- 使用所有pre-trained参数
- 修改一些细节
- 核对超参数
- 修改build_data.py: python build_data.py --device --func --dataset --checkpoint
使用v201中pre trained identity encoder参数
- python build_data.py --device mac --func txt: 生成所有MP4路径的TXT
- python build_data.py --device mac --func data: 1个MP4可以生成5个NPZ (face + mfcc + identity).
- python build_data.py --device mac --func tfrecords: NPZ --> TFRECORDS
- python speech2vid_train_finetune.py --tfrecords /path/to/tfrecords
- python build_data.py --device mac --func txt: 生成所有MP4路径的TXT
- python build_data.py --device mac --func data: 1个MP4可以生成5个NPZ (face + mfcc + identity).
- python build_data.py --device mac --func tfrecords: NPZ --> TFRECORDS
- python speech2vid_train.py --tfrecords /path/to/tfrecords
- python build_data.py --device mac --func txt: 生成所有MP4路径的TXT
- python build_data.py --device mac --func data: 1个MP4可以生成5个NPZ (face + mfcc + identity).
- python build_data.py --device mac --func tfrecords: NPZ --> TFRECORDS
在mac上进行测试:
- prepare_data.py: MP4 --> NPZ face + mfcc + identity
- build_data.py: NPZ --> TFRECORDS
- speech2vid_train.py: TRAIN