8000 GitHub - YichiZhang98/Mamba-UNet: Mamba-UNet: Unet-like Pure Visual Mamba for Medical Image Segmentation
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

YichiZhang98/Mamba-UNet

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Mamba-UNet

Mamba-UNet: Unet-like Pure Visual Mamba for Medical Image Segmentation

Mamba-UNet Zoo

Supervised Mamba-UNet -> [Paper Link] Released in 6/Feb/2024.

Semi-Supervised Mamba-UNet -> TBA

3D Mamba-UNet -> TBA

Requirements

  • Pytorch, MONAI
  • Some basic python packages: Torchio, Numpy, Scikit-image, SimpleITK, Scipy, Medpy, nibabel, tqdm ......
cd casual-conv1d

python setup.py install
cd mamba

python setup.py install

Usage

  1. Clone the repo:
git clone https://github.com/ziyangwang007/Mamba-UNet.git 
cd Mamba-UNet
  1. Download Pretrained Model

Download through Google Drive for SwinUNet, and Google Drive for Mamba-UNet. in `code/pretrained_ckpt'.

  1. Download Dataset

Download through Google Drive, and save in `data/ACDC'.

  1. Train 2D UNet
python train_fully_supervised_2D.py --root_path ../data/ACDC --exp ACDC/unet --model unet
  1. Train SwinUNet
python train_fully_supervised_2D_ViT.py --root_path ../data/ACDC --exp ACDC/swinunet --model swinunet
  1. Train Mamba-UNet
python train_fully_supervised_2D_VIM.py --root_path ../data/ACDC --exp ACDC/VIM --model VIM
  1. Test
python test_2D_fully.py --root_path ../data/ACDC --exp ACDC/xxx --model xxx

Acknowledgement

SSL4MIS, Segmamba, SwinUNet

About

Mamba-UNet: Unet-like Pure Visual Mamba for Medical Image Segmentation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 77.3%
  • Cuda 16.1%
  • C++ 5.9%
  • C 0.7%
0