and Sun, Jian and Xu, Zongben},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  title={Variational Data-Free Knowledge Distillation for Continual Learning}, 
  year={2023},
  volume={},
  number={},
  pages={1-17},
  doi={10.1109/TPAMI.2023.3271626}}

Acknowledgment

The code of classification is based on Adam-NSCL and Continual-Learning-Benchmark.

The code of segmentation is based on PLOP and RCIL.

About

PyTorch implementation of our TPAMI paper "Variational Data-Free Knowledge Distillation for Continual Learning"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0